
Chapter 3

Exact frequent itemset model

The methods to predict protein complexes described in the last chapter use a protein-protein in-

teraction graph as an intermediate representation. Using such an intermediate, non-probabilistic

representation necessarily eliminates some information contained in the original observation. This

is particularly troublesome as research indicates that observations from purification experiments

differ substantially from those obtained from two-hybrid experiments [21]. It is thus likely that pu-

rification experiments are subject to substantial observational error. To derive good models despite

this error, we should use all available information. We were thus inspired to explore techniques that

derive the desired model of protein complexes directly from the observation.

Furthermore, it is known that protein complex assembly involves cooperative binding, leading

to the same proteins appearing as member of multiple different clusters. More specifically, pro-

tein complexes may have shared subunits and consist of core components with additional more

dynamic factors [14, 15]. Gavin and Superti-Furga [16] suggest that protein complexes consist of

several versatile modules, each acting as “molecular machines” with different functional modules

that contribute to one superimposed cellular task. The recent experiment of Gavin et al. [14] re-

veals modularity of protein complexes organized into core modules and shared components. These

more complex relationships between proteins cannot be described by pairwise protein interactions

represented in protein-protein interaction graphs.

A simple technique to determine overlapping protein clusters, which makes no assumptions

about the nature of protein interactions, is counting the occurrence of protein clusters in the purifi-

cation data [21]. Finding sets of items in the data that frequently appear together is known as the
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frequent itemset problem. We will first ignore experimental error and find exact frequent itemsets

given a database of protein purifications. We will describe the standard algorithm to discover such

itemsets. We can show that by ignoring random errors, statistical significance can be computed. In

Chapter 4, we will extend our solution to handle random experimental error.

3.1 Problem setting

Let P = {i1, i2, i3, . . . , iN} be a set of N distinct items. In our setting, items are proteins and

consequently an itemset represents a set of proteins. A transaction T is a set of items in P, in

our case the result of a single purification experiment. A database D of size M is a set of M

transactions. A set, I ⊆ P, of items is called an itemset. The items in an itemset I are assumed

to have some domain dependent total order. In this case, we map N proteins to a set of integers

{1, 2, 3, . . . , N}. Then the items are stored in a numerical order. The number of items in an itemset

is called the length of an itemset. Itemsets of some length k are referred to as k-itemsets.

A transaction T is said to support an itemset X ⊆ P iff it contains all items of X , i.e., X ⊆

T . The fraction of the transactions in D that support X is called the support of X , denoted as

support(X). A user-defined minimum support threshold is a real number in [0, 1]. An itemset is

frequent iff its fraction of support is above the minimum support. Otherwise, it is infrequent. The

goal of frequent itemsets mining is to find all frequent itemsets given a database D and a minimum

support threshold σ. A general introduction to frequent itemsets mining from a large database can

be found in [35].

Definition 1 Let P = {i1, i2, i3, . . . , iN} be a set of N distinct items. A transaction T is a set of

items in P.

Definition 2 A database D of size M is a set of M transactions.

Definition 3 A set, I ⊆ P, of items is called an itemset.

Definition 4 The number of items in an itemset X is the cardinality of X , denoted by |X|. Itemsets

of some cardinality k are referred to as k-itemsets.
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Id transaction
1 {1, 2, 3, 4}
2 {1, 2, 3, 5}
3 {2, 3}
4 {1, 2, 3}

Table 3.1: An example database with five items.

Definition 5 support(X) is the fraction of the transactions in D that support the itemset X . An

itemset X is frequent iff support(X) is above the minimum user-defined support σ.

Example See Table 3.1. There are five distinct items, {1, 2, 3, 4, 5} in the database. There are

four transactions. If the minimum support is set to 0.5, then the frequent itemsets are {1}, {2},

{3, }, {1, 2}, {1, 3}, {2, 3} and {1, 2, 3}, because they occur in at least half of the database.

