
Chapter 5

Markov Random Fields

The frequent itemset techniques described in the previous two chapters use the most general model

of clusters. Different clusters of proteins are considered to be entirely independent of each other.

The algorithm makes no assumption that two (or more) proteins appearing together in one cluster

are any more or less likely to appear together again in any other cluster. This weak, general model

of frequent itemsets has the potential of uncovering complex relationships between proteins. But

since every protein can be assigned to not only one, but any number of different clusters, the number

of variables that must be estimated is very large, requiring a correspondingly large set of data for

estimation. Thus, the disappointing performance of the frequent itemset methods described in the

previous two chapters is likely a consequence of insufficient input data, in particular considering the

relatively high error rate of purification experiments.

Protein clustering by partitioning such as described in Chapter 2 represents the other extreme of

possible models. There, any pair of proteins is assumed to either interact or not, entirely independent

of the context of other proteins in which it appears. As a consequence, clusters never overlap,

proteins are assigned only to a single cluster and the number variables to estimate is much smaller.

Of course, reality lies somewhere in between. Pairs of proteins that interact with each other in

one context are likely to do so again in another context, but there are situations where other proteins

interfere, and cause the behavior of proteins to change. Still, before setting out to design such a

model, we should explore how far the simpler model of non-overlapping clusters can take us. This

is the purpose of this chapter.

Our work was inspired by the probabilistic approach of Gilchrist et al. [17] that makes maximum-
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likelihood estimates of false negative error rate, false positive error rate and prior probability of

interaction (see Chapter 2 for details). It may seem natural to use these estimated parameters to first

construct the most likely interaction graph, and then derive protein clusters from this graph. Un-

fortunately, in this process we lose the maximum likelihood optimality criterion. The uncertainty

contained in the observation is no longer represented in the interaction graph, and cannot be properly

accounted for when computing the clustering. All approaches that use an unweighted (e.g., thresh-

olded) interaction graph as intermediate step suffer from this problem. We can reasonably expect

better results by deriving the clustering directly from the observation, taking into account observa-

tional error. We will use Markov Random Fields to model protein complexes while accounting for

observational error.

Markov Random Fields have been successfully applied as a probabilistic model in many re-

search areas. In image processing, they were applied as a model for image segmentation [29]. In

bioinformatics, MRFs were used to model protein-protein interaction networks to predict protein

functions [11] and to discover molecular pathways [40] by combining the MRF model of protein-

interaction graphs with gene expression data. Our model differs from these previous works because

we use MRF to model protein complexes without assuming an intermediate interaction graph and

we model the observation error that previous work did not account for.

Following Gilchrist et al. [17], we consider each purification experiment to be a statistically

independent set of observations about the interaction or non-interaction of proteins. We model the

observational error as a false positive and false negative error rate and assume it to be the same for

all purifications. We try both the spoke model by considering only the interactions between bait and

each prey protein, and the matrix model, considering the interactions between bait and preys as well

as between pairs of preys as interactions (Figure 5.1).

5.1 Method

We assume that clusters do not overlap and each protein only belongs to one cluster. Each protein

i is assigned to a single cluster Qi ∈ {1, . . . ,K}, where K is the number of clusters. We expect

proteins in the same cluster to interact, and proteins belonging to different clusters not to interact.

Our observation contains errors, with a false negative error rate ν that proteins of the same cluster
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Figure 5.1: Observation model of protein interaction.
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are observed to not interact, and a false positive error rate φ, that proteins belonging to different

clusters are observed to interact. These error rates are assumed to be the same for all interactions.

We estimate them along with the cluster assignments of proteins.

If we consider Qi to be a random variable for the cluster assignment of protein i, the entire

cluster assignment is a Markov Random Field because (1) P[Qi = k] > 0 and (2) its conditional

distribution satisfies the Markov property,

P[Qi|Q1, . . . , Qi−1, Qi+1, . . . , QN ] = P[Qi|Qj , j ∈ Neighbor(i)].

In other words, the joint probability P[Q] and the likelihood function only depend on the values of

pairs of random variables Qi and Qj . In the terminology of Markov Random Fields as a statistical

model [11, 29], each protein i is a site that is labeled with the identity of its cluster Qi. The neigh-

borhood of each site i is all those proteins j for which we have any observation for the protein pair

(i, j), either interaction or non-interaction. To compute the cluster assignment Q using a Markov

Random Field, we must define the potential function U(Q) which in this setting will be derived

from the negative logarithm of the likelihood.

5.1.1 The likelihood

Define Sij to be the event that proteins i and j are observed to interact, and, likewise, Fij the event

that they are observed not to interact. The probabilities of these two events, given ν, φ and Q, are

P[Sij|ν, φ,Q] =















(1− ν) : Qi = Qj

φ : Qi 6= Qj,

and

P[Fij |ν, φ,Q] =















ν : Qi = Qj

(1− φ) : Qi 6= Qj .

