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Abstract

Recent advances in proteomic technologies such as two-hybrid and biochemical purification allow
large-scale investigations of protein interactions. The goal of this thesis is to investigate model-
based approaches to predict protein complexes from tandem affinity purification experiments. We
compare a simple overlapping model to a partitioning model. In addition, we propose a visualization
framework to delineate overlapping complexes from experimental data.

Previous techniques for protein interaction analysis rely on heuristic algorithms. They yield
useful results, but make no attempt to provide a model of protein complexes from experimental
data. In addition, heuristic algorithms often have a plethora of adjustable parameters, with very
little guidance on how to adjust them for a particular dataset. We believe that model-based tech-
niques provide a more rigorous framework for protein interaction analysis. A probabilistic model
explicitly and quantitatively states the assumptions about how protein interactions are exposed by
the experimental technique. The actual algorithm then uses the model to compute an estimate of the
clustering.

We propose two models to predict protein complexes from experimental data. Our first model is
in some sense the simplest possible one. It is based on frequent itemset mining, which merely counts
the incidence of certain sets of proteins within the experimental results. The affinity of two sets of
proteins to form clusters is modeled to be independent, regardless of any overlapping members
between these sets. Our second model assumes that formation of protein complexes can be reduced
to pairwise interactions between proteins. Interactions between proteins are more likely for pairs of
proteins if they come from the same cluster. Based on this model, we use Markov Random Field
theory to calculate a maximume-likelihood assignment of proteins to clusters.

We compare the effectiveness of the two models by evaluating them against two benchmarks.
In our evaluation, the partitioning model performs much better than the overlapping model. This
indicates that protein clustering in nature is likely to be a pairwise phenomenon, despite individual
examples to the contrary. The performance of the second model is as good as previous techniques
based on heuristics, and in contrast to them it has no adjustable parameters, making us confident
that it will perform well on a wide range of datasets.

Finally, we developed a useful visualization method for tandem affinity experimental data. Pu-
rification results are modeled as a directed graph. Edge weights are defined by the inclusion prob-
ability between two purifications. This measure captures the asymmetric nature of the bait-prey
experiment. We demonstrate the effectiveness of the method by presenting a visualization of the
most recent large-scale experiments.
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Notation

L(v,¢,p|Z)

N

A graph G with a vertex set V" and an edge set £

Number of vertices

Number of edges

The clustering coefficient of a vertex 4

The density of a graph G

A transition matrix derived from a graph G corresponding to ran-
dom walks of length at most one

The number of trials for testing an interaction between two par-
ticular proteins

The number of experimental observations (successes) that two
proteins interact (0 < s <)

A binary random variable representing interaction between pro-
teins i and j

An observation value for a pair of proteins ¢ and j, defined as
(t,5)

The false negative error rate for any given protein interaction
The estimated false negative error rate for any given protein in-
teraction

The false positive error rate for any given protein interaction

The estimated false positive error rate for any given protein inter-
action

the prior probability for any given protein interaction

the estimated prior probability for any given protein interaction
The likelihood of observing a set of parameter values v, ¢ and p,
given values of ¢ and s

A matrix whose entry Z]t, s is the number of times a particular
pair of (¢, s) occurred in multiple experiments.

The likelihood of observing a set of parameter values v, ¢ and p,
given the count matrix Z

Number of items or number of proteins in the universe P



Notation

A universe of items or a universe of proteins

A transaction which is a set of items, T' C P

A database of transactions

Number of transactions in the database D

An exact itemset which is always a subset of 7', 3T € D

The fraction of the transactions in D that support the itemset X
A user-defined minimum support threshold, o € [0, 1]

An input database with false negative and false positive rate

The expectation of an itemset I given the input D

Annealing factor

a discrete random variable associated with a protein 4 indicating
a cluster assignment ranging from {1,..., K}

The negative log-likelihood of Markov Random Fields

A potential function of Markov Random Fields

a cost for a protein 4 assigned to a cluster k.

a probability of a protein 4 in a cluster k. It is a function of Cy.
An identifier for a bait protein of the 4th purification, B(i) €
{1,...,N}

An N-vector of binary random variable indicating the true ith
purification with the bait B(7)

An observation value (t, s) for a protein interaction between the
bait protein B(i) and a prey protein &
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