Chapter 4

Frequent itemsets with errors

Datasets obtained by large-scale high-throughput methods for detecting protein-protein interactions
typically suffer from a relatively high level of noise. As we have mentioned in Chapter 2, two
types of errors are possible: false positive errors (FP) and false negative errors (FN). Purification
experiments typically allow a higher degree of confidence when an interaction is observed, but
a much lower degree when no interaction is detected (see error estimation (Table 2.1) described
in Chapter 2). In other words, most of the errors are false negatives; it is believed that when no
interaction is detected, it is quite likely that an interaction actually exists, but the experiment failed
to detect it [50].

We believe that false negative errors cause low sensitivity when using frequent modules in Chap-
ter 3 to predict interactions; many proteins should have been part of frequent itemsets, but purifica-
tions fail to detect them. Ideally, we would like to have a computational method which would be
able to correct many of the errors made by large-scale interaction experiments. In this chapter, we
propose an algorithm to detect larger frequent modules that have been missed by large-scale exper-
iments. Our algorithm is an extension of the Apriori algorithm to solve the probabilistic frequent
itemsets problem.

The basic idea of the algorithm derives from the hypothesis that protein complexes organize
into frequent modules. Several modules join together to form a protein complex [21]. In the last
chapter, we have identified frequent modules from protein purifications. In this chapter, we attempt
to predict more interactions that join these modules to form a larger complex. We believe that these

interactions have been missed by large-scale experiments.

43

44 Chapter 4. Frequent itemsets with errors

The rest of this chapter is organized as follows: In Section 4.1, we introduce the probabilistic
frequent itemsets and the related concept of combinatorial errors. In Section 4.3 we present algo-
rithms to compute probabilistic frequent itemsets and discuss the implementation. In Section 4.5,

we discuss our results.

4.1 Problem setting

In the frequent itemset problem, the available set of M transactions can be characterized as an
M x N binary matrix D. Each row of D corresponds to a transaction 4 and each column of D
corresponds to an item j. The entry D;; is one if the sth transaction contains item j and zero
otherwise. Under exact frequent itemset mining a transaction supports an itemset if it contains ones
for all items in the itemset. An itemset is frequent if its fraction of support exceeds the user-defined
minimum support threshold.

While the classical exact frequent itemset definition and the algorithms designed to discover
such itemsets have been well studied, the problems created by imperfect data have not. In our
case, we have both false negative and false positive errors in the data. In the presence of such
noise, the Apriori algorithm finds a large number of small fragments of the true itemset, but too
many transactions miss one or more items due to observational error. As a solution, we present
an error-tolerant approach to frequent itemset mining based on two different error characteristics:

combinatorial error and probabilistic error.

4.2 Combinatorial error

A natural approach of handling errors is to relax the requirement that a supporting transaction must
contain ones for all the items in the frequent itemset, for example in Figure 4.1. In this problem
setting, a small number of zeros is tolerated to relax the exact matching criterion to yield a more
flexible definition of support and consequently of frequent itemsets. Previous works have proposed
different ways to quantify the false negative error: fixed integer error [33] and percentage error [49].

We summarize the relaxing definitions according to both works.

Definition 7 Fault-Tolerant Itemset (FTI): An itemset E is an fault-tolerant itemset having a fixed

4.2. Combinatorial error 45

a b ¢ d e a b ¢ d e
111 1 1 1 1 11 1 1 1 O
211 1 1 1 1 211 1 1 1 0
3/1 1 0 1 1 31 1 1 1 0
411 1 0 1 1 411 1 1 1 O
5/1 1 0 0 O 5(1 1 1 1 O

@ (b)

a b c d e a b ¢ d e
111 1 1 1 1 111 1 1 0 1
211 1 1 1 1 211 0 1 1 1
3/1 1 1 1 1 3|1 1 0 1 1
411 1 1 1 1 411 1 1 1 0
5/0 0 0 0 O 5{0 1 1 1 1

(0 (d)

Figure 4.1: Combinatorial errors. The true frequent itemset is {a, b, ¢, d, e}. Five transactions with
global density of 80% but different distributions of errors in individual transactions and items.

a b ¢ d
11 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

Table 4.1: A levelwise algorithm with ¢ = 1, ¢ = 0.5 would discard all proper subsets of
{a,b,c,d,}, although {a,b,c,d} is an error-tolerant itemset. However, if we use a fixed integer
error, a levelwise algorithm with o = 1, 6 = 2, {a, b, ¢, d} will be found as frequent.

integer error § and support o with respect to a database D having M transactions if in at least o M

transactions at least | E| — ¢ of the items in £ are present [33].

