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Chapter 1

Introduction and Outline

Biopolymers like nucleic acids, polysaccharides and proteins are of central importance in
all biological processes. These chain-like macromolecules consisting of covalently bond
repeating units exhibit extraordinary features due to the vast number of conformational
degrees of freedom. The various biological functions of biopolymers are closely related to
the specific spatial structure. It is determined by the chemical composition, specifically
the primary structure and the presence of charged groups that account for physical
properties like the degree of flexibility and topological constrains. The advances in the
field of polymer physics are therefore partially driven by the ambition to understand
complex biological phenomena and processes based on polymers as one of the basic
components of all living organisms [1, 2].

Many molecular processes involving biopolymers are associated with static polymer
properties such as the average size of coiled chains or collapsed globules. In this context,
a prominent example is the self-assembly of proteins into their functional native state
that can be described as a folding transition from coiled into globular polymer conforma-
tions. While dynamical properties of dilute polymer solutions are mainly governed by
hydrodynamic interactions, the viscoelastic behavior of polymer melts consisting of long
chains is determined by entanglement effects [3]. Fundamental interest in non-equilibrium
dynamics of polymer systems is derived from such extraordinary rheological phenomena
as non-Newtonian thinning and thickening of polymer solutions and melts in response to
shear flow [4]. Another important aspect is the relevance for industrial and technological
application. In particular, synthetic polymers are designed to mimic the behavior of
the complex biopolymers that nature has evolved. A fundamental understanding of the
remarkable dynamical features of polymeric systems is indispensable in order to develop
novel polymer-based materials with potential self-healing properties, controlled response
to flow and stress, or targeted drug delivery systems [5–7].

The present dissertation seeks to contribute to the understanding of a specific complex
biological system, the blood protein von Willebrand factor (VWF). The main focus lies
on the non-equilibrium dynamical aspects of multimeric proteins when subject to flow
conditions, as it is the case in the bloodstream. From a fundamental point of view,
non-equilibrium behavior of multimeric proteins raise a number of interesting questions
in theoretical polymer physics. On the biological side, the flow-response of proteins
in solution has important implications on the protein function, the interactions with
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Chapter 1 Introduction and Outline

other objects (e.g. aggregation), the interaction with interfaces (adsorption), as well as
degradation. Biophysical research in this field led to the discovery of novel phenomena
such as reversible polymer-colloid aggregate formation in flow [8], catch bond behavior
of special bond complexes [9], and shear-induced adhesion and degradation [10], all of
which remain to be fully understood.

1.1 Von Willebrand factor and blood coagulation

The multimeric glycoprotein von Willebrand factor (VWF) is one of the largest proteins
in the human body. It plays an essential role in the initiation of primary hemostasis,
where platelets form a plug at the site of an injury of a damaged blood vessel in order to
stop bleeding [11, 12]. VWF also acts as a carrier protein preventing the degradation of
factor VIII [13], another essential blood clotting protein. Endothelial cells line the blood
vessels and contain Weibel-Palade bodies, which are the main storage of VWF [14, 15].

shear �ow

globular VWF

activated

unfolded VWF

collagen

endothelial cells

platelet

ADAMTS13

ULVWF

VWF activation         Plug formation           Cleavage

vessel wall

Figure 1.1: Schematic illustration of important VWF associated processes in the bloodstream.
Shear flow activates VWF (black) by an unfolding transition from a globular configuration to
an elongated state. At a site of an injury, VWF initiates the coagulation cascade by adhering
to the exposed collagen and simultaneously mediating plug formation of platelets (green).
The protease ADAMTS13 (red) presents the size regulatory mechanism that cleaves ultra
large von Willebrand factor (ULVWF) after secretion from the endothelial cells as well as
VWF circulating in the bloodstream and thus prevents pathological thrombus formation.

Upon stimulatory conditions VWF is secreted into the blood flow in an ultra large
form [15, 16] that has to be cleaved by ADAMTS13 [17]. This process is schematically
illustrated on the right hand site of in fig. 1.1. The cleavage enzyme represents the
regulatory mechanism for the length of VWF and prevents spontaneous VWF-platelet
aggregation that might lead to pathogenic thrombus formation. Prior to VWF degradation
the A2 domain opens and exposes the cleavage site for ADAMTS13 [18, 19]. The
exponential size distribution of VWF, which is controlled by ADAMTS13, has been
determined recently experimentally [20].
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1.1 Von Willebrand factor and blood coagulation

A number of diseases are connected to the length distribution of VWF in the blood
plasma. It is important to note that only long multimers of more than ten repeating
units are hemostatically active. Whereas the relatively common bleeding disorder von
Willebrand disease (VWD) can be caused by a quantitative VWF deficiency due to
mutations and a lack of long VWF multimers [21, 22], a defect of the VWF-specific
cleavage enzyme ADAMTS13 may lead to abnormally long multimers with a high potential
of platelet binding and consequently to life threatening thrombotic thrombocytopenic
purpura [23].

VWF’s monomeric unit consists of 2050 amino acids [24] and is structured in multiple
domains which are related to different functions [11, 16, 24]. As schematically illustrated
in fig. 1.2a, there are binding sites for platelet’s glycoprotein Ib (GPIb) [25], collagen [26],
factor VIII [13] as well as sites for dimerization and multimerization, and a cleavage
site for ADAMTS13 [17, 27]. During the biosynthesis in the endothelium, dimers are
formed, shown in fig. 1.2b, which constitute the repeating units that are assembled to the
VWF biopolymer, as shown in fig. 1.2c. The average size of these dimers is about 70 nm
and 10 nm along the long and the short axis, respectively [28, 29], but depending on
conditions like the pH, a maximal length up to 82 nm [17] is observed. VWF multimers
in the bloodstream reach up to 40 − 200 repeating units corresponding to contour length
of 3 − 14 µm [27].
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Figure 1.2: a) Von Willebrand factor domain annotations and attributed binding sites [24]. b)
Schematic structure of the dimerized VWF repeating unit that form the c) multimeric protein.
In coarse-grained simulations, VWF dimers are typically represented by spherical beads (gray)
that are connected to a chain and interact effectively via pairwise Lennard-Jones potentials.

Under normal blood flow conditions VWF has a globular inactive form but in elevated
hydrodynamic shear stress, as found in small vessels [30] or at vasoconstriction sites
caused by injuries, it unfolds and thereby becomes activated [16, 31], see fig. 1.1. Note
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Chapter 1 Introduction and Outline

that throughout this work the focus lies on the response of VWF polymers on mechanical
stress but also chemical activation is possible, e.g. a variation of the pH will change the
critical shear rate of unfolding [16]. The VWF activation occurs exactly in situations
where needed, most importantly at a lesion in the vessel wall where subendothelial
collagen is exposed, as schematically depicted in the middle of fig. 1.1. The elongated
VWF can bind via a large number of binding sites to the collagen and thus initiates the
coagulation cascade [32]. In the next step platelets adhere and form a VWF-mediated
agglomeration, which finally becomes stable by a cross-linked network formation of fibrin,
a complex process which involves a number of further clotting factors like thrombin and
factor VIII. The detailed mechanisms of blood coagulation consists of a large number of
chemical and physical processes which are far from being fully understood.

1.2 Polymers in shear flow

The physics of polymer systems can be probed experimentally in a collective manner
with light [33] or neutron [29] scattering that yield ensemble-averaged information of the
polymer configurations. More insight into the microscopic dynamics in biological systems
was made possible by recently developed experimental techniques for the observation of
single cells or molecules [34, 35]. As an example, fluorescent labels are used to track the
motion of individual molecules within living cells with high spatial and temporal resolution
microscopy [36]. Fluorescence correlation spectroscopy (FCS) analyzes fluctuations of
the fluorescence intensity in a confocal volume [37, 38] and can be used to measure the
dynamics of molecules in crowded environments [39] such as blood plasma [20]. Since
many biological processes are governed by the force response of soft matter objects, a
common way to resolve the underlying molecular mechanism is to either directly applying
external stretching forces, e.g. by atomic force microscopy and optical tweezers [40], or
by the study of the system dynamics in shear flow. Shear flow represents a commonly
generated non-equilibrium condition as it occurs when a fluid flow passes a solid boundary,
a situation ubiquitous in experimental setups such as microfluidic devices with a high
surface to volume ratio.

From a theoretical point of view, polymers in a dilute solution are usually studied based
on the description of single chains since for sufficiently low concentration the inter-polymer
interactions can be neglected. The physical description of the chain mainly relies on
methods from statistical mechanics [1]. Static properties of simple polymer models such
as the bead-spring model which might include chain stiffness, excluded volume effects and
different solvent conditions are described in detail in introductory chapters of numerous
books on the topic [2, 3, 41]. In particular, good solvents tend to swell the polymer
chain as the effective interaction between monomers is repulsive. In bad solvents the
interaction is attractive and the polymer collapses with a minimal size determined by
steric effects [42]. Concerning the dynamical behavior of single polymers, Rouse [43]
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1.2 Polymers in shear flow

presented the first model for ideal, flexible chains, which was later expanded by Zimm [44]
by inclusion of hydrodynamic interactions between monomers.

The dynamics of a single polymer in good solvent subject to simple shear flow is a well-
studied problem. Theoretical descriptions primarily use dumbbell models, introduced by
de Gennes [45], in order to examine dynamic quantities such as viscosity and rotational
frequencies [46–48]. The average chain extension was predicted to increase continuously
with increasing shear rate as it is observed in experiments [33, 49, 50]. For large shear
rates non-monotonic stretching effects can be observed [51], i.e. polymer compression
occurs reflected in a minimum of the average extension, which saturates for higher shear
at about forty percent of the contour length [4]. Whereas de Gennes [45] predicted a
continuous transition in simple shear flow from coiled to stretched polymer configurations,
a polymer subject to elongational flow undergoes a first order coil-stretch transition at a
critical value of the strain rate [52–54].

In terms of its time-dependent configuration a polymer in shear flow does not reach
a stationary state as periodic elongation and relaxation with large fluctuations in the
extension occur. Furthermore, end-over-end tumbling is observed for shear rates even
smaller than the inverse polymer relaxation time [49, 50]. A similar behavior is observed
for surface-grafted polymers [55]. It can be rationalized by decomposing simple shear flow
into equal amounts of rotational and elongational flow in which the polymer is rotated
and thus subject to periodic compressional and elongational flow.

Polymers dissolved in bad solvents collapse and form globules. Understanding the
dynamical behavior of polymeric globules is important for instance in the context of the
stability of folded proteins in shear flow [56, 57]. As opposed to polymers in good solvent,
high cohesion opposes hydrodynamic drag forces, causing a different dynamical behavior.
It is for this reason that the unfolding in simple shear flow is a smooth transition for good
solvents [45], but collapsed polymers in bad solvent conditions unfold above a well-defined
critical shear rate [58] as discussed in the following.

The force response of globular polymers was first theoretically examined by application
of extensional forces on the polymer ends, where a first-order like unfolding transition
at a critical force was characterized [59]. A similar discontinuous transition was found
for the case of grafted collapsed polymers in shear flow above a critical shear rate [60].
Since relaxation of stretching forces on unconstrained globules in shear flow occurs
due to the rotation, the mechanism for shear-induced unfolding is different. Studies of
Alexander-Katz and Netz [58, 61] showed that thermally excited protrusions from the
globular surface induce the unfolding mechanism of free, nongrafted polymeric globules
in shear. At a critical shear rate the hydrodynamic drag force on a protrusion overcomes
the restoring cohesive force and the polymer is able to fully elongate. The scaling analysis
of this nucleation model reveals a different dependence of the critical shear rate on the
globule size for free draining conditions compared to the non-draining case, i.e. there
is flow stagnation within the globule when hydrodynamic interactions are taken into
account. The dependence of the protrusion-induced instability mechanism on temperature
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Chapter 1 Introduction and Outline

and the monomer size was also worked out. As a matter of fact, the dependence of the
critical shear rate on the monomer size explains why the VWF with its large repeating
units unfolds at physiologically relevant shear rates [31]. Furthermore, it was shown
that the presence of a surface presenting a hydrodynamic no-slip boundary enhances the
globule unfolding in shear [62], which corroborates the shear-induced VWF activation
near vessel walls. This stands in contrast to many earlier studies where hydrodynamic
interactions where neglected with the argument that close to a no-slip surface long-ranged
hydrodynamic interactions are screened [63].

In general, hydrodynamic interactions of particles in the presence of a no-slip boundary
at a surface become relevant when considering non-equilibrium properties such as the
adsorption behavior of polymers in shear flow. Numerous studies investigate polymer
adsorption in shear flow under good solvent conditions by means of simulations [64–69],
experimentally [70, 71] as well as analytically [72–74]. But less attention received the
case of collapsed polymer adsorption under shear [75, 76].

1.3 Shear-induced adhesion

Analytical theories predict that the adsorption of soft compact objects such as vesicles
or platelets on a surface under flow conditions is suppressed by hydrodynamic lift
forces [77, 78]. This result was experimentally confirmed for droplets [79] and adhering
vesicles and leukocytes in shear flow, which roll and detach from the surface at a critical
shear rate and remain unbound for stronger flow [80, 81]. Similar behavior is observed
for flexible polymers [48, 82–84], which experience a shear-induced repulsion from the
surface caused by the hydrodynamic interactions. Adsorption of such deformable objects
is thus typically suppressed by shear flow.

By contrast, experiments on adhesion of platelets mediated by VWF show the opposite
behavior, i.e. adsorption is enhanced by elevated shear rates [85]. Also the initial deposi-
tion of VWF polymers on a collagen substate was shown to exhibit such a counterintuitive
behavior of shear-induced adsorption [31]. It transpires that a more complex binding
mechanism might play a role in the force response of such systems. In fact, there is
experimental evidence for catch bond [86] or flex bond [87] behavior of the receptor
ligand complex between the VWF A1 domain and platelets GPIbα. Most biological
bonds consist of a receptor and a corresponding ligand and display the intuitive behavior
of decreased lifetime upon application of tensile forces [88]. The monotonic behavior of
the average bond lifetime of such slip bonds is shown in fig. 1.3a as a green dashed line.
In contrast, some biological bonds undergo a transition from a weak state to a strong and
long-lived state upon applied tensile force [9, 89], a so-called catch bond behavior [90].
The corresponding average bond lifetime, shown in fig. 1.3a as a red solid line, has a
maximum at non-vanishing tensile forces. In a simple conceptual picture, fig. 1.3b, an
energy barrier separates the bound state from the unbound state in the energy landscape
of the bond interaction. Whereas the effect of tensile force on a slip bond is a decreased
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1.3 Shear-induced adhesion

energy barrier and a higher dissociation rate, a larger energy barrier leads to longer
lifetimes of catch bonds.

a) b)
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Figure 1.3: a) The average bond lifetime as a function of tensile force acting along a receptor-
ligand catch bond exhibits a maximum at intermediate force as depicted by the red solid
line. Force induces a transition form weak binding between the receptor (blue) and the ligand
(orange) to a strong binding configuration. In contrast, the lifetime of a slip bond, shown
as a dashed green line, monotonically decreases with increasing tensile force. b) The bond
interaction potential exhibits an energy barrier of height ∆E separating the bound from the
unbound state. The distance between the bound state and the transition state along the
reaction coordinate is denoted by x. Compared to the case when no tensile force is applied
(black solid line), for a slip bond (green dashed line) the barrier is decreased by applied force
favoring bond dissociation, whereas for catch bonds (red solid line) the energy barrier increases
with increasing force leading to prolonged lifetime.

The counterintuitive catch bond phenomenon has been experimentally observed for
instance for some selectin-ligand interactions [91–93] that are relevant for adhesion
and rolling of leukocyte on vascular surfaces [94, 95]. Further examples are catch
bonds between actin and myosin [96], VWF and GPIbα [86], integrin and its ligand
fibronectin [97] as well as for the cell adhesion protein cadherin [98, 99]. Interestingly,
also ideal bonds [98] were found that exhibit an average bond lifetime being unaffected
by tensile force. On the theoretical side, Sing and Alexander-Katz [76] considered the
interplay of the shear-induced globule stretching and the adsorption transition and found
that slip-resistant catch bonds are instrumental for observing shear-induced globule
adsorption at a surface.

Several models for catch bonds were proposed but the detailed molecular mechanism is
still not fully understood [89]. Whereas in the deformation model [100], schematically
depicted in fig. 1.4a, force directly alters the structure of the receptor or the ligand, the
allosteric model [101, 102], fig. 1.4b, assumes that upon applied force the bond changes
to a conformation that binds stronger caused by pulling away an allosteric inhibitor
distal to the binding site [9] . The sliding-rebinding model [86, 103], shown in fig. 1.4c,
on the other hand, assumes that force changes the relative orientation of receptor and
ligand leading to the formation of new contacts, e.g. additional hydrogen bonds [99], and
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Chapter 1 Introduction and Outline

a) force

b)

activatedinhibited

c)

Figure 1.4: Conceptual models for catch bonds between receptor (blue) and ligand (orange).
The left hand side depicts the bond complex in the absence of force, on the right hand side a
tensile force is applied, indicated by black arrows. a) The deformation model assumes that the
ligand can deform to better match with the binding domain when a force is applied. b) The
allosteric model considers an inhibitor, shown in green, which is pulled away from the binding
domain and thereby activates a conformation that binds stronger. c) In the sliding-rebinding
model, applied force changes the relative orientation between the receptor and the ligand
leading to a different dissociation pathway where new contacts can form.

thus to another dissociation pathway [9]. Theoretical models such as the two-pathway
model [104, 105] involve either two distinct dissociation pathways from a bound state in
the free energy landscape, or the existence of a second bound state which is stabilized
by force [92, 106]. Another explanation assumes the dissociation in a multidimensional
energy landscape where the reaction coordinate does not coincide with the direction of
pulling [107, 108]. Each of the models are able to describe some of the experiments but
there is no universal agreement and only limited capability to determine the underlying
structural mechanism of catch bonds [89].

1.4 Outline of this work

In the present dissertation we study flow-induced features of multimeric proteins in
general in order to contribute to the understanding of the physiological function of VWF
in particular. The aim is to devise models, as simple as possible, which capture the
essential physical properties of the real biological system, as observed in experiments.
We are optimistic that the combination of theoretical concepts from polymer physics
and numerical simulations can provide important insights into details of microscopic
mechanisms that might be difficult to acquire from experiments. The main part of
this thesis focuses on the initial adhesion process of VWF prior to platelet adsorption,
but also the cleavage process of VWF is considered. We investigate a coarse-grained
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1.4 Outline of this work

homopolymer model and analyze hydrodynamic simulations based on the Langevin
equation supplemented by hydrodynamic interactions.

In Chapter 2, we construct potential-based binding models on homogeneous and inho-
mogenous surfaces and investigate the dynamics and adsorption behavior of a collapsed
homopolymer in shear flow. The goal is to understand the competition between shear-
induced globule unfolding, surface-attraction induced adsorption, hydrodynamic repulsive
lift force, and friction effects due to surface inhomogeneity. The present thesis investigates
the interplay of all these aspects, which have been examined in past only separately. We
map out detailed adsorption state diagrams as a function of the characteristic parameters
such as shear rate, cohesive strength, and adhesive strength. Various dynamical states
such as rolling and slipping of globular and coil-like configurations with either isotropic
or prolate shape are characterized.

In Chapter 3, we study the VWF adsorption behavior with stochastic two-state surface-
monomer bonds, a model that for particular parameter values was previously shown
to lead to the counterintuitive phenomenon of shear-induced adsorption [76]. It allows
to include the transition from slip to catch bond behavior in a heuristic manner. We
present adsorption state diagrams as a function of shear rate, the surface-monomer bond
dissociation and association rates and an effective catch bond parameter that describes
the continuous change from slip to catch bond behavior. The stochastic two-state
surface-monomer bond model is compared with a binding scenario based on conservative
surface-monomer potentials, similar to that used in Chapter 2, in order to estimate the
conservative potential parameters necessary to observe shear-induced surface adsorption
phenomena.

Apart from the VWF adsorption behavior, another debated research topic concerns
the relation between shear flow, VWF unfolding, opening of the VWF A2 domain,
and the activity of the cleavage enzyme ADAMTS13. In Chapter 4, we consider the
shear-dependent internal tension distribution along the contour of a collapsed polymer
in an unbound fluid shear flow. From a polymer physics point of view, we substantiate
the instability mechanism that leads to shear-induced globule unfolding based on the
existence of polymeric protrusions. With a theoretical approach using scaling predictions
and an quasi-equilibrium theory we determine average properties of the protrusions
formed at the surface of a globule in shear. On the biological side, we establish the
connection between the shear-induced internal tension along the coarse-grained polymer
model of VWF and shear-dependent proteolysis of VWF by its specific cleavage enzyme
ADAMTS13. We formulate a simple stochastic model for the force-dependent VWF A2
domain opening and exposure of the cleavage site. Using simulation results of the tension
distribution we explain experiments from Dr. Svenja Lippok and Prof. Dr. Joachim
Rädler (LMU Munich) on the ADAMTS13-mediated cleavage of full-length VWF in
blood plasma.

Chapter 5 briefly summarizes all results of this thesis and possible future work is
discussed.
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Chapter 2

Shear-induced dynamics of polymeric
globules at adsorbing homogeneous

and inhomogeneous surfaces

2.1 Introduction

The behavior of polymers near surfaces is not only of fundamental and technological
relevance, but also plays an important role in many biological processes [74]. As most
technological and biological applications involve dissipation, there is general interest
in understanding non-equilibrium aspects such as the adsorption of macromolecules in
shear flow [9, 95, 109]. The present study is motivated by recent investigations [31] on
the von Willebrand factor, a blood protein involved in hemostasis [27]. Experimental
findings suggest the unfolding and activation of the von Willebrand factor at elevated
shear rates as they are found in smaller blood vessels or at constriction sites [31] and
subsequent binding to the vessel wall, which initiates the coagulation process [27, 110].
This represents an example of a biological regulation mechanism that presumably involves
protein unfolding by a purely physical mechanism and therefore is of particular interest
for polymer theory.

Many theoretical studies focused on the equilibrium adsorption of stiff and flexible
polymer chains [64, 73, 74]; also the scenario of surface-grafted chains was considered in
detail [69, 111]. When considering non-equilibrium effects, e.g. by inclusion of simple
shear-flow [66, 67, 75], it has been shown that hydrodynamic interactions and the presence
of a no-slip boundary is crucial and therefore has to be taken into account [68, 84, 112,
113].

In contrast to the adsorption of polymers in good solvent conditions, only very few
works focused on the non-equilibrium adsorption of collapsed polymers. In a pioneering
study, Sing and Alexander-Katz considered the interplay of the shear-induced globule
stretching and the adsorption transition in detail [76]. They found that catch bonds
are instrumental for observing shear-induced globule adsorption at the surface. This
raises the interesting question what the minimal ingredients are in order to observe
the counterintuitive phenomenon of shear-induced adhesion of a polymeric globule on a
surface.
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Chapter 2 Shear-induced dynamics of globules at adsorbing surfaces

In the present work, we approach this problem by studying the dynamical states of a
single globular polymer in shear flow at an adsorbing surface that is modeled on different
levels of resolution. Using Brownian dynamics simulations including hydrodynamic
interactions, we map out detailed dynamic adsorption state diagrams for three different
kinds of surface models: i) a homogeneous adsorbing surface, ii) a homogeneous surface
with a stagnant boundary layer within which the monomer mobility is reduced, and
iii) a laterally inhomogeneous surface consisting of discrete binding sites with varying
potential range. In particular, we consider the dynamics of the adsorbed globule and
distinguish rolling states from slipping deformed states. Our study can thus be viewed
as an extension of previous works on the rolling characteristics of a non-deformable
sphere on a surface with discrete binding sites [109]. We obtain new dynamic states
where the shear forces deform the adsorbed polymer into a prolate shape; this occurs
both for coil-like conformations at low cohesion as well as for globular conformation at
high cohesion. As a result, we find rich dynamic state diagrams as a function of shear
rate and varying adhesive and cohesive strength, featuring various rolling and slipping
states of globular and coil-like configurations with either isotropic or prolate shape. With
the advent of advanced microscopy techniques such shape changes can be conveniently
observed experimentally [31, 49]. In addition, we find different cyclic transformations
depending on whether the globule is adsorbed or desorbed, indicative of fundamentally
different surface-induced dissipative processes.

In the presence of hydrodynamic interactions we only observe shear-induced desorption
of the polymeric globule from the surface; however, in the absence of hydrodynamic
interactions, in which case shear-induced lift forces are absent, and for a hydrodynamically
stagnant boundary layer, shear-induced adsorption is obtained. All our simulations
are based on a potential-based Hamiltonian, meaning that the surface-polymer bonds
correspond to slip bonds. One conclusion from our work is that a necessary condition
for shear-induced adsorption are hydrodynamic screening effects as well as catch bond
behavior between polymeric units and the surface, as was convincingly demonstrated by
Sing and Alexander-Katz [76].

