
Chapter 5

Numerical Model

In this chapter, we discuss some applied aspects of the numerical model imple-
mentation. First, we give a more precise statement of the problem from the com-
putational point of view. Next, we investigate the sensitivity of the model with
respect to the variation of material parameters as well as their adequate scope for
the numerical simulation. Finally, the algorithmic implementation of the over-
all adaptive numerical scheme of the non-linear elastic multilevel finite element
approach is presented.

5.1 Simplified Numerical Model of Facial Tissue

In this section, we resume all previous discussions about the adequate simplified
model of deformable facial tissue for the ”long term” prediction of patient’s post-
operative appearance.

Simplified constitutive model. Complex material properties such as plastic and
viscoelastic phenomena generally observed in soft tissue experiments may be ne-
glected if the deformation is small or is performed over a period of time that
suffices for recovery processes in living organism. For the ”long term” prediction
of facial tissue, a simplified constitutive model based on a piecewise, isotropic,
quasi-incompressible, non-linear hyperelastic material description is assumed.

Pure displacement problem. The original problem consists in the computation
of the deformation for an object being under the impact of static loads implicitly
given by the prescribed boundary displacements. Besides the displacement, no
further physical terms describing the ”physics” of the surgical impact are avail-
able. Thus, the most natural approach for the numerical modeling of such quasi-
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geometric problem is to apply the so-called pure displacement FE discretization
of the BVP (3.50) as described in Section 3.3.

5.2 Sensitivity Analysis and Parameter Estimation

The existing literature on the mechanical properties of human tissues is abundant,
but relatively scarce when one looks for converged, exact, comprehensive and rep-
resentative data. There is a large scatter and uncertainty in the material properties
of human tissue, according to sex, age, size, etc. Furthermore, there may be large
differences found in tissue properties within an individual at different parts of the
body [54].

In our approach, each homogeneous and isotropic subdomain Ωi ⊂ Ω of a
composite elastic solid occupying the domain Ω is characterized by the stiffness
and the compressibility, which are described by two elastic constants, the Young
modulus Ei and the Poisson ratio νi , respectively. Hence, we are concerned with
the estimation of the valid scope for (E, ν).

Quasi-incompressible material. The Poisson ratio is theoretically ranged in
ν ∈ [0, 0.5]. It is generally agreed that the adequate range for modeling of water
rich soft tissue is ν ∈ [0.4, 0.4(9)] [34, 44, 85, 90, 41]. However, the choice of
the particular value for ν within this range has some far-reaching consequences
for the type of the FE discretization approach. As we have mentioned above, the
pure displacement FE discretization locks for ”almost incompressible” materials
ν ≈ 0.5. The value of ν = 0.45 is considered as an admissible upper threshold for
the pure displacement FE method. Materials with ν > 0.45 have to be simulated
with mixed finite elements, where the pressurep is treated as an independent vari-
able in addition to the displacement u. Since the non-elliptic mixed formulation
is much more computationally expensive in comparison with the efficient pure
displacement approach, the estimation of the quantitative difference between the
quasi-incompressible ν = 0.45 and incompressible ν = 0.5 constitutive model is
of a general interest.

Hence, we are going to estimate the modeling error in displacements corre-
sponding to the Poisson ratio by studying the explicit dependence of some close
form solution of elasticity theory on ν. For this purpose, we use the so-called fun-
damental solution of linear elasticity, see Appendix A. First, we write the norm
of the displacement (A.2) in the following form

u = A(f, r)B(ν, α) , (5.1)

where u = |u| and
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Figure 5.1: Relative difference of the displacements for a compressible (ν < 0.5)
and incompressible (ν = 0.5) medium as a function of the Poisson ratio RD|| =
RD(ν, 0.5, α = 0), RD⊥ = RD(ν, 0.5, α = π

2
) (see explanations in text).
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(5.3) shows that the relative difference is a function of three variables RD =
RD(ν1, ν2, α) and does not depend on f, r and E. Since RD weakly depends on
the angle to the vector of the acting force density RD(α) ∼ |cosα| , we observe
two extreme cases, namely RD|| = RD(α = 0) and RD⊥ = RD(α = π

2
)

RD|| = RD(ν1 = 0.45, ν2 = 0.5, α = 0) = 0.034483,

RD⊥ = RD(ν1 = 0.45, ν2 = 0.5, α = π
2
) = 0.051724.