Definition 8 Error-Tolerant Itemset (ETI): An itemset E is an error-tolerant itemset having error e
and support o with respect to a database D having M transactions if in at least 0 M transactions

at least a fraction 1 — ¢ of the items in E are present [49].

4.2.1 Algorithm for finding FTlIs

Similar to exact frequent itemsets, FTIs have a monotonicity property:

46 Chapter 4. Frequent itemsets with errors

Theorem 1 If X is not a fault-tolerant § itemset with support(X) > o, then none of its superset is

a fault-tolerant itemset, |.X'| > 6.

For example, in Table 4.1, based on the definition of a fault-tolerant itemset, the set {a} has an error
of 1, {a, b} with 2 errors, and {a, b, ¢, d} must have at least 2 errors. If we use a levelwise algorithm
with a minimum support of 100% and § = 2, all proper subsets of {a,b,c,d} are fault-tolerant
frequent itemsets. With 6 = 1, only subsets of length one and two satisfy the definition.
Unfortunately, unlike the Apriori algorithm for finding exact frequent itemsets, a levelwise al-
gorithm to generate fault-tolerant frequent itemsets is not feasible due to the large number of can-
didates. For example, given 1000 items in the database, to find a fault-tolerant itemset of length 3,
with § = 1, we will need to generate (%), or all possible combinations of subsets of length k. We

followed the idea of Pei et al. [33] who introduced a weaker definition of fault-tolerant frequent

itemset by adding a constraint on minimum frequency of items:

Definition 9 . (constraint fault-tolerant frequent itemset) Given a fixed integer maximum error
d > 0, let Y be an itemset such that |Y| > §. A transaction 7' is said to contain Y with tolerance
J iff there exists Y/ C Y such that Y/ C T and |Y'| > (|Y| —). The number of transactions in a
database containing Y with fault tolerance § is called the FT-support of Y, denoted by stip(Y).
Let B(X) be the set of transactions containing X with tolerance 4. Given (1) a frequent-
item minimum support o, and (2) an FT-support threshold orp, an itemset X is called a

fault-tolerant frequent itemset or FT-itemset, iff
1. Sﬁp(X) > opr and

2. for each item = € X, support g y)(2) = Titem, Where support 5y (x) is the fraction of

transactions in B(X) containing item z.

The above definition has two support thresholds. The frequent-item minimum support o ;e iS
used to filter out infrequent items. We will see that this contraint is a key to reduce the number of
candidates generated. The second threshold (FT-support threshold) o 7 is used to capture frequent
itemsets which allow at most § missing items per transaction.

An item x is called a globally frequent item iff support(xz) > ojtem, i.€., item x appears in

at least ;. M transactions of the whole database. It follows that an FT-itemset contains only

4.2. Combinatorial error 47

globally frequent items. To avoid triviality, an FT-itemset must have at least (6 + 1) items. We now

introduce the following lemma for (6 + 1) FT-itemset [33].

Lemmal Let X be an itemset containing (6 + 1) globally frequent items. X is an FT-itemset iff

sup(X) = opr.

In short, we can say that a (6 + 1)-itemset consisting of globally frequent itemsets is an FT-
itemset if it passes the FT-support threshold. In practice, there could be a large number of (6 + k)
FT-itemsets when & is small, like & = 1 or 2. Note that short FT-itemsets may not be interesting
because too many false negatives lead to itemsets without enough actual support. In general, we also
apply a minimum length threshold on the size of FT-itemsets as well. We can state our constraint
problem as follows: given a transaction database D, a maximum tolerance 4, a frequent-item support
threshold e, an FT-support threshold oz and a length threshold, the problem of fault-tolerant
frequent itemsets mining is to find the complete set of FT-itemsets longer than the minimum length
threshold. We can now propose a candidate generation-and-test algorithm to compute fault-tolerant
frequent itemsets with a constraint on item frequency as shown in Algorithm 5. The initialization
of Algorithm 5 is based on Lemma 1. The rest of the algorithm is based on the anti-monotonicity

property of FT-itemset (Theorem 1). So, we can show that the algorithm is correct and complete.