2.2 Simulation details

2.2.1 Low Reynolds number hydrodynamics at planar no-slip boundary

Particles in a suspension hydrodynamically interact through the continuous fluid in
which they are immersed, i.e., the motion of one particle influences the fluid flow around
another. The most general description of the dynamics in a viscous fluid is given by the
Navier-Stokes equation [114]. When inertial forces are small compared to viscous forces,
as it is the case for biological systems on the micro- and nanometerscale considered in
this thesis, the linearized Stokes equation is applicable [115], given by

∇p(r) − η∇2v(r) = f(r), (2.1)
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2.2 Simulation details

with the condition of an incompressible fluid

∇ · v(r) = 0. (2.2)

The pressure p is related to the velocity field v and any external force density f(r). In
other words, we deal with systems in the limit of low Reynolds number Re = ρlv/η [116],
which is defined as the ratio of inertial and viscous contribution of an object of size l
moving with velocity v in a fluid of density ρ and viscosity η.

2.2.1.1 An unbound fluid

We consider a point force fs(r) = fsδ(r − r′) with a magnitude fs located at r′, a so-called
Stokeslet. The solution of the Stokes equation (2.1) is then obtained by the hydrodynamic
Green’s function µ(r, r′) and the corresponding velocity field is v(r) = µ(r, r′) · fs. In an
unbound fluid and under the assumption of a vanishing flow field at infinity, the Green’s
function for a point force is commonly referred to as Oseen tensor,

µO(r, r′) = µO(r − r′) = 1
8πη |r − r′|

(
1 + (r − r′) ⊗ (r − r′)

|r − r′|2

)
, (2.3)

which can be obtain for instance by Fourier transform on eqs. (2.2),(2.1) [3, 115]. Notice
that hydrodynamic interactions are long range as they decay with the inverse distance.
Due to the linearity of the Stokes equation, superposition can be used to obtain the
solution for a general force density, e.g. a number of N particles at rj . The velocity
for particle i is then given by vi(ri) = ∑

j µij(ri, rj) · fj , with the mobility matrix
µij = µij(ri, rj).

The interaction between particles having a finite size can be described by the Oseen
tensor only for large separations. For small separations, as it is the case for monomers
assembled to a polymer, the particle size is approximately taken into account via a
multipole expansion [117] to second order in terms of the particle radius a leading to the
mobility matrix

µRP(ri, rj) =
(

1 + a2

6 ∇2
ri

+ a2

6 ∇2
rj

)
µO(ri, rj), (2.4)

which is referred to as Rotne-Prager tensor [118],

µRP(ri, rj) = µRP(r) = µ0

⎧⎨⎩
3a
4r

((
1 + 2a2

3r2

)
1 +

(
1 − 2a2

r2

)
r⊗r
r2

)
r ≥ 2a(

1 − 9r
32a

)
1 + 3r

32a
r⊗r
r2 r < 2a,

(2.5)

where r = ri − rj and r = |r|. Although particle overlap is mostly prevented by the
repulsive excluded volume interactions, the Yamakawa tensor [119] is included in eq. (2.5)
for r < 2a so that the mobility matrix is always positive definite. The self-mobility of a
particle is given by the bare Stokes mobility of a sphere µ0 = 1/6πηa; the full mobility
matrix for particles in an unbound fluid reads thus

µij = δijµ01 + (1 − δij)µRP(ri, rj) (2.6)
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Chapter 2 Shear-induced dynamics of globules at adsorbing surfaces

2.2.1.2 No-slip boundary at a plane surface

Interfaces alter the hydrodynamics of a fluid and thereby the motion of close objects.
The flow field created by a point particle close to a plane no-slip boundary at z = 0 can
be described by the Blake tensor [120] that is constructed using a method of images,

µB(ri, rj) = µO(r) − µO(r̄) + µD(r̄) − µSD(r̄). (2.7)

It contains the Oseen contributions, eq. (2.3), of the original Stokeslet with the distance
r = ri − rj and the image Stokeslet located at r̄j = (xj , yj , −zj), where the distance is
denoted by r̄ = ri − r̄j . In order to satisfy the no-slip condition at the planar surface,
additional so-called image doublets are required: the Stokes doublet,

µD
αβ(r̄) = µ0

3
2z2

j (1 − 2δβz)
(

δαβ

r̄3 − 3r̄αr̄β

r̄5

)
, (2.8)

with α, β being cartesian coordinates, and a Source doublet,

µSD
αβ(r̄) = µ0

3
2zj (1 − 2δβz)

(
δαβ r̄z

r̄3 − δαz r̄β

r̄3 + δβz r̄α

r̄3 − 3r̄αr̄β r̄z

r̄5

)
. (2.9)

Again, the finite particle size is accounted for by a multipole expansion of the Blake
tensor, eq. (2.7), leading to the Rotne-Prager-Blake tensor

µRPB(ri, rj) =
(

1 + a2

6 ∇2
ri

+ a2

6 ∇2
rj

)
µB(ri, rj) (2.10)

= µRP(r) − µRP(r̄) + ∆µ(r̄) (2.11)

Explicit entries for the contributions from the Stokes doublet and the Source doublet,

∆µ(r̄) =
(

1 + a2

6 ∇2
ri

+ a2

6 ∇2
rj

)
(µD(r̄) − µSD(r̄)) , (2.12)

are given by [63]

∆µαα = 3µ0
2

(
zizj

r̄3

(
3 r̄2

α

r̄2 − 1
)

+ a2r̄2
z

r̄5

(
1 − 5 r̄2

α

r̄2

))
(2.13)

∆µzz = −3µ0
2

(
zizj

r̄3

(
3 r̄2

z

r̄2 − 1
)

+ a2r̄2
z

r̄5

(
3 − 5 r̄2

z

r̄2

))
(2.14)

∆µαβ = 3µ0
2

(
3zizj r̄αr̄β

r̄5 − 5a2r̄αr̄β r̄2
z

r̄7

)
(2.15)

∆µαz = −3µ0
2

(
zj r̄α

r̄3

(
3zir̄z

r̄2 − 1
)

+ a2r̄αr̄z

r̄5

(
2 − 5 r̄2

z

r̄2

))
(2.16)

∆µzα = 3µ0
2

(
zj r̄α

r̄3

(
3zir̄z

r̄2 + 1
)

+ 5a2r̄αr̄3
z

r̄7

)
, (2.17)
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2.2 Simulation details

where only here α ̸= β ̸= z.

The no-slip boundary at the surface also changes the self-mobilities of the particles. Since
the fluid velocity vanishes on the plane z = 0 the mobility must decrease as a function of
the distance zi to the surface

µRPB
self (zi)αβ = δαβ((δαx + δαy)µRPB

∥ (zi) + δαzµRPB
⊥ (zi)). (2.18)

The self-mobility parallel to the surface

µRPB
∥ (zi) = µ0

(
1 − 9a

16z
+ 1

8
a3

z3
i

)
+ O(a4) (2.19)

and the perpendicular component

µRPB
∥ (zi) = µ0

(
1 − 9a

8z
+ 1

2
a3

z3
i

)
+ O(a4) (2.20)

are obtained [63, 121] by taking the limit ri → rj of the Rotne-Prager-Blake tensor
eq. (2.11). The full mobility matrix reads

µij = δijµRPB
self (zi) + (1 − δij)µRPB(ri, rj) (2.21)

2.2.2 Brownian dynamics simulation

We consider an ensemble of N spherical particles with the radius a immersed in a viscous
fluid undergoing Brownian motion. The overdamped Langevin equation describes the
stochastic time evolution of the particle position for low Reynolds number

dri(t)
dt

= v(ri) −
N∑
j

µij · ∇rj U(r1, . . . , rN ) +
N∑
j

∇rj µij + ξi(t). (2.22)

The first term on the right hand side represents the undisturbed solvent flow field that
might be shear or elongational flow. The second term couples the forces to the velocity
via the mobility tensor. It accounts for the direct forces on particle i itself as well as
the hydrodynamic flow field created by forces acting on all other particle j ̸= i. In
general, the mobility can depend on the position of the particle, as it is the case close to
no-slip boundaries. The third term in eq. (2.22) is introduced in order to compensate
the flux caused by the position dependent random force [3]. In this way the Langevin
equation is equivalent to the Smoluchowski equation describing the time evolution of the
probability density of the particle position. Note that for the case of an unbound fluid,
the spatial derivate of the Rotne-Prager-tensor, eq. (2.5), vanishes. In the presence of a
plane surface with no-slip boundary condition, the mobility matrix eq. (2.21) has to be
considered; the only non-vanishing derivative is the perpendicular self-mobility of the
Rotne-Prager-Blake tensor, ∑N

j ∇rj µij = kT dµRPB
⊥ (z)
dz

⏐⏐⏐⏐
z=zi

.
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Chapter 2 Shear-induced dynamics of globules at adsorbing surfaces

Thermal fluctuations are incorporated in the last term of eq. (2.22) via stochastic velocities
that have vanishing mean, ⟨ξi(t)⟩ = 0, and satisfy the fluctuation dissipation theorem,⟨

ξi(t)ξj(t′)
⟩

= 2kTµijδ(t − t′). (2.23)

Thereby the correct equilibrium distribution is reproduced in the stationary state which
is given by the Boltzmann distribution.

We perform Brownian dynamics simulations and incorporate hydrodynamic interactions
via the Rotne-Prager-Blake mobility tensor, eq. (2.21), which accounts for the no-slip
surface boundary condition and the finite particle size via a multipole expansion to second
order in terms of the particle radius [63, 120]. This method is practical for small particle
numbers and large system volumes, as we have in our study, and thus preferred over
alternative Lattice-Boltzmann methods [122] or multi-particle collision dynamics [123].
Using a simple Euler scheme for numerical integration, a time discretized version of the
Langevin equation (2.22) describing the position of particle i after a timestep ∆t is given
by

ri(t + ∆t) = ri(t) +

⎛⎝µiiγ̇zix̂ −
∑

j

µij · ∇rj U(t) +
∑

j

∇rj µij

⎞⎠∆t + ξi(∆t). (2.24)

In the following, all quantities used are made dimensionless by rescaling lengths r = r̃/a
by the monomer radius a, energies U = Ũ/kT by thermal energy and times t = t̃/τ by the
characteristic monomer diffusion time τ = a2/ (µ0 kT), where µ0 is the Stokes mobility.
Note that from now on quantities with a physical unit are decoreded with a tilde. We
introduce in eq. (2.24) a linear shear flow for the solvent flow field v(ri(t)) = µiiγ̇zix̂
with shear rate γ̇ = ˜̇γτ , where x̂ is the unit vector in x-direction and µii = µ̃ii/µ0 the self-
mobility. Note that we do not consider elongational flow effects, which were shown to very
efficiently promote chain unfolding [54, 124]. In the simulation, the stochastic contribution
ξi(∆t) =

√
2∆t

∑
k Likni is calculated by means of a Cholesky decomposition of the

mobility matrix eq. (2.21) with entries µij = µ̃ij/µ0 = ∑
k LikLT

jk using Gaussian random
vectors ni with vanishing mean and correlation ⟨ni(t)nj(t′)⟩ = δijδ(t − t′)1.

The simulation time step is typically chosen as ∆t = 10−4 and for computational speed we
update the mobility matrix µij only every tenth step, which does not alter the results.

2.2.3 Model

The polymer consists of N = 50 beads, which interact via Lennard-Jones potentials
of depth ε = ε̃/kT and are connected in a linear chain by stiff harmonic bonds with a
rescaled spring constant κ = κ̃a2/kT = 200,

Upol = ε
∑
i<j

(
(2/rij)12 − 2 (2/rij)6

)
+ κ

2
∑

i

(ri,i+1 − 2)2 . (2.25)
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2.2 Simulation details

The total potential energy U = Upol + Uhom/inh + Urep includes in addition a surface term
that accounts for adhesion, Uhom/inh, and a term Urep that represents a purely repulsive
wall.

The inhomogeneous surface (iii) is modeled by a square lattice of discrete binding sites
with distance b, located at a height zW = 2 above the no-slip boundary located at z = 0.
The rescaled surface density of binding sites is thus ρW = ρ̃W a2 = 1/b2. Summation over
all pair interactions gives the surface potential as

Uinh =
∑

i

∑
k

εW

(
σ12

W

(σW + rik)12 − 2σ6
W

(σW + rik)6

)
, (2.26)

where rik is the distance between monomer i and binding site k. We have shifted the
potential by the range σW = σ̃W /a and therefore have a purely attractive potential with
a depth of εW = ε̃W /kT.

The homogeneous surface model (i) follows from eq. (2.26) in the limit of high binding
site density ρW > σ−2

W by replacing the sum by an integral (Appendix A.1), the resulting
homogeneous surface potential reads

Uhom =
∑

i

π

5 εW ρW σ2
W

(
(11|zi − 2| + σW ) σ10

W

11 (σW + |zi − 2|)11 −(5|zi − 2| + σW ) σ4
W

(σW + |zi − 2|)5

)
. (2.27)

To account for steric exclusion of the polymer from the surface and in particular to
prevent crossing of the no-slip boundary located at z = 0, we use an additional repulsive
potential

Urep =
∑

i

⎧⎪⎨⎪⎩2πσ2
R

(
2
5

(
σR
zi

)10
−
(

σR
zi

)4
+ 3

5

)
zi ≤ σR

0 zi > σR

(2.28)

with a short range of σR = 1.2. Furthermore, we prevent escape of the polymer to infinity
by a soft wall acting on the polymer center-of-mass located at a height z = 15.

Surface model (ii) employs a homogeneous surface potential and is characterized by a
hydrodynamically stagnant boundary layer within which the monomer self-mobility is
reduced. We thus replace the Rotne-Prager-Blake self-mobility profile µRPB

self (zi) by the
heuristic expression

µself(zi) = (1 − µs) [tanh (10 (zi − 2.5)) + 1] /2 + µs, (2.29)

which yields a rapid yet smooth transition from the bulk mobility µself(zi → ∞) = 1
to a reduced surface mobility µs = µ̃s/µ0 at around a distance z = 2.5. Equation 2.29
constitutes a simple heuristic model to investigate surface friction effects that might for
example be due to discrete surface binding sites or hydrodynamic screening caused by
surface corrugations or grafted polymers.
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Chapter 2 Shear-induced dynamics of globules at adsorbing surfaces

2.3 Results for homogeneous surface

2.3.1 Fixed shear rate, variable cohesive strength

The range of the homogeneous surface potential eq. (2.27) is set to σW = 1.5 and the
density is fixed at ρW = 0.25. We first present the dynamic state diagram for varying
cohesive strength ε and adhesive strength εW at a fixed shear rate γ̇ = 1 in fig. 2.1. All
different dynamic states are illustrated by representative snapshots in fig. 2.1a. The black
almost vertical line denotes the transition from the desorbed state for small adhesion εW

(to the left) to different adsorbed states for large adhesion εW (to the right). Various
heuristic definitions have been proposed for this transition, which for a finite-length
polymer does not correspond to a phase transition in the strict thermodynamic sense. We
here use for the adsorbed state the simple distance criterion (zcom − Rgz) < (zW + σW ),
where zcom = N−1∑N

i zi is the polymer center-of-mass height, R2
gz = N−1∑N

i (zi − zcom)2

is the z-component of the radius of gyration. Our criterion thus defines the polymer to be
adsorbed when the polymer height zcom corrected by the radius Rgz is smaller than the
sum of the potential range σW and the location of the potential origin zW . In fig. 2.2a
we plot the average zcom − zW for different values of ε as a function of the adhesion εW ,
the transition according to our criterion is denoted by broken vertical lines. The time
series of zcom for ε = 1 and εW = 3.2 in fig. 2.3a demonstrate that the polymer alternates
between desorbed and adsorbed states, according to our distance criterion the adsorption
occurs for ε = 1 around εW = 3.8.

In the absence of hydrodynamic boundaries, an isolated hard sphere in simple shear
rotates with a frequency of ω = γ̇/2; we in fact verified (Appendix A.4) that our
hydrodynamic simulation code reproduces this limiting result for large values of the
cohesion ε. When a hard sphere approaches a surface with a hydrodynamic no-slip
boundary condition, the rotational frequency is reduced due to lubrication effects but
reaches a finite value upon contact [77]. For deformable objects such as polymers or
vesicles, the rotation frequency is reduced additionally due to dissipative effects associated
with periodic stretching and relaxation cycles [49, 125]. Note that on a homogeneous
surface, we always find substantial slip of the globule on the surface since the monomer
self-mobility decreases rather smoothly as the surface is approached (this is different
on an inhomogeneous surface where additional friction effects are produced by lateral
surface-monomer interactions, as we will discuss in Section 2.5). The rotation in the
rolling globule state (RG) is illustrated in fig. 2.1b by contour lines of the rescaled angular
velocity ω/γ̇ = Ly/(Jyγ̇), where Ly and Jy are the polymer angular momentum and
moment of inertia with respect to the y-axis, respectively (Appendix A.4). We see that
for large cohesion ε and small adhesion εW rotation is pronounced. In fig. 2.1b we also
show a contour plot of the rolling parameter defined by the ratio ωRgz/V , where V
denotes the center-of-mass velocity. For a compact object that rolls without slip over a
surface the rolling parameter is of order unity One sees that as εW increases both ω/γ̇
and ωRgz/V decrease in a very similar way, leading to the conclusion that rolling and
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Figure 2.1: Dynamical state diagram for a polymer with varying cohesive strength ε and adhesive
strength εW at fixed shear rate γ̇ = 1. The black line denotes the adsorption transition as
determined by a distance criterion. The dark blue line marks the transition from rolling to
slipping motion, determined by a value of the rescaled angular velocity of ω/γ̇ = 0.05 and for
high ε separates the rolling globule state (RG) from the slipping disk state (SD). In (b) the
distribution of ω/γ̇ is illustrated by red contour lines, while the rolling parameter ωRgz/V is
given in shades of gray. The orange line denotes the transition into a prolate arrangement
perpendicular to the flow direction and separates the slipping disk (SD) from the slipping
prolate state (SP), the rolling globule (RG) from the rolling prolate (RP), and the slipping
coil (SC) from the slipping prolate coil state (SPC). The collapse transition between the coil
state at low ε and the globular state at high ε is denoted by the cyan line. The purple line is
defined by a maximum in the chain extension fluctuations and separates the rolling globule
(RG) from the rolling folding-unfolding state (RFU). Snapshots in (a) show representative
conformations for each state.
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Figure 2.2: a) Average height of the polymer center-of-mass zcom relative to the surface location
zW for varying adhesive strength εW and different fixed values of the cohesive strength ε. The
adsorption transition defined by (zcom − zW ) = (Rgz + σW ) is indicated by vertical dashed
lines, where Rgz is the z-component of the radius of gyration and σW is the surface interaction
range, see snapshot. b) Squared radius of gyration R2

g/N as a function of εW . The inset
shows the ratio of the squared components R2

gx and R2
gy parallel and perpendicular to the

flow direction. The horizontal dashed line indicates the prolate-isotropic transition defined by
R2

gx/R2
gy = 0.95. c) Squared radius of gyration R2

g/N and its curvature ∂2(R2
g/N)/∂2ε as a

function of ε. The maxima of the curvature define the collapse-transition and are denoted by
vertical dashed lines. d) Variance of the squared extension in flow direction m(R2

s) for varying
ε. The peaks define the stretch-transition (dashed vertical lines). The same quantity for a
polymer in bulk is shown in the inset.

rotation in the adsorbed globular state is strictly coupled. We define the transition from
rolling to slipping for ω/γ̇ = 0.05, which corresponds to ten percent of the bulk value
and is denoted by a dark blue line.

At high cohesion ε the rolling globule state (RG) yields to the slipping disk state (SD)
as the adhesion εW increases, where the polymer is still very compact but flattened out
on the surface (see snapshot). The discoid shape in the SD state prevents rolling and
rotation. As the cohesion ε is reduced at relatively high adhesion εW , the shear forces
deform the polymer and give rise to a slipping prolate state (SP) at high εW and, in a
very small window for intermediate values of εW , to a rolling prolate state (RP). We
define the transition from the symmetric to prolate shapes using the radius of gyration
components parallel and perpendicular to the shear flow. If the ratio R2

gx/R2
gy is smaller
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2.3 Results for homogeneous surface

than 0.95 we denote the structure as prolate. In fig. 2.1 this structural transition is
denoted by an orange line and illustrated in the inset of fig. 2.2b, where we plot R2

gx/R2
gy

as a function of εW for a few different values of ε.

In the lower left corner of the rolling region in fig. 2.1 we find a rolling folding-unfolding
(RFU) state, which is characterized by cyclic stretching-refolding events combined with a
rolling motion. The purple line is defined by the maximum of the variance of the squared
extension R2

s in flow direction, as illustrated in fig. 2.2d, and is generally referred to as a
shear-induced unfolding transition [58, 61]. The extension Rs is defined as the maximal
distance in flow direction between any two beads from which the normalized variance
follows as

m(R2
s) =

⟨
R4

s

⟩
−
⟨
R2

s

⟩2
⟨R2

s⟩2 . (2.30)

The unfolding transition between the RG and RFU states continuously extends into the
desorbed region, which is related to the fact that we limit the polymer separation from
the surface by the finite height of the simulation box. Note that in the absence of a
bounding wall, i.e. in bulk, this transition occurs at a somewhat lower cohesion of ε = 0.9
as illustrated in the inset of fig. 2.2d. This surface-induced unfolding enhancement has
been demonstrated previously [62].

In general, we discriminate coil from globule conformations by the magnitude of the
squared radius of gyration R2

g, the collapse transition is denoted by the cyan line in
fig. 2.1 and defined by the maximum curvature of R2

g, as illustrated in fig. 2.2c. Note that
we make a fine distinction between the collapse transition, associated with the radius of
gyration, and the shear-induced unfolding transition, linked to the chain extension in
flow direction. It turns out that an adsorbed coil is always slipping, meaning that no
or only very little solid-body rotation occurs. This becomes most transparent from the
red iso-rotational-frequency contour lines in fig. 2.1b. The transition between isotropic
and prolate conformations (orange line) extends into the coil state and separates the
slipping isotropic coil state SC from the slipping prolate coil state SPC, in agreement
with previous observations [51, 66]. In fig. 2.2b we plot R2

g for different values of ε as a
function of εW . In the rolling globular (RG) state, i.e. for high values of ε, R2

g increases
monotonically due to the globule deformation caused by the strongly attractive surface.
The case ε = 1 is different since we cross the rolling folding-unfolding (RFU) region,
see the state diagram fig. 2.1. Here the radius of gyration first decreases with growing
adhesion εW since the attractive wall suppresses the periodic folding-unfolding cycles,
for larger εW we see that R2

g increases again because the globule flattens out on the
surface.

2.3.2 Cyclic transformations

We now analyze the non-equilibrium polymer dynamics in shear flow in more detail and
in particular discuss the occurrence of cyclic processes. In fig. 2.3a we plot time series

21



Chapter 2 Shear-induced dynamics of globules at adsorbing surfaces

C

B

D

A

BA C D

2600 2800

t

0

0.2

0.4

0.6

0.8

1

00.20.40.60.8

R
S
/2N

0

0.2

0.4

0.6

0.8

1

ε
W

= 1

R
S
/2

N
, 
z* C

O
M

z* C
O

M

ABC

D E

B C D EAε
W

= 5

6500 7000

t

0

0.1

0.3

00.20.40.60.8

R
S
/2N

0

0.2

0.4

0.6

z*
0.5

C
O

M

R
S
/2

N
, 

z* C
O

M

0

0.5

1

1.5

0

0.5

1

0

-2

-1.5
-1

-0.5

cu
m

u
la

ti
v

e 
in

te
g

ra
l,

 C
I

0

0.5

1

0

0.5

0 5000 10000 15000 20000
-2
-1.5

-1

-0.5
1 0

ε
W

= 3.2

ε
W

= 5

R
S
/2

N
, 

z*
R

S
/2

N
, 

z*

ε
W

= 1

R
S
/2

N
, 

z* C
O

M
C

O
M

C
O

M

t

Cz
COM

z
COM

CR
S
R

S

CR
S
z

COM

0 50 100 150
t

-2

-1

0

1
ε

W
= 5

0 50 100 150
-1

0

1

2

co
rr

el
at

io
n

, 
C

(t
) ε

W
= 1

C
(t

)

a) b)

c)

d)

Figure 2.3: a) Time series of the rescaled extension Rs/2N (red) and of the center-of-mass
separation from the surface rescaled by the simulation box height z∗

com = zcom/15 (black) are
compared for fixed cohesion ε = 1 and fixed shear rate γ̇ = 1 for different adhesive strength
values. In the desorbed state for εW = 1 polymer stretching occurs, indicated by peaks in Rs,
when the polymer is located close to the surface. The cumulative integral CI (purple) of Rs

versus z∗
com increases over time. Close to the adsorption transition at εW = 3.2, the polymer is

only transiently adsorbed on the surface and CI shows alternating behavior. For εW = 5 the
polymer is firmly adsorbed, stretching events are rare and CI monotonically decreases over
time. b) Autocorrelation and cross-correlation functions of extension and height are shown
for εW = 1 and εW = 5. c) One typical cycle (gray line) of a desorbed polymer for εW = 1 is
shown and illustrated with snapshots, corresponding to adjacent labels. The cycle is traversed
clockwise, leading to a positive increase of the cumulative integral CI. d) When the polymer
is adsorbed for εW = 5, the cycle is traversed counter-clockwise, hence CI decreases in time.
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2.3 Results for homogeneous surface

of the rescaled extension Rs/2N (red) and the center-of-mass position z∗
com = zcom/15

(black) rescaled by the height of the simulation box; note that these rescaled variables
are strictly bound by unity. In the same graph we also display the cumulative integral

CI(t) =
∫ t

0

Rs(t′)
2N

dz∗
com(t′) (2.31)

as a purple line. For the desorbed polymer with εW = 1, CI increases in time, for the
adsorbed polymer with εW = 5, CI decreases, and for the intermediate situation εW = 3.2
we see an intermediate behavior where CI decreases over periods where the polymer is
adsorbed (and z∗

com is small) and otherwise stays constant or slightly increases.

