
Chapter 6

Static Soft Tissue Prediction

In this chapter, the results of experimental investigations carried out with artifi-
cial objects as well as with the geometric models of real patients derived from
tomographic data are presented. Some general aspects of the FEM modeling of
deformable objects can be gathered by studying simple artificial objects being un-
der the impact of predefined loads. We focus on the comparison of the numerical
results with the theory, the effects of the mesh refinement as well as the com-
parison between the linear and non-linear elastic approaches. Finally, we apply
our approach for the prediction of the patient’s postoperative appearance in the
surgical planning of large and small bone rearrangements.

6.1 Experiments with Artificial Objects

The experiments with artificial objects are carried out (i) to compare the result of
the finite element simulation with the theory, (ii) to quantify the difference be-
tween the linear and non-linear elastic approach and (iii) to validate the advanced
modeling techniques with simple 3D objects.

Linear elastic model. In order to validate the numerical simulation of the ob-
ject deformation, one ideally needs a closed-form solution of the given problem.
Unfortunately, there are very few examples of closed-form solutions in three-
dimensional structural mechanics. One of such closed-form solutions is the so-
called fundamental solution of the Lamé-Navier PDE, which describes the de-
formation of an infinitely extended linear elastic medium under the impact of
the Dirac-delta distributed force density, see Appendix A. The fundamental so-
lution yields the deformation (the displacement field) for every point of infinite
mechanical continuum as a function of coordinates u(x). An infinitely extended
medium Ω∞ cannot be trivially discretized by finite elements. However, an arbi-
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Figure 6.1: Cubic subdomain of infinitely extended elastic continuum being under
the impact of the force density applied at the point O.

trary shaped subdomain Ω ⊂ Ω∞ can be understood as a separate elastic body with
constraints given on its boundary by the prescribed displacements of all surface
points ∀x , x ∈ Γ ⊂ Ω. Consider a cubic subdomain of Ω∞ as shown in Figure
6.1. The force applied at the point O generate a displacement field in the whole
domain Ω∞. Since the fundamental solution for the Dirac-delta distributed force
density (A.2) is singular in the source O, we use the singularity-free solution de-
rived for the Gauss distributed force density (A.5), which predicts theoretical dis-
placements of both boundary and inner points of the test cube uT (x) ∀x , x ∈ Ω.
Further, in accordance with the Somigliana’s identity [8]: the displacement of an
arbitrary inner point P of a homogeneous linear elastic domain is uniquely de-
scribed by the boundary displacements ui(Q) and tractions ti(Q)

ui(P ) =

∫

Γ

u∗i (P,Q)tj(Q)dS −
∫

Γ

t∗i (P,Q)uj(Q)dS . (6.1)

Thus, we can formulate the following boundary value problem for the discrete
domain ΩN :

Compute the displacements of inner nodes uN(x) ∀x , x ∈ Ω for the pre-
scribed boundary displacements uN(x) ∀x , x ∈ Γ.

Consequently, the results of the FE simulation uN(x) for inner nodes of the
cube ∀x , x ∈ Ω have to be compared with the theoretically predicted displace-
ments uT (x) for these nodes.

This strategy is applied in conjunction with the verification of the domain re-
finement. For this purpose, we consider four levels of uniform refinement of the
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(27 nodes) (125 nodes)

(729 nodes) (4913 nodes)

Figure 6.2: Uniform refinement of cubic domain.

Figure 6.3: Comparison between the FEM solution and the theory along the line
probe AB (Figure 6.1) for different levels of domain discretization (Figure 6.2).
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cubic domain (see Figure 6.2):

0-level (initial discretization): 27 nodes (48 tetrahedra),

1-level: 125 nodes (384 tetrahedra),

2-level: 729 nodes (3072 tetrahedra),

3-level: 4913 nodes (24576 tetrahedra).

The comparison is carried out as follows:

1. First, the theoretical displacement uT for N points of the cube are calcu-
lated by setting their coordinates in (A.5). The material properties are defined
with rE = 1 and ν = 0.4. The direction of the force F is set along the line probe
AB, i.e. α = 0, cf. Figure 6.1.