4.2.2 Algorithm for finding ETIs

Given the definition of error-tolerant itemset (ETI), the frequent itemset problem can be stated as
follow; given a database D of M transactions (rows) and N items (columns), an error tolerance
level ¢, and a minimum support o in [0, 1], determine all error-tolerant itemsets with respect to D.
An error threshold e = 0 reduces Definition 8 to the exact frequent itemset definition. For e > 0, the
problem is to determine itemsets exceeding the minimum support threshold, requiring that (1 — €)
of the m items in the ETI be present. For example, in Figure 4.1(d), the itemset {a, b, ¢, d, e} is an
error-tolerant itemset with minimum support o = 0.2 (20%) and e = 0.2.

The level-wise Apriori algorithm does not apply to the ETI problem because unlike the ordinary
support of frequent itemsets, the error-tolerant property is not monotonic. Consider an example
database in Table 4.1. With a support o = 1, {a} tolerates error rate of 1.0, {a, b} has error of 1.0,

{a,b, ¢} tolerates 0.67 error rate and {a, b, ¢, d} tolerates 0.5 error rate. Thus, a levelwise algorithm

48 Chapter 4. Frequent itemsets with errors

Algorithm 4: FT-Apriori
Input . A transaction database D, a maximum fixed integer tolerance 4, frequent-item
support threshold o se,, FT-support threshold o g7 and minimum length thresh-
old min;.
Output : All FT-itemsets of length > min,.
Fy — {z : support(z) > oitem }
Let Cs.1 be the set of all (9 + 1)-subsets of F}. Leti = 4§ + 1.
repeat
I prune
F, —{Y:Y eCysup(Y) > opr}
if F; not empty then
Il generate ;1 from F;
for U € F; do
for V € F; do
W=UuV;
if |W|==1i+1 then
| Cit1=Ci1 UW,

1=14+1;
until £;_4 or C; is empty;

Algorithm 5: Constraint-FT-Apriori

Input . A transaction database D, a maximum fixed integer tolerance 4, frequent-item
support threshold o ;¢e.,, FT-support threshold o - and minimum length thresh-
old min,.

Output : All FT-itemsets of length > min,.

Fy — {z : support(z) > oitem }

Run the Apriori algorithm to generate Cs = {I : |I| = §,support(]) > opr}. Leti = 0.

repeat

Il prune

F; — {Y 1Y € CZ',Sﬁp(Y) > O'FT}

if £ not empty then

I/ generate C;. 1 from F;

forU € F; do

for V e F} do
W=UuV;
if sip(V') > ojtem and [W| ==1i+ 1 then
| Cit1=Cin UW,

1=1i+1;
until F;_4 or C; is empty;

4.2. Combinatorial error 49

1 2 3 45 6 7 8 9 10
11111 1
1 1 11 1
111 11
11111
111 11
11111
111 11
1 1 11 11 1
111111 11
1 1 11
1 1 11
1 1 11
11 1
1
1
1
1
1
1 1
1 1

Table 4.2: Strong and weak error-tolerant itemsets (ETIs). With o = 25% and ¢ = 20%,
{1,2,3,4,5} defines a strong ETI and {6, 7,8,9} defines a weak ETI.

such as the Apriori algorithm with o = 1, e = 0.5 would discard all proper subsets of {a, b, ¢, d},
although {a, b, ¢, d} is an error-tolerant itemset.

In the following, we present the algorithm proposed by [49] to find almost all error-tolerant
itemsets. In the binary representation of the database D, an error-tolerant itemset is represented as
a set of dimensions (columns),called defining dimensions, where one appears with high frequency

over a set of rows. This algorithm uses two other ETI definitions, a strong ETI and a weak ETI.