Intuitively speaking, CI measures the enclosed area of the trajectory of Rs(t)/2N versus
z∗

com(t) which is shown in fig. 2.3c,d for two different values of the adhesive strength εW .
For the desorbed state with εW = 1 in fig. 2.3c, we see that an increasing CI means
that the trajectory corresponds to predominantly clockwise cyclic transformations. The
mechanism for this can be visualized by typical chain snapshots: When the polymer
diffuses towards the surface in a rather compact state, i.e. small Rs, see snapshot (A),
surface-induced stretching occurs because of the decreased rotational and translational
polymer mobility at the surface, leading to state (B), as has been discussed before [62].
The stretched form gives rise to an increased hydrodynamic lift force away from the
surface, and thus induces the transition to state (C). Away from the surface, the unfolding
tendency is smaller, which leads to a refolding and thus to a transition from (C) to (D). In
the adsorbed state for εW = 5 the cycle is traversed predominantly counter-clockwise, in
fig. 2.3d we show a typical cycle. In (A) the adsorbed globule has a rather compact state.
A partial unfolding is initiated (B-C) by a protrusion [58], leading to a polymer strand
that is highly stretched by hydrodynamic drag forces and oriented parallel to the surface.
Since the stretched chain shows reduced fluctuations in the perpendicular direction to the
surface, it is more easily adsorbed leading to state (D) where the center-of-mass height is
reduced compared to the globular state. This stretching-induced adsorption mechanism
has been previously discussed in the absence of hydrodynamic interactions and is typically
overwhelmed by hydrodynamic drag effects [68, 126], in the present situation it seems to
be operative since the chain is inhomogeneous and consists of a stretched protrusion and
a globular section that acts as an anchor. Once adsorbed, the shear forces are reduced
and the polymer can refold into a globular state (E), this transformation is assisted
by the rolling motion of the chain, and leads back to the starting configuration of a
globule adsorbed at the surface, state (A). Close to the adsorption transition εW = 3.2 in
fig. 2.3a, the polymer alternates between clockwise and counter-clockwise trajectories for
the desorbed and the adsorbed state and thus the cumulative integral is closer to zero.

This picture can be substantiated by the correlation function of two variables A(t) and
B(t) defined as

CAB(τ) = (⟨A(t)B(t + τ)⟩ − ⟨A⟩ ⟨B⟩) / (σAσB) , (2.32)

where σA,B are the respective standard deviations. We show in fig. 2.3b auto and
cross-correlations for Rs and zcom for the desorbed εW = 1 and the adsorbed εW = 5
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Chapter 2 Shear-induced dynamics of globules at adsorbing surfaces

states. While the autocorrelation functions CRsRs(τ) and Czcomzcom(τ) are positive and
decay in a roughly exponential manner both in the adsorbed and desorbed states, the
cross-correlation function CRszcom(τ) has a different sign in the two states and decays
over a rescaled time of about 100, which is roughly the time span of the cycles shown in
fig. 2.3c and d.

2.3.3 Fixed cohesive strength, variable shear rate

In fig. 2.4a we plot the dynamic state diagram on a homogeneous surface as a function
of the adhesive strength εW and the shear rate γ̇ for fixed cohesive strength ε = 2, in
which case the polymer forms a well-defined globule for low shear flow. The desorption-
adsorption transition, obtained from the mean separation of the polymer from the
adsorbing surface as explained before, is marked by a black line. As a main observation
we see that the higher the shear rate, the more adhesive strength is needed to adsorb
the globule. A marked change in the slope of this transition is seen around εW = 2.5,
i.e., where the adhesion is of comparable strength as the cohesion. For large adhesion,
the critical shear rate scales roughly linear with the adhesive strength εW . This suggests
that the hydrodynamic lift force that is responsible for the desorption at high shear
scales linear in the shear rate γ̇ and is caused by a stationary disk-like deformation of the
globule shape. For small adhesion the critical shear rate rises much more steeply with
adhesive strength γ̇ ∼ ε6

W ; this regime is more intricate as the shear-induced lift force
presumably depends via the adhesion-induced globule deformation also on the adhesive
strength εW .

As before, we define the transition between rolling globule (RG) and slipping disk (SD)
states by a critical value of the angular velocity of ω/γ̇ = 0.05 denoted by the blue line.
Increasing the adhesive strength εW flattens the globule and leads to the SD state. In the
adhesion range 9 < εW < 16 we see slip reentrance as the shear rate γ̇ is increased: Only
for intermediate values of γ̇ does the shear induce rolling, for higher shear rates and close
to the desorption transition the increased stretching in the flow direction inhibits rolling
of the chain. The squared average extension R2

s in fig. 2.4b monotonically increases with
shear rate, the stretch-transition defined by the peak of the variance m(R2

s), denoted by
the purple line in fig. 2.4a, occurs for low adhesive strength at γ̇ = 9, in agreement with
previous studies in bulk shear flow [58].

2.4 Results for homogeneous and hydrodynamically stagnant
surface

Local bonds between polymer monomers and discrete surface binding sites induce strong
friction effects that considerably slow down lateral motion close to the surface, as we will
discuss in detail in Section 2.5. In this section, we elucidate the effects of high surface
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Figure 2.4: a) Dynamic state diagram for a globule with fixed cohesive strength ε = 2 at a
homogeneous surface for varying shear rate γ̇ and adhesive strength εW . The black line marks
the desorption-adsorption transition. Slopes are indicated with dashed lines. The purple line
denotes the stretch-transition at which the variance of the squared average extension m(R2

s)
in (b) exhibits a peak. The transition from the rolling globule state (RG) to the slipping
disk state (SD) is denoted by the blue line and defined by a value of the angular velocity of
ω/γ̇ = 0.05. Snapshots show representative polymer configurations.

friction in a coarse-grained model by imposing a reduced monomer mobility close to the
laterally homogeneous surface, without actually resolving the discrete surface bindings
sites. In the model we use in this section, the monomer self-mobility is reduced from a
value of unity far away from the surface to a value of µS < 1 within a finite distance range
from the surface, as described by eq. 2.29, equivalent to a hydrodynamically stagnant
surface layer. Alternatively, one can think of the reduced self-mobility as being due to a
layer of grafted polymers.

In the following we concentrate on the effect of this reduced surface mobility on the
globule adsorption transition for small shear rates. In the main part of fig. 2.5 we compare
the adsorption transition for fixed cohesive strength ε = 2 for the case of homogeneous
mobility µs = 1 (solid lines) with the case of stagnant surface mobility µs = 0.01 (dashed
lines). The latter parameter value means that the monomer mobility is reduced by a
factor of 100 close to the surface. For each surface mobility scenario we show results for
free-draining (FD, gray lines) simulations and for simulations including hydrodynamic
interactions (HI, black lines). The HI result for µs = 1 thus agrees with the adsorption
transition already shown in fig. 2.4a. Note that under equilibrium condition, i.e. in the
limit γ̇ = 0, all four different models coincide within the numerical uncertainty.

Upon increasing the shear rate, we observe pronounced differences. In the presence of
hydrodynamic interactions (black lines), an increase in shear rate induces desorption,
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Figure 2.5: Results for a homogeneous surface with stagnant boundary layer. The dynamic
state diagram shows the adsorption transition for a globule with fixed cohesive strength
ε = 2 on a surface with potential range σW = 1.5. Black symbols include hydrodynamic
interactions (HI); gray symbols are results from free-draining (FD) simulations. For solid lines
the monomers mobility is homogeneous (µs = 1), dashed lines show results for a stagnant
surface layer within which the monomer mobility is reduced to one percent of the bulk value
(µs = 0.01). The insets show the rescaled velocity V/γ̇zcom and the extension Rs/2N in flow
direction as a function of the shear rate for all four scenarios, measured along the respective
adsorption transitions displayed in the main figure.

which can be rationalized by the presence of hydrodynamic lift forces [84, 112]. Going
from a homogeneous mobility, µs = 1, to a stagnant mobility, µs = 0.01, only mildly
changes the critical shear rate. We conclude that a surface friction that is increased by a
factor of 100 enhances the adsorption tendency only very weakly.

In the free-draining case (FD) and for µS = 1 (gray solid line), the adhesive strength
needed for adsorption does not vary much with the shear rate, the adsorption transition
is almost vertical. This reflects the absence of lift forces that would counteract adhesive
forces. For the FD case with a reduced surface mobility µs = 0.01 (gray broken line),
we observe pronounced shear-induced adsorption of the globule; i.e., the adsorption
transition shifts towards lower εW . In the insets we show results for the average extension
in flow direction Rs/2N and for the chain velocity rescaled by the unperturbed fluid
velocity at the center-of-mass position V/γ̇zcom, measured along the adsorption transition
line. One sees that the rescaled velocity is unity only in the free-draining case (FD)
and for µS = 1 (gray solid line), both surface friction and hydrodynamic interactions
reduce the chain velocity. The velocity reduction leads to a pronounced chain elongation,
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2.5 Results for inhomogeneous surface with discrete binding sites

which promotes adsorption due to the reduced chain fluctuations [126]. In the FD case
this gives rise to shear-induced adsorption, in the HI case this effect is overwhelmed by
hydrodynamic lift forces and therefore shear-induced adsorption is not observed.

2.5 Results for inhomogeneous surface with discrete binding
sites

2.5.1 Fixed shear rate, variable corrugation

Next we investigate how a more realistic surface binding model changes the adsorption
behavior. We consider an inhomogeneous surface consisting of discrete binding sites,
represented by Lennard-Jones centers, arranged on a square lattice with lattice constant
b = b̃/a = 2 and located on a plane at position zW = 2. In order to change the degree of
corrugation, we vary the interaction range σW < b defined in eq. (2.26) while keeping
the density of binding sites constant. For lower surface binding site density, the critical
adhesive strength for adsorption increases but otherwise the character of the adsorption
transition does not change (data not shown). The important parameter in this section
is the ratio of the interaction range and the lattice constant, σW /b, which controls the
effective mobility of a monomer on the surface.

In fig. 2.6 we show the boundary between the adsorbed and the desorbed state for a
globule with fixed cohesive strength of ε = 2 and for a fixed shear rate γ̇ = 1 as a function
of the surface site interaction range σW and the adhesive strength εW . We compare
free-draining simulations (FD, gray solid line) with hydrodynamic simulations (HI, black
solid line) and also show equilibrium results in the absence of shear (γ̇ = 0, gray broken
line). All three curves show that the critical adhesive strength increases in order to
compensate for a shorter interaction range. When we compare the two FD curves, we
see that a finite shear flow (γ̇ = 1, solid gray line) slightly weakens the adsorption and
shifts the transition towards higher values of εW . As can be seen in the insets of fig. 2.6,
the rescaled velocity V/γ̇zcom, measured along the adsorption transition line, decreases
with decreasing interaction range σW as a result of enhanced surface friction, while the
extension in flow direction Rs/2N , also measured along the transition line, increases
strongly due to internal shear effects in the globule. This means that the inhomogeneous
surface enhances unfolding of the FD polymer in shear flow but suppresses adsorption; in
other words, the stretching of the chain, which by itself weakens entropic repulsion from
the surface and therefore promotes adsorption [126], is overwhelmed by the weakened
energetic attraction to the surface since the monomers are constantly pulled away from
the surface binding sites [68, 75].

In the presence of hydrodynamic interactions (solid black line in fig. 2.6) hydrodynamic
lift forces additionally weaken the adsorption propensity. Due to the decreased monomer
self-mobility at the surface, the globule velocity V/γ̇zcom (black line in inset fig. 2.6) is
further reduced when compared with the FD case (gray line). Hydrodynamic screening
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Figure 2.6: Dynamic state diagram for a globule with fixed cohesive strength ε = 2 at an
inhomogeneous surface as a function of the adhesive strength εW and the interaction range
σW of the binding sites. The solid black and gray lines denote the adsorption transition at
fixed shear rate γ̇ = 1 in the presence (black) and absence (gray) of hydrodynamic interactions.
For comparison, the dashed gray line denotes the equilibrium adsorption transition without
shear, γ̇ = 0. The transition from the rolling globule state (RG) to the stick-roll state (SR)
is denoted by the magenta line and defined by a maximum in the variance of the squared
translational velocity m(V 2), see fig. 2.7b. The underlying contour plot shows the angular
velocity ω/γ̇. The transition to the stick-roll state approximately coincides with the previous
criterion for the roll-slip transition ω/γ̇ = 0.05. The insets show the rescaled velocity V/γ̇zcom

and the extension Rs/2N as a function of σW measured along the respective adsorption
transition lines.

effects that are connected to the flow stagnation inside the globule reduce the chain
elongation Rs/2N when compared with FD simulations (black and gray lines in lower inset
fig. 2.6). The contour plot of the rescaled angular velocity ω/γ̇ in fig. 2.6 illustrates that
the globule rolling motion is essentially arrested for short interaction ranges σW ≤ 0.5. As
a result, short ranges lead to an adsorption transition at an adhesive strength comparable
to the equilibrium case. As opposed to the case of a homogeneous surface, where we
observe a transition to a slipping state, for the inhomogeneous surface we observe a
transition to stick-roll motion, indicated by the magenta line in fig. 2.6, which is defined
by a peak in the variance of the squared globule velocity m(V 2) in fig. 2.7b. Note that
this criterion almost exactly coincides with our previous definition of the transition from
rolling to slipping, ω/γ̇ = 0.05.
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Figure 2.7: Results for the inhomogeneous surface for a few different values of the binding
site interaction range σW for fixed ϵ = 2 and γ̇ = 1. For comparison, we include results
for the homogeneous surface (gray lines). a) The rescaled translational velocity V/γ̇zcom

decreases over several orders of magnitude with increasing ϵW . b) The variance of the squared
average velocity m(V 2) shows a peak which defines the transition to the stick-roll state.
Dashed vertical lines mark the globule adsorption transition. c) Although both angular and
translational velocities are very small in the stick-roll state, the ratio ωRgz/V is of the order
of unity and thus indicative of intermittent rolling motion.

2.5.2 The stick-roll state

In fig. 2.7 we plot the average rescaled velocity V/γ̇zcom, the variance m(V 2), defined
similarly to eq. (2.30), as well as the ratio of the rescaled angular and translational
velocities ωRgz/V for a few fixed values of the interaction range σW as a function of the
surface adhesion strength εW . While V/γ̇zcom in fig. 2.7a decreases over several orders
of magnitude upon increasing εW , the variance m(V 2) in fig. 2.7b shows a well-defined
peak which defines the transition to the stick-roll state (SR). For short interaction ranges
σW ≤ 0.5 this transition coincides with the adsorption transition, denoted in fig. 2.7b
by dashed vertical lines, which means that for a highly corrugated surface potential an
adsorbed globule is always in the stick-roll state. In fig. 2.7 we also include results for
the homogeneous surface for σW = 1.5 (gray line). For this case the average velocity in
fig. 2.7a approaches a constant value of about V/γ̇zcom = 0.6 and the variance m(V 2) in
fig. 2.7b is rather small, only displaying a weak peak at the adsorption transition. For
the inhomogeneous surface the ratio ωRgz/V in fig. 2.7c displays a maximum for large
adhesion εW meaning that angular and translational velocities are synchronized. For the

29



Chapter 2 Shear-induced dynamics of globules at adsorbing surfaces

homogeneous surface, on the other hand, we observe slipping at large εW meaning that
the angular velocity is much lower than the translational velocity.
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Figure 2.8: a) Time series at an inhomogeneous surface with binding site potential range
σW = 1.5 for fixed ϵ = 2 and γ̇ = 1. For the different values εW = 5, 8, 10 we show the chain
displacement in flow direction xcom (red), the translational velocity V (black), the angular
velocity ω/γ̇ (orange) and the chain extension Rs/2N (gray). While for εW = 5 the globule
rolls continuously like on a homogeneous surface, for εW = 8 one sees pronounced steps in the
displacement and intermittent peaks in the velocity. For εW = 10, the polymer is arrested
over extended periods of time. b) Velocity-velocity autocorrelation functions.

The transition from rolling to stick-roll motion is further illustrated by time series in
fig. 2.8a for fixed σW = 1.5 and for three different values of the adhesive strength εW

that all correspond to adsorbed globule states. Only weak friction effects are observed
for εW = 5, where the globule continuously moves over the surface with modest relative
fluctuations of the velocity V (black line) around its mean and the displacement xcom (red
line) continuously increases with time, similar to the homogeneous surface. Deformations
of the globule are weak; the extension Rs/2N (gray line) is small and almost constant.
For εW = 8 the maximal variance m(V 2) is reached (compare fig. 2.7b). Accordingly,
the velocity V in fig. 2.8a shows pronounced peaks and the globule is temporarily stuck
on the surface, indicated by plateaus in xcom (red). The close correlations between peaks
in the velocity and the angular velocity ω/γ̇ lead to the conclusion that the polymer
moves by instantaneous rolling rather than slipping events, hence the name stick-roll
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2.5 Results for inhomogeneous surface with discrete binding sites

state. The plateaus in the extension Rs/2N (gray line) suggest that the rolling events are
accompanied by unwinding and refolding of the polymer. Increasing the adhesion even
further to εW = 10 extends the periods over which the globule is stuck on the surface.

In fig. 2.8b we show autocorrelation functions of the translational velocity CV V (t), defined
by eq. (2.32). For a globule in the rolling globule (RG) state for εW = 5, the velocity
autocorrelation decays quickly. For a polymer in the stick-roll (SR) state for εW = 10,
CV V (t) decays even faster and exhibits an anti-correlated regime, indicative of alternating
switching between periods of motion and periods of arrest on the surface. The longest
correlation time is observed for intermediate adhesion εW = 8, reflecting that this is the
location of a transition from rolling to stick-roll behavior.

2.5.3 Variable shear rate, fixed corrugation
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Figure 2.9: a) Dynamic state diagram for a globule with fixed cohesive strength ε = 2 at an
inhomogeneous surface with fixed binding site potential range σW = 0.5 as a function of
shear rate γ̇ and adhesive strength εW . The black line marks the desorption-adsorption
transition. The stretch transition occurs in the desorbed state and is denoted by the purple
line. Snapshots (top and side views) show representative polymer configurations for γ̇ = 1
(A-C) and for γ̇ = 2 (D,E), where red dots represent surface binding sites. b) The drastic
decrease of the rescaled translational velocity V/γ̇zcom (solid lines) in the adsorbed state and
the large variance m(V 2) (dashed lines) indicate stick-roll motion. Due to deformation and
unfolding at high shear rates, the average extension Rs increases.

We next study the adsorption behavior for fixed range of the surface binding sites
σW = 0.5 and variable shear rate γ̇; as before we fix the cohesive strength at ε = 2. In
fig. 2.9a we show the state diagram including the adsorption transition (black line). The
diagram is similar as for the homogeneous surface in fig. 2.4, the higher the shear rate,
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Chapter 2 Shear-induced dynamics of globules at adsorbing surfaces

the stronger the critical adhesive strength; i.e., shear promotes desorption. Included are
typical globule snapshots at parameters denoted by the adjacent labels. The globule,
which exhibits a spherical shape in the desorbed state, see snapshot (A), adsorbs for
γ̇ = 1 at an adhesive strength εW = 9.5 and exhibits a disk-like conformation, see (B).
The peak of m(V 2) for γ̇ = 1 in fig. 2.9b occurs roughly at εW = 9.5 and shows that
the adsorbed state corresponds to the stick-roll state. The average velocity V/γ̇zcom in
the adsorbed state is reduced by orders of magnitude compared to the homogeneous
surface. The average extension Rs/2N for γ̇ = 1 only slightly increases with increasing
adhesive strength εW , as seen in the snapshot (C) and also in fig. 2.9b. At higher shear
rate γ̇ = 2 stronger deformations are obtained, see snapshot (E). The snapshot (D) shows
a stretched state where only few beads are in contact with the surface; in fact, snapshot
(D) is taken just before the polymer desorbs.

2.6 Summary and conclusion

In the first part we investigate the adsorption behavior of a globule at a homogeneous
surface for varying cohesive and adhesive strengths and shear rates. The dynamic state
diagram features different rolling and slipping states: the rolling globule state, the rolling
prolate state, and the rolling folding-unfolding state. Slipping globules are observed for
large adhesion and slipping coil conformation are found for low cohesion. Shear does not
promote or enhance adsorption. For non-zero shear, we identify two cyclic processes in
terms of the chain elongation and the separation from the surface.

In the second part surface friction effects are accounted for by a hydrodynamically
stagnant surface layer, within which the mobility is reduced. This results in a local
velocity reduction of the chain and thus to increased elongation in flow direction. While
this leads to a shear-induced adsorption in the freely draining situation, in the presence
of hydrodynamic interactions the stagnant surface layer does not change the adsorption
behavior drastically. We next consider an inhomogeneous surface consisting of discrete
binding sites having a variable interaction range. The resulting surface friction leads to a
drastic velocity reduction when including full hydrodynamic interactions. Although this
reduces the hydrodynamic lift force, the effective surface adhesion strength is reduced so
that adsorption is disfavored when compared to the limit of no shear. This is similar to
the analysis of a simple model of a monomer dragged along a corrugated potential [68].

One result of our work is that for a simple interaction model based on a static Hamiltonian
consisting of pair potentials between monomers and the surface, the globule adsorption is
not enhanced by the presence of shear, leading to the tentative conclusion that in order to
observe such a behavior, a more complex binding mechanism including saturating or catch
bonds [9] is needed. This in turn suggests to construct more complex potential-based
binding models for the interaction of collapsed proteins with surfaces or with colloidal
particles in shear, in order to model biological important situations such as the adsorption

32



2.6 Summary and conclusion

of the von Willebrand factor on vessel walls in shear [31] and the flow-driven polymer-
colloid composite formation [8]. Hence, in future work the von Willebrand domain
structure could be resolved by a more detailed coarse-grained heteropolymer model.
Another interesting question is how catch bond behavior, which in previous simulation
work has been implemented in Langevin simulations by a heuristic two-state reaction
bond model [76], can be modeled in a purely potential-based Langevin simulation.
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Chapter 3

Shear-enhanced adsorption of a
homopolymeric globule mediated by

surface catch bonds

3.1 Introduction

Some biological bonds exhibit prolonged lifetimes in the presence of tensile forces, a
counter-intuitive phenomenon referred to as catch bond behavior [89, 90]. Experimental
evidence for catch bond behavior comes from studies on various receptor-ligand com-
plexes [9, 86, 87, 91, 98] and motivated atomistic [99, 103] as well as mesoscopic [127]
simulation studies with the goal to characterize and explain the underlying mechanisms.
As a matter of fact, also force-insensitive bonds have been reported [98], which can be
viewed as intermediate between catch bonds and the more common slip bonds.

How individual biological bonds respond to forces has profound implications for the
surface-adhesion of biomacromolecules under flow conditions. The present study is
motivated by the blood protein von Willebrand Factor (VWF), which plays a key role in
hemostasis [27] by unfolding and activation at elevated shear rates and subsequent binding
to the vessel wall [27, 31, 110]. Catch bond behavior has been found in the binding of
VWF A1 domain to platelets’ GPIbα [86, 87], and also the collagen mediated binding of
VWF to blood vessel walls was suggested to exhibit a non-trivial force dependence [31].

Recently, we have shown that for simple coarse-grained polymer models based on a time-
independent Hamiltonian entirely consisting of energy-conserving pair potentials between
monomers and the surface, adsorption is not enhanced in the presence of shear flow [128],
i.e., hydrodynamic shear always favors the desorbed state of a single globular or coiled
polymer [84, 113]. This stands in contrast to experimental findings on VWF adhesion
under high flow conditions [31], and thus suggests that in order to obtain shear-induced
adsorption behavior, slip-resistant catch bonds might be a necessary ingredient. That
catch bonds are in fact sufficient to induce adsorption of polymeric globules on surfaces
by shear has been demonstrated in pioneering work by Sing and Alexander-Katz [7, 76],
an observation that forms the starting point for the present investigations.

