Appendix A

Notation

Ø	empty set
\mathbb{R}	set of real numbers
\mathbb{M}^n	set of all real square matrices of order n
Ω	bounded open subset of \mathbb{R}^n
Γ	boundary of Ω
$L_2(\Omega)$	space of square integrable functions on Ω
$H^m(\Omega)$	Sobolev spaces of order $m = 1, 2, \ldots$
•	norm in vector space
$\ \cdot\ _2$	Euclidean vector norm
$\ \cdot\ _{0,\Omega}$	norm in the space $L_2(\Omega)$
$\ \cdot\ _{m,\Omega}$	norm in a Sobolev space
$a_l b_l = \sum_i a_i b_i$	Einstein's sum notation
$\partial_i = \partial/\partial x_i$	partial derivative with respect to x_i

L	differential operator
Δ	Laplace-operator
abla	Nabla-operator
$\boldsymbol{\nabla}\cdot\mathbf{u} = \mathbf{div}\mathbf{u} = \partial_i u_i$	divergence of a vector field
$\mathbf{\nabla}\phi = \mathbf{grad}\phi = (\partial_1\phi_1, \ldots, \partial_n\phi_n)^T$	gradient of a scalar function
$\nabla \mathbf{u} = \partial_j u_i$	Jacobian of a vector field
I	identity matrix
$\det(\mathbf{A})$	determinant of a matrix
$\operatorname{tr}(\mathbf{A}) = \sum_{i} a_{ii}$	trace of a matrix
$\ \mathbf{x}\ _{\mathbf{A}} = \sqrt{\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}}$	energy norm
$\lambda_{\min,\max}(\mathbf{A})$	min/max eigenvalue of a matrix
$\kappa(\mathbf{A}) = rac{\lambda_{ ext{max}}}{\lambda_{ ext{min}}}$	condition number of a matrix
$\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$	basis vectors in \mathbb{R}^n
$\operatorname{\mathbf{div}} \mathbf{T} = \sum_i \sum_j \partial_j T_{ij} \mathbf{e}_i$	divergence of a tensor field
$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^{\mathrm{T}} \mathbf{b}$	vector inner product
$\langle \mathbf{A}, \mathbf{B} \rangle = \text{tr}(\mathbf{A}^{\mathrm{T}}\mathbf{B})$	matrix inner product
u	displacements
t	tractions
n	normal
σ	second Piola-Kirchhoff stress tensor
ε	strain tensor

λ,μ	Lamé constants
E	Young modulus
ν	Poisson ratio
С	tensor of elastic constants
$\mathbf{A}(\mathbf{u})$	operator of non-linear elasticity
$\mathbf{A}'(\mathbf{u})$	Fréchet derivative of $\mathbf{A}(\mathbf{u})$

Appendix B

Fundamental Solution of Linear Elasticity

A theoretical solution of the Lamé-Navier PDE (3.54) can usually be found for a very limited number of boundary value problems with the special intrinsic symmetry [38]. One of such important cases is the so-called *fundamental solution* that describes the deformation of an infinitely extended linear elastic medium under the impact of the Dirac-delta $\delta(\mathbf{x})$ distributed force density applied at the point O (see Figure A.1)

$$\frac{E}{2(1+\nu)} \left(\Delta \mathbf{u} + \frac{1}{1-2\nu} \operatorname{grad} \operatorname{div} \mathbf{u} \right) = -\mathbf{f} \delta(\mathbf{x}) , \qquad (A.1)$$

where f is a constant vector (not a function of coordinates). The fundamental solution of (3.54), also known as the *Green's function* of linear elasticity is given by

$$\mathbf{u} = \frac{1+\nu}{8\pi E(1-\nu)} \frac{(3-4\nu)\mathbf{f} + f\cos\alpha\,\mathbf{e}_r}{r}, \qquad (A.2)$$

where $f = |\mathbf{f}|$, $r = |\mathbf{r}| = |OP|$ is the vector from the starting point O to the space point P, $\mathbf{e}_r = \mathbf{r}/r$ is the unit vector in the direction of \mathbf{r} and α is the angle between \mathbf{f} and \mathbf{e}_r , see Figure A.1. In elasticity theory, it can be shown that every solution of an arbitrary linear elastic boundary value problem can be represented as a linear combination of fundamental solutions. The singularity of the fundamental solution in the point O is the direct result of the "unnatural" behavior of the Dirac-delta distribution

$$\lim_{r \to 0} \mathbf{u} = \infty \,. \tag{A.3}$$

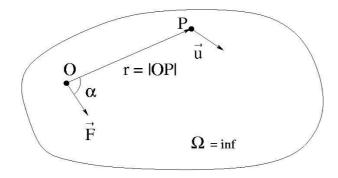


Figure A.1: Deformation of an infinite linear elastic medium under the impact of the Dirac-delta $\delta(\mathbf{x})$ distributed force density applied at the point *O*.

In [48], a singularity free solution of the Lamé-Navier PDE for the *Gauss*-distributed force density is derived

$$\frac{E}{2(1+\nu)}\left(\mathbf{\Delta u} + \frac{1}{1-2\nu}\operatorname{grad}\operatorname{div}\mathbf{u}\right) = -\frac{\mathbf{f}}{(\sqrt{2\pi}\sigma)^3}\,\exp(-\frac{r^2}{2\sigma^2})\,,\qquad(A.4)$$

where σ denotes the characteristic width of the Gauss distribution. The solution of (A.4) is given by

$$\mathbf{u} = \frac{1+\nu}{8\pi E(1-\nu)} \{\Phi_f(\xi)\mathbf{f} + \Phi_r(\xi)f\cos\alpha\,\mathbf{e}_r\},\tag{A.5}$$

where

$$\Phi_{f}(\xi) = \frac{\sqrt{2}}{\sigma} \left\{ \frac{(3-4\nu)(\xi)}{2\xi} + \frac{(\xi)}{4\xi^{3}} - \frac{\exp(-\xi^{2})}{2\sqrt{\pi}\xi^{2}} \right\}$$

$$\Phi_{r}(\xi) = \frac{\sqrt{2}}{\sigma} \left\{ \frac{(\xi)}{2\xi} - \frac{3(\xi)}{4\xi^{3}} + \frac{3\exp(-\xi^{2})}{2\sqrt{\pi}\xi^{2}} \right\}$$
(A.6)

with $\xi = \frac{r}{\sqrt{2}\sigma}$. It can be easily shown that (A.5) converges to (A.2) for $r \gg \sigma$ and in the limit $r \to 0$ remains regular

$$\lim_{r \to 0} \mathbf{u} = \frac{(5 - 6\nu)(1 + \nu)}{3(\sqrt{2\pi})^3(1 - \nu)E\sigma} \mathbf{f} .$$
(A.7)