A single purification experiment generates a whole set of such observations. Under the spoke

model, an observation of interaction is made for each pair of bait and all its preys. An observation of

non-interaction is made for each pair of bait and all other proteins not being prey. Similarly, under
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the matrix model, there is an observed interaction between all pairs of proteins purified together,

both pairs of bait and preys, and pairs of preys. Non-interaction is observed between the set of bait

and preys, paired with all non-purified proteins. For illustration, see Figure 5.1.

Over the course of multiple purification experiments, each pair of proteins may be observed

multiple times. To summarize all these observations, using the same definition of trials and suc-

cesses as introduced in Section 2.4, we define tij to be the total number of observations made for

the protein pair (i, j), and sij to be the number of these observations where an interaction was

observed.

Then, given ν, φ and a configuration Q, the likelihood of observing a particular sequence of

experimental outcomes (tij , sij) for all pairs (i, j) is,

P[{(tij , sij)}|ν, φ,Q] =
∏

(i,j)

P[Sij |ν, φ]sij P[Fij |ν, φ]tij−sij (5.1)

=
∏

(i,j):Qi=Qj

(1− ν)sijν(tij−sij)

×
∏

(i,j):Qi 6=Qj

φsij (1− φ)(tij−sij).

The negative logarithm Λ of the above term is,

Λ =
∑

(i,j):Qi=Qj

[sij(− ln(1− ν)) + (tij − sij)(− ln(ν))] (5.2)

+
∑

(i,j):Qi 6=Qj

[sij(− ln(φ)) + (tij − sij)(− ln(1− φ))]

We then separate Λ into terms that depend on Q and terms that do not depend on Q. Λ can then be

written as

Λ =
∑

(i,j):Qi 6=Qj

sijβ +
∑

(i,j):Qi=Qj

(tij − sij)α+ C, (5.3)

where

α = − ln(ν) + ln(1− φ),

β = − ln(φ) + ln(1− ν),
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and

C =
∑

(i,j)

(−sij ln(1− ν)) + (−(tij − sij) ln(1− φ)).

C does not depend on Q and is thus irrelevant for minimization with respect to Q. The minimum

is also unaffected by changes in α and β as long as the ratio between α and β stays unchanged.

Incorporating these observations leads to

U(Q) =
∑

(i,j):Qi=Qj

(tij − sij) +
∑

(i,j):Qi 6=Qj

ψsij , (5.4)

where

ψ =
− ln(φ) + ln(1− ν)
− ln(ν) + ln(1− φ)

.

It is noteworthy that this cost function is the same for certain pairs of φ and ν that are related by a

common ψ. Minimization with respect to Qi, ν and φ yields our desired solution.

5.1.2 Mean Field Annealing

Mean Field Annealing is a popular technique to compute a maximum-likelihood label assignment

for Markov Random Fields. We will replace the random variables Qi with explicit probabilities

qik = P[Qi = k].

As stated before, the configuration of cluster assignments Q is an MRF because (1) P[Qi = k] > 0

and (2) its conditional distribution satisfies the Markov property. Following this assumption, it is

well known (e.g., see [29]) that the joint probability distribution of Q is a Gibbs distribution, given

by

P[Q] = Z−1 exp[−γU(Q)]

where U(Q) is the energy function (Eq. 5.4) and γ is the annealing factor. Z is the normalization

factor, also called the partition function, with

Z =
∑

Q

exp[−γU(Q)].
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Mean Field Theory provides a framework to compute P[Q]. For our clustering problem, we will

apply it to estimate the probability q̂ik of assigning protein i to a cluster k, defined by

q̂ik =
P[Qi = k|Qj , j 6= i]
K
∑

l=1

P[Qi = l|Qj, j 6= i]

=
exp[−γU(Qi = k|Qj , j 6= i)]

K
∑

l=1

exp[−γU [Qi = l|Qj , j 6= i)]

. (5.5)

Computing the actual energy function is infeasible because it requires us to evaluate the clustering

assignment of the whole MRF which is not known. By assuming the Markovian property and

replacing the random variables Qi and Qj with the expected values of cluster assignments within

each protein’s neighborhood, we can estimate U(Qi = k|Qj, j 6= i) by

U(Qi = k|Qj , j 6= i) = U(Qi = k|Qj , j ∈ Neighbor(i))

=
∑

j∈Neighbor(i)

(
K

∑

l=1

qilqjl)(tij − sij) + (1−
K

∑

l=1

qilqjl)ψsij .