2. Then, the displacements uN of inner nodes of the cube with the same
material properties are computed via the linear elastic FEM for the boundary con-
ditions given by the prescribed displacements of surface nodes as described above.

3. The relative difference |uT − uN |/|uN | for each node along the line probe
AB (see Figure 6.1) is measured.

In Figure 6.3, the results of this comparison are shown. The effect of the
domain refinement is clearly seen in the reduction of the numerical error by factor
2 as predicted by the theory. The maximum relative difference between the FEM
and the theory in this example amounts up to 1.5%.

Linear vs non-linear elastic model. The comparison between the linear and
non-linear elastic approach is carried out with a simple artificial model consisting
of a cylindric object with isotropic and homogeneous material properties, see Fig-
ure 6.4 (a). The boundary conditions are given by the prescribed displacements at
the top of the cylinder, see Figure 6.4 (b). The associated boundary value prob-
lem is solved both by applying the linear and non-linear elastic FEM, see Figure
6.4 (c,d). It can be seen that the non-linear calculation yields significantly smaller
displacements in comparison with the linear one, which is the direct result of the
higher ”geometrical stiffness” predicted by non-linear elasticity. In Figure 6.4 (e),
line probes for the linear and non-linear solution measured along the main axis
of the cylinder are depicted. The linearization error in this example reaches the
maximum value on the boundary and amounts up to about 20 percent!
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(a) (b)

(c) (d)

(e)

Figure 6.4: (a): undeformed cylindric object, (b): boundary conditions on the top
of the cylindric object, (c,d): comparison between the linear and non-linear elastic
deformation of a cylindric object, (e): line probes for the linear and non-linear
deformation measured along the main axis of the cylinder.
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Convergence behavior in dependence on ν. The Poisson ratio is the critical
parameter of the pure displacement FEM. When the Poisson ratio approaches 0.5,
the condition number of the stiffness matrix rapidly increases and the convergence
of the PCG method becomes extremely bad. In Figure 6.5, the number of PCG it-
erations required to achieve the predefined precision of the solution in dependence
on the Poisson ratio is shown. This diagram shows that convergence rate of the
PCG method becomes extremely worse for ν > 0.45. Thus, we consider ν = 0.45
as an admissible upper threshold for the approximation of a quasi-incompressible
material via the pure displacement FEM.

Figure 6.5: Convergence rate of the PCG method as a function of ν.

Sliding contact modeling. Besides the essential and natural boundary condi-
tions (BC), special boundary constraints arise in the soft tissue modeling. For
instance, contacts between lips and teeth, skin and muscles appear as a kind of
sliding. Sliding can be modeled as the homogeneous essential BC with respect
to the local surface normal. To demonstrate the effect of sliding, following ex-
periment is carried out. We consider a cylindric object under the impact of the
force density acting across the XY -plane from ”north-west” to ”south-east” , see
Figure 6.6 (top). The top of the cylinder is fixed. In Figure 6.6 (middle), the defor-
mation of the cylinder with the natural BC on the remaining boundary is shown.
Figure 6.6 (bottom) illustrates the deformation with the sliding contact constraint
u(x)T n(x) = 0 at the cylinder bottom.
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Figure 6.6: Top: undeformed cylindric object. Middle: deformation without slid-
ing contact constraint. Bottom: deformation with sliding contact constraint on the
cylinder bottom.
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6.2 Soft Tissue Prediction in the CAS Planning

In this section, we present the experimental results of the soft tissue prediction
within the craniofacial surgery planning. The experiments are carried out on the
basis of geometrical models derived from preoperative CT data. Since postop-
erative tomographic data for the same patient are not available, we concentrate
our efforts on the qualitative and indirect quantitative validation of the simulation
outcome. For the qualitative evaluation, the surgeons are consulted. In order to
quantify the modeling error, e.g., the error produced by the linear elastic approx-
imation or the particular material description, one even do not need the ”correct
solution”, since the modeling approach, as for instance the linear elastic FEM,
implies the appropriate indicators for error detection itself.