Definition 10 Strong ETI. A strong ETI consists of a set of items, called defining dimensions D C P,
such that there exists a set of transactions R consisting of at least oM transactions and, for each

r € R, the fraction of items in D which are present in r is at least 1 — e.

Definition 11 Weak ETI. A weak ETI consists of a set of items, called defining dimensions D C P,

such that there exists a set of transactions R consisting of at least o M transactions and,

2, 2. d(z)

z€RIED
——r=— = (1 =),
|R||D|

50 Chapter 4. Frequent itemsets with errors

(K =20%, m=500, n=2000,p=0.15

Probability

5 X 10 . 15 20
r: size of frequent itemsets

Figure 4.2: Probability of finding an ETI by chance.

where d(x) is one if item d occurs in x and zero otherwise.

For example, in Table 4.2 with 0 = 25% and e = 20%, both {1, 2, 3,4} and {1, 2,3, 4,5} define
astrong ETl and {6,7,8,9} defines a weak ETI.

The definition of ETIs fits well with the concept of statistical significance. By the definition
of ETI, as the error threshold e increases, the expected number of items in ETIs will also increase.
Assume that an entry in an M x N binary database is chosen at random with probability p. Then
the probability of a frequent error-tolerant itemset with » items, support o and error € to occur is
(M) (N)p=aeMr (1 — p)<eMr This probability decreases exponentially as the size of the itemset
grows. See Figure 4.2. For example, for p = 0.15,¢ = 0.2,0 = 0.2, N = 2,000, M = 500 and
r = 5, we obtains that the probability of finding an ETI with five items by chance is approximately
10730,

Although the strong and weak ETI property are still not monotonic in the usual sense, the weak

ETI has been proven to exhibit another type of monotonicity in the following lemma [49].
Lemma 2 If E is a weak ETI with | E| = m, there exists a weak ETI E’ C E with |E'| = m — 1.

Yang et al. [49] proposed the following exhaustive algorithm to find maximal ETIs by first

finding weak ETIs and filtering them in the same manner as the Apriori algorithm [1].

1. Find all items d; where its occurrence is at least o M (1 —¢€). Each dimension forms a singleton

set {d;} which defines a weak ETI. Set k = 1.

2. For every candidate that contains k dimensions, grow it by adding a dimension to it so the

new candidate defines a weak ETI. A new candidate has k& + 1 dimensions.

4.3. Probabilistic error 51

3. Increment ¢ and repeat step 2 until no more candidates are left.

4. Choose only candidates that satisfy the strong ETI definition.

The exhaustive algorithm is exponential in the number of items. Yang et al. [49] proposed a

greedy method to improve the running time and still find almost all ETIs.

4.3 Probabilistic error

Another model of input error is probabilistic. Instead of quantifying errors in terms of the absolute
or relative error threshold (as in FTI and ETI, respectively), the experimental error of protein pu-
rifications can be quantified as false negative and false positive rate for any interaction between bait
and prey. For example, given the binary matrix representation of purifications in Figure 4.3(a), false
negative rate (0.2) and false positive rate (0.3), we can assign probability to each observation as in
Figure 4.3(b). Formally, given the false negative rate v and false positive rate ¢, the input D with

error can be constructed from the database D as follows:

A 1—¢ B(z);«é]andDzjzl

where B(3) is the bait of the ith purification. Given the input with probabilistic error, we can write
the expectation of an itemset I as

M

B =Y "T]D
i=1jel
In general, the probabilistic noise present in the input data undermines the correctness of the

levelwise algorithm such as the Apriori algorithm which aims to recover itemsets that appear without
error in a sufficient fraction of transactions. In fact, it has been shown that, when noise is present, a
levelwise algorithm discovers multiple small fragments of the true itemset, but miss the true itemset.
The problem is worse for longer itemsets as they are more vulnerable to noise [30]. As we will
discuss next, with random noise in the input data, any levelwise algorithm such as the Apriori

algorithm will never be able to closely approximate a complete set of probabilistic frequent itemsets.