We evaluate the conditional energy function at a fixed point by assuming that qik = 1 and qil = 0

for l 6= k. We then approximate U(Qi = k|Qj, j 6= i) by

Cik =
∑

j∈Neighbor(i)

qjk(tij − sij) + (1− qjk)ψsij . (5.6)

Thus, the assignment probability qik can be computed by

q̂ik =
exp[−γCik]

K
∑

l=1

exp[−γCil]

. (5.7)

In terms of computation, notice that in order to find the mean field at i, we needs to know the mean

field at the neighbors of i. Therefore, the mean field is usually computed by iterative procedures

shown in details in Algorithm 11.
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Algorithm 11: Mean Field Annealing
Input : A graph G = (V,E), with an observation (tij , sij) for each edge, ψ, a number

of clusters K
Output : A probability qik for a node i belonging to a cluster k for all i and for all k
Initialize q to random values;
Initialize annealing factor γ;
while γ < γmax do

repeat
forall i ∈ V do

forall k ∈ K do
Cik =

∑

j∈Neighbor(i)

qjk(tij − sij) + (1− qjk)ψsij

forall k ∈ K do
q̂ik = exp(−γCik)

K
P

l=1
exp(−γCil)

forall k ∈ K do
qik = q̂ik

until q converges;
Increase γ;

5.1.3 Estimation of false negative and false positive rate

Given a cluster assignment Q, we can estimate the error rate ν and φ by minimizing equation Eq. 5.2

with respect to ν and φ. The derivative of Eq. 5.2 with respect to ν is

∂Λ

∂ν
=

a

1− ν −
b

ν
, (5.8)

where

a =
∑

(i,j):Qi=Qj

sij,

and

b =
∑

(i,j):Qi=Qj

(tij − sij).

The derivative of Eq. 5.2 with respect to φ is

∂Λ

∂φ
= − c

φ
+

d

1− φ, (5.9)
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where

c =
∑

(i,j):Qi 6=Qj

sij,

and

d =
∑

(i,j):Qi 6=Qj

(tij − sij).

Setting Eq. 5.8 and Eq. 5.9 to zero, the solutions for optimal error rates ν ∗ and φ∗, given the cluster

assignments Q, are

ν∗ =

∑

(i,j):Qi=Qj

(tij − sij)

∑

(i,j):Qi=Qj

tij
,

and

φ∗ =

∑

(i,j):Qi 6=Qj

sij

∑

(i,j):Qi 6=Qj

tij
.

When evaluating the likelihood of a particular solution Q, we use ν ∗ and φ∗ that maximizes the

likelihood.

5.1.4 Minimization strategy

Each run of Mean Field Annealing requires two inputs, the number of clusters K and the error rate

ratio ψ. We find values for both inputs that maximize the likelihood of solution Q by repeatedly

optimizing Q using Mean Field Annealing for different values of K and ψ. Our tests show that on a

large scale, the likelihood is roughly convex with respect to these two values, but unfortunately with

smaller scale local minima interspersed. To avoid getting stuck in these local minima, we perform

iterative line minimization, alternating between minimizing with respect to K and ψ, while holding

the other constant. At each step, we computed five to seven values within a progressively smaller

range. In our tests, three iterations were sufficient for converging upon the maximum likelihood

(minimum negative log-likelihood). As shown in Algorithm 12, we can extend the Algorithm 11

to include the estimation of ν and φ by reestimating the error rates after we have reestimated the

probability q using the annealing procedure. We implemented the Mean Field Annealing algorithm

in C++ running on a single processor machine with a memory of at least 512 MB. The running time

of Mean Field Annealing is quadratic in the number of nodes (O(K|V |2)). On a data set of about
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3000 proteins, a single minimization for a fixed number of clusters takes an average of 30 hours of

CPU time on Athlon 1 Ghz processor.

Algorithm 12: MFA with error rate estimation
Input : A graph G = (V,E), with an observation (tij, sij) for each edge, a number of

clusters K , an initial value for ψ
Output : A probability qik for a node i belonging to a cluster k for all i and for all k, ν, φ
Initialize q to random values;
Initialize annealing factor γ;
while γ < γmax do

repeat
forall i ∈ V do

forall k ∈ K do
Cik =

∑

j∈Neighbor(i)

Qjk(tij − sij) + ψ(1 −Qjk)sij

forall k ∈ K do
q̂ik = exp(−γCik)

K
P

l=1

exp(−γCil)

forall k ∈ K do
qik = q̂ik

until q converges;
Increase γ;

ν =

P

(i,j)

(
K
P

l=1
qilqjl)(tij−sij)

P

(i,j)∈G

(
K
P

l=1

qilqjl)tij

φ =

P

(i,j)

(1−
K
P

l=1
qilqjl)sij

P

(i,j)∈G

(1−
K
P

l=1
qilqjl)tij

if φ+ ν = 1 then
ψ = ν

1−ν

else
ψ = − ln(φ)+ln(1−ν)