Here, we study the adsorption of globular polymers by stochastic two-state surface-
monomer bonds, which is a model that for particular parameter values was previously
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Chapter 3 Shear-enhanced globule adsorption by catch bonds

shown to lead to shear-induced adsorption [76]. Similar models with simple two-state
kinetics have proven useful in a number of studies since it is relatively straightforward to
include the force-dependent bond stability in a heuristic manner so that either slip or
catch bond behavior is obtained [7, 8, 76, 88, 109]

We present adsorption state diagrams as a function of shear rate, the surface-monomer
bond dissociation and association rates and an effective catch bond parameter that de-
scribes the continuous change from slip to catch bond behavior. The adsorption transition
displays shear-induced adsorption only for rather low dissociation and association rate
and only for bonds that show neither pronounced slip nor catch bond behavior.

In the last part, we compare the stochastic two-state surface-monomer bond model with
a binding scenario based on conservative surface-monomer potentials, similar to that
used in our previous study [128]. We find that in order to see shear-induced adsorption
phenomena, surface-monomer potentials should presumably have an extremely short
spatial range, which makes simulations impractical for large system sizes.

3.2 Simulation method

Brownian hydrodynamics simulations are performed using the discretized Langevin
equation

ri(t + ∆t) − ri(t) =

⎛⎝µiiγ̇zix̂ −
N∑

j=1
µij · ∇rj U(t) +

∑
j

∇rj µij

⎞⎠∆t + ξi(∆t), (3.1)

which describes the displacement of bead i during a time step ∆t. Note that all quantities
are made dimensionless by rescaling lengths by the monomer radius a according to
r = r̃/a, energies U = Ũ/kT by the thermal energy and times t = t̃/τ by the characteristic
monomer diffusion time τ = a2/µ0 kT = 6πηa3/kT, with Stokes mobility µ0 and viscosity
η. The first term in eq. (3.1) represents a linear shear flow with rate γ̇ = ˜̇γτ , where x̂ is
the unit vector in x-direction. The second term accounts for the direct force acting on
particle i itself as well as the hydrodynamic flow-field created by forces acting on all other
particles j ≠ i. Hydrodynamic interactions at a surface with no-slip boundary condition
are taken into account via the mobility matrix approximated by the Rotne-Prager-Blake
tensor [63, 118, 120] given by

µij = µ̃ij/µ0 = µRPB
self (zi)δij + (1 − δij) µRPB(ri, rj). (3.2)

The explicit expressions for the self-mobilities µRPB
self (zi) and the off-diagonal elements

µRPB(ri, rj) have been given previously [63]. The third term in eq. (3.1) compensates
for the spurious flux due to inhomogeneities in the self-mobility [3]. The stochastic
contribution ξi is given by Gaussian random vectors with correlations according to the
fluctuation-dissipation theorem

⟨
ξiξj

⟩
= 2µij∆t and vanishing mean. The simulations
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3.2 Simulation method

typically run for 109 time steps of length ∆t = 10−4. For computational speed we update
the mobility matrix µij only every 100 time steps, which does not alter the results.

The homopolymer model consists of N = 50 beads, which interact via Lennard-Jones
potentials of depth ε = ε̃/kT = 2 and are connected in a linear chain by harmonic bonds
with a rescaled spring constant κ = κ̃a2/kT = 200. The value chosen for ε corresponds to
a strongly collapsed globule, which, however, is still far from a crystallization transition
that for N = 50 occurs at about ε = 4 [129]. The intra-polymer potential is given by

Upol = ε
∑
i<j

⎛⎝( 2
rij

)12

− 2
(

2
rij

)6
⎞⎠+ κ

2
∑

i

(ri,i+1 − 2)2 . (3.3)

The total potential energy U = Upol + Urep includes in addition a surface term Urep that
accounts for steric exclusion of the polymer from the surface and in particular prevents
crossing of the no-slip boundary located at z = 0. We use

Urep =
∑

i

⎧⎪⎨⎪⎩2πσ2
R

(
2
5

(
σR
zi

)10
−
(

σR
zi

)4
+ 3

5

)
zi ≤ σR

0 zi > σR

(3.4)

with a short range of σR = 1.2. The maximal height above the surface is restricted by a
soft wall acting on the polymer center-of-mass located at a height z = 15.

Surface adhesion is modeled via surface-monomer bonds that are governed by stochastic
two-state kinetics. A monomer can reversibly bind to the surface when it is within the
surface reaction range zr = 2 above the no-slip boundary, regardless of its lateral position.
The binding probability is determined by the adsorption rate. When the monomer is
bound its mobility is set to zero, i.e., the position is frozen despite of hydrodynamic and
direct forces due to other beads. The virtual force acting on an immobilized monomer
is not included in the off-diagonal mobility terms in eq. (3.1), which means that an
immobilized monomer is transparent to the flow or, in other words, that it perfectly fits
into surface defects without modifying the surface flow boundary condition. Adsorption
and desorption rates can be interpreted in terms of energy barrier heights Ea and Ed,
respectively, in a fictitious energy landscape. The equilibrium behavior is governed by the
energy difference ∆E = Ed − Ea. With a pre-factor ν, the so-called attempt frequency,
the adsorption rate becomes

ka = νe−Ea , (3.5)

while the desorption rate is given by

kd = νe−(Ed−xf), (3.6)

where the catch bond parameter x sets the sensitivity of the desorption rate to the force f
acting on the bound particle i, defined by f = |γ̇zix̂ − ∇riU |. In the calculation of f we
omit stochastic forces, which have vanishing mean, as well as hydrodynamic interactions,
considering immobilized monomers to be transparent to the flow field created by other
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Chapter 3 Shear-enhanced globule adsorption by catch bonds

monomers, as discussed earlier. Attempts for bond formation for each monomer within
the surface reaction range, z ≤ zr = 2, and dissociation for each existing surface bond are
performed with a frequency ν = ν̃τ = 100. Thus, in the simulation, bonds are updated
every 100 time steps (∆t = 10−4) and the bond force f is averaged during this time
interval. Note that the update of the mobility matrix µij occurs with the same frequency.
As opposed to a similar study [76] we do not represent surface bonds by harmonic springs
which are suddenly switched on, as this can lead to abrupt changes of tensile spring
forces for newly formed bonds and thereby affect the balance between dissociation and
association rates.

3.3 Results

3.3.1 Equilibrium adsorption

First we consider the adsorption behavior of a collapsed polymer in equilibrium without
shear flow. As shown in fig. 3.1a, the average height of the center-of-mass zcom =
N−1∑N

i zi relative to the surface decreases with rising adsorption energy ∆E while the
rescaled average number of bonds Nb/N in fig. 3.1b increases . The adsorption transition,
indicated by the dotted horizontal line, is defined by the distance criterion zcom = 7, which
is chosen so that zcom exhibits maximal slope at the adsorption transition, as illustrated
in fig 3.1a. The average number of bonds at the adsorption transition is of the order of
Nb/N ≈ 0.05, meaning that roughly two to three surface-monomer bonds are present at
the transition. Upon changing from slip bond, x > 0, to catch bond behavior, x ≤ 0,
the equilibrium adsorption transition shifts towards smaller values of ∆E, meaning that
catch bond behavior enhances the adsorption. This follows from the fact that the ratio of
the adsorption and desorption rates defined in eqs. (3.5),(3.6) is given by ka/kd = e∆E−xf

where the force f acting on the surface bond is a positive definite quantity. As shown
in fig. 3.1c, the average height zcom for different values of x fall on a single curve when
plotted as a function of ∆E −xfr, where fr is the force acting on the bond at the moment
of rupture. In fig. 3.1d we confirm that the simulation results do not depend on the initial
conditions, i.e. there is no difference in the equilibrium globule height for simulations
initialized with a desorbed, unbound globule and simulations initialized with an adsorbed
globule where a single, randomly chosen bead is bound to the surface. For the results
shown in fig. 3.1, the force-independent adsorption energy barrier is kept constant at a
value Ea = 9.

3.3.2 Varying catch bond parameter at fixed adsorption and desorption
rates

An important question concerns the effect of the catch bond parameter x on the non-
equilibrium adsorption behavior in shear flow. For positive values of x, the surface bonds
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Figure 3.1: Adsorption of a collapsed polymer with cohesive strength ε = 2 and number of
monomers N = 50 in the absence of shear flow. The adsorption energy barrier is fixed at
Ea = 9. A horizontal black dotted line indicates the adsorption transition threshold defined as
zcom = 7. a) The average height of the polymer center-of-mass zcom and b) the rescaled average
number of bonds Nb/N are plotted as a function of the adsorption energy ∆E. Upon changing
from slip bond behavior, x = 0.05 (orange), to catch bonds, x = −0.05 (cyan), the equilibrium
adsorption transition shifts towards smaller ∆E. c) When the adsorption energy is shifted
by the average force acting on the surface bonds at the moment of rupture, ∆E − xfr, the
data for zcom fall on a single curve regardless of the value of x. d) The equilibrium adsorption
behavior is independent of the initial configuration, as demonstrated for x = 0; simulations
are either initialized in the desorbed state (black) or in a state where the globule is bound to
the surface via a randomly chosen bead (cyan).
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Chapter 3 Shear-enhanced globule adsorption by catch bonds

exhibit the usual slip behavior and are weakened when a force acts on the bond. Changing
the catch bond parameter towards negative values leads to bonds that become stronger
under force, which effectively might enhance adsorption in shear flow. Indeed, it has
been shown that shear induces adsorption for low desorption rates kd and for vanishing
catch bond parameter x = 0 [76]. In the following we determine the range of parameters
for which adsorption is enhanced by shear.
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Figure 3.2: a) Average height of the polymer center-of-mass zcom as a function of shear rate γ̇
for different fixed values of the catch bond parameter x. Surface bonds are characterized by
high adsorption and desorption energy barriers Ea = Ed = 9. Whereas x < 0 corresponds
to catch bonds, positive x corresponds to slip bond behavior. The dotted horizontal line
indicates the adsorption transition defined by the distance criterion zcom = 7. b) Average
height zcom as a function of x for different shear rates and fixed Ea = Ed = 9. The adsorption
transition is indicated by vertical dashed lines.

In order to determine the adsorption transition we plot the average height of the polymer
center-of-mass zcom in fig. 3.2a as a function of shear rate γ̇ for a few fixed values of
the catch bond parameter x and in fig. 3.2b as a function of x for a few different fixed
values of γ̇. Low rates of bond formation and dissociation are obtained by choosing high
values for the adsorption and desorption energy barriers, Ea = Ed = 9. The choice of
∆E = Ed − Ea = 0 ensures proximity to the adsorption transition, as can be seen in
fig. 3.1a.

Indeed, pronounced shear-induced adsorption is observed for x = 0 in fig. 3.2a, in
agreement with literature results [76]; at low shear rates γ̇ < 0.1 the globule is in the
desorbed state, defined by the distance criterion zcom > 7 and indicated by the horizontal
dotted line. Further increasing the shear rate leads to adsorption until the desorbing lift
force overwhelms the surface adhesion around γ̇ = 1.9. Whereas slip bonds with x = 0.02
always lead to desorption (orange symbols), small negative values of x, i.e. catch bond
behavior, favors adsorption at low shear rates but with increasing shear the globule also
desorbs. As can be seen in fig. 3.2b, increasing the catch bond parameter x coming from
negative values, where the polymer is adsorbed, leads to a desorption transition. This
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shear-dependent desorption transition, induced by changing the bonds from catch to slip
behavior, is indicated by vertical dashed lines.
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Figure 3.3: Adsorption state diagram as a function of shear rate γ̇ and catch bond parameter
x for a collapsed polymer with cohesive strength ε = 2. Stochastic surface bonds are
characterized by adsorption and desorption energy barriers Ea = Ed = 9. Only within the
small shaded region −0.02 < x < 0.02, shear-induced adsorption is observed in a finite window
of intermediate shear rates. Snapshots illustrate an adsorbed configuration obtained for γ̇ = 1,
x = 0, where beads that are bound to the surface are colored in red, and a desorbed globule
obtained for γ̇ = 1, x = 0.03 in the desorbed part of the state diagram.

As a result, we obtain the adsorption state diagram in fig. 3.3, showing the adsorption
transition of a collapsed globule as a function of rescaled shear rate γ̇ and the catch bond
parameter x. Although the hydrodynamic interactions included in the simulations lead
to hydrodynamic lift forces that work against adsorption [84, 113], in a small parameter
range of −0.02 < x < 0.02 we observe shear-induced adsorption. The state diagram
in fig. 3.3 displays reentrant behavior, i.e., adsorption is only observed within a finite
small window of intermediate shear rates. Surprisingly, the existence of shear-induced
adsorption is very sensitive to the value of the catch bond parameter x. We note that
whether the polymer is desorbed at high shear rates depends on the initial conditions of
the simulation, as discussed below.

To obtain a feeling for the strong influence of the catch bond parameter on the desorption
rate, we present in fig. 3.4 data for the average rupture force fr, defined as the force
acting on a bond at the moment of dissociation, for the same parameter values already
shown in fig. 3.2a. According to the adsorption state diagram fig. 3.3, shear-induced
adsorption occurs in the range −0.02 < x < 0.02. In the range of shear rates where the
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Figure 3.4: Average rupture force fr as a function of shear rate γ̇ for the same parameters as in
fig. 3.2a. Vertical dashed lines indicate the adsorption transition.

globule is adsorbed, the rupture force in fig. 3.4 is approximately fr = 22 ± 1. According
to the definition of the desorption rate in eq. (3.6), the force changes the desorption rate
by a factor exfr , which using fr = 22 translates into 0.64 < exfr < 1.55 for a range of
−0.02 < x < 0.02. We conclude that although the catch bond parameter x is very small
in the range where shear-induced adsorption is observed, due to the large values of the
rupture forces fr the effect on the dissociation rates is sizable, explaining the surprising
sensitivity of the resulting adsorption behavior on x.

3.3.3 Varying adsorption and desorption rates at fixed catch bond
parameter

The shear-dependent adsorption behavior depends on both the adsorption energy barrier
Ea and the desorption energy barrier Ed. In fig. 3.5a we present the globule center-of-mass
height zcom as a function of shear rate for fixed catch bond parameter x = 0 and fixed
adsorption energy barrier height Ea = 9 for a few different values of the adsorption
energy ∆E = Ed − Ea. The data exhibit clear shear-induced adsorption for ∆E = 0
(black data points) whereas a positive value ∆E = 0.5 leads to adsorption for low shear
rates and a negative value ∆E = −0.5 promotes desorption for all values of γ̇. The effect
of varying ∆E at fixed x = 0 and Ea = 9 is summarized in the adsorption state diagram
fig. 3.6a. We see that shear-induced adsorption is only observed within a very narrow
range of adsorption energies −0.3 < ∆E < 0.4.

Next we determine the globule adsorption behavior for varying adsorption energy barrier
height Ea at fixed catch bond parameter x = 0. For this we fix the adsorption energy at
∆E = Ed − Ea = 0, meaning that we vary both adsorption and desorption barrier heights
so that the equilibrium adsorption behavior stays invariant. In fig. 3.5b we show the
average polymer height as a function of Ea for a few fixed shear rates γ̇ and for ∆E = 0,
we observe adsorption only for intermediate values of Ea. These results are summarized
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Figure 3.5: a) Average height of the polymer center-of-mass zcom as a function of shear rate
γ̇ for a few different values of the adsorption energy ∆E = Ed − Ea with fixed Ea = 9 and
x = 0. Whereas negative values of ∆E always lead to desorption, for ∆E > 0 the polymer is
adsorbed at low shear flow and with increasing shear rate it crosses the desorption transition
defined by zcom = 7, indicated by the dotted horizontal line. Shear-induced adsorption is
observed for ∆E = 0. b) Average height zcom as a function of the adsorption energy barrier
height Ea for fixed ∆E = 0, x = 0 and a few different shear rates.

in the adsorption state diagram in fig. 3.6b as a function of γ̇ and Ea. For a whole range
of adsorption energy barrier heights 5 < Ea < 12 shear-enhanced adsorption is observed
for an interval of intermediate shear rates of about 0.1 < γ̇ < 2. As seen in fig. 3.5b,
without shear the polymer is desorbed for all values of Ea. The adsorption transition is
denoted in fig. 3.6 as black lines. The region shaded in gray indicates where the globule
adsorption state depends on the initial conditions of the simulation; at large shear rate
and high adsorption energy barrier an initially bound polymer does not desorb during
the time of simulation while an initially unbound polymer will stay unbound.

3.3.4 Initial condition and reversibility

The effect of initial conditions and the reversibility of shear-induced adsorption effects
are illustrated in fig. 3.7. The average height of the polymer above the surface is shown
as a function of the adsorption energy barrier height Ea for fixed γ̇ = 1, x = 0, ∆E = 0
in fig. 3.7a, and as a function of shear rate for fixed Ea = 9, x = 0, ∆E = 0 in fig. 3.7b.
We compare two different initialization protocols, for the black data points we start each
simulation with a desorbed, unbound globule configuration (which is our general protocol
used for most simulations), whereas for the cyan data points we start each simulation
with a globule that is bound to the surface via a single, randomly chosen bead. Whereas
in fig. 3.7a the adsorption behavior is independent of the initial condition for Ea < 12,
we see that for larger adsorption energy barriers the behavior is determined by the initial
conditions. Likewise, for γ̇ < 2 in fig. 3.7b both simulation protocols lead to identical
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Figure 3.6: a) Adsorption state diagram as a function of shear rate γ̇ and adsorption energy
∆E at constant adsorption energy barrier height Ea = 9 and catch bond parameter x = 0. b)
Adsorption state diagram as a function of shear rate γ̇ and adsorption energy barrier height
Ea for fixed ∆E = 0 and x = 0. In the range 5 < Ea < 12, shear-induced adsorption is
observed for intermediate shear rates. The region shaded in gray, at large Ea and large γ̇,
roughly indicates where the adsorption state depends on the initial conditions. Here, during
the course of simulations an initially desorbed globule does not adsorb while an initially
adsorbed globule remains adsorbed.

behavior while for larger shear rate an initially adsorbed globule stays adsorbed and
an initially desorbed globule stays desorbed during the course of the simulations which
consist of up to 109 simulation steps. We conclude that a large kinetic barrier separates
the adsorbed and desorbed states at high shear rate and for high adsorption energy
barriers. In the adsorption state diagrams in fig. 3.6 the region shaded in gray indicates
where the adsorption state depends on the initial conditions of the simulation, these are
the regions where the system shows irreversible or non-ergodic behavior over the course
of the simulations.

The trend towards irreversibility is visualized more explicitly in fig. 3.7c, where we show
time series of the instantaneous height zcom(t) and number of surface bonds Nb(t)/N for
a few different fixed values of the shear rate. The surface-monomer bond parameters are
fixed at ∆E = 0, Ea = 9, and x = 0 so that the globule exhibits adsorption for shear
rates larger than about γ̇ = 0.1, as can be gathered from the adsorption state diagrams
in fig. 3.6. Indeed, for a shear rate γ̇ = 0.1 (orange line in fig. 3.7c), which corresponds
to the adsorption transition, the globule spends roughly equal amounts of time in the
desorbed and in the adsorbed states and frequently switches between the two states. As
can be seen in the lower panel of fig. 3.7c, the adsorbed state is maintained by a rather
low average number of surface-monomer bonds of about Nb/N ≈ 0.1. Due to strong
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Figure 3.7: Effect of different initial conditions and reversibility of the shear-induced adsorption
state for fixed parameters x = 0, ∆E = 0. a) Average height zcom as a function of the
adsorption barrier Ea at fixed γ̇ = 1. Simulations that start with a desorbed globule (black
data points) exhibit shear-induced adsorption for 5 < Ea < 12. When the globule is initially
adsorbed to the surface (cyan data points) and Ea is large, desorption is not observed during
the simulation time. b) Similarly, at fixed Ea = 9 and varying shear rate γ̇, as opposed to
simulations starting with a desorbed globule (black solid line), the initially adsorbed globule
(cyan) does not desorb at large shear rates. However, the globule reversibly desorbs when the
shear flow is suddenly switched off, as indicated by the black dashed line. c) Time series of the
instantaneous globule height zcom(t) and the number of surface-monomer bonds Nb(t)/N for
fixed Ea = 9 and different values of the shear rate γ̇ as a function of the rescaled simulation
time. The initial condition of the simulations is an unbound globule; the globule is adsorbed
for all shown shear rates. Within the area shaded in gray, the shear flow is suddenly switched
off, γ̇ = 0, leading to immediate desorption with a low average number of bonds, indicating
reversibility with respect to turning off the shear.
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Chapter 3 Shear-enhanced globule adsorption by catch bonds

hydrodynamic lift forces caused by the shear flow, unbound polymers are most of the
time quite far from the surface and outside the adsorption range zr = 2, preventing
surface-monomer bond formation. Accordingly, for γ̇ = 1.6 (blue line in fig. 3.7c), the
time span to reach the surface when starting from an unbound state is quite large. As
can be seen for the data for γ̇ = 1.6, once the globule is adsorbed, more surface-monomer
bonds form over time. This cooperative adsorption enhancement in combination with the
low dissociation rates, determined by the high desorption energy barrier Ed = 9, makes
the desorption of the globule a rare event, which explains why the simulations exhibit
irreversible behavior for high shear rates.

On the other hand, the shear-induced adsorbed state shows reversibility with respect
to switching off the shear flow. This is demonstrated in fig. 3.7c, where within the
shaded area the flow is turned off and the shear rate set to γ̇ = 0. We see that shortly
after switching off the shear rate, all trajectories exhibit almost immediate desorption
characterized by a low average number of bonds. In fact, this type of reversible behavior
is observed for all values of the shear rate, as demonstrated in fig. 3.7b, where we plot
the average globule height after turning off the shear flow (dashed black line).

3.4 Mapping between stochastic two-state models and
conservative potential models

As opposed to the stochastic two-state model for surface-monomer binding used in
the present investigation, which exhibits shear-induced globule adsorption for small
values of the catch bond parameter x, no shear-enhanced adsorption was found in our
previous study that employed a description of surface-monomer binding in terms of
conservative pair potentials between surface binding sites and monomers [128]. In this
section we investigate whether it is possible to find parameters of a conservative surface-
monomer potential that might reproduce the shear-induced adsorption behavior seen in
the stochastic two-state surface-monomer binding model. To this end, we devise two
different ways of extracting the effective parameters ∆E, Ea and x from a conservative
potential-based model for surface-monomer interactions.

3.4.1 Dissociation rate in a one-dimensional corrugated potential

First we consider the one-dimensional motion of a single particle, which represents a
monomer, that is pulled by an external force fext and subject to a corrugated, periodic
potential created by a discrete set of Lennard-Jones centers

Uinh(y) =
∑

k

εW

(
σ12

W

(σW + |y − kb|)12 − 2σ6
W

(σW + |y − kb|)6

)
. (3.7)
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3.4 Mapping between stochastic two-state models and conservative potential models

This mimics the potential landscape obtained when decorating a surface with discrete
binding sites with distance b, interaction range σW and adhesive strength εW . Figure 3.8a
displays the resulting potential including the effect of the external pulling force,

U(y) = Uinh(y) − yfext (3.8)

for b = 2 and two different values of σW and εW . We study the one-dimensional particle
motion using a Brownian Dynamics (BD) simulation scheme. Typical particle trajectories
are shown in the inset of fig. 3.8c for b = 2, σW = 0.5, εW = 10 and two different values
of the external force.

We define the desorption rate kd by the inverse average bond lifetime, i.e. the time the
particle remains within one potential minimum until it crosses the energy barrier and
moves to the next binding site. For simplicity we define a bond to be present when
the distance between particle and a binding site is smaller than b/2, i.e., the particle is
considered always to be bound to the closest surface binding site.

Results from one-dimensional BD simulations in the corrugated potential eq. (3.8) are
shown in fig. 3.8c as open symbols, where we plot the desorption rate kd as a function
of the external force fext for the two different potential parameters shown in fig. 3.8a.
We remark that the parameter set σW = 0.5 and εW = 10 (black squares) yields a
globule adsorbed in the stick-roll state at a two-dimensional inhomogeneous surface [128].
Simulation results are in good agreement with the exact calculation of the escape rate
kmfpt = 1/τmfpt (black line), defined as the inverse mean first passage time of a particle
escaping from the minimum of the tilted, corrugated potential eq. (3.8). The theoretical
result for the mean first passage time [130] to hit either of the two absorbing boundaries
at y = ±b/2, starting in the minimum at ymin is given by (Appendix A.2)

τmfpt =
∫ b/2

−b/2 eU(y) ∫ y
−b/2 e−U(y′)dy′dy∫ b/2

−b/2 eU(y)dy

∫ ymin

−b/2
eU(y)dy −

∫ ymin

−b/2
eU(y)

∫ y

−b/2
e−U(y′)dy′dy.

(3.9)

For the reduced interaction range σW = 0.05 (simulation results are plotted as gray
circles in fig. 3.8c), we increase the adhesive strength to εW = 11.8 so that the zero-force
desorption rate is the same as for σW = 0.05 with εW = 10. Here the simulation time
step has to be decreased, from ∆t = 10−4 to 10−7, in order to obtain converged results.
We see that simulations and the analytical results (gray line) agree very nicely.