(5.4)

From (5.4), it follows that the relative difference of the displacements for a quasi-
incompressible (ν = 0.45) and incompressible (ν = 0.5) material lie in the range
between 3.4% and 5.2% in every point of the domain Ω occupied by a body. In
Figure 5.1, RD|| = RD(ν, 0.5, 0) and RD⊥ = RD(ν, 0.5, π

2
) as functions of

ν ∈ [0, 0.5] are plotted.
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Table 5.1: Young modulus E of some soft tissues.

Tissue E , MPa Reference

Elastin 0.6 Fung 1993, [44]
Collagen 1×103 Fung 1993, [44]
Thoracic aorta 0.62 Duck 1991, [34]
Abdominal aorta 1.2 Duck 1991, [34]
Nasal cartiladge 5.6 Duck 1991, [34]
Muscle, along fibers 0.5 Duck 1991, [34]
Muscle, across fibers 0.79 Duck 1991, [34]
Brain 0.25 Simbio-d2a, [41]
Fat 5×10−3 Samani 1999, [104]
Skin 0.5 Samani 1999, [104]
Fat 1×10−3 Schnabel 2001, [108]
Skin 0.09 Schnabel 2001, [108]

Relative stiffness. In contrast to the Poisson ratio, the value of the positive
Young modulusE > 0 describing the material stiffness is theoretically not limited
by any constrains. The values of the Young modulus for soft tissue to be found
in the literature underlie such heritable variations that the stiffness of a particu-
lar tissue usually cannot be estimated on the basis of existing data, see Table 5.1.
Although some methods for in-vivo and in-vitro measurement of soft tissue prop-
erties are presented in the literature [37, 121, 81], no reliable approach is currently
known which permits the derivation of individual material properties of facial tis-
sues.

However, if the boundary conditions are given in the form of prescribed dis-
placements, the knowledge of the absolute material stiffness is not necessarily
required. Indeed, the resulting homogeneous system of equations Au = 0 is not
sensitive with respect to the absolute value of the Young modulus (in [Pascal]),
since it only makes sense, if the forces f (in [Newton]) on the right-hand side
of the inhomogeneous system Au = f are given. The natural way to describe
the stiffness within the quasi-geometrical formulation is to introduce the non-
dimensional relative stiffness. Formally, this corresponds to scaling the homo-
geneous system with the stiffness of the reference material. Thus, the relative
stiffness is defined as a ratio

rEi =
Ei

E0

, i = 0, 1, 2... , (5.5)
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Table 5.2: Absolute vs. relative stiffness.

material ID absolute stiffness, Ei relative stiffness, rEi

0 E0 1
1 E1 E1/E0

2 E2 E2/E0

3 E3 E3/E0

... ... ...
n En En/E0

where Ei is the absolute stiffness of the i-th material and E0 is the absolute stiff-
ness of the reference material. As long as no forces in [Newton] are given, the
absolute stiffness Ei can be replaced by rEi. The first trivial consequence of
(5.5) is that in the case of only one material (homogeneous domain) the choice
of the Young modulus is practically irrelevant for the resulting deformation, since
rE0 = E0/E0 = 1. If the domain Ω consists ofN subdomains Ωi ⊂ Ω (piecewise
homogeneous domain) with Ei such that Ei 6= Ej , i 6= j, merelyN−1 unknown
parameters rEi are needed to describe such multi-composite material, see Table
5.2. If the domain of interest consists of only two tissue types, for example, mus-
cle (M )and skin (S), merely one unknown parameter, namely, the ratio EM/ES

has to be estimated.

Stiffness estimation from CT scans. In computer assisted surgery, patient’s
data are represented with the tomographic images. Since the grey scale value,
especially, in the case of CT images correlates with the physical properties of
scanned material, these data can be used for the estimation of the local tissue
stiffness. The grey scale value (HU : Hounsfield unit) correlates to the density
HU ∼ ρ and in turn the Young modulus is a function of the density [16, 1]

E(ρ) = A+Bρp , (5.6)

where A, B and p are some real number constants. Thus, the implicit mapping
HU → ρ → E should be generally possible. In [74], such mapping E(HU)
in the form of a heuristic graph is proposed. However, there is no established
derivation of the closed-form function E(HU) or more detailed investigation of
some heuristic relationships between E and HU for soft tissue.
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5.3 Details of Implementation

In this section, we give an overview of some aspects of the computational imple-
mentation of our numerical model.