Clinical case I. Large deformation. In the first example, the complete surgical
planning of a juvenile patient with congenital mandibular hypoplasia, including
the soft tissue prediction, is simulated, see Figure 6.7. The correcting surgi-
cal impact for this patient consists in the calus (mandible) distraction, which is
shown in Figure 6.8. The total maximum displacement of bone structures for this
patient amounts up to nearly 40mm, which cannot be classified as small deforma-
tion anymore. Such extremely large bone rearrangement is performed by surgeons
stepwise over several months with the help of mechanical distractor device. Each
step consists in an advancement of mandibula by approximately 1mm per day.
Both the linear and non-linear elastic FEM are applied for the static prediction of
the patient’s postoperative appearance [50, 51].

Linear elastic approach. First, the deformation of facial tissue is computed step-
wise with the linear elastic approach. The results of the soft tissue prediction for
eight steps, each one associated with the mandible distraction of 0.4− 0.6cm, are
shown in Figure 6.9. Since the calus distraction has not yet been completed, a
direct comparison with the postoperative data is not possible. Thus, we are inter-
ested in the quantification of the error caused by the disregard of the geometrical
non-linearity in the linear elastic approach. In order to quantify the lineariza-
tion error, a criterion based on the monitoring of the maximum component of the
linearized strain tensor ε = max|∇u | is used, cf. (3.22). The correction of non-
linear elasticity, i.e. the contribution to the non-linear terms of the strain tensor,
is of the order o(ε2). This means that ε indicates the relative linearization error.
Further, the percentage of tetrahedrons with ε exceeding a certain threshold εi is
monitored. The results of the monitoring of the relative linearization error in de-
pendence on the intensity of the deformation (cf. Figure 6.9 (a-h)) are shown in
Table 6.1 as well as in Figure 6.10 (top). We give an example of how to in-
terpret these data. Consider the entry in the third row (ε3 = 0.05) and the e-th
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Figure 6.7: A patient with congenital mandibular hypoplasia.
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Figure 6.8: Simulation of mandible distraction.
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(undeformed) (a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 6.9: Resulting soft tissue deformation induced by the stepwise rearrange-
ment of bone structures with maximal boundary displacements of: (a) 0.6cm, (b)
1.2cm, (c) 1.6cm, (d) 2.0cm, (e) 2.6cm, (f) 2.8cm, (g) 3.3cm, (h) 3.8cm.
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Figure 6.10: Top: distribution of the linearization error in dependence on the
intensity of deformation, cf. Figure 6.9 (a-h). Bottom: percentage of tetrahedrons
with ε > 5% in dependence on maximum boundary displacements.
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Figure 6.11: Top: 2D plain cut through a patient’s head, grey-scale gradient in-
dicates the spatial distribution of deformation represented by the norm of the dis-
placement vectors. Bottom: decrease of the displacement field measured along
the line probe: from the ”source” B (bone) to S (skin).



82 Chapter 6. Static Soft Tissue Prediction

Table 6.1: Validation of the linearization condition ε� 1 , cf. Figures 6.9 (a-h).

εi percentage [%] of tetrahedrons with ε > εi
a b c d e f g h

0.01 42.8 48.0 50.1 51.9 53.7 53.8 53.9 54.3
0.03 26.5 37.4 41.7 44.3 46.2 46.3 46.8 47.1
0.05 17.1 29.3 35.6 39.2 42.0 42.3 42.8 43.4
0.07 11.8 23.7 30.5 34.9 38.5 39.1 39.9 40.7
0.1 7.9 16.8 24.5 29.6 33.9 34.9 35.9 36.8
0.2 2.8 7.5 12.0 17.2 24.0 25.3 25.6 27.8
0.3 1.3 4.3 7.2 10.3 16.2 18.1 19.8 21.4
0.4 0.8 2.5 4.9 6.9 10.9 12.8 14.8 16.5
0.5 0.6 1.7 3.3 5.1 7.7 8.9 10.7 12.6
0.6 0.5 1.3 2.3 3.8 5.7 6.6 7.9 9.6
0.7 0.4 0.9 1.7 2.9 4.5 5.1 6.0 7.4
0.8 0.3 0.7 1.3 2.2 3.5 3.9 4.7 5.8
0.9 0.3 0.6 1.1 1.8 2.8 3.4 4.0 4.7
1.0 0.2 0.5 0.9 1.4 2.3 2.8 3.4 3.9