In order to extract rate parameters from the model defined by the potential eq. (3.8),
we fit the escape rates according to the desorption rate eq. (3.6) for forces in the range
f ext < 20 and using ν = 100. We obtain an effective desorption barrier height Ed = 10.44
and a catch bond parameter x = 0.4 for the potential parameters σW = 0.5 and εW = 10,
the fit is illustrated by the dashed cyan line in fig. 3.8c. For the more highly corrugated
potential, σW = 0.05 and εW = 11.8, we obtain a smaller catch bond parameter x = 0.2
but comparable barrier height Ed = 10.42; the fit is illustrated by the orange dashed line
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Figure 3.8: a) The one-dimensional potential U(y), eq. (3.8), resulting from the sum over
discrete surface binding sites, shown for two different interaction ranges σW = 0.5 (black) and
σW = 0.05 (gray) with εW = 10, 11.8, respectively, and for pulling force fext = 5. b) With
increasing force fext both the height of the potential energy barrier Ub and its distance to the
minimum yb decrease. c) Desorption rate kd as a function of fext. Results from one-dimensional
BD simulations (symbols) are in good agreement with the analytic calculations kmfpt (solid
lines) based on the mean first passage time of a particle escaping from the potential minimum,
eq. (3.9). Exponential fits (colored dashed lines) according to eq. (3.6) in the range fext < 20
and assuming ν = 100 yield desorption energy barriers Ed = 10.44, 10.42 and catch bond
parameters x = 0.4, 0.2 for σW = 0.5 and σW = 0.05, respectively. The inset shows BD
simulation trajectories for two different values of fext and for σW = 0.5.
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3.4 Mapping between stochastic two-state models and conservative potential models

in fig. 3.8c. Note that the fits according to the simple exponential force dependence of
the desorption rate in eq. (3.6) do not describe the actual data in fig. 3.8c very well. This
can be rationalized by the fact that the actual potential energy barrier height Ub and
its distance to the minimum yb, which are both graphically defined in fig. 3.8a, depend
sensitively on the applied force fext and in fact both decrease drastically with increasing
fext, as demonstrated in fig. 3.8b for both potentials plotted in fig. 3.8a. The non-linear
decrease of Ub and the force-dependent shift of the barrier height position yb might explain
the deviation of the desorption rate from a simple exponential for large forces, which is
clearly seen in fig. 3.8c. In fact, from our fit according to eq. (3.6) we find apparent barrier
heights Ed that are comparable to the adhesive strength εW in the original potential. By
contrast, the fit values for the effective catch bond parameter, which come out as x = 0.4
and x = 0.2 for the potential interaction ranges σW = 0.5 and σW = 0.05, respectively,
are not well correlated with the ranges of the original potentials. In particular, for the
potential with the smaller range σW = 0.05, the catch bond parameter is much larger.
The reason for this might be that the fit value for the catch bond parameter corresponds
effectively to an average over a whole range of the actual barrier position yb, which is
plotted in fig. 3.8b, in the relevant force range 0 < fext < 20. In any case, we see that it
might be difficult to reach the necessary small values of the catch bond parameter of the
order of x < 0.02 needed to observe shear-induced adsorption behavior (see fig. 3.3).

So far we obtained effective values for the catch bond parameter x and the desorption
energy barrier Ed. Our simulation results indicate that also the adsorption energy barrier
height Ea is a parameter that has to be finely tuned in order to observe shear-induced
adsorption (see fig. 3.6b). Since escape rates do not include information about the
adsorption energy barrier Ea, a second approach based on the monomer mobility is used
next in order to estimate Ea.

3.4.2 Mobility in a one-dimensional corrugated potential

In fig. 3.9 we plot the mobility µ = µ̃/µ0 = V/fext, defined as the ratio of particle velocity
V and external force, of a particle in the one-dimensional corrugated potential eq. (3.8)
as a function of the external force fext. Results from one-dimensional BD simulations,
identical to the one used in sec. 3.4.1, indicated by open symbols, are in perfect agreement
with the corresponding solution of the Fokker-Planck equation [68, 131] (Appendix A.3),
indicated by solid lines and given by

µ = b(1 − e−bfext)
fext

(∫ b

0
e−U(y)dy

∫ b

0
eU(y′)dy′

−(1 − e−bfext)
∫ b

0

∫ y

0
e−U(y)+U(y′)dy′dy

)−1

. (3.10)
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Figure 3.9: Average particle mobility µ = V/fext in the one-dimensional corrugated potential,
eq. (3.8), as a function of pulling force fext. The average velocity V is obtained from one-
dimensional BD simulations for σW = 0.5 and ε = 10 (black squares) as well as σW = 0.05 and
ε = 11.8 (gray circles). Solid lines represent the solution of the corresponding Fokker-Planck
equation, eq. (3.10). Colored dashed lines denote the fits according to a kinetic two-state
model, eq. (3.11), with ∆E = 4, 4.3 and x = 0.12, 0.02 for σW = 0.5, 0.05, respectively.

To extract desorption and adsorption rates from the data shown in fig. 3.9, we envision
the particle motion as a sequence of adsorbed and desorbed states. We assume that
the typical adsorption time is ta, during which the particle is immobile, and that the
typical desorption time is td, during which the particle moves over a distance d. The
rescaled mobility follows as the ratio of the average velocity, V = d/(td + ta), and the
velocity in the desorbed state, Vd = d/td. Furthermore, the desorption time is related
to the adsorption rate via td = 1/ka and the adsorption time to the desorption rate via
ta = 1/kd. We obtain for the mobility

µ = V

Vd
= td

ta + td
= 1

1 + ka/kd
= 1

1 + e(∆E−xf) (3.11)

where in the last step we have used eqs. (3.5) and (3.6). Equation (3.11) thus allows to
extract the catch bond parameter x and the adsorption energy ∆E from the potential-
based model by fit of the mobility. We obtain the fit values ∆E = 4 and x = 0.12 for the
potential parameters σW = 0.5 and εW = 10, and ∆E = 4.3 and x = 0.02 for σW = 0.05
and εW = 11.8, the corresponding fit functions are shown in fig. 3.9 by dashed lines.

We see that we obtain quite different fit values for the catch bond parameter x based on
the desorption rate in sec. 3.4.1 or based on the mobility in the present section. For the
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3.5 Summary and conclusion

potential parameters σW = 0.05 and εW = 11.8 we obtain x = 0.2 from the desorption
rate and x = 0.02 from the mobility. This shows that even a simple surface-monomer
potential landscape as in eq. (3.7) cannot be easily and unambiguously cast into a
stochastic two-state model. This might be due to the fact that the desorption rate can
be fitted to the two-state model reasonably only for small forces fext < 20, as seen in
fig. 3.8c, because the desorption barrier in a realistic potential landscape does not depend
in a linear fashion on the applied force, as is assumed in our desorption rate expression
eq. (3.6). In contrast, the mobility is fitted well by the two-state model in a much broader
range of fext, as seen in fig. 3.9, here the non-linear force dependence of the desorption
barrier height seems to be less important. Alternatively, the reason for the ambiguous
fitting results for x could be that also the adsorption barrier exhibits a force dependence,
which is neglected in our simple adsorption rate expression in eq. (3.5).

Extracting the desorption barrier height from the desorption rate we obtain for σW = 0.05
and εW = 11.8 the value Ed = 10.42. This value is comparable to the range where we see
shear-induced adsorption in fig. 3.6b. From a fit to the particle mobility we obtain for
σW = 0.05 and εW = 11.8 the estimate ∆E = 4.3. This value is substantially larger than
what is required for shear-induced adsorption, as seen in fig. 3.6a. The effective catch
bond parameter we extract for σW = 0.05 and εW = 11.8 is either x = 0.2 or x = 0.02,
depending on whether we use the desorption rate or the mobility for the fit. Disregarding
the fact that it is not quite clear what the effective catch bond parameter actually is, it
seems that even more highly corrugated potential landscapes for the surface-monomer
binding would be needed in order to actually reach the effective catch bond parameter
range −0.02 < x < 0.02 needed for shear-induced adsorption, as seen in fig. 3.3.

In summary, if shear-induced globule adsorption is to be observed using a corrugated
surface-monomer potential based on monomer-surface site pair potentials, the potential
parameters should be chosen such as to mimic effective rate parameters in the range
Ed = 9, ∆E = 0 and −0.02 < x < 0.02. We argue that it should be possible to reach
small effective catch bond parameters x by choosing a very small surface interaction
range σW , though this will make simulations quite inefficient because of the necessary
small time steps. In order to achieve the necessary low ∆E value an additional adsorption
barrier might have to be introduced in the potential-based model, such that the effective
adsorption barrier Ea becomes similar to Ed and thereby ∆E = Ed − Ea approaches
zero.

3.5 Summary and conclusion

In the present study we investigate the adsorption of a polymeric globule in shear onto a
surface with surface-monomer bonds that obey stochastic two-state kinetics. We carefully
determine the range of the surface-monomer bond parameters, i.e. the adsorption and
desorption energy barriers Ea and Ed as well as the catch bond parameter x, for which
shear-induced globule adsorption is obtained. As our main result, we find that in order
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to observe shear-induced adsorption, the catch bond parameter x must be finely tuned in
a narrow range of −0.02 < x < 0.02, while the adsorption and desorption energy barriers
must be quite high and set in a range of 5 < Ea, Ed < 12. Interestingly, the energy barrier
difference ∆E = Ed − Ea, which corresponds to the adsorption energy, must be finely
tuned in a narrow range of −0.3 < ∆E < 0.4. In other words, the globule must be close
to the equilibrium adsorption transition. This corresponds to very stringent conditions
on the system parameters and means that biological systems must be finely adjusted in
order for flow effects to enhance adsorption of globular structures on surfaces.

The physical picture [7] is that the polymer approaches the surface in a globular confor-
mation in which desorbing lift forces are minimal. Since only few monomers are in the
reaction range of the surface, the rather large adsorption energy barrier prevents globule
adsorption at low shear. However, when a bond is formed and the shear flow is high
enough, the chain is stretched and more bonds can form, given the bond lifetime of the
initially formed bond is larger than the globule unfolding time. Our results show that
even slip bonds, characterized by a catch bond parameter of the order of x = 0.01, can
give rise to shear-enhanced globule adsorption.

We show that the shear-induced adsorbed state is reversible with respect to switching off
the shear flow, meaning that an adsorbed globule for suitably chosen parameters rapidly
desorbs when the shear rate is suddenly set to zero. Similar reversibility has been seen
previously in simulations of shear-induced polymer-colloid aggregate formation [132]. At
the same time, large shear rates and large desorption energy barriers give rise to severe
sampling problems which result in irreversibility effects in the simulations.

In the last part, we attempt a mapping of the kinetic two-state model parameters onto
a potential-based binding model. The goal here is to understand the specificities of a
surface-monomer pair potential that would be needed in order to lead to shear-induced
adsorption of a globule. In a somewhat broader context, the question here is how catch
bond behavior results from macromolecules that interact via conservative pair potentials.
We perform the mapping using two scenarios, in the first scenario we calculate particle
desorption rates, in the second scenario we calculate mobilities of a particle that is dragged
over a one-dimensional highly corrugated potential landscape. Catch bond parameters in
the range of x = 0.02 − 0.4 are obtained, while the adsorption energy difference ∆E turns
out to be substantially larger than what is required for shear-enhanced adsorption. This
suggests that it might be necessary to add an adsorption barrier into the surface monomer
interaction potential. We conclude that it is not straightforward to design a model
based on conservative surface-monomer pair potentials that would lead to shear-induced
adsorption behavior. On the other hand, the short-comings of our mapping also show
that the description of surface-monomer interactions using a kinetic two-state model
with only three parameters is incomplete and an additional parameter reflecting the
force-dependence of the adsorption rate might be needed.

The interesting question remains of how catch bond behavior can be reproduced by
models based on pair potentials. Clearly, the force dependence of the stability of a
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potential-based bond depends on the potential shape in a non-trivial fashion, and it is
altogether not clear what a minimal model to obtain effective catch bond behavior is. It
might be possible to induce catch bond character of a bond by introducing saturation
and shielding effects, which would involve the interplay of several binding sites.
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Chapter 4

Internal tension in a collapsed
polymer under shear flow and the

connection to enzymatic cleavage of
von Willebrand factor

4.1 Introduction

The study of the dynamics of polymers in solution has become an important aspect for
understanding non-equilibrium processes in biopolymeric systems. In the context of blood
coagulation, considerable research has been focused on the multimeric glycoprotein von
Willebrand factor (VWF). The binding of VWF to exposed collagen at sites of vascular
injuries and the simultaneous VWF-mediated adhesion of platelets are central steps in
primary hemostasis [11, 27, 133]. In this context, the presence of shear or elongational
flow constitutes a crucial ingredient as it activates the functional conformation of VWF
multimers by inducing a transition from globular to unfolded conformations [54, 58, 61]
and thus facilitates adhesion to the extracellular matrix [31, 134]. Previous simulation
studies elucidated the dynamics and the VWF adsorption behavior [31, 128] and revealed
that VWF must exhibit finely adjusted, long-lived bonds in order to resist hydrodynamic
forces and to allow for shear-induced adhesion [76, 135].

The existence of shear, apart from inducing conformational changes of the VWF multimers,
can presumably also influence VWF’s function by changing the tertiary structure of
individual monomers. In particular, it has been argued that tensile forces lead to the
unfolding of individual domains [19, 136] and consequent exposure of binding and cleavage
sites that in equilibrium conditions or at low shear rates are not accessible, e.g. due to
shielding effects of VWF domains [137, 138].

Another shear-induced biological process in which VWF takes part is the reversible platelet
aggregation under high shear rate [8, 132, 139, 140] that has pathophysiological relevance.
In fact, malfunction in the VWF degradation and the resulting high amount of abnormally
long VWF multimers can lead to life-threatening thrombotic diseases [23, 141]. The shear-
dependent VWF degradation thus presents an active area of research [16]. The required
regulatory mechanism is associated with the specific metalloprotease ADAMTS13, which
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is responsible for VWF length regulation and thereby controls the hemostatic activity [11,
142]. Note that the length distribution of VWF in plasma has been determined recently
using fluorescence correlation spectroscopy (FCS) [20]. The cleavage site at which
ADAMTS13 acts is deeply buried within the VWF A2 domain in the native state [143].
There is general consensus that VWF degradation requires shear or force-induced A2
domain opening and exposure of the cleavage site for ADAMTS13 [18, 19, 144, 145].
The force-induced activation of single A2 domains was recently studied using laser
tweezers [136]. In that study, cleavage of unfolded A2 domains was observed and the
dependence of the catalytic rate on the enzyme concentration was determined. Details
about the underlying molecular mechanism were provided by means of molecular dynamics
simulations [19].

In the present study we address the interplay between shear-flow-induced VWF unfolding
and the internal tensile force distribution along the polymer contour, the opening of the
mechanosensitive VWF A2 domain and the activity of the cleavage enzyme ADAMTS13.
We use a coarse-grained VWF polymer model and employ Brownian hydrodynamics
simulations. In the first part, we show that the shear-induced unfolding transition of a
collapsed globule, where elongated configurations are periodically observed for short time
intervals, can be connected to an inhomogeneous profile of the average tension between
monomers along the polymer chain. The unfolding has previously been explained by a
nucleation model based on the existence of thermally activated polymeric protrusions [58].
Here, we present a direct proof of the existence of such protrusions and corroborate the
protrusion-induced instability mechanism leading to unfolding of collapsed polymers in
shear flow. We study the tension profile as a function of shear rate, chain length, and
cohesive strength. The average maximal force (the peak force) along the chain contour
is identified as the typical force acting on a protrusion. We determine scaling relations
for the dependence of the peak force and the average protrusion length on the size of
the globule and its cohesive strength. Using these scaling predictions, we develop a
quasi-equilibrium theory to describe the average length of protrusions.

In the second part we show how the shear-induced tension profile along the polymer
is connected to the physiological process of shear-dependent proteolysis of VWF by
its specific cleavage enzyme ADAMTS13. We formulate a simple stochastic two-state
model for the VWF A2 domain opening and calculate the force-dependent probability
for the domain to be accessible to cleavage by ADAMTS13 from the tension distribution
along our coarse-grained polymer model of VWF. The result can be connected to the
shear-dependent cleavage rate of full-length VWF mediated by ADAMTS13 that has
been recently measured experimentally by Lippok et al. [146]. In that study, fluorescence
correlation spectroscopy (FCS) was employed in combination with a microfluidic shear cell
to quantify the effect of shear on the kinetics of VWF cleavage in aqueous buffer and in
blood plasma by measuring the time-dependent increase in VWF multimer concentration.
Our theoretical modeling allows to deduce characteristic parameters of single cleavage
sites like the effective force scales of the stochastic opening and closing processes. We
compare our results with laser tweezer experiments [136] on single A2 domains and argue
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that the domain opening in shear flow might not be equivalent to the domain unfolding
probed by external stretching forces.

4.2 Simulation method

Brownian hydrodynamics simulations are performed using the discretized Langevin
equation

ri(t + ∆t) − ri(t) =

⎛⎝µiiγ̇zix̂ −
N∑

j=1
µij · ∇rj U(t)

⎞⎠∆t + ξi(∆t), (4.1)

which describes the displacement of bead i at position ri after the time step ∆t. Note
that all quantities used are made dimensionless by rescaling lengths r = r̃/a by the bead
radius a, energies U = Ũ/kT by thermal energy and times t = t̃/τ by the characteristic
monomer diffusion time τ = a2/µ0kT = 6πηa3/kT, where η is the viscosity. The first
term in eq. (4.1) represents a linear shear flow with rate γ̇ = ˜̇γτ , where x̂ is the unit vector
in x-direction. The second term accounts for the direct force acting on particle i itself as
well as the hydrodynamic flow-field created by forces acting on all other particles j ̸= i.
Hydrodynamic interactions are taken into account via the mobility matrix approximated
by the Rotne-Prager-Yamakawa tensor [118, 119]

µij = µ̃ij/µ0 =

⎧⎪⎨⎪⎩
3

4rij

((
1 + 2

3r2
ij

)
1 +

(
1 − 2

r2
ij

)
rijrij

r2
ij

)
rij ≥ 2(

1 − 9rij

32

)
1 + 3rij

32
rijrij

r2
ij

rij < 2
, (4.2)

where rij = ri − rj and rij = |rij |; selfmobilities are given by µii = µ̃ii/µ0 = 1. For free
draining simulations the off-diagonal elements of the mobility matrix eq. (4.2) are set to
zero. The stochastic contribution ξi is given by Gaussian random vectors with correlations
according to the fluctuation-dissipation theorem

⟨
ξiξj

⟩
= 2µij∆t and vanishing mean.

The simulation typically runs for 108 time steps of length ∆t = 5 × 10−4.

The homopolymer model consists of N beads, which interact via Lennard-Jones potentials
of depth ε = ε̃/kT and are connected in a linear chain by stiff bonds with a rescaled
spring constant κ = κ̃a2/kT = 200; the total potential reads

U = ε
∑
i<j

(
(2/rij)12 − 2 (2/rij)6

)
+ κ

2
∑

i

(ri,i+1 − 2)2 . (4.3)

In order to obtain a measure for the absolute value of the tensile force fi ≡ ⟨fi⟩ =
κ(⟨ri,i+1⟩ − 2) along the bond between beads i and i + 1, the average distance ⟨ri,i+1⟩ is
recorded during the course of simulation using block averages of a time interval t = 0.05.
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4.3 Results for tensile force profiles

We consider a collapsed polymer of length N = 50 having fixed cohesive strength ε = 2,
unless stated otherwise. The influence of an applied shear flow on the size of the globule
is shown in fig. 4.1a. The squared radius of gyration R2

g = N−1∑
i(ri − rcom)2, with

rcom = N−1∑
i ri, monotonically increases as a function of shear rate γ̇, where we subtract

(R0
g)2 = R2

g(γ̇ = 0) = 11.3, the globule radius of gyration measured at vanishing shear
γ̇ = 0. The black line indicates a scaling relation R2

g − (R0
g)2 ∼ γ̇2 for not too large shear

rates γ̇ < 40.
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Figure 4.1: a) Squared radius of gyration R2
g as a function of shear rate γ̇ for cohesive strength

ε = 2 and N = 50; hydrodynamic interactions are included. The equilibrium value (R0
g)2 =

11.3 is subtracted. The solid line represents a power law with exponent 2. b) The rescaled
variance of the squared extension m(R2

S) displays a maximum at about γ̇∗ = 10 corresponding
to the critical shear rate of globule unfolding. The area shaded in gray indicates where the
force profiles in fig. 4.2a exhibit a double-peak structure.

The conformational change of a polymeric globule in shear flow has been investigated in
previous studies [58, 61] reporting a quite sharp unfolding transition at a critical shear
rate γ̇∗ at which large size fluctuations are observed. In those studies, the shear-induced
unfolding transition is defined by the maximum of the rescaled variance of the squared
extension m(R2

S), displayed in fig. 4.1b. The extension RS is defined as the maximal
distance in flow direction between any two beads from which the rescaled variance follows
as m(R2

S) =
(⟨

R4
S

⟩
−
⟨
R2

S

⟩ 2) /
⟨
R2

S

⟩ 2. We obtain for N = 50 and ε = 2 the critical shear
rate γ̇∗ = 10, in agreement with previous results [61] where it has been shown that
the critical shear rate depends on the chain length N . Note that the squared radius of
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gyration exhibits similar fluctuations and its variance could also be used to define the
unfolding transition.

We next investigate the tension profile along the contour of a collapsed polymer subject
to shear flow and present results for the tensile force fi as a function of bead position i in
fig. 4.2a for a few different shear rates. The polymer remains strongly collapsed for low
shear rates γ̇ < 5, as can be gathered from the small radius of gyration, fig. 4.1a, and the
small extensional fluctuations, fig. 4.1b. In such a globular conformation, as illustrated by
the top snapshot in fig. 4.2e, tensile forces only stem from thermal fluctuations and are
rather small and maximal at the termini. With increasing shear rate the maximal tensile
force shifts away from the chain termini and a double-peak structure appears in the tensile
force profile, a transition taking place around γ̇ = 5. We define the transition to be at the
shear rate where the maxima move away from the chain termini. Notice that this is below
the critical shear rate of unfolding, γ̇∗ = 10, defined by the maximum variance of the
extension, fig. 4.1b. The double-peak structure is also observed for shear rates well above
the unfolding transition, until the force profile changes around γ̇ = 30 to a profile with a
flat maximum in the middle and with strongly decreasing tension towards the termini.
Fluctuations around the average forces fi are substantial, as indicated by the standard
deviation defined by σ2

i ≡ σ2(fi) =
⟨
f2

i

⟩
− ⟨fi⟩2 and shown for N = 50 and different shear

rates in fig. 4.2b. Corresponding broad normalized probability distributions P (f25) for
the middle bead i = 25 are shown in fig. 4.2c. Force profiles for different chain lengths
are presented in fig. 4.2d for a fixed shear rate γ̇ = 10. We observe the double-peak
structure only for long chains, N ≥ 20. The tension for short chains at high shear are
maximal in the middle and resemble inverted parabolas.

We attribute the peaks in the tensile force profiles close to the termini of the polymer to
polymeric protrusions of length lp, one of which is illustrated by the middle snapshot
in fig. 4.2e. The reason for the existence of a force peak is that the hydrodynamic drag
force acting on a protrusion is larger compared to monomers within the globule, which is
due to hydrodynamic shielding effects. In addition, the occurrence of the double-peak
structure in the force profiles is closely related to the shear-induced unfolding transition
that has been rationalized by a nucleation theory based on the presence of thermally
excited polymeric protrusions [61]. The area shaded in gray in fig. 4.1 indicates the range
4 < γ̇ < 30 where the double-peak structure in the tensile force profile appears. In the
same range the variance of the squared extension m(R2

S) displays a maximum, fig. 4.1b,
which is used to define the unfolding transition. In fact, the unfolding transition leads to
cyclic elongation, illustrated by the bottom snapshot in fig. 4.2e, tumbling, and refolding,
causing a large variance of the average extension. As the double-peak structure is only
observed for long chains, N ≥ 20, as seen in fig. 4.2d, we conclude that chains have to
be long enough so that a globule can form and the protrusion mechanism for unfolding
becomes operational.
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Figure 4.2: a) Average tensile force fi as a function of bead position i along a collapsed polymer
with cohesive strength ε = 2 and N = 50. For increasing shear rate γ̇ the overall tension
increases and the profile changes at about γ̇ = 5 from exhibiting maximal tensile forces at
the termini to a double-peak structure, which disappears for larger γ̇ ≥ 30. b) The standard
deviation σ(fi) as a function of i shown for different γ̇ indicates large fluctuations. c) This is
reflected in the broad normalized probability distribution P (f25) of the middle bead i = 25
(symbols) that can be well fitted with a Gaussian (lines). d) Tension profiles for different chain
length N for fixed shear rate γ̇ = 10. Black arrows illustrate the definition of the average
protrusion length lp and the peak force fp for N = 50. e) Snapshots of a collapsed globule, a
globule having a protrusion of length lp, and an elongated configuration (from top to bottom),
all taken from simulations for ε = 2, N = 50 and γ̇ = 10.
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4.3 Results for tensile force profiles

4.3.1 Analysis

In order to analyze the double-peak structure of the tensile force profiles figs. 4.2a,d
in more detail, we define two characteristic quantities. First, the peak tensile force fp,
defined as the maximal average tension along the chain, which is associated with the
average hydrodynamic drag force acting on protrusions. Second, the average protrusion
length lp, defined as the monomer distance of the force peak from the adjacent chain
end. The definition of the peak force fp and the protrusion length lp are illustrated by
arrows in fig. 4.2d for the right peak of the force profile for N = 50. The length of a
protrusion is also illustrated by the middle snapshot in fig. 4.2e. Since the tension profiles
are symmetric with respect to the center of the polymer chain we consider the mean of
the two peaks in order to determine fp and lp.