− ln(ν)+ln(1−φ)

Compute the likelihood Λ;

5.2 Performance measures

To extract relevant information from our clusters, we compare the result to the MIPS and Reg-

uly benchmarks. To evaluate prediction accuracy, we consider both all pairs comparison and the

accuracy measure [8] derived from a contingency table.
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To summarize the evaluation procedure of Brohée, S and van Helden [8], we begin by building

a contingency table to compare a clustering result with the annotated complexes. With n complexes

and m clusters, the contingency table T is an n×m matrix whose entry Tij indicates the number of

proteins found in common between the ith complex and the jith cluster. Given a contingency table

T , overall accuracy and separation value can be computed to measure the correspondence between

clustering result and the annotated complexes [8].

However, we find that the separation measure produces undesirable effects when the reference

data set contains overlapping complexes. By its definition [8], a good matching of a cluster to

more than one complexes will result in a low separation value, contrary to expectation. In our case,

this situation occurs because the MIPS and Reguly benchmark are overlapping, while the results of

MCL and MRF are not. Furthermore, when we match the reference data set to itself, we find that

its separation value can be less than some clustering solutions. For these reasons, we do not apply

the separation measure. Thus, we only use the accuracy measure, which we now define.

Accuracy

A complex-coverage (denoted CO) is a quantity that characterizes the average coverage of com-

plexes by a clustering result,

CO =

n
∑

i=1
Ni(max

j
COij)

n
∑

i=1
Ni

,

where COij = Tij/Ni, Ni is the number of proteins in the complex i.

A positive-predictive value (denoted PPV) is the proportion of proteins in cluster j that belongs

to complex i, relative to the total number of members of this cluster assigned to all complexes.

PPVij =
Tij
n
∑

i=1
Tij

=
Tij

T.j
.

Note that the normalization is not the size of cluster j, but the marginal sum of a column j which can

be different from the cluster size because some proteins belong to more than one cluster. To char-

acterize the general positive-predictive value of a clustering result as a whole, we use the following
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Figure 5.2: MRF on simulated data: given a graph of 500 nodes with 11 clusters randomly assigned,
our MRF clustering can recover the true clustering with the minimum negative log-likelihood at 11
clusters. Notice that any more clusters do not affect the cost any further; they simply remain empty.

weighted average quantity,

PPV =

m
∑

j=1
T.j(max

i
PPVij)

m
∑

j=1
T.j

.

The accuracy value is a geometric average between complex-coverage and positive-predictive value,

Acc =
√

CO×PPV.

All-pair comparison: sensitivity and specificity

As a second metric, we use the standard all pair sensitivity (sens) and specificity (spec). We will

refer to an (unordered) pair of proteins from the same complex as a true pair, and to a pair of proteins

from the same cluster as a predicted pair. We will call a true predicted pair true positive (TP), a true

pair which has not been predicted false negative (FN), a false pair predicted to be from the same

complex false positive (FP) and a correctly predicted false pair true negative (TN). The following

quantities summarize the performance of all-pair comparison: Sensitivity, SN = #TP
#TP+#FN

and

Specificity, SP = #TP
#TP+#FP

. A perfect clustering method would have SN = SP = 1, which

implies that neither FP nor FN errors are made.
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Dataset K ν̂ φ̂

Gavin02 Spoke model 393 0.423 1.3 × 10−3

Matrix model 310 0.752 1.7 × 10−3

Gavin06 Spoke model 698 0.547 2.4 × 10−3

Matrix model 550 0.807 2.7 × 10−3

Table 5.1: Maximum likelihood solution for the spoke model (ψ = 3.5) and the matrix model
(ψ = 10.0). We choose the number of clusters that yields maximum likelihood by searching over
a range of K . For the spoke model, our estimated error rates are slightly higher than the rates
estimated by [17]. K: number of clusters. ν̂:estimated false negative rate. φ̂:estimated false positive
rate.

5.3 Result

To test the convergence of our algorithm independent of the random starting point, we ran it on

simulated data. We simulated the data by creating a set of nodes and randomly assigning them to

a fixed number of clusters. To connect any two nodes, first we fixed the number of trials to be the

same for all pairs of nodes and set the success value s according to the specified values of ν and

φ. We ran the algorithm multiple times for different random starting points and initial values for

ψ. We computed the average minimum cost at a given number of clusters, as shown in Figure 5.2.

Independent of the initial value for ψ, the result shows that the algorithm converges to a correct

solution on simulated data. A correct solution includes a correct clustering solution and an accurate

estimation of model parameters, ν and φ. As expected, we found that the number of trials affects the

accuracy of the results. For the same solution, the negative log-likelihood becomes higher (lower

likelihood) as we reduce the number of trials. This corresponds to the fact that the more repeated

experiments we have, the better the estimation.

