
Chapter 2

Previous work

Predicting molecular complexes from experimental data is important because it provides a global

view on how proteins work together in the cell. Furthermore, for many proteins whose functions

are unknown, the knowledge of their protein complex formation can be used to help predict their

functions.

Yet, prediction of protein complexes from individual, unprocessed protein purifications remains

a challenge. The methods being used can be roughly classified into pairwise and more-than-pairwise

techniques. Pairwise techniques model the affinity between proteins on a pairwise basis, and allow

clusters of more than two proteins only as a consequence of pairwise interactions. For example, if

proteins A, B and C form a cluster, this is caused by pairwise affinity between A and B, B and C

or C and A. The simple assumption of pairwise interaction greatly reduces the number of variables

in the model and makes estimating them from a realistic number of experiments computationally

tractable.

However, Hollunder et al. [21] pointed out that in nature, protein interactions often involve more

than a pair of proteins. For example, a protein cluster {A,B,C} could require the presence of all

three proteins A, B and C for the complex to form, but none of the pairs of proteins would lead to a

cluster. These phenomena lead to interesting cluster relationships, such as overlapping clusters with

shared modules and hierarchies between clusters, but cannot be captured by pairwise models. We

were thus motivated to try frequent itemsets as a non-pairwise technique (see Chapter 3).

In this chapter, we examine previous works that try to model the interaction graph from experi-

mental data and subsequently predict protein complexes using graph-based clustering methods. The
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methods described in this chapter all assume pairwise interactions, leading to a partitioning model

of protein complexes where one protein is assigned to one group.

2.1 Protein-protein interaction graph

A protein-protein interaction network is an undirected graph G = (V,E) where V is a set of nodes

representing proteins and E is a set of edges. Edges are interpreted, depending on the particular

model, as physical interaction or protein complex co-membership and may be weighted to designate

interaction probability. Some methods take a protein-protein interaction graph curated by experts [4]

as input. Others produce an interaction graph as an intermediate result [24, 26].

For estimating protein-protein interaction graphs, several protein-protein interaction databases

are available, in particular for the yeast proteome. They include data based on the yeast two-hybrid

system [22, 45] and the TAP-MS analysis of protein complexes [14, 15, 26]. However, creat-

ing a protein interaction network from high-throughput experiments is difficult due to high error

rates. Therefore, with present techniques, the resulting networks are often inaccurate [10]. Cur-

rent approaches merge the results of different types of experiments such as two-hybrid systems,

co-immunoprecipitation and TAP-MS. Two-hybrid results are inherently pairwise, whereas results

from other experiments are sets of one or more proteins.

Biochemical purifications can be modeled as observations of protein complexes caused by some

underlying pairwise protein interaction topology that is not directly observable. In the general case

of the purifications used by Gavin et al. [14, 15] and Krogan et al. [26], one affinity tagged protein

is used as a bait to pull associated proteins out of a yeast cell lysate. The two extreme cases for

the topology underlying the population of complexes from a single purification experiment are a

minimally connected spoke model, where the data is modeled as pairwise interactions only between

bait and preys, and a maximally connected matrix model, where the data is modeled as all proteins

connected to all others in the set [4]. The real topology of the set of proteins must lie somewhere

between these two extremes. Both have been previously used, for example, Gilchrist et al. [17] uses

the spoke model.

For method validation, the most widely accepted protein-protein interaction graph can be ob-

tained from physical interaction data provided by the Munich Information Center for Protein Se-
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quences (MIPS) [32]. The MIPS data includes interactions collected from small-scale experiments

and the core data of Ito et al. [22]. The data is regarded as highly reliable [11]. Other high-

quality databases of protein-protein interactions are the Biomolecular Interaction Network Database

(BIND) [2]. MIPS is hosted at http://mips.gsf.de and BIND at http://www.bind.ca.

In the following, we will describe two specific computational methods from Bader and Hogue

[4] and Krogan et al. [26] designed to obtain a set of protein-protein interactions from experimental

data and to predict protein complexes given such pairwise protein-protein interactions.