3.1.1 Maximal frequent itemsets (MFI)

Among all the frequent itemsets, some will satisfy the property that they have no proper superset that

are themselves frequent. Such itemsets are maximal frequent itemsets. In other words, an itemset is

a maximal frequent itemset if and only if it is frequent and no proper superset of it is frequent. An

itemset is frequent iff it is a subset of a maximal frequent itemset. The maximum frequent sets (or

MFS) is the set of all the maximal frequent itemsets.

Example See Table 3.1. When the minimum support is set to 0.5, the itemset {1, 2, 3} is a max-

imal frequent itemset, because it is frequent and no proper superset of it is frequent. The MFS is

{{1, 2, 3}}. In general, there will be more than one maximal frequent itemset in the MFS.

Because an itemset is frequent iff it is a subset of a maximal frequent itemset, an algorithm for

discovering frequent itemsets can find the MFS first and then generate the subsets of the MFS and

count their supports by reading the database once. Therefore, the problem of discovering the exact

frequent sets can be transformed into the problem of discovering the maximum frequent sets. The

maximum frequent sets form a border between frequent and infrequent sets. Once the maximum

frequent sets are known, the frequent and infrequent sets are known.



32 Chapter 3. Exact frequent itemset model

{1, 2, 3, 4, 5}
{1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

{1, 2, 5} {1, 3, 5} {1, 4, 5} {2, 3, 5} {2, 4, 5} {3, 4, 5}
{1, 5} {2, 5} {3, 5} {4, 5}

{5}

(a) Infrequent supersets

{1, 2, 3}
{1, 2} {1, 3} {2, 3}
{1} {2} {3}

(b) Frequent subsets

Figure 3.1: Illustration of monotonicity property. Given the database in Table 3.1 and a support
threshold of 0.5, an itemset {5} is infrequent and so are its supersets. An itemset {1, 2, 3} is (maxi-
mal) frequent and so are its subsets.

3.2 Monotonicity property

A typical algorithm to discover frequent sets involves classifying candidate itemsets into three types

of sets:

1. frequent: this is the set of those itemsets that have been found as frequent,

2. infrequent: this is the set of those itemsets that have been found as infrequent,

3. unclassified: this is the set of all other itemsets.

Initially, the frequent and the infrequent sets are empty. Throughout the execution, a collection

of frequent sets or infrequent sets grow monotonically, while the number of the unclassified sets

shrinks. The algorithm terminates when all maximal frequent itemsets are found.

Definition 6 (monotonicity property) If A ⊆ B, support(A) ≥ support(B).

From the monotonicity property (Definition 6), two closure properties are true at all time:

• If an itemset is infrequent, all of its supersets must be infrequent, and

• If an itemset is frequent, all of its subsets must be frequent.

Example See Figure 3.1. Consider the database as shown in Table 3.1. The itemset {5} is in-

frequent and therefore {2, 5} must also be infrequent, because of the monotonicity of support,

support({2, 5}) ≤ support({5}). In other words, there will be an equal or smaller number of trans-

actions containing both items 2 and 5 than those containing 5. Conversely, if the itemset {1, 2, 3} is

frequent, then itemset {1, 2} must be frequent.
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3.3 The Apriori algorithm

The most common approach for discovering frequent itemsets is the Apriori algorithm [1]. It con-

sists of iteratively finding frequent itemsets of length (k + 1) from frequent itemsets of length k.

The algorithm is described in Algorithm 3.

During the candidate generation, candidates of length (k+ 1) are generated by joining frequent

itemsets of length k with frequent singletons. Due to the monotonicity property (Definition 6), ex-

haustive enumeration of all frequent sets is not needed. A candidate itemset is immediately rejected

if its support is less than the support threshold. Otherwise, a candidate is accepted. This is valid

because from the monotonicity property we know that if a set is infrequent, all of its supersets must

be infrequent and no further examination is needed.