Working with experimental data, we compute clusters for two types of observation models: the

spoke model and the matrix model of protein interactions (see Chapter 2). To select a maximum

likelihood solution, we performed two line minimizations on the negative log-likelihood as de-

scribed above, first selecting ψ and then selecting the number of clusters. The maximum likelihood

solutions are shown in Table 5.1.
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Dataset Num. Proteins MCL MRF MCODE Gavin06 Gavin06
(all) (core)

Gavin02 1390 Proteins clustered 1390 1390 112 – –
with MIPS 494 494 53 – –

with Reguly 136 136 20 – –
Gavin06 2760 Proteins clustered 2760 2760 243 1488 1147

with MIPS 819 819 141 633 492
with Reguly 520 520 120 429 336

Table 5.2: Number of proteins in clustering experiments. MCL and MRF consider the same number
of proteins: all proteins in the experiments. However, their clustering solutions are different; MCL
will produce more singletons than MRF.

5.3.1 Quality of clusters

We devised a measure to assess the quality of each cluster with respect to the model. For each

cluster k, we define E(k) to be a measure of the observational error with respect to the expected

error.

E(k) =
∑

(i,j):Qi=Qj=k

(tij − sij) +
∑

(i,j):Qi 6=Qj=k

sij −Efn(k)−Efp(k),

where Efn(k) = ν∗
∑

(i,j):Qi=Qj=k

tij and Efp(k) = φ∗
∑

(i,j):Qi 6=Qj=k

tij .

From its definition, this score is always positive for some clusters, indicating that the observed

error is higher than the expected error, and less than zero for other clusters, indicating that the

observed error is less than the expected error. So rather than giving an absolute measure of quality

for the whole solution, the measure indicates, within a given solution, clusters with high confidence

and those with low confidence. The scatter plots in Figure 5.3 shows that there is no correlation

between the score E(k) and cluster sizes and that the mode of the measure is around zero, as

expected. Interestingly, they also show that we have discovered quite reliable observations for some

large clusters.

5.3.2 Comparison with clustering algorithms for protein-protein interaction net-

works

We evaluated the performance of MRF using two data sets : Gavin02 and Gavin06. We compared

the performance of the MRF algorithm to both the algorithms MCL and MCODE and the hand-

curated results accompanying publications of the data sets. Because MCL and MCODE require an
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(a) Spoke model

-10 0 10 20 30 40 50 60

Cluster sizes

-1000

0

1000

2000

3000

4000

5000

6000

O
b

se
rv

e
d

 -
 E

x
p

e
ct

e
d

 e
rr

o
r 

(b) Matrix model

Figure 5.3: Gavin06: a scatter plot of the quality of clusters VS cluster sizes.
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Dataset MCL MCL with MRF MCODE
interaction prob.

[17]
Gavin02 From [8] Inflation = 1.8 ψ = 3.5 From [8]
Spoke model Inflation = 1.8 ν = 0.346 Maximum likelihood Node score percentage = 0.0

φ = 1.07 × 10−3 Complex fluff = 0.2
ρ = 1.88 × 10−3 Depth = 100

Gavin06 Inflation = 3.0 Inflation = 3.0 ψ = 3.5 From [8]
Spoke model ν = 0.407 Maximum likelihood Node score percentage = 0.0

φ = 1.35 × 10−3 Complex fluff = 0.2
ρ = 3.89 × 10−3 Depth = 100

Gavin06 – – ψ = 10.0 –
Matrix model Maximum likelihood

Table 5.3: Parameter setting for MCL, MRF and MCODE.

interaction graph as input data set, for each of these data sets, we built an interaction graph using

a spoke model. MCL accepts both weighted and unweighted graphs as an input. For the weighted

interaction graph, we computed the interaction probability using the statistical model in [17] (with

no threshold).

We set the parameters of MCODE according to [8]. With respect to the inflation parameter

for MCL, we found that the optimal setting as published in [8] is suitable for the smaller data set

(Gavin02), but yields a biologically incorrect number of clusters for the larger Gavin06 data set.