52 Chapter 4. Frequent itemsets with errors

a b ¢ d e a b c d e
all 1 1 0 1 al|l10 07 07 02 07
b1 1 1 0 1 b|107 10 0.7 02 0.7
cll1 0 1 1 1 c|07 02 10 0.7 0.7
d|{1 0 1 1 0 d| 07 02 07 10 07
ell1 1 0 1 1 e 07 07 07 07 1.0

(a) Observed transactions (b) Probabilistic interpretation

Figure 4.3: Representation of purifications as database with individual probabilistic errors. The
errors are quantified as hypothetical false negative rate (0.2) and false positive rate (0.3). The first
column indicates bait proteins.

4.3.1 Fragmentation of patterns by noise

With the simple statistical model, we can observe a significant effect of noise on frequent itemsets

mining. Consider a simple model for the observed binary data matrix Y,
Y=XoZ, (4.2

where Y, X and Z are m x n binary matrices and & is the entry-wise exclusive-or operation. The
matrix X contains the unobserved “true” data values of interest, in the absence of noise, and Z is
a binary noise matrix whose entries z; ; are independent Bernoulli random variables with P(z; ; =
1] =p=1—Plz; = 0] for some p € (0, $). In this case we can write Z ~ Bernoulli(p).
Suppose that m = n, and let K(Y) be the largest & such that the matrix Y contains a k£ x k
submatrix of 1s, or equivalently, the largest & such that Y contains & transactions having & common
items. The following proposition is proposed in [43]. It extends the earlier result on the clique

number of random graphs by Bollobas [5] to binary random matrices.

Proposition 1 With probability 1, K(Y) < 2log,n — 2log, log, n when n is sufficiently large,

regardless of the structure of X. Here a = Tlp.

Proposition 1 states that, even for small noise levels p > 0, large blocks of 1s or other structures
in the true matrix X leave behind only fragments of logarithmic size in Y. Thus, no exact frequent
itemset mining algorithm will be able to recover such underlying structure directly from Y.

To demonstrate this effect, we perform the experiment of adding noise to a square matrix of

4.3. Probabilistic error 53

Simulation

Size of maximal square blocks

4 6 8 10 12 _14 16 18 20 22 24
Input size: nxn

Figure 4.4: When noise is present with probability p, the observed size of largest k sets having &
common items, k x k sub-matrix, increases far more slowly than the original input size (Proposi-
tion 1).

1s [30]. Each entry of the initial matrix was changed to 0 with some probability p independently.
This matrix represents an input database of n sets and n items with only false negative error. We
then applied the Apriori algorithm to the corrupted matrix and applied the experiment to matrices
of different sizes. Figure 4.4 plots the size of the largest recovered square sub-matrix of 1s (largest
frequent itemsets) against the size of the original matrix, for different values of p (corresponding to
different levels of data corruption). In the presence of noise, only a fraction of the initial block of
1s was recovered, and this fraction diminished rapidly with an increase in the size of the original
matrix.

The result is directly related to our problem of finding subcomplex modules from purification
data and it agrees with our hypothesis that only a fragment of modules was discovered by the
exact frequent itemset mining. The failure of the Apriori algorithm to detect simple patterns in the
presence of random errors causes it to miss true association when such errors are present. Clearly
the exhaustive algorithm (Algorithm 6) is exponential in the number of items and consequently
this solution is not feasible. In the following section, we propose a greedy algorithm with pruning

strategy to recover probabilistic frequent itemsets.

4.3.2 Algorithm for probabilistic frequent itemsets

Because the exhaustive algorithm that combines candidates of different length is exponential in
the number of items, it is not a feasible solution. We employ a greedy strategy to improve the

running time by keeping at each length only a fixed number of candidate itemsets, that have the