2.2 Molecular complex detection algorithm (MCODE)

The MCODE algorithm [4] transforms each individual purification into an interaction graph using

the spoke model of interactions. The MCODE algorithm uses a vertex-weighting scheme based on

a measure called the graph density which measures the total connectivity of a given graph [4]. The

graph density DG of a graph, G = (V,E), with number of vertices |V | and number of edges |E| is

defined as

DG =
|E|
|E|max

,

where |E|max = |V |(|V |−1)
2 .

The first stage of MCODE, called vertex weighting, weights all vertices based on their local

network density using the highest k-core subgraphs. A k-core is a subgraph G of minimal degree k,

for all v in G, degree(v) ≥ k. The highest k-core of a graph is the most densely connected k-core.

The weight of a vertex v is defined to be the density of the highest k-core of the immediate neighbors

of v including v. We summarize the vertex weighting procedure in Algorithm 1. The density of the

k-core subgraph is used because it amplifies the weighting of highly interconnected graph regions

while removing the many less connected vertices that are normally part of a protein interaction

network. A given highly connected vertex v in a dense region of a graph may be connected to

many vertices of degree one (single linked vertices). These low degree vertices do not interconnect

within the neighborhood of v and thus would reduce the clustering coefficient of v, but not the

core-clustering coefficient.

The second stage, called complex prediction, takes as input the vertex weighted graph and a

parameter for a vertex weight threshold, seeds a complex with the highest weighted vertex v and
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computes the connected components of v where all vertices have weights above a given threshold.

A vertex is not visited more than once and therefore complexes cannot overlap. The algorithm is

repeated for the next highest unseen weighted vertex remaining in the network. In this way, the

highly connected subgraphs of the network are identified. The vertex weight threshold parameter

controls the density of the resulting complexes. Resulting complexes from the algorithm are scored

and ranked. Let C = (V,E) be a complex subgraph. The complex score is defined as DC |V |. This

ranks larger and denser complexes higher in the results. Other scoring schemes are possible, but are

not evaluated by MCODE.

The algorithm is slower than the fastest min-cut graph clustering algorithm, a popular method

to find highly connected subgraphs, at O(N 2 logN) [18], but MCODE is easy to implement and

visualize because it is based on local density. The view of local density is useful for examining

protein interaction graph. The implementation of MCODE is available from http://cbio.

mskcc.org/˜bader/software/mcode/index.html.

Algorithm 1: MCODE-VERTEX-WEIGHTING
Input : A protein-protein interaction graph G = (V,E)

Output : Vertex weights W for all vertices in G
forall v ∈ V do

N = {w : (v, w) ∈ E};
K = the highest k-core graph among vertices in N ;
k = the minimal degree of the highest k-core K;
d = the density of K;
W (v) = k × d;

2.3 Markov clustering

Krogan et al. [26] created a high quality data set of protein-protein interactions from experiments

using tandem affinity purification. They processed 4, 562 different tagged proteins of yeast Saccha-

romyces cerevisiae and used mass spectrometry to identify purified proteins. The main difference

from MCODE is that it learns a probabilistic model of protein interactions from the data. Ma-

chine learning is used to integrate the mass spectrometry scores and assign probabilities to the

protein-protein interactions. The final result is the core data set comprising of 7, 123 protein-protein

interactions involving 2, 708 proteins. A protein interaction graph is created from this data set and



2.4. A statistical model of protein interaction 21

Markov clustering is used to cluster these proteins into 547 disjoint complexes.

The key intuition behind Markov clustering (MCL) is that a random walk that visits a dense

cluster will likely not leave the cluster until many of its vertices have been visited. Rather than

simulating random walks, MCL iteratively modifies a matrix of transition probabilities. Given a

weighted undirected graph G = (V,E), starting from M = M(G), a transition matrix derived

from the graph corresponding to random walks of length at most one, the following two operations

are iteratively applied:

1. expansion, in which M = M e, where e ∈ N>1 thus simulating e steps of a random walk with

the current transition matrix

2. inflation, in which M is re-normalized after taking every entry to its rth power, r ∈ R
+.