Therefore, to run MCL on the large data set, we have explored several inflation parameters and

choose a solution with the inflation parameter = 3.0 that controls the number of clusters larger than

2 to be close to the published number of 487 complexes [14]. The trade-off in sensitivity and speci-

ficity from exploring the inflation parameters is shown in Figure 5.4. The range of recommended

inflation parameters is between 1.1 and 5.0 (http://micans.org/mcl). We summarize the

parameter setting for all three algorithms in Table 5.3. For comparison of the clustering algorithms,

we apply the above performance measures to evaluate the clustering solutions against the MIPS

and Reguly benchmarks. For each of these measures, we contrast the scores reached with the real

clustering results with the random expectation estimated with permuted clusters and found the sep-

aration to be high in all algorithms. We summarize the measurement in Table 5.6 for the Gavin02

data set and the Gavin06 data set. For the evaluation, we do not consider singletons as valid clusters

and exclude them from the distribution of cluster sizes. See Table 5.4 and Table 5.5.
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MCL MCL with MRF MRF MCODE
inter. prob. (spoke) (matrix)

Num. of clusters 351 352 393 310 24
Num. of singletons 177 178 226 79 0
size ≥ 2 174 174 167 231 24
Mean 6.97 6.97 6.97 5.67 4.67
Median 4 5 5 2 4
1st quantile 3 3 2 2 3
3rd quantile 8 8 10 6 6
90% 15 14 14 13 7
99% 42 40 34 36 9
Largest cluster 51 45 36 44 11

Table 5.4: Gavin02: distribution of cluster sizes.

There is a precaution on the set of proteins used to evaluate performance measures. For each

data set, we use the same set of proteins for evaluation in all measures, which is the set of proteins

in the experiment with annotation. This will in general cause lower sensitivity in algorithms such

as MCODE due to many unassigned proteins. We do not want to reduce the set of proteins to the

common sets among all algorithms (the minimal set of proteins) as the measurement will not be

representative. Bearing in mind these limitations, we can interpret the results as shown in Table 5.6

and the ROC curves in Figure 5.4. As expected, we find clustering solutions of MCODE to have

low all pairs sensitivity because it simply does not assign the majority of proteins present in the

experiment and hence produces very few clusters. If we change the setting of MCODE to include

more clusters and assign more proteins, we significantly lose accuracy in all measures (data not

shown). Thus, we focus on comparing MCL and MRF.

Complex-size distribution

Principle properties and potential artifacts are visible in a simple plot of the population of proteins

by cluster size (see Figure 5.5). From the Gavin06 data set, we only consider proteins with MIPS

complexes, ignoring singletons; this results in 819 proteins. For each clustering solution, we restrict

the size distribution to this set of protein, also ignoring singleton-clusters. It is worth to note that

there is an absence of larger MIPS complexes in the range from 30 to 50, which has only one

complex of size 47. Obviously, the proteins in the largest complex of size 60 all correspond to

a single complex (the ribosome), whereas the 60 proteins in clusters of size 12 correspond to
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MCL MCL with MRF MRF Gavin06 Gavin06 MCODE
interaction prob. (spoke) (matrix) (all) (core)

Num. of clusters 781 732 698 550 487 477 55
Num. singletons 331 269 4 2 0 55 0
size ≥ 2 450 463 694 548 0 422 0
Mean 5.39 5.38 3.97 5.03 13.46 3.33 4.42
Median 2 3 2 3 9 2 4
1st quantile 2 2 2 3 4 2 3
3rd quantile 4 4 4 5 18 4 5
90% 8 7 7 8 33 6 7
99% 36 29 32 31 66 12 16
Largest cluster 561 607 65 49 96 23 16

Table 5.5: Gavin06: distribution of cluster sizes.

Dataset MCODE MCL MCL with MRF MRF
inter. prob. (spoke) (matrix)

Gavin02 CO 25.1 61.0 62.3 60.4 76.8
PPV 76.1 71.0 74.9 75.5 70.6
Acc 43.7 65.8 68.3 67.5 73.6

All pairs
SN 2.3 68.6 68.9 66.7 62.6
SP 92.5 78.7 82.4 87.9 64.7

Geo. average 14.7 73.0 75.4 76.6 63.6
Gavin06 CO 27.2 63.6 65.3 65.6 67.4

PPV 54.1 59.1 63.2 71.6 73.8
Acc 38.4 61.3 64.3 68.6 70.5

All pairs
SN 4.9 44.1 44.7 37.2 38.2
SP 79.6 18.0 22.5 70.0 66.1

Geo. average 19.7 28.2 31.7 51.0 50.2

Table 5.6: Clustering performance of MCODE, MCL and MRF: comparison against the MIPS
benchmark. We use all proteins in the experiment with annotation.
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Figure 5.4: Gavin06: Comparison of sens. and spec. for all clustering solutions on all proteins with
annotation from: (a) MIPS and (b) Reguly. The curve for MRF is generated as we filter out clusters
with high observed-errors. The curve for MCL is generated for different inflation parameters: [1.2 :
0.2 : 5.0] which is recommended by the MCL program.
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5 different complexes. All clustering solutions substantially deviate from the MIPS distribution.