Although the worst case running time is still exponential, because there could be the exponential

number of frequent itemsets when the minimum support is low and frequent itemsets can be very

long, on average, the Apriori algorithm is known to be fast and easy to implement [1].

Algorithm 3: Apriori algorithm
Input : A database D and a minimum support σ
Output : All frequent itemsets with support ≥ σ
C1 ← {{i} : i ∈ P, support(i) ≥ σ}
L1 ← C1

FS ← L1

k = 1
while Lk 6= ∅ do

// generate new candidates
Ck+1 = ∅;
foreach u ∈ Lk do

foreach s ∈ L1 do
v = u ∪ s; // join with singletons
if |v| == (k + 1) then

Ck+1 ← Ck+1 ∪ v;

// prune candidates
Lk+1 = ∅;
foreach u ∈ Ck+1 do

if support(u) ≥ σ then
Lk+1 ← Lk+1 ∪ u;

FS ← FS ∪ Lk+1;
k = k + 1;

return FS



34 Chapter 3. Exact frequent itemset model

{1,2} {1,3} {2,3}

{1,2,3}

{2} {3}{1} {4} {5}

Figure 3.2: Illustration of the Apriori algorithm on Table 3.1 with minimum support 0.5. Frequent
candidates are ordered by the length from bottom to top. For each length k + 1, new candidates are
generated from candidates generated at the length k. In this example, {4} and {5} are eliminated at
the first iteration because they are infrequent.

3.4 Integer linear programming formulation

A variant of the frequent itemsets problem is to discover only the single most frequent itemset.

This problem can be elegantly formulated as an Integer Linear Programming (ILP) problem. Wang

and Wu [48] solve the approximate inverse frequent itemset using ILP. Their goal is to generate

a synthetic data set that satisfies a collection of constraints on frequent itemsets. The constraints

are specified as sets and their frequency. The problem of generating synthetic basket datasets from

frequent itemsets is generally referred to as inverse frequent itemset mining. This problem is shown

to be NP-complete [48].

Based on the inverse problem formulated by Wang and Wu [48], we can formulate the most fre-

quent itemset as integer-linear programming. Given a database D ofN items having M transactions

represented as a binary matrix; oi represents the ith row and ej represents the jth item,

Dij =











1 : ej ∈ oi

0 : otherwise.

We want to find the most frequent itemset I of a given size |I| where Ij = 1 if ej ∈ I. We convert

this problem to ILP as follows

I ∈ {0, 1}N
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yi =











1 : I ⊆ oi

0 : otherwise

maximize
M
∑

i=1
yi subject to contraints

|I|yi ≤
N

∑

j=1

DijIj ≤ yi + |I| − 1.

3.5 Significance of exact frequent itemsets

After we have discovered all frequent itemsets using the Apriori algorithm, we also would like to

know if the discovered frequent itemsets are statistically significant.

We developed a simple background model to differentiate significant itemsets. For the back-

ground model, we assume that each item (protein) k is selected with probability pk. pk can be

estimated from the data by setting pk = Freq(k)
M

, where Freq(k) is equal to the number of occur-

rences of k inM transactions. Under the random model, if each item occurs independently of others

in a transaction, the expectation of an itemset I ⊆ P is defined as

E[I] =
∏

k∈I

pk.

The actual number of occurrences, computed with the Apriori algorithm, is support(I). Let h0

be a hypothesis that an itemset I occurs at random according to the model and h1 be a hypothesis

that the itemset I is significantly frequent. To detect if the frequent itemset I is not likely to occur

by chance, we compute the log-ratio as follows

log
h1

h0
= log

support(I)

E[I]
.

We can also compute the probability that an itemset of size r occurs k times, given a database

of M transactions and N items. Assume that each protein is chosen independently of any others

with probability p. Then the probability of a set of r items is equal to

q = pr(1− p)N−r,
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and the probability that an itemset I of size r occurs k times, given a database of M transactions

and N items is equal to

P[support(I) =
k

M
] =

(

M

k

)

qk(1− q)M−k.