4.3.1.1 Protrusion length and peak force at fixed cohesion and globule size

In fig. 4.3 we present the average protrusion length lp and the average peak tensile force
fp as a function of shear rate. As before, we consider a globule with cohesion ε = 2 and
N = 50 monomers. Hydrodynamic interactions (HI) are either taken into account (filled
symbols) or are neglected (FD, open symbols). In the FD case, no double-peak structure
is observed and with increasing shear rate the position lp of the peak force abruptly
changes from the polymer termini to the middle. Note that this jump occurs around the
critical shear rate of unfolding, which is at γ̇∗ = 1 for the FD case [61]. For the HI case,
the area shaded in gray in fig. 4.3 indicates the range 4 < γ̇ < 30 where the double-peak
structure appears. The protrusion length, fig. 4.3a, increases monotonically with shear
rate according to the heuristic scaling law lp ∼ γ̇1.2 until the profile exhibits a single
central peak at large shear rates. We observe protrusion lengths in the range 1 < lp < 10.
Note that due to our discrete bead-spring model, we cannot determine arbitrarily short
protrusions. When there is no protrusion and the maximal force is located at the chain
termini, the smallest value is defined to be lp = 1. The data in fig. 4.3 is fitted only
within the shaded area where double peaks are observed. The maximal forces, shown in
fig. 4.3b, follow the scaling fp ∼ γ̇1.6 for large shear rates. For comparison we also plot
the mean tension along the chain, fmean = N−1∑

i fi for varying shear rate, which shows
a similar behavior as the peak force, fmean ∼ γ̇1.8. Note that the tensile force of a dimer
increases linearly with shear rate as shown in the Appendix A.5.

4.3.1.2 Dependence on globule size and cohesive strength

The hydrodynamic drag force acting on a protrusion could depend besides the protrusion
length lp also on the globule radius R ∼ N1/3. In fact, the double-peak structure strongly
depends on the chain length N , as indicated by the force profiles in fig. 4.2d. Another
influential parameter is the cohesive strength ε of the globule, which determines the
restoring force on the protrusions. In the following we investigate the effect of different
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Figure 4.3: A globular polymer with N = 50 and ε = 2 exhibits a double-peak structure only in
the presence of hydrodynamic interactions (HI, filled symbols), the corresponding range of the
shear rates γ̇ is shaded in gray. a) The mean protrusion length lp as a function of γ̇. In the
free draining case (FD, open symbols) there is an abrupt jump around γ̇ = 1 from the chain
end to lp = 25 above which the maximal force is located in the middle of the chain. In the HI
case the protrusion length increases according to lp ∼ γ̇1.2 (line) until there is only a single
middle peak at large shear rates. b) The peak force fp, defined as the maximum average
tension along the polymer contour, scales as a function of shear rate like fp ∼ γ̇1.6, obtained
by a fit of the data (black line) within the shaded area. Also the mean tension along the chain
fmean (gray discs) is shown for the HI case which exhibits a similar scaling fmean ∼ γ̇1.8 (gray
line).

globule sizes and varying cohesive strength. We focus on the HI case, since no double-peak
structure is observed in free draining simulations.

Results for the peak forces fp and the mean forces fmean as a function of N are plotted
in fig.4.4a for fixed cohesive strength ε = 2 and shear rate γ̇ = 10. The peak force only
weakly depends on the globule size; it decreases almost linearly with increasing chain
length. The mean tensile force along the chain decreases more strongly with increasing
N and can be described by a power law fmean ∼ N−1/3 ∼ R−1, shown by the solid gray
line. The average protrusion length lp, shown in fig.4.4b, also decreases as the inverse of
the radius lp ∼ N−1/3 ∼ R−1, shown by the solid black line.

The dependence on the cohesive strength ε is shown in fig. 4.4c,d. A double-peak structure
in the tension profile is only observed for values 0.7 < ε < 3. The lower boundary is
determined by the collapse transition that occurs for N = 50 at εcol ≈ 0.66 [61], hence
for lower values ε < εcol the polymer is in a coiled state where maximal forces occur in
the chain middle. A higher cohesive strength ε ≈ 3 leads to a compact, almost frozen
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Figure 4.4: a) Peak forces fp, mean tension fmean, and b) protrusion length lp as a function
of globule size N for fixed cohesive strength ε = 2 and shear rate γ̇ = 10. Solid lines
indicate a scaling with the inverse radius of gyration f, lp ∼ N−1/3 ∼ R−1. The peak force
in a) decreases rather linearly with increasing globule size. The protrusion length in b)
can be described in terms of a quasi-equilibrium theory by eq. (4.8) with fit parameters
ζhyd = 2.2 × 10−4, ζcoh = 0.33 (dashed line). c,d) Results for fixed globule size N = 50 and
shear rate γ̇ = 10 at varying cohesive strength ε. A double-peak structure is only observed
for 0.7 < ε < 3 (shaded region) between the collapse transition at low cohesion and the
freezing transition at high cohesion where no protrusions are observable. The tension decreases
approximately linearly with increasing ε. The dashed line in d) is the theoretical result eq. (4.8)
with ζhyd = 3.7 × 10−4, ζcoh = 0.37. Fitting the function eq. (4.10) yields the exponent α = 1.4
(solid line).

globule which does not allow for protrusions. Both the peak force as well as the mean
force decrease approximately linearly with increasing cohesive strength, as can be seen
in fig. 4.4c. The protrusion length shown in fig. 4.4d can be fitted within the shaded
area by a power law lp ∼ ∆ε−1/α, shown by a solid line, where we introduce the energy
difference ∆ε = ε − εcol and obtain the exponent α = 1.4. Note that this scaling behavior
can be obtained by a quasi-equilibrium model and using the assumption that the average
protrusion length is independent of the shear rate, as discussed in the next section. This
approach yields an estimate for the exponent α that characterizes the restoring cohesive
force on a protrusion defined via eq. (4.6).
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Chapter 4 Internal tension in a collapsed polymer in shear flow

4.3.1.3 Quasi-equilibrium theory

A previous study [61] established the scaling behavior for the hydrodynamic drag force
and the restoring cohesive force on a protrusion in order to estimate the critical shear
rate at which shear-induced globule unfolding sets in. It was argued that when the two
opposing forces balance, there is an instability and the globule can fully elongate since no
energy barrier prevents the protrusion to be dragged out from the globule. For a collapsed
globule the unfolding time is presumably much larger than the inverse shear rate, i.e.
the period of globule rotation. As a consequence, most protrusions are short-lived and
are wrapped around the globule by the constant rotation rather than leading to full
elongation of the polymer. Therefore a nucleation model is well suited to make scaling
predictions for the transition from the collapsed to an unfolded state which is much slower
compared to the fast shear-induced refolding. This might be the reason why protrusion
are absent in the FD case, where little hydrodynamic resistance against shear-induced
deformations leads to fast unfolding at relatively low shear rates.

In contrast to these nucleation-type arguments, here we make use of the scaling behavior
of drag force and cohesive force and apply a quasi-equilibrium theory in order to estimate
average values for the protrusion length lp and the tensile force fp. Our quasi-equilibrium
theory does not describe the rare events of full unfolding around the critical shear rate
but yields information about the average protrusions which can be compared to our
tensile force profiles.

radialtangential

R
l

ω

Figure 4.5: Schematic illustration of a tangential and a radial protrusion of length l. The
spherical globule with radius R is rotating in shear flow with angular velocity ω.

As schematically depicted in fig. 4.5, we consider a polymer segment of length l protruding
from a collapsed spherical globule with radius R, which is rotating in shear flow with
angular velocity ω = γ̇/2. In principle we would have to take into account all possible
configurations of protrusions, however, we focus on the cases where the largest drag force
occurs. Two typical cases are shown fig. 4.5: for a tangential protrusion the drag force is
maximal at the top of the globule (left), while the force on a radial protrusion is maximal
at an angular position of π/4 with respect to the flow direction [61].

In the presence of hydrodynamic interactions, the drag force results from an integral
along the protrusion contour, fhyd =

∫ l
0 (v − v0) dl, for this we use the analytical flow
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profile around a sphere in linear shear [147],

vβ = γ̇zδβx + γ̇R

2

(
5
(
1 − (r/R)2)βxz

R3(r/R)7 − δβzx + δβxz

R(r/R)5

)
(4.4)

with β ∈ {x, y, z}. We define the reference velocity v0 at the surface of the globule from
where the protrusion emerges. Expansion for short length l < R of the velocity profile
eq. (4.4) leads to a radial velocity v ∼ γ̇l2/R [61] and hence to

fhyd ∼ γ̇l3/R. (4.5)

Using the tangential configuration of the protrusion only changes the prefactor but leaves
the scaling behavior unchanged.

The restoring cohesive force is assumed to scale as

fcoh ∼ −∆ε lα−1, (4.6)

where ∆ε = ε − εcol, i.e. the cohesive strength relative to the cohesion at the collapse
transition. The linear behavior of the force with respect to the cohesive strength is
reflected in our simulation data, as shown in fig. 4.4c. The parameter value α = 1
describes protrusions much longer than the globule-solvent interfacial width and which
experience a constant cohesive force that does not depend on the length l. For short
protrusions the harmonic approximation is expected, α = 2 [61].

In order to calculate the average protrusion length lp, we construct the energy expression
for a protrusion

Utot = Uhyd + Ucoh = −ζhyd γ̇l4/R + ζcoh ∆ϵlα, (4.7)
where the potential of mean force associated with the cohesion is determined by ∂Ucoh/∂l =
−fcoh and the contribution that pulls the protrusion out of the globule is given by
∂Uhyd/∂l = −fhyd. The prefactors ζhyd and ζcoh are used to fit the data. We next assume
that the protrusion configuration relaxes relatively quickly and can be described by an
equilibrium Boltzmann distribution. Numerical evaluation of the Boltzmann average
yields the average protrusion length

lp =
∫ lmax

0 e−Utot(l) l dl∫ lmax
0 e−Utot(l)dl

, (4.8)

where the integration boundary lmax, the maximal protrusion length, is a further parameter
that is used to fit the simulation data. Similarly, an estimate for the average peak force
is given by

fp =
∫ lmax

0 e−Utot(l)
⏐⏐⏐∂Utot

∂l

⏐⏐⏐ dl∫ lmax
0 e−Utot(l)dl

. (4.9)

In the limit of vanishing shear rate or large globules, or under the assumption that the
average protrusion length is independent of the shear rate, we can neglect the first term
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Chapter 4 Internal tension in a collapsed polymer in shear flow

in eq. (4.7) and calculate the average protrusion length via eq. (4.8) for lmax → ∞, which
yields

lp ∼ ∆ε−1/α. (4.10)

The dashed lines in fig. 4.4b and fig. 4.4d represent the equilibrium result eq. (4.8) for
the protrusion length as function of chain length N and as a function of the cohesive
strength ε, respectively. We use the known parameter values R = R0

g =
√

11.3 for N = 50,
∆ε = ε − εcol = 1.34 for ε = 2, and assume long protrusion α = 1, lmax = 9, which is an
estimate deduced from fig. 4.3a. Note that we neglect the dependence of the collapse
transition on the chain length and use a constant εcol. Satisfactory agreement is obtained
between the theoretical result and the simulation data by adjusting the fit parameters
ζhyd = 2.2 × 10−4 and ζcoh = 0.33 for fig. 4.4b and ζhyd = 3.7 × 10−4 and ζcoh = 0.37 for
fig. 4.4d. The differences in the fitting factors might be due to the simplifying assumption
that the maximal protrusion length lmax as well as εcol are kept constant.
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Figure 4.6: a) Average protrusion length lp and b) peak force fp as a function of shear rate for
simulations with HI, N = 50 and ε = 2. Lines in a) represent theoretical results eq. (4.8) with
exponent α = 1 (dashed line), α = 2 (dotted line) and fitting parameters ζhyd and ζcoh. Lines
in b) correspond to eq. (4.9) using the same parameters as in a). The shaded area indicates
where double-peaks in the tension profile are observed.

We also compare the prediction of the quasi-equilibrium theory for the average protrusion
length lp , eq. (4.8), as a function of shear rate in fig. 4.6a for the same data as shown
in fig. 4.3a. The result for α = 1 is shown as a dashed curve and for α = 2 as a dotted
line. It can be seen that the simple theory does not describe the simulation data very
accurately in the transition region. In fig. 4.6b we compare the peak force measured in
simulations with the theoretical prediction, eq. (4.9), using the same fit parameter ζhyd
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4.4 Connection between tension profile and VWF proteolysis

and ζcoh as obtained from fig. 4.6a. Since the analytical prediction largely underestimates
the simulation data we conclude that the simple combination of Boltzmann averaged
length lp and peak force fp does not yield a consistent description of average protrusions.
A somewhat better result is obtained for a small value α = 1, which is in contradiction to
the result of ref. [61] where the scaling behavior of the critical shear rate suggests α = 2
for the HI case and hence short protrusions. We conclude that the quasi-equilibrium
theory would have to be extended in order to consistently capture all properties of
shear-induced protrusions.

An interesting question concerns the actual value of the exponent α characterizing the
cohesive force on a protrusion defined in eq. (4.6). The scaling relation eq. (4.10) shown
for fixed shear rate and globule size in fig. 4.4d as a solid line was not only introduced
as a phenomenological power law, but it is also obtained when calculating the average
protrusion length eq. (4.8) and neglecting the first term of eq. (4.7). Despite this simplistic
assumption (note that both shear rate, shown in fig. 4.3a, and globule size, shown in
fig. 4.4b, influence the average protrusion length) we can estimate the parameter α = 1.4.
This corresponds to an intermediate value between long protrusions and constant cohesive
force, α = 1, and short protrusions, α = 2.

In conclusion, the quasi-equilibrium theory contains sufficient fit parameters in order
to roughly match simulations results for the average protrusion length. This might be
surprising as the time scale governing the transition between collapsed and unfolded state
is large compared to the shortest relevant time scale in the system, which is the period
of globule rotation, and thus rare events of full polymer elongations are presumably not
accurately described by our quasi-equilibrium model. In line with this, the Boltzmann
averaging of both lp and fp with the same fit parameters does not yield a consistent
description of the average protrusion force measured in the simulation. In order to
improve the accuracy we used the full velocity profile, eq. (4.4), for the calculation of the
energy term Uhyd associated with the hydrodynamic drag on the protrusion instead of
the approximation for short protrusions in eq. (4.5), but found no qualitative difference,
only the prefactor ζhyd changes (data not shown). A further possible improvement of the
theory might be to average over all possible protrusion configurations or to consider a
maximal length lmax depending on globule size, cohesive strength, and shear rate.

4.4 Connection between tension profile and VWF proteolysis

The tension profiles that we investigated in the previous section can help to explain the
shear-induced activation of collapsed biopolymers from a fundamental polymer physics
point of view. In particular, in this section we make the connection between the shear-
induced tension along a polymer chain and the shear-dependent proteolytic degradation
of the multimeric blood protein von Willebrand factor (VWF) by its specific cleavage
enzyme ADAMTS13. The ADAMTS13-mediated cleavage of full-length VWF in shear
has been measured recently [146] using fluorescence correlation spectroscopy (FCS) in
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combination with a microfluidic shear cell. The effect of shear on the kinetics of VWF
cleavage in aqueous buffer and in blood plasma was quantified by measuring the time-
resolved increase in molar VWF multimer concentration. One of the main results of that
study was a strong sigmoidal increase of ADAMTS13 activity in plasma as a function of
shear rate.

As has been shown previously, external forces induce an opening of the VWF A2 domain
which thereby becomes accessible for cleavage by ADAMTS13 [18, 19]. In order to
describe the opening process of the A2 domain required for cleavage by ADAMTS13, we
employ a simple two-state model where a single subunit is either closed or open. The
kinetics is described by the force-dependent opening and closing rates that determine the
probability for the cleavage site to be in the open state, which in turn can be related to the
shear-dependent cleavage rate measured in the experiment [146]. This allows to deduce
parameters characterizing the process of stochastic domain opening and closing such as
an effective force scale and the free energy difference from experimental shear-dependent
measurements.

4.4.1 Morrison kinetics without shear flow

In the absence of shear flow, previous experiments measured the ADAMTS13-mediated
cleavage of VWF under denaturing buffer conditions [146]. In order to observe cleavage
activity without shear flow, the denaturant is essential to render cleavage sites accessible.
The results are shown in fig. 4.7, where the cleavage rate increases with VWF multimer
concentration CV depending on the enzyme concentration CA. In the context of enzyme
kinetics, the cleavage rate can be described by the Morrison equation [148],

kCR = dCV

dt
= k̃cat

2

(
KM + CA + N̄openCV

−
√(

KM + CA + N̄openCV

)2
− 4CA N̄openCV

)
, (4.11)

with the catalytic rate constant k̃cat and the Michaelis-Menten constant KM . The
central assumption is that the cleavage rate depends on the mean number of accessible
monomers per VWF multimer, N̄open, via the effective substrate concentration N̄openCV .
Equation (4.11) is a generalized Michaelis-Menten equation without the free ligand
approximation, i.e., it is valid for KM values smaller than CA and does not assume
the free substrate concentration to be equal to the total substrate concentration, an
approximation that might not be valid when accessible cleavage sites are sparse. Solid
lines in fig. 4.7 represent global fits of the experimental data to eq. (4.11) with parameters
k̃cat = 0.001 s−1, KM = 2.3 nM, and the number of accessible monomers N̄open = 0.04.
This means that the denaturing buffer only opens about four percent of the cleavage sites
per multimer. Our results suggest domain opening to be the cleavage rate limiting factor
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rather than the ADAMTS13 concentration, since the KM is below the physiological
CA = 5.3 nM.

The Michaelis-Menten constant of KM = 962 nM determined previously [146] results
from the alternative assumption that all cleavage sites are accessible under denaturing
conditions, i.e. N̄open = Nm, where the average number of monomers is obtained by the
experimentally determined VWF length distribution [20]

Nm = 2∑∞
N=1 N nN−1∑

N nN−1 = 5.6, (4.12)

with the parameter n = 0.64. Here, we present the alternative approach of introducing
the mean number of accessible monomers N̄open as a fit parameter, which allows the
consistent description of shear-dependent experiments, as explained in sec. 4.4.3. The
simultaneous fit of the two different enzyme concentrations in fig. 4.7 with the same
k̃cat = 0.001 s−1 is an advantage compared to the method used previously [146], where
the catalytic rate constant depends on CA. More experimental data for different enzyme
concentrations would be needed in order to consolidate the present fitting approach.
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Figure 4.7: Experimental data from [146] for the cleavage rate in denaturing buffer as a function
of multimer concentration CV for two different ADAMTS13 concentrations CA = 5.3 nM
(black) and CA = 53 nM (grey). Lines illustrate Morrison kinetics eq. (4.11) with fit parameters
k̃cat = 0.001 s−1, KM = 2.3 nM, and N̄open = 0.04.

4.4.2 Model for stochastic cleavage site opening under tensile forces

In our homopolymer model, a spherical bead of radius a represents the VWF’s repeating
unit, i.e. a dimer. Since rescaled shear rates γ̇ = ˜̇γτ are used with timescale τ = 6πηa3/kT,

69



Chapter 4 Internal tension in a collapsed polymer in shear flow

simulation results can be interpreted in terms of arbitrary values of radius and viscosity.
In order to compare the dimensionless simulation values to physical units, we use the
viscosity η = 1.2 × 10−3 Pa s, and temperature T = 310 K. The remaining parameters
are the bead radius a and the cohesive strength ε, which strongly influence the critical
shear rate at which shear-induced unfolding of the polymeric globule sets in [61]. We
choose the cohesive parameter ε = 2 so that in the absence of shear flow the polymer
is collapsed but still far from the freezing transition at around εfreeze = 4 [129]. The
dimensionless critical shear rate that we determine for a globule with N = 50 is about
γ̇∗ = 10 (fig. 4.1b), which translates to the experimental value ˜̇γ∗

exp ≈ 5000 s−1 [31] when
using the bead radius a = 73nm. This compares well with literature values of the VWF
monomer size ranging from 60 nm to 82 nm [17, 28, 29]. Note that the critical shear rate
also depends on the bead number [61], however, here for simplicity we consider a system
with N = 50 beads.

From simulations we obtain the average tension fi between adjacent beads (figs. 4.2a,d)
and calculate the probability for a cleavage site to be open, given by

Pi = 1
1 + e∆F e−fi/fe

. (4.13)

This expression can be derived by considering the reversible reaction of the cleavage site
from being in the closed state to the open state, which we assume to be separated by a
transition state energy barrier. The corresponding rate equation for the time-dependent
probability to be in the open state Pi is given by

dPi/dt = ko (1 − Pi) − kcPi. (4.14)

Whereas the opening rate ko = k0
o exp(fi/fo) increases exponentially with tension accord-

ing to the characteristic opening force scale fo, the closing rate kc = k0
c exp(−fi/fc) is

assumed to decrease with tension according to the closing force scale fc (which in general
is different from fo). Opening and closing rates in the absence of force are defined by k0

o

and k0
c . In a stationary state, the time derivative of Pi vanishes and we obtain eq. (4.13),

where the effective force scale is defined by

fe = 1/ (1/fo + 1/fc) (4.15)

and the unstressed equilibrium constant k0
o/k0

c = exp(∆F ) defines the free energy
difference ∆F between open and closed state. Compared to the length xo = kT/fo,
which is the distance along the reaction coordinate from the closed state to the transition
state, the distance xc = kT/fc between transition state and fully open state, e.g. the
unfolded A2 domain stretched to its contour length, is presumably much larger and thus
fc ≪ fo. Consequently, from eq. (4.15) we conclude that the force scale of the closing
transition dominates the effective force scale fe ≈ fc ≪ fo.

Considering the entire polymer, we define the mean number of accessible cleavages sites

Nopen(N) = 2
N∑
i

Pi (4.16)
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where the prefactor accounts for the fact that every dimer exhibits two cleavage sites.
The cleavage process consists of three steps: the opening of the cleavage site, diffusion
of the enzyme to this active site, and the actual catalytic cleavage. Our underlying
assumption is that the domain opening and not diffusion or the chemical reaction is the
rate limiting mechanism for the cleavage process. We thus assume that when there is an
open cleavage site, the probability being described by eq. (4.13), the diffusion rate as
well as the reaction rate are large enough such that VWF is readily cleaved.

In order to obtain the size averaged number of open cleavage sites, the weighted arithmetic
mean is calculated

N̄open =
∑Nmax

N nN−1Nopen(N)∑Nmax
N nN−1

(4.17)

according to an exponential VWF size distribution with the parameter n = 0.64, which
was determined by fluorescence correlation spectroscopy of VWF in blood plasma [20].
Because simulation results are used to calculate Nopen(N), the upper boundary in the
sums of eq. (4.17) is set to a maximal chain length Nmax = 10. Taking into account longer
chains does not alter the result due to the negligible weights for large N in eq. (4.17).

4.4.3 Mapping simulation results and experiments of shear-induced VWF
cleavage

Cleavage rates of VWF in blood plasma [146] as a function of shear rate, shown in fig. 4.8a
as black symbols, exhibit a steep increase corroborating the concept of shear-induced
opening of the A2 cleavage domain. The experimental data can be described by a
phenomenological sigmoidal function

kCR = kmax
1

1 + e−(˜̇γ−˜̇γc)/∆˜̇γ
, (4.18)

illustrated as a black line in fig 4.8a, with fitting parameters ∆˜̇γ = 1271 s−1 and
˜̇γc = 5522 s−1, the latter being interpreted as the half maximum shear rate. The
enzyme activity dependent prefactor kmax = 0.0035 nM/s denotes the maximal enzymatic
rate in the case of fully accessible cleavage sites. Notice that high cleavage activity is
closely related to the shear-induced VWF unfolding transition since the half maximum
shear rate ˜̇γc agrees with the critical shear rate of unfolding, ˜̇γ∗

exp ≈ 5000 s−1 [31], where
the polymer size fluctuations are maximal.