column (maximum boundary displacement of 2.6cm): 42.0%. This value means
that in the case of the maximum boundary displacement of 2.6cm (cf. Figure
6.9e) for 42.0% of all tetrahedrons the relative linearization error lie over 5%, i.e.
ε > 0.05. In Figure 6.10 (bottom), the percentage of tetrahedrons with ε > 0.05
in dependence on maximum displacement is depicted. The error curve shown
in this diagram has no particular break-points, which would indicate the optimal
step width for the linear calculation. In contrast, the strongest increase of the
error-curve occurs on relative small displacements (duplication of error for maxi-
mum boundary displacements in the range of [0.6, 1.6]cm), which trivially means
that the smaller step width produces the smaller linearization error. Consequently,
the optimal step width as well as the corresponding precision of the linear elastic
calculation are up to user. For the maximum deformation of 3.8cm (see Table
6.1 (h)), the relative linearization error amounts more than 5% for nearly half of
all tetrahedra (43.4%). However, the analysis of spatial distribution of the lin-
earization error shows that the largest error is concentrated inside of the patient’s
head in the direct vicinity of relocated bone structures. In contrast, on the facial
surface, which is most important for an optical impression, one can hardly see any
artifacts. This fact can be explained through the r−1 decrease of the displacement
field with increasing distance from the source in3D, see Figure 6.11.
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The computation of the deformation for a grid of 63.320 nodes (314.043 tetra-
hedra) via the linear elastic FEM took 1.8 minute (residual norm of PCG algo-
rithm: 10−10). The calculations are performed on an SGI Onyx II with 195MHz
as well as on PC Pentium PIII with 600MHz.

Non-linear elastic approach. The linear elastic approximation of large defor-
mations produces a substantial error caused by the disregard of the geometrical
non-linearity. Thus, the non-linear elastic approach is applied for the soft tissue
prediction. For this purpose, the adaptive non-linear elastic FEM is used. The
results of the soft tissue prediction computed with the non-linear elastic approach
vs the linear elastic one are shown in Figure 6.12. The deformation computed via
the non-linear elastic approach is significantly smaller in comparison with the out-
come of the linear elastic FEM, which yields too large deformations, particularly
in the chin area, see Figure 6.13.

By the computation of the non-linear elastic deformation some numerical
problems occur. After the first linear elastic step (cf. Figure 5.2) by higher or-
der Newton iterations, the assembled system of equations sometimes becomes
unsolvable due to the large condition number. The same problem concerning the
iterative calculation of large deformations via the nonlinear elastic FEM has been
reported in [95] in application to elastic image registration. We have found that
the reason for such fatal errors lies in the strong dependence of the non-linear
elastic calculation on the displacement gradient ∇u, which cannot be computed
accurately if the initial grid contains degenerated elements and/or the inconsis-
tent boundary conditions. In turn, the deeper reason for these failures lies in the
violation of the topology-preserving condition (3.6), which can be used for the
indication of the failure occurrence.

This problem concerns only the non-linear elastic FEM, since the successive
computation of the displacement gradient is not required for the linear elastic
FEM. The handling of this problem is not easy and basically can be classified into
two general groups of measures

(i) ’a priori’ measures: quality control of the initial mesh and consistency
proof of the applied boundary conditions,

(ii) ’a posteriori’ measures: monitoring of the displacement gradient w.r.t. the
topology-preserving condition.

In this work, ’a priori’ measures, i.e. extensive checking and improvement of
the quality of the initial mesh and the applied boundary conditions, already help
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Figure 6.12: Simulation of large soft tissue deformation via the linear (top) and
non-linear (bottom) elastic approach.
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Figure 6.13: Comparison between the facial outline predicted by the linear (outer
line mesh) and non-linear (inner shaded mesh) elastic model.
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to fix the problem. However, the non-linear elastic approach appears generally
more sensitive with respect to the small abnormalities of input data and thus less
robust as the linear elastic FEM.

The performance of the adaptive non-linear elastic FEM is quite satisfactory.
The calculation of the non-linear solution on the same grid took approximately 7
minutes, which corresponds to 4 iterations of the Newton method.