Unsurprisingly, the larger the itemset, the fewer occurences of it make it statistically significant.

The probability of it occurring randomly will become vanishingly small as r and k increase. For

example, from a typical protein purification experiment, k = 3, N = 1600, M = 500, p = 1
N

and

r = 3, this probability is less than 10−13. Thus, a threshold lower than .05 should be required for

significance. When taking into account that proteins are not distributed with equal probability in the

cell, it can be argued that this probability may not reflect the true significance of frequent modules.

Another approach to calculate the significance is by simulating the p-value as done by Hollunder

et al. [21]. In their work, a simulated database is generated with a given complex size distribution,

and a protein distribution estimated from the data. For this database, frequent itemsets occuring

at least twice are computed. For each frequent itemset, its frequency is computed into a p-value.

Similar to our result, this p-value computation also shows that long frequent itemsets are always

significant (having low p-value).

3.6 Result and discussion

We evaluated our approach on the Gav02 data set to allow comparison with the curation provided

by others [15, 24]. See Chapter 1 for an explanation of the data set and the benchmarks. The data

set consists of 586 purifications (transactions). After removing all purifications that were empty, the

working database comprised of 454 purifications covering 1358 proteins. Using the terminology of

frequent itemsets, it is a database of 454 transactions on 1358 items.

Because the benchmark data set contains overlapping protein complexes, we cannot directly

compare our frequent itemsets to the benchmark. However, assuming that all proteins in a frequent

itemset interact with one another, we can evaluate the prediction capability of the pairwise interac-

tion by computing specificity and sensitivity against the benchmark. We will refer to an (unordered)

pair of proteins from the same complex as a true pair, and to a pair of proteins from the same cluster
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as a predicted pair. We will call a true predicted pair true positive (TP), a true pair which has not

been predicted false negative (FN), a false pair predicted to be from a complex false positive (FP)

and a false, but not predicted pair true negative (TN). The following quantities summarize the per-

formance: Sensitivity, sens = #TP
#TP+#FN

and Specificity, spec = #TP
#TP+#FP

. A perfect clustering

method would have sens = spec = 1, which implies that neither FP nor FN errors were made.

We show the comparison to the MIPS and Reguly benchmark in Table 3.2 and 3.3. The accuracy

is comparable to the manual solution (Cellzome) by Gavin et al. [15] and the heuristic-based solu-

tion (Krause) by Krause et al. [24]. Since we did not outperform previous methods, we conclude

that, despite theoretical advantages over other models, frequent itemsets do not perform very well in

practice. As expected, both tables show that at high support values, prediction can be highly accu-

rate, with few false positive errors, but many interactions cannot be identified at such high support

levels because there are not enough repeated experiments done on most protein complexes, which

leads to many false negative errors. At the minimum support of 9 (2%), only one-complex, Rna14

in Figure 3.4, emerges, and no complex is tested more than 13 times (support of about 3%), the

highest support value possible for the Gav02 dataset before no itemsets can be recovered.

By observing the log-ratio (Figure 3.6) with respect to the background model, we find that

the significance of frequent itemsets correlates with the length of frequent itemsets: the longer the

frequent itemset, the more significant it is. The length of frequent itemsets also correlates with the

minimum support values; at lower support values, we can observe long frequent itemsets, but only

short ones at higher support values. See Figure 3.6. This implies that large complexes, more than

6 proteins, are difficult to observe. Most complexes that are found are small, less than 5 proteins.

Very few discovered complexes have been shown to be larger than 9 proteins. To recover most

complexes, we have to reduce the minimum support to 2 or 3 (less than 1%). A positive result is

that even at this low support level, the accuracy is still comparable to the Cellzome manual solution;

from this, we can conclude that for most protein complexes, the Gav02 data set contains 2 or 3 baits

per complex.