Note that for r > 1, inflation emphasizes the heterogeneity of probabilities within a row, while for

r < 1, homogeneity is emphasized. r also controls the number of clusters at each step and increasing

heterogeneity results in a higher number of clusters. The algorithm converges with probability

∼ 1 and the calculation stops upon reaching a recurrent state of a fix-point [46]. A recurrent

state of period k ∈ N is a matrix that is invariant under k expansions and inflations, and a fix-

point is a recurrent state of period 1. The clustering is induced by connected components of the

graph underlying the final transition matrix. Pseudo-code for MCL is given in Algorithm 2. The

implementation of MCL is available at http://mican.org/mcl.

2.4 A statistical model of protein interaction

Both techniques described above are heuristic techniques that, while yielding useful results, make

no explicit statements regarding their optimality with respect to any criteria. Gilchrist et al. [17]

have developed the only approach so far that introduces a probabilistic method based on maximum

likelihood estimation. It assumes an indirectly observable model of protein interaction with random

experimental errors. We will describe it in details here because the observation model motivated our

approach based on Markov Random Fields described in Chapter 5.

Tandem affinity purifications use bait proteins to purify protein complexes. Other proteins de-

tected in a purified complex are called prey proteins. Because prey proteins are thought to interact
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Algorithm 2: Markov Clustering
Input : A weighted undirected graph G = (V,E), expansion parameter e, inflation

parameter r
Output : A partitioning of V into disjoint components

M ←M(G)
while M is not fixpoint do

M ←M e

forall i ∈ V do
forall j ∈ V do

M [i][j] ←M [i][j]r

forall j ∈ V do
M [i][j] ← M [i][j]

P

k∈V

M [i][k]

H ← graph induced by non-zero entries of M
C ← clustering induced by connected components of H

with the bait within a protein complex, we define a true interaction as occurring between proteins

which are members of the same complex. The systematic and random errors generated by any ex-

perimental method fall into two categories, false negative and false positive errors. False negative

errors occur when an experiment fails to identify members of a protein complex. False positive

errors occur when an experiment identifies additional proteins that are not part of a complex.

The statistical model proposed by Gilchrist et al. [17] takes random errors into account based on

a mechanistic description of how the data in a single experiment is generated. The model allows us

to estimate the false negative and false positive error rates of a data set without the use of a manual

reference set of protein complexes, and produces a complete undirected graph of pairwise protein

interactions, weighted with the respective likelihoods of interaction. In contrast to the techniques

described in sections 2.2 and 2.3, it does not calculate a clustering.

2.4.1 A hypothetical dataset

From a sampling perspective, each experiment given a certain bait protein provides a “trial” to gather

information on which proteins interact with the bait protein. For illustration, we use the example

given in Gilchrist et al. [17] for a scenario involving four proteins v, w, x, y (Fig. 2.1). When we

use v as a bait protein, we can view this experiment as a trial to observe three interactions between

v and the proteins w, x, y. In repeating this experiment, we would have a second trial to observe



2.4. A statistical model of protein interaction 23

these three interactions. A third experiment, now using protein w as a bait, provides a third trial to

observe an interaction between v and w, as well as the first trial to observe an interaction between w

and proteins x or y. At the end of these three experiments, we have had three trials for observing an

interaction between v and w, two trials for observing an interaction between v and x and no trials

for observing an interaction between x and y. We define t as the number of trials for observing an

interaction between two particular proteins. For example, from these three experiments, t is equal

to 3, 2, 1 and 0 for the protein pairs (v, w), (v, x), (w, x) and (x, y), respectively.

However, in each trial we may or may not observe an interaction. Consequently, we define s

(success) as the number of experimental observations that two proteins interact (0 ≤ s ≤ t). In

Figure 2.1(c), we illustrate how the experimental results from the three experiments can be summa-

rized as a set of observation values (t, s) for each possible pair of proteins. The transformation of

experimental data into observations (t, s) forms the basis of the statistical model.

2.4.2 A Bayesian model for interaction probability

As we have just shown, we can represent experimental information on any protein-protein interac-

tion by the number of experimental trials (t) and successes (s) in a data set. We will next define the

statistical model to interpret this information in a quantitative manner.