54 Chapter 4. Frequent itemsets with errors

Algorithm 6: Exhaustive algorithm
Input . A database D, false negative rate v, false positive rate ¢, maximum itemset size

kmax

Output : Probabilistic frequent itemsets of length 1. .. knyax
C[1] < {{i} : i € P,Freq(i) > 2}
k=2
while &k < k. do

for I=1t0o% do

| JoinCandidate(C'[k — 1], C[l], L);
Clk] < L;
k++;

highest expectation values. In this strategy, the time consuming part of the algorithm is candidate
generation and computation of expectation. The trivial implementation of the greedy strategy is
given in Algorithm 8. The candidate generation is done by the procedure JoinCandidate. In this
procedure, a new candidate of length & is generated from a union of two itemsets of length k£ — [and
[and it is accepted only if those two sets are disjoint. Candidates of length & generated thus far are
kept in a set data structure to prevent insertion of duplicate itemsets. Let C'[k] be a set of candidates
of length k£ and |C'[k]| its cardinality. For each length %, the JoinCandidate procedure (Algorithm 8)
takes time |C'[k —]| x |C[l]| with the worst case memory requirement of N2 to store candidates,
where N¢ is a user-defined maximum number of candidates per length. To eliminate itemsets with
low expectation values, we compute the expectation for all candidates and keep only the N most
frequent itemsets with highest expectation. Candidates are extended from length k to k + 1 until the

specified maximum length is reached.

Because the number of candidates kept are usually much fewer than the number of candidates
generated, the memory requirement can be reduced by using a priority queue data structure to main-
tain more frequent candidates. Instead of computing and storing all candidates before computing
expectation, the expectation value can be computed during the candidate generation as in the proce-
dure JoinCandidatePQ (Algorithm 10) and only N frequently expected itemsets are stored in the

priority queue, greatly reducing the amount of memory required.

4.3. Probabilistic error 55

Procedure JoinCandidate(C[k — 1], Cl], L)
Input : Clk — 1]: frequent itemsets of length k£ — [, C[l]: frequent itemsets of length ,
L:current candidate itemsets of length &

foreach U € C[k — 1] do
foreach V € C[i] do
W=UuUV;
if |W| == |U| + |V| then
| L—LUW,

Algorithm 8: Greedy algorithm
Input . A database D, false negative rate v, false positive rate ¢, maximum itemset size

kmax, NuMber of candidates N¢
Output : Nokmax frequent itemsets of length 1. .. kpax
C[1] < {{i} : i € P,Freq(i) > 2}
k=2
while k < k. do
for I=1to% do
| JoinCandidate(C'k — 1], C[l], L);

foreach I EML do
L Bl = 3 [1 Dy

i=1j€l

X « argsort(E[[]);
IeL
Clk] < X[1...N¢l;

Lkt

Procedure JoinCandidatePQ(C[k —], C[l], PQIk])

Input : Clk — 1]: frequent itemsets of length & — [, C[l]: frequent itemsets of length /,
PQIk]:priority queue storing candidate itemsets of length &

foreach U € C[k —1] do

foreach V e CJi] do

W=UUYV;

if |W|==|U|+|V]|then

if PQk].size() < N¢ then

PQ[k].union(W);

else

Z = PQ[k].top();

if E[WW] > E[Z] then
L PQ[k].pop();

PQIk].union(W);

56 Chapter 4. Frequent itemsets with errors

Algorithm 10: Greedy algorithm with priority queue

Input . A database D, false negative rate v, false positive rate ¢, maximum itemset size

kmax, NUMber of candidates N¢

Output : Nokmax frequent itemsets of length 1. .. kpax

C[1] < {{i} : i € P,Freq(i) > 2}

k=2

while &k < k. do

for I=1t0o% do
| JoinCandidatePQ(C[k —], C[l], PQ[k]);

k++;

4.4 Merging maximal frequent itemsets

When the experimental error is assumed to only consist of false negative proteins, another approach
to recover frequent itemsets with errors is merging of maximal frequent itemsets. A disadvantage of
this approach is that a rule for merging is based on heuristics, without a quantitative model of false

negative error. In summary, this approach involves the following:

Compute maximal exact frequent itemsets at low minimum support,

Merge overlapping maximal frequent itemsets if the size of overlapping items is greater than

a given threshold. The support of the new set is the sum of support of its subsets,

Delete all subsets that are not maximal frequent itemsets,

Repeat the merging steps until all sets are maximal.