The connection to simulation results is established using the Morrison eq. (4.11) in
combination with the shear-dependent mean number of open monomers, eq. (4.17) with
eqs. (4.13) and (4.16). The tensile force profiles fi are taken from our simulations in the
previous sec. 4.3 and we use the Michaelis-Menten constant KM = 2.3 nM determined
in sec. 4.4.1 under denaturing buffer conditions since we expect that value not to be
very different in blood plasma. The ADAMTS13 concentration in the blood plasma
was CA = 1.3 nM and the VWF concentration CV = 13 nM [146]. As a result of a least
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Figure 4.8: a) Experimental data for the cleavage rate of VWF in blood plasma (black symbols,
data from [146]) as a function of shear rate is described by the phenomenological sigmoidal
function, eq. (4.18), as a solid line. Assuming a stochastic model for the description of
the probability of a subunit to be open, eq. (4.13), and the mean number of open cleavage
sites N̄open to determine the substrate concentration in the Morrison eq. (4.11), agreement
with simulation data (cyan symbols) is obtained for fitting parameter values ∆F̃ = 8.5 kT,
f̃e = 0.06 pN, and a catalytic rate constant k̃cat = 0.0027 s−1. b) Simulation results for the
mean number of open cleavage sites, eq. (4.16), as a function of shear rate for a few different
chain lengths N . The size-averaged number N̄open according to eq. (4.17) is denoted by cyan
symbols. Lines are fits to a sigmoidal function according to eq. (4.18).
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square fit, as seen in fig. 4.8a, simulations results (cyan symbols) match the sigmoidal
description (solid line) of the experimental data. We obtain the fit parameters ∆F = 8.5
in units of kT and fe = 1.0 characterizing the probability of single subunits to be
accessible, eq. (4.13), as well as the catalytic rate constant k̃cat = 0.0027 s−1, which is in
satisfactory agreement with the 0.001 s−1 obtained in the absence of shear flow, fig. 4.7.
The force scale in physical units is given by f̃e = 0.06 pN. Notice that the length scale
x̃c ≈ x̃e = kT/f̃e = 69 nm associated with the distance along the reaction coordinate
between the open state and the transition state is comparable the contour length of the
A2 domain of 58 nm [136].

The dependence of the mean number of open monomers on the chain length N is
illustrated in fig. 4.8b. For a few different lengths we plot Nopen as a function of the shear
rate, using the parameters obtained before: ∆F = 8.5 and fe = 1.0. Lines represent
sigmoidal fits according to eq. (4.18). The saturating value is proportional to the contour
length and with increasing N the transition shifts towards lower values of the shear rate
indicating that the probability to find open cleavage sites is higher for longer polymers.
We also plot the size-averaged number according to eq. (4.17) denoted by cyan symbols.

4.4.4 Alternative models for mean number of accessible cleavage sites

4.4.4.1 Alternative model I

In this section, we present an alternative definition of the mean number of open cleavage
sites N̄open, eq. (4.17), that describes the shear-dependence of the cleavage rate, eq. (4.11).
We employ an analytical approach to calculate the probability of cleavage sites to be
open based on our scaling results from sec. 4.3.1.1. While the model eq. (4.13) includes
simulations results directly via the measured average forces, fi, along the polymer chains,
here we consider the mean force, fi ≈ fmean, which depends on the shear rate according
to fmean ∼ γ̇1.8, as seen in fig. 4.3b. We thus assume equal probability for any cleavage
site to be open and obtain for the mean number of open cleavage sites

N̄open = Nm
1

1 + e∆F e−(˜̇γ/˜̇γe)1.8 , (4.19)

where the average number of monomers is given by eq. (4.12). Following the same
fitting procedure as before, we obtain the fit parameters ∆F = 4.9, ˜̇γe = 3322 s−1, and
k̃cat = 0.0028 s−1 and plot the result in fig. 4.9 as a red dashed line. The analytical
approach using a power law for the shear-dependence of the mean tensile forces yields
a suitable description of the experimentally observed cleavage rate. Compared to the
result from sec. 4.4.3, the catalytic rates agree very well but the free energy difference
is smaller by 3.6 kT. We conclude that based on the quality of fits in fig. 4.9 it is not
possible to decide whether the assumption underlying eq. (4.17) or eq. (4.19) is valid.
This means that it remains unclear to what extent the inhomogeneous force profiles as
shown in fig. 4.2 influence the cleavage process of VWF multimers. It might be possible
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for instance that cleavage occurs predominantly at the sites of maximal tensile forces
along the multimer contour.
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Figure 4.9: Alternative models describing experimental cleavage rates in blood plasma (black
symbols) as a function of shear rate. The black solid line represents the phenomenological
sigmoidal function, eq. (4.18). The analytical model uses the mean number of open cleavage
sites, eq. (4.19), and the fit of eq. (4.11) (red dashed line) yields a very similar result for the
cleavage rate. Instead of using the average forces fi for the calculation of the probability Pi,
eq. (4.13), for the blue symbols we use the average of Pi, eq. (4.21), which takes into account
the full distribution of tensile forces.

4.4.4.2 Alternative model II

Another method to model the fraction of accessible monomers and thereby the cleavage
rate is based on the observation of broad distributions of the tensile forces, shown in
fig. 4.2c. These are fitted with a Gaussian,

Gi(f) = exp
(
− (f − fi)2 /

(
2σ2

i

))
/
√

2πσ2
i , (4.20)

in order to gather mean force fi and standard deviation σi that are used to calculate the
average probability of the cleavage site to be open

P̂i =
∫ ∞

−∞
Gi(f) 1

1 + e∆F e−f/fe
df. (4.21)

In contrast to eq. (4.13), where only the average forces fi are used to calculate the
probability of an open cleavage site, eq. (4.21) takes into account the full distribution of
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tensile forces. The result of the fit of eq. (4.11) using Nopen(N) = 2 ∑N
i P̂i and eq. (4.17)

is illustrated in fig. 4.9 as blue symbols with fit parameters ∆F = 12.5, fe = 1.67 and
k̃cat = 0.0029 s−1. Although this methods leads to an adequate graphical description of
the cleavage rate, the interpretation of the result is difficult since we find multiple minima
of the non-linear least square method indicating a strong dependence of the parameters
∆F and fe. The large free energy difference ∆F = 12.5 between the open and the closed
state might suggest that when using the full tension distribution one overestimates the
influence of the force on the probability to find open monomers. In conclusion, it remains
unclear to what extent the strong fluctuations of the tensile force, which are due to the
rare events of full polymer unfolding, contribute to the cleavage domain opening that
determines the shear-induced cleavage process.

4.4.5 Comparison to VWF A2 domain unfolding upon external stretching
force

In the following we make the connection to the force-induced unfolding of the isolated A2
domain measured with optical tweezers [136], where it is hypothesized that unfolding of
A2 is required for cleavage by ADAMTS13. In that study, unfolding forces are measured
as a function of force loading rates. In line with our assumption, the unfolding rate
ku = k0

u exp (f/fu) is assumed to increase exponentially with applied force f , and the
characteristic force scale fu of A2 unfolding is determined. Note that the unfolding of
A2 probed in the force spectroscopy experiments is not necessarily the same process
as probed in the ADAMTS13 cleavage experiments in shear, as we will explain in the
following.

In our analysis in sec. 4.4.2 we identify the closing force scale fc to be the dominating factor
governing the force dependence of the probability Pi of cleavage sites to be accessible.
In other words, the characteristic force scale of opening, fo, is not directly accessible
in our model as we only determine the effective force scale fe ≈ fc ≪ fo. This is one
reason why the effective force scale fe = 0.06 pN characterizing the sigmoidal behavior of
Pi in shear flow is very different compared to the force scale for unfolding induced by
an external stretching force fu = 1.1 pN [136]. The other reason why the force scales
are different could be that cleavage by ADAMTS13 does not require the full unfolding
of the A2 domain. Only if the unfolding of the A2 domain would be a necessary step
before ADAMTS13 can access the cleavage site, and only if the process of force-induced
A2 unfolding was equivalent to the shear-induced opening of the ADAMTS13 cleavage
site in VWF, would fu correspond to the opening force scale fo. Based on our approach
modeling the shear-induced cleavage of VWF, that is close to the physiological situation,
one might speculate that the process of force-induced A2 unfolding is fundamentally
different. This is in line with literature results [19, 136] that suggest an partially unfolded,
intermediate state of the A2 domain to be sufficient for ADAMTS13 cleavage. There are
further conceivable mechanisms of how forces might induce increased cleavage activity in
VWF. Interactions of multiple domains could, for instance, shield the cleavage site in the
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Chapter 4 Internal tension in a collapsed polymer in shear flow

absence of force; only upon applied forces domains might separate and thereby enable
cleavage.

Zhang et al. [136] also determined the rate of A2 refolding, employing a model where
the refolding rate is described by kf ∼ exp

(
−f2/ (2κ kT)

)
. That model assumes soft

compliance of the unfolded state described by a harmonic potential Uharm ∼ −f2/κ ∼ κR2
ee,

where κ denotes the effective spring constants that characterizes the polymer elasticity
and Ree is the polymer end-to-end distance. Due to the different modeling for the closing
rate, we can only compare the rates in the absence of force and thus the equilibrium
constant, or equivalently the free energy difference between the two states. As a result,
we obtain from our fit an estimate for the energy difference ∆F̃ = 8.5 kT, which is
higher by about 2 kT compared to the single barrier A2 unfolding and refolding kinetic
model [136]. Although we would have expected a smaller free energy difference since
shear presumably only partially unfolds the A2 domain, this difference is not surprising
given the different model assumptions that go into the analysis of the experimental data.
In terms of enzyme activity, Zhang et al. determined a catalytic rate constant of 0.14 s−1

for single, accessible A2 domains and varying enzyme concentration [136]. The cleavage
of A2 fragments independent of unfolding is presumably a less physiological situations.
Since we considered shear-induced cleavage of full-length VWF in blood plasma the
smaller rate constant that we obtained, k̃cat = 0.0027 s−1, might not be surprising.

4.5 Summary and conclusion

In the present study we investigate the tension profile of collapsed homopolymers in
shear flow by Brownian hydrodynamics simulations. Profiles for long polymers exhibit a
characteristic double-peak structure that we argue is related to polymeric protrusions and
forms the basis of a nucleation argument used in previous work to explain the instability
mechanism behind shear-induced unfolding [58, 61]. The range of shear rates where the
double-peak structure in the tension profiles occurs roughly coincides with the peak of the
variance of the chain extension, which was previously used to define the critical shear rate
of unfolding. By heuristic fits of the simulation results, we find scaling relations fp ∼ γ̇1.6

and lp ∼ γ̇1.2 for the peak force and the average protrusion length, respectively. Average
protrusions lengths are in the range 1 < lp < 10. For fixed shear rate, the protrusion
length decreases with increasing globule size according to lp ∼ R−1. In terms of the
cohesive strength, protrusions occur for collapsed globules ε > εcol and for fixed shear
rate the protrusion length decreases roughly linearly with ε until the globule undergoes a
freezing transition and protrusions disappear at about ε ≈ 3. The peak force decreases
roughly linearly both as a function of globule size and cohesive strength.

A quasi-equilibrium theory with a few fit parameters describes the behavior of the average
protrusion length only in parts. This might be due to the fact that the transition between
collapsed and unfolded state is slow compared to the shortest relevant time scale in the
system, which is the period of globule rotation. Rare events of full polymer elongations
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are thus not accurately described by a quasi-equilibrium model. On the other hand, the
previously established nucleation model can be successfully used to predict the critical
shear rate at which unfolding sets in [58]. Since we do not observe a double-peak structure
in the free draining case, we conclude that the protrusion mechanism for unfolding only
applies to the case when hydrodynamic interactions are taken into account. This is is an
interesting observation in comparison with previous scaling arguments [58].

In the second part we consider experiments of ADAMTS13-mediated VWF cleavage. First
we analyze the Morrison kinetics of the cleavage process without shear flow in denaturing
buffer and obtain KM = 2.3 nM and the catalytic rate constant k̃cat = 0.001 s−1. Under
such denaturing conditions, we find that only a small average number of cleavage sites
N̄open = 0.04 is accessible per multimer. Our results suggest domain opening to be the
cleavage rate limiting factor rather than the ADAMTS13 concentration. Next we connect
the simulated tension profile, via a stochastic two state model for the cleavage domain
opening of each monomer, to the experimentally measured shear-dependent cleavage rate
of VWF in blood plasma. Due to the occurrence of protrusions one can speculate that
ADAMTS13 is likely to cut VWF multimers towards the terminal ends, which are pulled
out of the globules and therefore are most accessible. Our model qualitatively describes
the sigmoidal increase of the cleavage rate with increasing shear rate and we obtain as
a main result the parameters characterizing the probability of an individual cleavage
domain to be accessible, i.e., the effective force scale f̃e = 0.06 pN and the free energy
difference between open and closed state ∆F̃ = 8.5 kT. Furthermore, the catalytic rate
constant of the cleavage process is found to be k̃cat = 0.0027 s−1, in satisfactory agreement
with k̃cat = 0.001 s−1 obtained for cleavage in denaturing buffer.

The present study further elucidates the complex dynamical behavior of collapsed polymers
in shear as the basis for non-equilibrium phenomena with high physiological relevance.
The shear-induced VWF unfolding leads to inhomogeneous tensile force distributions and
thereby strongly influences the susceptibility to proteolytic cleavage. Our findings are not
limited to VWF’s hemostatic function but are relevant for a number of nanotechnological
and biomedical applications where functional polymers or proteins are engineered as
shear-responsive smart materials or drug delivery systems. Future lines of work might
involve further components that modulate the cleavage of VWF in blood plasma. It has
been shown that the presence of coagulation factor VIII [149] as well as platelets [150]
increases the susceptibility of VWF to cleavage by ADAMTS13. Including additional
particles in the simulation model could yield valuable insight into the interplay of cofactors
that bind to the polymeric monomers, conformational changes and the tension profile that
in turn affects the cleavage activity. In fact, simulations of VWF and platelets have been
conducted observing the formation of reversible aggregates under shear flow conditions [8].
Further VWF domain model refinements might capture atomistic details that influence the
cleavage process. Domain shielding renders VWF inactive for adhesion or proteolysis [138].
On an even smaller length scale, local mutations in the VWF A2 domain that are known
to affect the ADAMTS13 susceptibility [151] and also environmental conditions play a
crucial role, e.g. calcium stabilizes the A2 domain and thus regulates the unfolding [152].
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It would be desirable to capture such effects in simple physical models that might be
able to relate mutations directly to hemostatic dysfunction.
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Chapter 5

Summary and Outlook

The aim of this dissertation has been to elucidate the complex dynamics of biophysical
polymeric systems such as the large multimeric blood protein von Willebrand factor
using fundamental concepts of polymer physics. Motivated by experimental findings
of the somewhat counterintuitive behavior such as shear-induced activation, adhesion
and degradation of VWF in the context of blood clotting, we theoretically investigated
a number of non-equilibrium phenomena using a collapsed homopolymer model that
represents a minimal coarse-grained model for VWF. In particular, we examined the
role of shear on the dynamics and the adsorption behavior of polymeric globules. As a
primary tool we employed solvent-implicit Brownian hydrodynamics simulations.

First, we investigated the adsorption behavior of a single polymer next to adsorbing
surfaces presenting simple potential-based binding models. In Chapter 2, as a result of
extensive simulations and global parameter variation, we have obtained state diagrams
with several distinct dynamical states and transitions, depending on the characteristic
parameters such as shear rate as well as adhesive and cohesive strengths. For the
homogeneous surface we detected and characterized transitions between different rolling
and slipping states, prolate-oblate shape transitions as well as periodic stretching-refolding
of the polymeric globule. As a main result, an increase in shear does not lead to enhanced
adsorption. This means that the increased hydrodynamic lift force due to shear is not
compensated by an enhanced binding of the unfolded polymer to the potential-based
homogeneous surface. Whether friction effects represent an alternative mechanism for
shear-induced adsorption was addressed in the second part of Chapter 2 where we
introduced an inhomogeneous surface potential consisting of an ordered array of discrete
attractive binding sites. High lateral surface friction, as a result from low density of
the binding sites with short interaction range, leads to new dynamical states such as
conformations that are temporarily stuck on the surface, as opposed to the continuous
slipping or rolling that is observed on homogeneous surfaces. However, the adsorption
behavior does not change qualitatively. We conclude that for a generic coarse-grained
simple polymer model that is entirely based on time-independent energy-conserving pair
potentials between monomers and the surface, the globule adsorption is not enhanced by
the presence of shear. Hydrodynamic shear flow always favors the desorbed state of a
single globular or coiled polymer. This stands in contrast with experimental findings and
thus demonstrates that in order to obtain shear-induced adsorption behavior, a more
complex binding mechanism including saturating bonds or catch bonds is necessary.
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Second, we examined the adsorption of a polymeric globule in shear flow applying
stochastic two-state surface-monomer bonds. In Chapter 3, we addressed the question
what the minimal conditions are in order to observe shear-induced adsorption and
extended earlier theoretical studies showing that slip-resistant catch bonds with long
lifetimes are a necessary ingredient. We constructed adsorption state diagrams as a
function of the three parameters characterizing the kinetics of the surface-monomer bonds:
the rates of bond formation, the rate of bond dissociation as well as an effective catch
bond parameter that allows to continuously change from slip to catch bond behavior.
Shear-induced adsorption is obtained only in a narrow range of parameters for low
dissociation rates and similarly low association rates and only when the surface-monomer
bonds are adjusted close to the transition between slip and catch bond behavior. Our
results thus elucidate the underlying physical mechanism: a globular polymer remains
collapsed at low shear flow. When it approaches the surface, only few monomers get
into the surface interaction range and adhesion is suppressed by low associations rates.
By contrast, once a bond is formed and the shear rate is large enough, the polymer
tethered to the surface readily unfolds. Under the conditions of a large timescale for
bond dissociation compared to the timescale of shear-dependent globule unfolding, more
monomers can bind to the surface resulting in shear-enhanced adsorption. This explains
the necessary condition of bonds having a low dissociation rate and that are, to some
extend, resistant against tensile force. However, too strong catch bond behavior would
result in permanent adsorption also for vanishing flow. In fact, we showed that the
shear-induced adsorbed state is reversible in the sense that the adsorbed globule readily
desorbs when the flow is suddenly switched off. We conclude that biological systems such
as VWF have to be finely adjusted in terms of their surface binding in order for flow
effects to enhance adsorption. By mapping of the kinetic two-state model parameters
onto a surface-monomer interaction model based on conservative pair potentials, we
estimated the potential parameters necessary to observe shear-induced surface adsorption
phenomena. We thereby addressed the intriguing question of how macromolecules achieve
catch bond behavior when interacting via pair potentials. By construction, the simple
potential-based model does not allow for negative effective catch bond parameters, i.e.
only slip bond behavior is possible. However, by reducing the surface interaction range
we obtained very small positive values for the effective catch bond parameter and thus
bonds with a weak slip behavior. On the other hand, our model lacks an additional
energy barrier preventing adsorption in the case of vanishing shear flow. We concluded
that it remains unclear what a minimal model based on pair potentials is that exhibits
catch bond behavior and is able to describe shear-induced adsorption.

Third, we explored the interplay between shear flow, globule unfolding, and the enzymatic
cleavage of VWF that requires force-induced A2 domain opening. In Chapter 4, we
have shown that the shear-induced tensile force distributions along the backbone of
polymeric globules in an unbound fluid exhibit under certain conditions a characteristic
double-peak structure, a feature that is a direct consequence of polymeric protrusions that
are pulled out from the globule due to hydrodynamic shear forces. We thus corroborate
the protrusion mechanism for the unfolding of sheared polymer globules and determined
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scaling relations for the average protrusion length and the maximal force as a function
of shear rate, chain length, and cohesive strength. The connection of the shear-induced
internal tension in a polymeric globule to the experimentally measured shear-dependent
cleavage rate of VWF in blood plasma has been established. A simple stochastic model
was employed to describe the kinetics of the VWF cleavage domain opening and, as a main
result, we obtained parameters characterizing the probability of individual cleavage sites
to be accessible for cleavage. In sum, we elucidated how the non-equilibrium dynamics of
collapsed polymers determines biological processes such as the degradation of VWF by
an intricate relation of shear-induced globule unfolding and domain opening.

Summarizing, the present work has demonstrated how simple coarse-grained models
and Brownian hydrodynamics simulations allow for new microscopic insights into the
shear-induced phenomena of globular polymeric systems. We have provided detailed
insight into the complex dynamics of collapsed polymers near adsorbing surfaces that are
important with regard to various biophysical processes ranging from transport of cells or
vesicles to the specific function of VWF in primary hemostatis. The results obtained in
this study might be relevant not only for biological systems but also for nanotechnological
developments such as rheology modifiers and drag reducing agents. One aim of this
work has been to understand the counterintuitive behavior of shear-induced adsorption
and degradation. We have elucidated the presumable physical mechanism that leads to
shear-induced globule adsorption and characterized the conditions of the biological bonds
that mediate such behavior in principle. We have shown that studying the conformational
behavior of globular polymers in shear flow including protrusion-induced unfolding and
the resulting tensile force profiles can be used to explain experimental data for the
shear-sensitive enzymatic degradation of biopolymers.

5.1 Future work

The investigations in the present work revealed that more elaborate potential-based
binding models should be developed in order to better understand the molecular mecha-
nism underlying catch bond phenomena. Future lines of work might thus be targeted at
model refinements that could include a more detailed description of the VWF domain
structure and the dynamic characteristics of bonds between VWF and the surface. As
will be explained below, the competition between adhesion and cohesion due to saturated
binding sites could lead to the possibility of surface adhesion only in the case when the
cohesive intra-VWF bonds are weakened or broken in shear flow, which in turns could
yield a mechanism of adsorption enhancement due to applied shear. A further extension
of the present study would be not only to describe the surface adhesion potential by a
kinetic two-state model but also the intra-VWF cohesive interactions. Shear-induced
adsorption might occur whenever the adhesive bonds show less slip behavior than the
cohesive bonds, a hypothesis that has to be scrutinized in detail. In terms of VWF degra-
dation, prospective research efforts should include further components that modulate the
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cleavage in blood plasma such as coagulation factor VIII or platelets. The addition of
small hydrophobic particles in the simulation model would be interesting with respect to
conformational changes of the polymer that influence the tensile forces and thereby affect
the cleavage activity. In the following we specify aforementioned prospective research
and present some preliminary work.

5.1.1 Model for bond activation and saturation

The experimental observation that the VWF is activated by high shear flow, leading to
unfolding and simultaneously to surface adsorption, is not reproduced in our potential-
based coarse-grained polymer model where each VWF dimer is modeled as a sphere with
isotropic cohesive interactions. In this thesis we have shown, using a bond model based
on stochastic on-off reaction kinetics, that a necessary condition for such a shear-induced
adsorption are bonds having a long lifetime and that are resistant against forces.

In the following we suggest an extension of the potential-based model. The goal is to
devise a VWF dimer model, which responds to forces by a slight unfolding and thereby
activates binding sites for the adsorption onto the surface. One way to achieve this is
by using saturating or shielding bonds that can only bind to either surface or monomer,
but not to both at the same time. This might lead to the possibility of enhanced surface
adhesion in the case when cohesive intra-VWF bonds are weakened or broken in shear flow
and thus could constitute a physical (i.e. potential-based) mechanism for shear-induced
adsorption enhancement without the need to postulate surface catch bond.

A simple way of achieving saturating bonds is schematically illustrated in fig. 5.1a.
Large spherical monomers shown in grey are combined with attractive sites that have a
relatively short range, as illustrated by the small red beads. Only every second monomer
is decorated with such a red bead that can freely move on the surface of the grey bead.
This presents a simple model for the dimeric VWF structure since dimers will form
for large enough cohesive attraction between the red beads. The cohesive interaction
strength and range of the red binding sites can be tuned such that one binding site can
only bind to at most one other binding site, which would thus correspond to a saturating
bond. If the red beads also bind to the surface sites, as schematically illustrated in
fig. 5.1b, we also have bond shielding, meaning that the surface-binding site is shielded
by the VWF-VWF binding site. On a molecular level, this shielding can result from the
close proximity of binding sites that are responsible for the VWF dimer cohesion and the
VWF-surface binding. The basic idea behind this model is that at low shear rates the
polymer is collapsed, stabilized by saturated bonds between the monomers (fig. 5.1a).
In this state, all surface binding sites on the VWF are shielded and are therefore not
available to form bonds with binding sites on the surface. As a consequence, adsorption
cannot occur. Only when bonds between the VWF monomers are broken due to shear
flow, binding sites are exposed to the surface and the polymer can adsorb (fig. 5.1b). A
goal for future work would be therefore to understand the competition between adhesion
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Figure 5.1: a,b) Illustration of a polymer model where the building blocks (encircled by dashed
circles or ellipses and corresponding to a VWF dimer) consist of four grey beads, connected
to a chain by stiff springs (short dashed lines). Every second monomer has a binding site
represented by a small red bead bound to the surface of the monomer. a) At low shear flow,
the polymer is collapsed. The binding sites are hidden and cannot attach to the surface
binding sites that are indicated by red half beads. b) Only when the monomer bonds break
in high shear flow, the binding sites are exposed to the surface and the polymer adsorbs.
c) State diagram showing the adsorption transition of a globule with N = 50 and cohesive
strength ε = 2 where red beads have cohesive strength εH = 3. The interaction range between
red binding sites is σH = 0.5 and the interaction range with the surface sites is σW = 1.5.
Hydrodynamic interactions are neglected. Snapshots in the desorbed region illustrate a globule
at low shear rate, where most binding sites are hidden, and an extended conformation at high
shear rate, where binding sites are exposed. For high enough adhesion the polymer adsorbs
onto the lattice of surface binding sites. For this set of parameters there is no shear-induced
adsorption.
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and cohesion in the presence of saturating and shielding binding sites under applied shear
flow.