We begin by defining a binary random variableHij for each interaction of a pair of proteins i and

j. Hij = 1 if two proteins i and j interact by occurring within the same protein complex. Hij = 0 if

i and j do not occur within the same complex. Because the two events are complementary, we can

compute P[Hij = 0] = 1−P[Hij = 1]. The statistical model will calculate the posterior probability

based on the likelihood of observing s successes and the prior of interaction.

In order to calculate the probability of observing s successes given Hij , we need to define

two terms: the false negative error rate ν and the false positive error rate φ. Each of these rates

is specific to a particular experimental technique and represents the random errors associated with

such a technique. The model will ignore systematic errors. The false negative error rate ν is equal to

the probability that, for any given trial, we do not observe an interaction between two proteins that

occur within the same complex. Conversely, the false positive error rate φ is equal to the probability

that, for any given trial, we observe an interaction between two proteins that do not occur together

within the same complex. Using our example, if proteins v, w and x interact with one another to
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(a) Initial information

Trial Bait Prey
I v w,y
II v w,x
III w v,x

(b) Experimental trials
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(d) Data interpretation

Figure 2.1: Illustration of the statistical approach with a hypothetical dataset. (a) Two proteins
are connected by an edge if they are part of the same complex. The panel illustrates the lack of
confidence in any such association. (b) The results from three experimental trials in which v was
used twice as a bait protein and protein w was used once. (c) Observation of the experimental data
from the trials in (b) through their (t, s) values. (d) The posterior probability of each protein-protein
association based on the data in (b) using a hypothetical false negative error rate, ν = 0.35, false
positive error, φ = 0.1, and the prior probability of an association, ρ = 0.55.
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form a single complex, then the first experiment with v has one false negative interaction because x

is not observed with v. This experiment also has one false positive interaction because of protein y.

The second and third experiments had no false positive or false negative observations.

If we assume that the random experimental errors are independent of one another, the probability

of observing s successes out of t trials follows a binomial distribution. Given Hij = 1, the two

proteins i and j occur within the same complex. The probability of successfully observing i and j

is 1− ν. Define Oij = (t, s) to be an observation value of an interaction between proteins i and j.

Thus, given Hij = 1, the probability of observing an interaction s times out of t trials for proteins i

and j is

P[Oij = (t, s)|Hij = 1] = P[Oij = (t, s)|Hij = 1, ν] = P[s|Hij = 1, t, ν]

=

(

t

s

)

νt−s(1− ν)s. (2.1)

In contrast, given the complementary condition Hij = 0, the probability that we will observe a

false association given the false positive error rate φ is

P[Oij = (t, s)|Hij = 0] = P[Oij = (t, s)|Hij = 0, φ] = P[s|Hij = 0, t, φ]

=

(

t

s

)

(1− φ)t−sφs. (2.2)

It follows from Bayes’ Theorem that

P[Hij = 1|Oij = (t, s)] =
P[Oij = (t, s)|Hij = 1]ρ

P[Oij = (t, s)]
(2.3)

=
P[Oij = (t, s)|Hij = 1]ρ

P[Oij = (t, s)|Hij = 1]ρ+ P[Oij = (t, s)|Hij = 0](1− ρ) ,

where the likelihood term P[Oij |Hij] is defined by Equations 2.1 and 2.2. The term ρ defines the

prior probability for Hij = 1; ρ is equal to the probability that two proteins selected at random are

found within the same protein complex. In the absence of any experimental data when t = 0, the

right-hand side of Equation 2.3 simplifies to the prior probability ρ.

Figure 2.1 illustrates the application of the model to the hypothetical example. Given a false

positive error rate, false negative error rate and a prior probability, we compute from Equations 2.1
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and 2.2 the likelihood of observing s successes out of t trials for each pairwise interaction (Fig-

ure 2.1(c)) and from Equation 2.3 the posterior probability. As shown in Figure 2.1(d), we can

represent all the possible protein-protein interactions using a complete weighted undirected graph

whose nodes correspond to proteins and whose edges have weights that correspond to the posterior

probability that two proteins are part of the same complex.