The computation of maximal frequent itemsets can be done very quickly and there are many ef-
ficient algorithms to compute such sets. We use an algorithm called MAFIA which provides a freely
available implementation (http://himalaya-tools.sourceforge.net/Mafia/). For
protein purifications, the number of maximal frequent itemsets are between 500 and 20, 000 sets de-
pending on the minimum support level. Therefore, the most time consuming part of this algorithm
is the merging step which is quadratic in the number of maximal frequent itemsets. Efficient data
structure such as suffix trees to store maximal frequent itemsets can improve the running time, but

we choose the naive implementation.

4.5. Result and discussion 57

4.5 Result and discussion

We have performed two experiments to test the effectiveness of our algorithm to handle errors:
on simulated data and on protein purification data. First, we wanted to see if the algorithm for
probabilistic frequent itemsets can improve the fragmentation of patterns on simulated square matrix
of 1s by comparing the size of the largest recovered square sub-matrix discovered by our greedy
algorithm to the result from the Apriori algorithm. For the second experiment on purification data,
we tried to improve the sensitivity of prediction due to recovery of longer frequent itemsets, when

compared to the result obtained from the exact frequent itemsets.

To test the recovery of corrupted input, we performed the same experiment of adding noise to a
square matrix of 1s. We then applied our greedy algorithm to the corrupted matrix. We performed
the experiment for various matrix sizes. Figure 4.5 plots the size of the largest recovered sub-matrix
of 1s (largest frequent itemsets) against the size of the original matrix, for different values of p. The
important factor here is a number of candidates kept per length. In this example, even with a small
number of candidates, we can still recover the original input size. We tested two values of maximum
candidates per length: 5 and 100 for input sizes from [10,500]. The result shows that our greedy

algorithm is able to recover the original input matrix even when keeping only very few candidates.

Our algorithm still suffers from the fact that it relies on the user specified maximum itemset size
and maximum number of candidates per length. These two quantities are important because they
help limit the search space for frequent itemsets. For longer frequent itemsets, our algorithm is still
O(Ng). Long frequent itemsets pose a problem for both our algorithm and the Apriori algorithm.
Due to noise, the Apriori algorithm only recovers their fragments, while our algorithm needs to run

much longer to recover them.

When evaluating the prediction accuracy on protein purifications data, we unfortunately do not
significantly improve the prediction made by the exact frequent itemset mining. We restrict the
evaluation to the bait proteins of the Gav02 and Gav06 sets. Figure 4.6 compares the analysis
of the Gav02 data set by fault-tolerant itemsets to exact frequent itemsets. Figure 4.7 compares
probabilistic frequent itemsets to exact frequent itemsets. Figure 4.8 compares the maximal merging
approach to exact frequent itemsets. All three advanced algorithms have similar accuracy as exact

frequent itemsets, but run much longer, because the number of candidates is much larger for both

58 Chapter 4. Frequent itemsets with errors

Size of the largest set recovered
g

Size of the largest set recovered
g

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Input size: nx n Input size: nx n

(&) No. candidates per length =5 (b) No. candidates per length = 100

xled

0.8

0.6|

0.4]

Running time (seconds)

0.2

100 150 200 250
Input size: N x N

(¢©) Running time (max. candidates per
length = 100)

Figure 4.5: Recovery of the largest frequent itemsets on a square input matrix with noise parameter
p = 0.3. The input size is taken from [10 : 20 : 500]. Our algorithm is able to recover the original
input set even with much fewer candidates.

4.5. Result and discussion 59

fault/error-tolerant itemsets and probabilistic itemsets. The number of candidates examined in fault-
tolerant itemsets at high error and low support is exponential. It is not even feasible to examine them.
For the probabilistic frequent itemsets, the increase in running time over the Apriori algorithm is
cubic.

Of all techniques discussed in this chapter, merging maximal exact frequent itemsets performs
best on real world data. It provides good results and is more efficient than the other techniques. It
is able to handle thousands of transactions and proteins and still yield results comparable to other
clustering solutions. See Figure 4.9.