In preliminary unpublished work we obtained a state diagram as a function of shear rate
and adhesive strength shown in fig. 5.1c. We realized that the choice of the interaction
ranges of the cohesive and adhesive binding sites are crucial. For the particular set
of cohesive and adhesive range parameters utilized in fig. 5.1c, a very high adhesion
εW is needed in order to adsorb the polymer, while shear promotes desorption. It will
be interesting to explore whether there are values for the interaction ranges, which
schematically correspond to the radii of the red and grey beads in fig. 5.1, for which
shear induces adsorption. The underlying question being whether bond saturation and
bond shielding constitutes a mechanism for shear-induced adsorption of polymer globules,
which would be a potential-based alternative to the mechanism based on surface-VWF
catch bond behavior. This leads to a number of interesting questions concerning the
importance of collective phenomena, for example to what extent collectivity plays a role
in the friction-dominated dynamics of a polymer that is adsorbed on an inhomogeneous
surface.

5.1.2 First-order transition of polymer collapse induced by reversibly
associating hydrophobic molecules

Biopolymers in a number of microbiological situations are known for associating with
small proteins or other molecules in order to facilitate transport and thermodynamic
behavior. In the context of blood clotting, a physiologically relevant situation concerns
the interaction between factor VIII and VWF that tends to adsorb factor VIII and
thereby provides transportation and protection against degradation. In preliminary
unpublished work in cooperation with Prof. Charles Sing and Prof. Alfredo Alexander-
Katz (MIT) we focused on a single VWF interacting with a gas of hydrophobic particles,
which mimic a solution of factor VIII particles. We demonstrated that the collapse of a
homopolymer under Θ-solvent conditions can be driven by the addition of hydrophobic
particles that bind to the chain according to a kinetic two-state model. The added
particles interact effectively with each other through the chain connectivity, and induce a
first-order polymer collapse transition.

We conducted Brownian dynamics simulations of a polymer with N = 50 beads and
cohesive strength ε = 0.35 that interacts with a gas of hydrophobic particles of the
same size as the monomers but with a larger cohesive strength εH > ε. For interspecies-
interaction we used √

εH ε. Associations between monomers and hydrophobic particles
were modeled by two-state reaction kinetics similar to that used in chapter 3 with
an energy difference between bound and unbound state set to ∆E = 3 and a catch
bond parameter x = 0.1. Existing bonds were modeled by a stiff spring, equal to the
monomer-connection potential. The concentration of unbound hydrophobic particles is
kept constant, i.e. we consider a grand-canonical ensemble.

84



5.1 Future work

a) b)

0

0.2

0.4

0.6

0.8

φ

-5 -4.5 -4 -3.5 -3 -2.5
µ

0.4

0.6

0.8

1

R
g

2
/N

a2

3.0
2.5
2.0
1.8
1.7
1.5

ε
H

-5 -4.5 -4 -3.5 -3 -2.5 -2

μ

1.5

2

2.5

3

ε Η

coil globule

Figure 5.2: a) Fraction of bonded monomers ϕ for varying chemical potential µ = log(ρ) of
the gas of hydrophobic particles with density ρ for a few different values of hydrophobic
particle interaction εH . For εH > 1.7 there is a jump in ϕ as the chemical potential
increases corresponding to a sudden decrease of the rescaled radius of gyration R2

g/Na2. The
discontinuous transition from a swollen polymer chain to a globular conformation is indicating
by vertical dashed lines. Below εH ≈ 1.5 the transition becomes continuous. b) Phase diagram
of the association-induced collapse transition of a single chain. For low values of polymer
cohesion εH and chemical potential µ of the hydrophobic particles (red), the polymer chain
remains in a coiled state, similar to the situation in the absence of binding particles. The
boundary to a collapsed conformation is denoted by a solid black line for the discontinuous
transition, which changes at the tricritical point (black filled square) to a continuous transition
marked by a dashed line.

Results for the average fraction of bonded monomers ϕ and the rescaled squared radius
of gyration R2

g/Na2 are shown in fig. 5.2a as a function of chemical potential µ = log(ρ)
for a few values of εH . With increasing chemical potential µ (or density ρ) the fraction
of bonded monomers suddenly increases while the gyradius decreases in a discontinuous
fashion well below the size of a Θ-polymer. The higher the cohesive strength εH , the
lower is the critical value of µ, indicated in fig. 5.2a by dashed lines. This corresponds to
a first-order collapse transition from a coil to a collapsed conformation of the polymer.
The corresponding phase diagram is shown in fig. 5.2b including representative snapshots
of a swollen polymer coil on the left hand side of the collapse transition, which is denoted
by the black line, and, on the right hand side, a collapsed state induced by the addition
of the red hydrophobic binders. The discontinuous collapse transition (solid black line)
changes at the tricritical point εH ≈ 1.5 to a continuous transition (dashed black line).

85



Chapter 5 Summary and Outlook

Future work should consider the interplay of binding particles of different size with
a polymer in shear flow and near adsorbing surfaces. In the context of biopolymer
degradation, it would be interesting to explore how additional binding particles affect
the conformational behavior in shear, which might have consequences on the internal
tension distribution and thus on the enzymatic cleavage activity.
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Appendix

A.1 Derivation of homogeneous surface potential

In the following we consider an inhomogeneous surface consisting of a square lattice of
discrete binding sites having a distance b, surface interaction range σW , and adhesive
strength εW . The energy potential for N particles interacting with the surface is given
by

Uinh =
∑
i,k

ϵW

(
σ12

W

(σW + rik)12 − 2σ6
W

(σW + rik)6

)
, (A.1)

where rik is the distance between particle i and binding site k. Using polar coordinates,
the contribution of a single particle with the distance rik =

√
r2 + (z − zW )2 to a single

binding site on the surface at zW = 2 is given by

u(z, r) = ϵW

(
σ12

W

(σW +
√

r2 + (z − zW )2)12 − 2σ6
W

(σW +
√

r2 + (z − zW )2)6

)
. (A.2)

In the limit of high binding site density, ρW = 1/b2 > σ−2
W , we obtain a smooth surface

energy term by integration

uhom(z) = ρW

∫ 2π

0
dϕ

∫ ∞

0
dr r u(z, r). (A.3)

With substitution by the variable r′ =
√

r2 + (z − zW )2 we obtain

uhom(z) = 2πϵW ρW

∫ ∞

|z−zW |
dr′
(

r′σ12
W

(σW + r′)12 − 2r′σ6
W

(σW + r′)6

)

= 2πϵW ρW

[
σ12

W (11r′ + σW )
110(r′ + σW )11 − 2σ6

W (5r′ + σW )
20(r′ + σW )5)

]
|z−zW |

= π

5 ϵW ρW σ2
W

(
(11|z − zW | + σW )σ10

W

11(|z − zW | + σW )11 − (5|z − zW | + σW )σ4
W

(|z − zW | + σW )5

)
(A.4)

The full homogeneous potential energy is obtained by summation over all particles,

Uhom =
∑

i

π

5 εW ρW σ2
W

(
(11|zi − 2| + σW ) σ10

W

11 (σW + |zi − 2|)11 − (5|zi − 2| + σW ) σ4
W

(σW + |zi − 2|)5

)
. (A.5)

87



A Appendix

A.2 Mean first passage time for one-dimensional Smoluchowski
equation

For a one-dimensional process described by a Smoluchowski equation, the mean first
passage time in a potential U(y) out of the interval [a, b] is a solution of the differential
equation [130]

− D U ′(y)t′(y) + D

β
t′′(y) = −1, (A.6)

with the diffusion constant D = µ0 kT and β = 1/kT. The particle is injected at
the position ymin and the boundary conditions are absorbing, t(a) = 0 and t(b) = 0.
Multiplying eq. (A.6) by e−βU(y) and integration leads to

−D

∫ y

a
e−βU(ȳ)U ′(ȳ)t′(y)dȳ + D

β

∫ y

a
e−βU(ȳ)t′′(ȳ)dȳ = −

∫ y

a
e−βU(ȳ)dȳ

D

β

∫ y

a

d

dȳ

[
e−βU(ȳ)t′(ȳ)

]
dȳ = −

∫ y

a
e−βU(ȳ)dȳ

D

β

[
e−βU(y)t′(y) − e−βU(a)t′(a)

]
= −

∫ y

a
e−βU(ȳ)dȳ. (A.7)

By integration of eq. (A.7) from y = a to y = ymin and using the absorbing boundary
condition we obtain∫ ymin

a
t′(y)dy =

∫ ymin

a
eβU(y)e−βU(a)t′(a)dy − β

D

∫ ymin

a
eβU(y)

∫ y

a
e−βU(ȳ)dȳdy

t(ymin) = e−βU(a)t′(a)
∫ ymin

a
eβU(y)dy − β

D

∫ ymin

a
eβU(y)

∫ y

a
e−βU(ȳ)dȳdy. (A.8)

On the other hand, integration of eq. (A.7) from y = a to y = b,∫ b

a
t′(y)dy =

∫ b

a
eβU(y)e−βU(a)t′(a)dy − β

D

∫ b

a
eβU(y)

∫ y

a
e−βU(ȳ)dȳdy, (A.9)

yields

− e−βU(a)t′(a) = − β

D

∫ b
a eβU(y) ∫ y

a e−βU(ȳ)dȳdy∫ b
a eβU(y)dy

(A.10)

Thus, using eq. (A.8) and eq. (A.10), we obtain the theoretical result for the mean first
passage time τmfpt = t(ymin) to hit either of the two absorbing boundaries at y = a and
y = b, starting in the minimum at ymin ∈ [a, b], given by

τmfpt = β

D

∫ b
a eβU(y) ∫ y

a e−βU(ȳ)dȳdy∫ b
a eβU(y)dy

∫ ymin

a
eβU(y)dy

− β

D

∫ ymin

a
eβU(y)

∫ y

a
e−βU(ȳ)dȳdy.

(A.11)
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A.3 Mobility in one-dimensional periodic potential

We consider the motion of a single Brownian particle in the one-dimensional, corrugated,
and periodic potential Uinh(y) and under the influence of an external force fext; the total
potential reads U(y) = Uinh(y) − y fext. The corresponding stationary Fokker-Planck
equation for the probability density P (y, t) is given in a dimensionless form by

∂

∂t
P (y, t) = ∂

∂y

(
∂U(y)

∂y
+ ∂

∂y

)
P (y, t) = 0. (A.12)

For the time-independent potential U(y) that consists of a linear part and a periodic
contribution Uinh(y) = Uinh(y + b), the exact solution [131] of eq. (A.12) is given by

P (y) = e−U(y)

Q

[ ∫ b
0 eU(ȳ)dȳ

1 − e−bfext
−
∫ y

0
eU(ȳ)dȳ

]
(A.13)

with normalization constant

Q =
∫ b

0 e−U(y)dy
∫ b

0 eU(ȳ)dȳ

1 − e−bfext
−
∫ b

0
e−U(y)

∫ y

0
eU(ȳ)dȳdy. (A.14)

The rescaled mobility follows as

µ = µ̃

µ0
= ⟨ẏ⟩

fext
= 1

fext

∫ b

0
ẏ P (y)dy = 1

fext

∫ b

0
−∂U(y)

∂y
P (y)dy, (A.15)

where the overdamped Langevin equation has been used to substitute the particle velocity
ẏ = −∂yU(y) + ξ; the average of the random force term ξ vanishes. By partial integration
of eq. (A.15) we obtain

µ = 1
fext

∫ b

0
−∂U(y)

∂y

e−U(y)

Q

[ ∫ b
0 eU(ȳ)dȳ

1 − e−bfext
−
∫ y

0
eU(ȳ)dȳ

]
dy

= 1
Qfext

∫ b

0

∂

∂y

(
e−U(y)

) [ ∫ b
0 eU(ȳ)dȳ

1 − e−bfext
−
∫ y

0
eU(ȳ)dȳ

]
dy

= 1
Qfext

[ ∫ b
0 eU(ȳ)dȳ

1 − eU(b)−U(0)

(
e−U(b) − e−U(0)

)
− e−U(b)

∫ b

0
eU(ȳ)dȳ +

∫ b

0
e−U(y)eU(y)dy

]

= 1
Qfext

[
e−U(b) − e−U(0) − e−U(b)(1 − eU(b)−U(0))

1 − eU(b)−U(0)

∫ b

0
eU(ȳ)dȳ + b

]

= b

Qfext
(A.16)

and thus, using eq. (A.14), the mobility is given by

µ =
b
(
1 − e−bfext

)
fext

[∫ b

0
e−U(y)dy

∫ b

0
eU(y)dy

−
(
1 − e−bfext

) ∫ b

0

∫ y

0
e−U(y)+U(ȳ)dȳdy

]−1

(A.17)
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Within linear response, i.e. for fext → 0, the double integral term vanishes and the
mobility reads

µ = b

[∫ b

0
e−Uinh(y)dy

∫ b

0
eUinh(y)dy

]−1

(A.18)

A.4 Rotation and diffusion of globular polymer

In order to determine the angular velocity of a globular polymer, we consider the velocities
of single beads within the time interval ∆ defined by

vi = (r′
i − ri)/∆, (A.19)

where the the center-of-mass motion is removed,

ri = ri(t) −
∑

j

rj(t)/N (A.20)

r′
i = ri(t + ∆) −

∑
j

rj(t + ∆)/N. (A.21)

The average angular velocity with respect to the y-axis is then defined by

w = ⟨Ly/Jy⟩ (A.22)

=
⟨ ∑N

i (ri × vi) · ŷ∑N
i ((ri · x̂)2 + (ri · ẑ)2)

⟩
(A.23)

=
⟨ ∑N

i (ri × r′
i) · ŷ/∆∑N

i ((ri · x̂)2 + (ri · ẑ)2)

⟩
, (A.24)

where hats denote unit vectors in the corresponding direction.

A homopolymer forms for large cohesion a compact spherical object, which rotates in
unbound linear shear flow with a frequency similar to the prediction for a solid perfect
sphere, ω = γ̇/2. This is shown in Fig. A.1a, where we plot the rescaled angular velocity,
eq. (A.24), of a globule in constant shear flow γ̇ = 1 as a function of the cohesion ε.
Simulations are performed as described in Section 2.2.

The effective translational mobility as obtained from simulations of globules under constant
force is shown in Fig. A.1b as black circles and compares well with the corresponding
Stokes mobility of a homogeneous sphere of radius R =

√
5/3Rg, where Rg denotes the

globule radius of gyration. Since the size of a compact globule scales as R ∼ Rg ∼ aN1/3,
the mobility according to the Stokes law scales as µ ∼ 1/R ∼ N−1/3, as denoted by the
solid straight line in Fig. A.1b.
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Figure A.1: a) The rescaled angular velocity ω/γ̇ approaches the prediction for a hard sphere
in shear flow, ω = γ̇/2, as the cohesion ε increases. Here, we used a moderate shear rate
of γ̇ = 1. b) By applying a constant rescaled force fext = 1 to all monomers, the effective
mobility µ = V/Nfext of a highly compact globule with adhesion εW = 3 is obtained from
the average center-of-mass velocity V = ⟨|rcom(t + ∆) − rcom(t)| /∆⟩ as a function of chain
length N , it agrees well with the Stokes mobility µs = 1/6πηR of a homogeneous sphere with
radius R. The effective sphere radius R is obtained from the radius of gyration Rg via the
relation R =

√
5/3Rg valid for a compact solid sphere.

A.5 Tension of dimer in shear flow

We consider the simple case of a rotating dimer in shear flow and measure the average
tension f = fi=1 as a function of shear rate γ̇. The potential energy U is given by eq. (4.3)
with N = 2 and cohesive strength ε = 2. Results from Brownian dynamics simulations
based on the Langevin eq. (4.1) are shown in fig. A.2 for free draining (FD) as well
as hydrodynamic simulations (HI) and are rescaled by the average equilibrium tension
f0 = f(γ̇ = 0) ≈ 1.52, which is calculate according to the Boltzmann distribution,

f0 =
∫∞

0 e−U(r)κ(r − 2)dr∫
e−U(r)dr

. (A.25)

For simulations including hydrodynamic interaction we obtain the scaling behavior
f − f0 ∼ γ̇0.9; free draining simulation results exhibit a linear scaling with the shear
rate, f − f0 ∼ γ̇1.0. We remark that a much simpler model, the harmonic dumbbell
with the potential Uharm = κ

2 R2, with the connecting vector R = r1,2, can be evaluated
analytically [46]. Without hydrodynamic interactions and neglected excluded volume
interactions, the average squared extension of a harmonic dumbbell in linear shear flow
is given by ⟨

R2
⟩

= 3
κ

+ γ̇2

(2κ)3 . (A.26)
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Figure A.2: Average tensile force f between a dimer with ε = 2 as a function of shear rate γ̇;
the tension at zero shear f0, eq. (A.25), is substracted. Open symbols are results for free
draining simulations, closed symbols include hydrodynamic interactions between the two
beads. The force scales linear with shear rate in FD case (dashed line) and almost linear for
HI (solid line), f ∼ γ̇0.9.

This gives a hint for the shear dependence of the tensile force f ∼ ⟨R⟩ ∼
√

⟨R2⟩ ∼ γ̇, as
seen in fig. A.2 for simulations using the potential eq. (4.3).
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The present thesis is based on the following manuscripts, which have been published in
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[i] Matthias Radtke and Roland R. Netz. Shear-induced dynamics of polymeric
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[ii] Matthias Radtke and Roland R. Netz. Shear-enhanced adsorption of a homopoly-
meric globule mediated by surface catch bonds. The European Physical Journal
E, 38(6):69, June 2015.

[iii] Svenja Lippok, Matthias Radtke, Tobias Obser, Lars Kleemeier, Reinhard Schnep-
penheim, Ulrich Budde, Roland R. Netz, and Joachim O. Rädler. Shear-induced
unfolding and enzymatic cleavage of full-length VWF multimers Biophysical
Journal, 100(3):545-554, February 2016.

[iv] Matthias Radtke, Svenja Lippok, Joachim O. Rädler, and Roland R. Netz.
Internal tension in a collapsed polymer under shear flow and the connection to
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Abstract

A fundamental understanding of the dynamical behavior of biopolymers under non-
equilibrium conditions is essential to the investigation of biological systems on the
microscopic scale. The blood clotting protein von Willebrand factor presents a prominent
example of current biophysical research on the relationship between structural and
functional properties of multimeric proteins under flow conditions with the aim to explain
and predict complex biological processes. The present thesis theoretically investigates
several non-equilibrium phenomena associated with collapsed biopolymers in shear flow.
Specifically, we explore shear-induced dynamics, adsorption, unfolding, activation, and
degradation of von Willebrand factor and associated polymeric systems by means of
Brownian hydrodynamics simulations using coarse-grained models.

We first examine the dynamics and adsorption behavior of a single collapsed homopolymer
globule on homogeneous and inhomogeneous surfaces in shear flow. Dynamic state
diagrams as a function cohesion, adhesion, and shear rate feature distinct dynamical
adsorbed states being classified into rolling and slipping states, globular and coil-like
states, as well as isotropic and prolate states. We observe stick-roll motion for highly
corrugated inhomogeneous surface potentials due to high lateral surface friction. Despite
low drift velocities and reduced hydrodynamic lift forces on such inhomogeneous surfaces
that are entirely based on energy-conserving pair potentials, a shear-induced adsorption
is not found.

Second, we study adsorption of a globule under shear on smooth surfaces with stochastic
surface-monomer bonds whose two-state kinetics is characterized by the bond formation
rate, bond dissociation rate and an effective catch bond parameter describing how force
acting on a bond influences the dissociation rate. Constructing adsorption state diagrams
as a function of shear rate and all three bond parameters, we find shear-induced adsorption
in a small range of parameters for low dissociation and association rates and only when
the bond is near the transition between slip and catch bond behavior. We argue that
more elaborate potential-based models are necessary to observe catch bond behavior that
allow for shear-induced surface adsorption phenomena.

Third, we show that the internal tension distribution along the contour of a globule in
shear flow is inhomogeneous and above a threshold shear rate exhibits a double-peak
structure. We argue that these tension maxima close to the termini of the polymer chain
reflect the presence of polymeric protrusions and establish the connection to shear-induced
globule unfolding. By means of heuristic scaling laws and an quasi-equilibrium theory,
simulation results of average protrusion lengths and maximal tensions are analyzed. Our
results are used to explain experimental data for the shear-sensitive enzymatic degradation
of collapsed biopolymers. In particular, we relate the cleavage rate of von Willebrand
factor in blood plasma to the probability of single cleavage sites to be accessible for the
protease.





Kurzfassung

Ein fundamentales Verständnis des dynamischen Verhaltens von Biopolymeren unter
Nicht-Gleichgewichtsbedingungen ist essentiell für die Untersuchung mikroskopischer bio-
logischer Systeme. Das Blutgerinnungsprotein von-Willebrand-Faktor ist ein bedeutendes
Beispiel für aktuelle biophysikalische Forschung über die Beziehung zwischen strukturellen
und funktionellen Eigenschaften von multimeren Proteinen unter Flussbedingungen mit
dem Ziel komplexe biologische Prozesse erklären und vorhersagen zu können. Die vor-
liegende Arbeit untersucht theoretisch verschiedene Nicht-Gleichgewichtsphänomene im
Zusammenhang mit kollabierten Biopolymeren im Scherfluss. Insbesondere erforschen wir
scher-induzierte Dynamik, Adsorption, Entfaltung, Aktivierung und Degradation des von-
Willebrand-Faktors und ähnlichen Polymersystemen mittels Brownscher-Hydrodynamik-
Simulationen und grobkörnigen Modellen.

Erstens untersuchen wir die Dynamik und das Adsorptionsverhalten eines kollabierten
Homopolymer-Globules an homogenen und inhomogenen Oberflächen im Scherfluss. Die
erfassten dynamischen Zustandsdiagramme als Funktion von Kohäsion, Adhäsion und
Scherrate weisen unterschiedliche dynamische, adsorbierte Zustände auf, welche in rollende
und gleitenden, globuläre und gewundene sowie isotrope und prolate Zustände klassifiziert
werden. Stark gewellte, inhomogene Oberflächenpotentiale führen zu einer Anhaft-Roll-
Bewegung aufgrund hoher Oberflächenreibung. Obwohl diese inhomogenen Oberflächen
basierend auf konservativen Paarpotentialen zu geringen Driftgeschwindigkeiten und
schwacher hydrodynamischer Liftkraft führen, wird keine scher-induzierte Adsorption
beobachtet.

Zweitens studieren wir die Adsorption eines Globules im Scherfluss an glatten Oberflächen
mit stochastischen Oberflächen-Monomer-Bindungen, deren Kinetik durch zwei Zustände
und entsprechende Raten für Assoziation und Dissoziation von Bindungen sowie eines
effektiven Catch-Bindungsparameters, der den Einfluss von Kraft auf die Dissoziation
bestimmt, charakterisiert ist. Wir konstruieren Adsorptions-Zustandsdiagramme als Funk-
tion der Scherrate und den drei Bindungsparametern und entdecken scher-induzierte
Adsorption in einem kleinen Parameterbereich niedriger Assoziations- und Dissoziations-
raten und nur für Bindungen nahe dem Übergang von Slip- zu Catch-Bindungsverhalten.
Wir zeigen, dass kompliziertere potentialbasierte Modelle nötig sind, um Catch-Bindungen
zu erhalten, die scher-induzierte Oberflächenadsorption erlaubt.

Drittens zeigen wir die inhomogene, interne Spannungsverteilung entlang der Kontour ei-
nes Globules im Scherfluss, welche über einer Grenzscherrate eine Doppel-Peak-Strukture
aufweist. Spannungsmaxima nahe der Polymerenden sind auf die Existenz von Polymer-
Protrusionen zurückzuführen, wobei der Zusammenhang mit scher-induzierter Globule-
Entfaltung hergestellt wird. Mittels heuristischer Skalengesetze und einer Quasigleichge-
wichtstheorie werden mittlere Protrusionslängen und maximale Spannungen analysiert.
Unsere Ergebnisse werden genutzt, um experimentelle Daten von scher-sensitiver enzy-
matischer Degradation von kollabierten Biopolymeren zu erklären. Insbesondere wird die
Spaltungsrate des von-Willebrand-Faktors in Blutplasma mit der der Wahrscheinlichkeit
zugänglicher Spaltungsstellen für die Protease in Verbindung gesetzt.
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