MCL has a large cluster of 145 proteins from different MIPS complexes, a likely artifact. This

cluster is part of a giant component when considering all proteins. The overall property can be

deducted using our approach better than MCL. The Gavin core set is only a subset and contains

a substantial number of small elements and fewer complexes than the MIPS solution, prominently

the mitochondrial ribosome and mediator complex. The larger, complete solution (Gavin06 (all))

contains few small clusters; although this solution contains larger clusters (size ≤ 50), they do not

accurately map to larger complexes.

5.3.3 Comparison with maximal frequent itemsets (MFI)

We obtain a solution of overlapping complexes by computing maximal frequent itemsets (MFI)

rather than exact frequent itemsets. It is clear from the two previous chapters that exact frequent

itemset mining is not a sensitive method and even with extension to handle errors in the previous

chapter, we still cannot improve the sensitivity of frequent itemsets. We can explain the problem

of low sensitivity by showing an example on a typical result of frequent itemsets. As illustrated in

Figure 5.6, although frequent itemsets can output overlapping clusters, in reality they are overlap-

ping fragments of a true class which should be merged to one cluster. To alleviate the problem of

fragmentation, we also merge maximal frequent itemsets when they share more than 3 proteins.

To select a solution from MFI, we have to decide on a suitable minimum support that yields high

accuracy when comparing to a benchmark. We search over different values of minimum support

and select the one that gives a good balance of all-pair sensitivity and specificity (by computing a

geometric average). Figure 5.7 shows the result of exploring different minimum support for MFI

and clearly shows that MRF is a better prediction. A minimum support that yields the best geometric

average of sens. and spec. is 9 out of 2166 on the Gavin06 data set. After we have selected the best

solution for MFI, we can compare this solution against the maximum likelihood solution of MRF

(on the spoke model) by computing all the performance measures as shown in Table 5.9.

Although MFI results in more clusters than MRF (Table 5.8), there are only 456 proteins in

those clusters indicating that MFI merely constructs fragments of real complexes. This result is

also confirmed by low sensitivity and low complex-coverage in Table 5.9. When we evaluate using

all annotated proteins, the accuracy measure is much lower than the accuracy value of MRF. The
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Figure 5.5: Comparison of cluster-size distribution with MIPS-size distribution.
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(a) True classes (b) Frequent itemsets

Figure 5.6: Problem with exact frequent itemsets: low sensitivity. Frequent itemsets break the true
cluster into three overlapping clusters: {A,B,C,D}, {B,C,D,E} and {B,C, F,G} although the
correct answer is {A,B,C,D,E, F,G}.

Dataset Num. Proteins MRF MFI

Gavin06 2760 Proteins clustered 2760 456
Num. purifications 2166 2166

with MIPS 819 256
with Reguly 520 195

Table 5.7: Comparing number of proteins in clustering experiments between MRF and MFI. For
MFI, we select a solution with the minimum support of 9 (out of 2166) which yields the best
average of all-pair sens. and spec..

results in Figure 5.7 and Table 5.9 show that the solution from MRF outperforms MFI and that

MFI is not a good model of overlapping complexes. It is interesting to note that Hollunder et al.

[21] shows that the results of frequent itemsets are statistically significant and postulate that they

correspond to subcomplex structure of multi-protein complexes. The question whether or not the

observed subcomplex structure has any biological significance still remains to be investigated and

at present there is no experimental method to validate such a hypothesis.

5.4 Discussion

Before we discuss the details of the results, we would like to point out that, in contrast to others,

MRF is essentially a parameter-free method. Although MFA requires two input – ψ and the number
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Figure 5.7: Comparison of MFI at different minimum support with MRF. Sens. and Spec. for
Gavin06. Both figures show all pairs specificity and sensitivity on proteins with known complexes
from (a) the MIPS benchmark and (b) the Reguly benchmark. Both figures show MRF to be more
accurate than frequent itemsets. MFI: Maximal Frequent Itemsets. MRF: Markov Random Field.
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MCL MRF MFI
(spoke) min. support = 9

Num. of clusters 732 698 898
Num. singletons 269 4 0
size ≥ 2 463 694 898
Mean 5.38 3.97 2.71
Median 3 2 2
1st quantile 2 2 2
3rd quantile 4 4 3
90% 7 7 3
99% 29 32 5
Largest cluster 607 65 241

Table 5.8: Gavin06: distribution of cluster sizes. Comparison between MCL, MRF and MFI.