Efficient approximation of frequent itemsets with any kind of error remains a challenging prob-
lem mainly because the number of candidates needed to be examined can grow exponentially as
the number of error increases. To predict overlapping protein complexes, the results in this chapter
show that mining exact frequent itemsets is a reasonable approach, even though the sensitivity is
not as good as of partitioning clustering. We will show in Chapter 5 that, given contemporary data
sets, a partitioning model can better predict protein complexes than an overlapping model. Further-
more, with frequent itemset techniques, accounting for error in purifications does not significantly
improve accuracy, all the while requiring longer running time and more memory. Therefore, we
conclude that among the methods we tested, finding exact frequent itemsets is the best and most

efficient method to predict overlapping complexes.

60 Chapter 4. Frequent itemsets with errors

FT frequent itemsets (Reguly)

1.0~ ——y—— . .
i—\-?'j""'*'—r—r;, 44+ Exact
\.. ;’
¥v¥v Delta =4
0.8f
S
g 0.6f
—
X
oy
S
=
g 04
Q
w0
0.2f
0'8.0 0.2 0.4 0.6 0.8 1.0
Sensitivity [x100 %]
(8) Reguly benchmark
FT frequent itemsets (MIPS)
1.0, T T T T
.
VT mamm Delta=3
- \ vvxv Delta =4
0.8} 1
~¥F —-v ¥
M AN T
.
X
S 0.6
-
X
2z
S
=
2 0.4
Q.
2]
0.21
0'8.0 0.2 0.4 0.6 0.8 1.0
Sensitivity [x100 %]
(b) MIPS benchmark

Figure 4.6: Fault-tolerant itemsets on the Gav02 data set: (a) on Reguly benchmark, compared
with exact solution and (b) on MIPS benchmark, compared with exact solution. The evaluation is
restricted to the bait proteins.

4.5. Result and discussion

61

Probabilistic frequent itemsets (Reguly)

0.8F

Specificity [x100 %]

0.2F

0.6

M ‘

* ===a_Pprobabilistic

0.8.

0.2 0.4 0.6 0.8 1.0
Sensitivity [x100 %]

(8) Reguly benchmark

Probabilistic frequent itemsets (MIPS)

1.0,
A =uwu Probabilistic
0.8}
=
g 0.6f
-
X
2
S
=
g 0.4r
o
(2]
0.21
0'8.0 0.2 0.4 0.6 0.8 1.0

Sensitivity [x100 %]

(b) MIPS benchmark

Figure 4.7: Probabilistic frequent itemsets on the Gav02 data set: (a) on Reguly benchmark, com-
pared with exact solution and (b) on MIPS benchmark, compared with exact solution. The evalua-

tion is restricted to the bait proteins.

62 Chapter 4. Frequent itemsets with errors

Merging MFI (Reguly)

LY T T

44+ Exact MFI

eeoe Cellzome

mmsum Max .Merging
1.0 1

o
©
T

Specificity [x100 %]
o
[oe]

I
N

0.6f
0.5
0.0 0.2 0.4 0.6 0.8 1.0
Sensitivity [x100 %]
(8) Reguly benchmark
Merging MFI (MIPS)

1.1 . . : :
-+ Exact MFI
eeee Cellzome
=== Max .Merging

1.0 1

Specificity [x100 %]
o o
© ©

°
g

0.61

%30 0.2 0.4 0.6 0.8 1.0
Sensitivity [x100 %]

(b) MIPS benchmark

Figure 4.8: Merging of maximal frequent itemsets on the Gav02 data set: (a) on Reguly benchmark,
compared with exact solution and (b) on MIPS benchmark, compared with exact solution. The
evaluation is restricted to the bait proteins.

4.5. Result and discussion

63

MFls (Reguly)
1. T T T
eeoe Krause
\ 4+ MFI
71 | wsma Max. Merging
~_
0.8 e
S
g 0.61
-
X
2
9
&
g 0.4r
Q
[
0.21
0'8.0 0.2 0.4 0.6 0.8

Sensitivity [x100 %]

1.0

Figure 4.9: Merging of maximal frequent itemsets on the Gav06 data set, on Reguly benchmark,

compared with clustering solutions of Krause. The evaluation is restricted to the bait proteins.