General software remarks. Finite element modeling and FE-based material
engineering, in particular, is one of the oldest, but still the most extensive domains
of computational physics and mathematics. The FEM incorporates a plethora of
nested complex mathematical and programming technical problems, which makes
the FEM software difficult to develop, to understand and to use. Indeed, modern
FEM code has to provide

• flexible and efficient handling of arbitrary grids

• adaptive mesh refinement

• clear interface for physical problem definition, including

– PDE operator discretization in appropriate functional space

– constant parameter variation/control

– type of numerical integration

– type of problem solver

• efficient adaptive numerical techniques for assembling and solving the re-
sulting system of equations based on error estimators

• user defined IO

• dynamic memory handling

The existing FEM packages do provide a useful user interface for FE analysis.
However, most of them are extensive and expensive commercial software pack-
ages still requiring a lot of time to learn by ropes.

At the very beginning of this work, first linear elastic FE analysis has been
performed with the help of Kaskade toolkit [36]. We developed the FEM code,
which was used in further investigations presented in the next chapters. In what
follows, the basic concept of this software is described.

The C source code (400 kB) comprises more than 200 routines and functions
and is based on the following structures.
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//—————————————————————————————-

struct {
double x[3]; // node coordinates
double u[3]; // node displacement
double du[3]; // displacement increment
double f [3]; // nodal loads
double df [3]; // load increment
int nNbs; // number of node neighbors
int ∗nb; // array of node neighbors nb[nNbs]
double ∗A; // nodal stiffness A[3 ∗ 3 ∗ nNbs]
int nNbTd; // number of neighbor tetrahedra
int ∗ndTd; // array of neighbor tetrahedra ndTd[nNbTd]
int nNbTr; // number of neighbor triangles
int ∗ndTr; // array of neighbor triangles ndTr[nNbTr]
int nNbEd; // number of neighbor edges
int ∗ndEd; // array of neighbor edges ndEd[nNbEd]

} meshNd; // mesh node

//—————————————————————————————-

struct {
int edNode[2]; // edge nodes
int markerId; // multipurpose marker Id

} meshEd; // mesh edge

//—————————————————————————————-

struct {
int trNode[3]; // triangle nodes
double n[3]; // outer normal
int bId; // boundary condition Id
int sId; // surface type Id

} meshTr; // mesh triangle

//—————————————————————————————-

struct {
int tdNode[4]; // tetrahedral nodes
int markerId; // multipurpose marker Id
int mId; // material type Id

} meshTd; // mesh tetrahedron
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//—————————————————————————————-

struct {
int nNds; // number of nodes
meshNd ∗nd; // array of nodes nd[nNodes]
int nEds; // number of edges
meshEd ∗ed; // array of edges ed[nEds]
int nTrs; // number of triangles
meshTr ∗tr; // array of triangles tr[nTrs]
int nTds; // number of tetrahedra
meshTd ∗td; // array of tetrahedra td[nTds]
int nSrs; // number of surface patches
int ∗sr; // array of surface patches sr[nSrs]
int nMts; // number of materials
int ∗mt; // array of materials mt[nMts]
double ∗EMOD; // array of Young moduli EMOD[nMts]
double ∗NU ; // array of Poisson ratios NU [nMts]

} Mesh;

//—————————————————————————————-

This is only a brief overview of the very basic structures. At present, dozens of
attributes and parameters are required in our approach to describe composite facial
tissue and to get a smart control on the FE computation of its deformation.

Adaptive algorithmic scheme. The overall algorithmic scheme for the adaptive
calculation of non-linear elastic deformations is shown in Figure 5.2.

From our findings, the adaptivity of the numerical scheme on different levels
of problem solving is essential for the achievement of the efficient and robust
performance. The main adaptive features of our approach include

• adaptive mesh refinement,

• adaptive linear/non-linear assembly of stiffness matrix,

• adaptive solving scheme, incl. PCG, ordinary and simplified Newton-PCG.

Hardware platforms. The numerical model for soft tissue simulations is de-
veloped for the application in the clinical environment on comparatively low-cost
hardware platforms. The computations presented in this work are performed on
an SGI Onyx II with 195MHz as well as on PC Pentium PIII with 600MHz and
128MB RAM.
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Figure 5.2: Overall algorithmic scheme.