For applications to real data, it is important to estimate the three parameters of the model: ν,

φ and ρ. We will show next how they can be estimated from the data by solving the maximum

likelihood problem.

2.4.3 Estimating model parameters

We begin our estimation by defining the likelihood L of observing a set of parameter values ν, φ

and ρ. It follows from Equations 2.1- 2.3 that

L(ν, φ, ρ|t, s) = (1− ν)sνt−sρ+ φs(1− φ)t−s(1− ρ). (2.4)

Any one observed value (t, s) does not contain much information on the parameters, ν, φ and ρ.

However, because high-throughput datasets contain many experimental trials (t), we have enough

information to compute L over the distribution of values (t, s). We define a matrix Z whose entry

Z[t, s] is the number of times a particular pair of (t, s) occurred in a high-throughput experiment.

Assuming independence between interactions, the total likelihood L of a set of parameter values ν,

φ and ρ given the matrix Z can be written as

L(ν, φ, ρ|Z) =
tmax
∏

t=1

t
∏

s=0

[(1 − ν)sνt−sρ+ φs(1− φ)t−s(1− ρ)]Z[t,s], (2.5)

where tmax is the maximum number of times any one interaction has been used in the high-

throughput experiment. By finding the parameter values that maximize L of Equation 2.5 for a given

Z matrix, we can obtain maximum likelihood estimates for ν, φ and ρ. Gilchrist et al. [17] provide

more details on how to estimate these parameters from multiple high-throughput experiments and

the accompanying web-site http://www.tiem.utk.edu/˜mikeg/software.html pro-

vides a stand-alone software program to estimate these parameters given a Z matrix. An example
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Dataset ν̂ φ̂ ρ̂

Gavin02 0.346 1.07 × 10−3 1.88 × 10−3

Ho02 0.539 1.30 × 10−3 1.88 × 10−3

Gavin06 0.407 1.35 × 10−3 3.89 × 10−3

Table 2.1: Maximum-likelihood estimates of false negative error rate, ν, false positive error rate, φ
and global prior ρ for the Gavin02 (Gavin et al. [15]), Ho02 (Ho et al. [20]) and Gavin06 (Gavin
et al. [14]) datasets.

of the maximum likelihood estimates for different datasets is shown in Table 2.1.

As discussed in the beginning of this section, Gilchrist et al. [17] unfortunately stop short of

calculating a clustering with the same rigorous probabilistic techniques they used to calculate in-

teraction probabilities. Chapter 5 fills this gap and shows that this more rigorous approach leads to

better results than previous techniques.

2.5 Prediction of protein function using protein-protein interaction

graph

The task of assigning protein functions to novel proteins is closely related to the task of finding

protein complexes. Several approaches have been applied to this problem, including the analysis

of gene expression patterns, phylogenetic profiles and protein-protein interactions. Assuming that

proteins interact with one another to achieve a particular function, we will summarize methods

based on protein-protein interaction data.

It should be noted that the interaction partners of a protein may belong to different functional

categories. This complex network of within-function and cross-function interactions makes the

problem of functional assignment a difficult task. Methods based on chi-square statistics [19] and

on frequencies of interaction partners having certain functions of interest [13, 38] have been used to

assign functions to unannotated proteins. However, these methods lack a systematic mathematical

model. Deng et al. [11] propose a superior probabilistic method that uses Markov Random Fields

to model a protein-protein interaction graph and applies Bayesian analysis to assign functions to

proteins. It is limited in so far as it only assigns known functional categories to proteins. Although

this probabilistic approach also uses Markov Random Fields, our approach differs in that we use
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Markov Random Fields to model protein complexes, not a protein-protein interaction graph. Our

prediction is an assignment of proteins to complexes using maximum likelihood analysis.

In summary, it should be noted that all of the methods described above assume a curated protein-

protein interaction graph constructed from the MIPS database of protein complexes. Their predic-

tion performance depends on the quality of the input interaction graph, because they do not model

observational errors. As a result, they cannot be used to predict functions based on the experimental

data. Furthermore, they cannot be used to discover novel functional categories.