To visualize the frequent modules, we construct a pairwise interaction graph. Assuming that all

proteins in a frequent itemset interact with one another, they form a complete undirected subgraph

of protein interactions. A global view of all frequent modules can be obtained by constructing a

pairwise interaction graph from a union of these subgraphs. For example, the Rna14 complex is
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Min. support Sens. Spec.
(out of 454)

2 0.44 0.94
3 0.28 0.98
4 0.2 1.0
5 0.13 1.0
9 0.02 1.0

Table 3.2: Gav02: Comparison with the Reguly benchmark. Evaluated on 136 proteins annotated by
Reguly et al. This table shows prediction accuracy on interaction pairs at different support values;
the accuracy is shown as sensitivity (sens.), specificity (spec.) and number of absolute errors in
pairs. There are a total of 388 true positive interaction pairs. Cellzome: sens = 0.57, spec = 0.92.
Krause: sens = 0.41, spec = 0.95.

shown as an interaction graph in Figure 3.4.

For a larger data set with roughly 3, 000 items (proteins) such as the Gav06 data set, we need

to avoid the exponential growth of candidate itemsets by searching maximal frequent itemsets. We

used an implementation called MAFIA which is an efficient implementation of maximal frequent

itemsets (http://himalaya-tools.sourceforge.net/Mafia/). The sensitivity and

specificity at different minimum support (green line) compared with the method of Krause et al.

[24] are shown in Figure 3.3. When evaluating on 898 proteins drawn from the Reguly benchmark

and the Gav06 data set, the result shows that the accuracy of frequent itemsets is worse than the

previous method of Krause et al. [24] which assumes a partitioning model of clustering and only

assigns clusters to bait proteins. Our method has the advantage that it also assigns clusters to prey

proteins without creating a protein interaction graph and can predict overlapping protein complexes.

However, the prediction accuracy is disappointing due to insufficient data to estimate overlapping

protein complexes.
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Min. support Sens. Spec.
(out of 454)

2 0.51 0.83
3 0.37 0.91
4 0.25 0.94
5 0.16 0.90
9 0.03 1.0

Table 3.3: Gav02: Comparison with the MIPS benchmark. Evaluated on 176 protein. This table
shows prediction accuracy on interaction pairs at different support values; the accuracy is shown as
sensitivity (sens.), specificity (spec.) and number of absolute errors in pairs. There are a total of
239 true positive interaction pairs. Cellzome: sens = 0.78, spec = 0.78. Krause: sens = 0.63, spec
= 0.95.
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Figure 3.3: Gav06: Frequent itemsets compared with the Reguly benchmark. We compare the ROC
curve with solution from a method used in Krause et al. [24]. Evaluated on 898 common proteins
from the benchmark and the bait-proteins of Gav06 data set. MFI: Maximum Frequent Itemsets.
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Figure 3.4: The Rna14 complex. (a) A core module of Rna14 complex recovered by setting mini-
mum support to 9 out of 454. (b) At minimum support of 4 out of 454, the RNA14 complex almost
reconstructed. Blue nodes indicate proteins included due to applying the lower support threshold.
(c) The Rna14 complex organized into frequent modules found by Hollunder et al. [21].



3.6. Result and discussion 41

ARC18

ARC19

ARC15

ARC35

ARP2

ARP3

(a)

MRPL35

MRPL3

MRPL8

MRPL7

MRP7

MRPL4

YML6

MRPL28

(b)

Figure 3.5: Examples of complexes recovered at minimum support of 4. (a) A frequent module
found to perfectly match of The Arp2/3 complex. (b) Another module found to consist only of
mitochondrial ribosomal proteins (Mrpl).
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Figure 3.6: Comparison with the background model (Gav02): (a),(c) and (e) The log-ratio of ex-
pectation values with respect to the background model. (b),(d) and (f) Scatter plot; the x-axis is the
length of frequent itemsets and the y-axis is the log-ratio.