Dataset MRF MFI
(spoke) min. support = 9

Gavin06 CO 65.6 42.7
PPV 71.6 74.5
Acc 68.6 56.4

All pairs
Sens. 37.2 19.6
Spec. 70.0 15.8

Geo. average 51.0 17.6

Table 5.9: Clustering performance of MRF and MFI. We evaluate on all proteins in the experiment
with MIPS complexes.
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of clusters K , we provide a systematic way to estimate them using maximum likelihood. Methods

such as MCODE or the Gavin06 solution require more parameters without a systematic way to

select them other than trying out several values and comparing the results to a benchmark. If there

is no reference data set available, these methods cannot assess the quality of their solution, while

MRF at least provides a relative measure of cluster quality. MCL suffers from the same problem

of parameter selection and essentially has three parameters, the expansion and inflation values and

the number of clusters. So to choose a solution from MCL we must not only compare with the

benchmark, but also decide if the number of clusters is biologically plausible. With regard to the

number of predicted clusters, it is not surprising that MRF estimates higher number of clusters

because it does not eliminate proteins prior to clustering, unlike other methods such as the MCODE

or the Gavin06 core solution.

Although we recommend the spoke model over the matrix model due to lower false negative

rate, it is worth to note that the solution of the matrix model is also biological meaningful when

compared with the MIPS data set, although with a slightly less specific solution than the solution

from the spoke model (on the Gavin06 data set comparing to the MIPS benchmark). Our caution

is that the reality lies in between and the error rate is only one criterion to select between these two

models.

With regard to quality of clusters, we observe that almost all predicted clusters fit the model

except some outliers that should not be regarded as complexes due to extremely high observed error

(shown as data points on the top of Figure 5.3). Closer inspection reveals that they are clusters

consisting mostly of junk proteins which in reality cannot be assigned to any complex. By giving

the junk clusters the worst quality score, MRF can separate them from the rest of other complexes.

For MCL, there is no such indicator other than eliminating singletons.

The performance of MCL and MRF on the Gavin02 data set is comparable, both achieve high

accuracy. The similarity in performance between MCL and MRF also indicates that the Gavin02

data set has lower level of noise and error modeling does not necessarily gain us more accuracy. The

low level of noise corresponds to the fact that the Gavin02 has already been filtered. The similarity

between MCL and MRF also prevails in their distribution of cluster sizes (see Table 5.4).

The performance gain from error modeling is more noticeable in the larger Gavin06 data set

which is not filtered and thus expected to contain more errors. We clearly see in this case that the



90 Chapter 5. Markov Random Fields

model of interaction probability only slightly improve MCL in predicting protein complexes and

that the error model of MRF is more accurate. Machine learning techniques can be used to filter low

accuracy interaction [26] before running MCL, but we cannot compare our model with this model

because the raw purification data set, in particular repeated experiments, are not provided with the

publication [26].

The Accuracy measure indicates on average how well an individual cluster matches any com-

plex. It penalizes split complexes more than merged complexes. To see if complexes are merged,

we have to look at the all pair comparison for high sensitivity with low specificity. When compared

with MIPS, due to complexes merging to a giant component, MCL performs quite well on Gavin06

in the accuracy value, but not when considering the all-pair SN and SP. To avoid the giant com-

ponent, the inflation parameter of MCL must be set to the maximum level recommended (inflation

= 5.0) which results in reduced sensitivity. See Figure 5.4. MRF can maintain high specificity

without sacrificing the sensitivity. When comparing to highly specific solutions such as MCODE

or Gavin06 (core) which assign fewer proteins, MRF loses less than 10% percent in specificity, but

gains about 30% in sensitivity and assigns more proteins (Table 5.6).

In general, both MCL and MRF perform better when comparing to the MIPS benchmark than

to the Reguly benchmark, with MRF performing better than MCL at matching both benchmarks

on the Gavin06 data set. The Reguly benchmark allows many complexes to overlap. Hence, MCL

and MRF will never be able to fully reconstruct the Reguly benchmark because they assume a

partitioning model of protein complexes. However, we can see that when trying to match the MIPS

complexes based on all-pair comparison, MRF outperforms MCL. This indicates that in general the

assumption of complex formation based on only pairwise interaction is a reasonable one resulting

in few false positive errors. As expected, the high specificity (low false positive errors) and low

sensitivity (high false negative errors) of MRF is a result of the predicted error rates by the model;

the high false negative rate predicts low sensitivity, while the low false positive rate predicts high

specificity.

When comparing all solutions to the MIPS-size distribution in Figure 5.5, we clearly see that

MCL is particularly far-off due to the giant component which assign about 140 proteins from differ-

ent MIPS complexes into the same cluster. The solution from MRF appears to be the closest match

in this regard, although it still cannot reconstruct MIPS-complexes larger than 30. Other solutions
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also have the same problem; the Gavin06 (core) solution only maps to small complexes (size ≤ 20).

MRF replaces large complexes by producing more smaller clusters than MIPS (size ≤ 5).

In summary, if the data has already been filtered as in the Gavin02 data set, MRF does not have

an advantage over MCL because it is computationally more expensive. When clustering large and

noisy data set, the result has shown that MRF is a better method with a rigorous framework to select

parameters using maximum likelihood which is in itself an advantage over heuristics-based methods

such as MCL or MCODE.