Clinical case II. Small deformation. In the next example, the postoperative
appearance of a patient with maxillary retrognatism and mandibular prognatism
is simulated, see Figure 6.15 (top). Figure 6.14 illustrates the simulation of the
corrective surgical impact (bimaxillary osteotomy), which consists in an advance-
ment of maxilla by 10mm and a set-back of mandibula by 12mm. The resulting
soft tissue deformation is simulated with the linear and non-linear elastic FEM. In
Figure 6.15 shows pre- and postoperative picture of the patient. In Figure 6.16, the
comparison between the results of the linear and non-linear calculation is shown.
Since the deformation in this case is relatively small, the linear solution matches
well with the postoperative picture of the patient, see Figure 6.16 (1). However, a
slight difference between postoperative and simulated profile outline in the nose
area can be seen, Figure 6.16 (2). The non-linear solution yields better result, Fig-
ures 6.16 (3,4). Apparently, the reduction of this difference is due to the smaller
displacement computed via the non-linear elastic FEM similar to the previously
observed examples, cf. Figure 6.4 and 6.13. The remaining difference can be
reduced by a higher stiffness of the nasal cartilage, which has not been taken into
account by this simulation.

In this example, the linear elastic deformation for a grid of 106.166 nodes
(504.112 tetrahedra) is computed in 2.9 minutes (residual norm of PCG algo-
rithm: 10−10) on the same hardware platform (SGI Onyx II with 195MHz as well
as on PC Pentium PIII with 600MHz). The calculation of the non-linear elastic
deformation took 9.3 minutes, which corresponds to 3 iterations of the Newton
method.

Model sensitivity w.r.t. material parameters. Since soft tissue in our approach
is modeled as a hyperelastic material, two elastic constants controlling the stiff-
ness and the compressibility of each subdomain occupied by a different tissue
layer are required.

Facial tissue stiffness. In the examples of static soft tissue prediction, facial tis-
sue is firstly approximated as a 1-component homogeneous material. The simula-
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Figure 6.14: Simulation of bimaxillary osteotomy, including the soft tissue pre-
diction.
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Figure 6.15: A patient with maxillary retrognatism and mandibular prognatism.
Top: preoperative picture. Bottom: postoperative picture.
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(1) (2)

(3) (4)

Figure 6.16: (1): validation of the linear elastic model, (2): nose area of (1), (3):
validation of the non-linear elastic model, (4): nose area of (3).
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tion results in the absence of explicitly given forces are not sensitive with respect
to the Young modulus E describing the material stiffness. The simulations carried
out with piecewise homogeneous approximation considering the different tissue
regions have not shown any significant difference by the variation of the Young
moduli of each particular tissue region in a ”reasonable range” of values of Ei.
However, the multi-layer model with different tissue stiffnesses becomes impor-
tant for the modeling of facial expressions, where the deformations are induced
by the impact of muscle forces, see Section 7.5.

Facial tissue compressibility. Quasi-incompressibility of soft tissue is modeled
in this work with the Poisson ratio of up to ν = 0.45. In previous sections,
we have already addressed the problems concerning the numerical modeling of
quasi-incompressible materials. Now, we validate the sensitivity of the modeling
approach with respect to the Poisson ratio by the direct comparison of the sim-
ulation results for different ν ∈ [0, 0.45]. In Figure 6.17, the results of the soft
tissue prediction for ν = 0, 0.1, 0.2, 0.3, 0.4, 0.45 are shown. Being basically
present, the qualitative difference between the predicted facial surfaces can be
visually registered between a high and low compressible material behavior only,
cf. Figures 6.17 (a-c) and (d-f), respectively. Taking into account that the de-
formation simulated in this example is extremely large, the difference within the
range of ν ∈ [0.3, 0.45] can be assumed neglectable and practically irrelevant for
the qualitative evaluation of the postoperative outcome. From our findings, the
Poisson ratio of ν = 0.4 is a good compromise between the requirement of the
constitutive modeling and the computational performance.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.17: Results of soft tissue prediction for the Poisson ratio ν of (a): 0, (b):
0.1, (c): 0.2, (d): 0.3, (e): 0.4, (f): 0.45.


