
Chapter 3

Background Knowledge

The biomechanical modeling of biological structures requires a comprehensive
knowledge of the following major fields of study

• anatomy,

• continuum mechanics,

• numerical mathematics, in particular, the finite element method.

This chapter is ordered in three major sections, which cover the basics of these
disciplines and contain issues relevant to the numerical modeling of deformable
facial tissue.

3.1 Facial Tissue. Structure and Properties

In this section, we make a brief overview of anatomy and biophysics of facial
tissues with emphasis on their passive mechanical properties. Biomechanics of
muscle contraction will be discussed separately, in Chapter 7.

Anatomy. Soft tissue is a collective term for almost all anatomical structures,
which can be named soft in comparison to bones. In this work, we focus on
biomechanical modeling of facial tissue only.

Soft tissues are mainly composed of different types of polymeric molecules
embedded in a hydrophilic gel called ground substance [44]. A basic structural
element of facial and other soft tissues is collagen, which amounts up to 75%
of dry weight. The remaining weight is shared between elastin, actin, reticulin
and other polymeric proteins. Biopolymers are organized in hierarchical bundles
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Figure 3.1: Hierarchical organization of fibrous structures in tendon (from [44]).

of fibers arranged in a more or less parallel fashion in the direction of the effort
handled [85], see Figure 3.1.

The direction of collageneous bundles (connective tissue) in the skin deter-
mines lines of tension, the so-called Langer’s Lines [28], see Figure 3.2. The

Figure 3.2: Langer’s lines (from [62]).
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arrangement of fibrous structures in the skin is individual, which, in particular,
reflects in the individual wrinkles of the skin. Generally, the fiber networks of dif-
ferent tissues are composed of both irregular and ordered regions. In muscles and
tendons, fibers are arranged in orderly patterns (cf. Figure 3.1), whereas fibers in
connective tissue are arranged more randomly.

Further, facial tissue consists of the following anatomically and microbiologi-
cally distinctive layers:

• skin

– epidermis

– dermis

• subcutis (hypodermis)

• fascia

• muscles

In Figure 3.3, a typical cross-section of facial tissue (left) and the corresponding
discrete layer model (right) are shown. The skin consists of two biaxial layers:

Figure 3.3: Left: skin cross-section (from [85]). Right: the corresponding discrete
layer model.
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a comparatively thin layer of stratified epithelium, called epidermis and a thicker
dermis layer. The dermis layer contains disordered collagen and elastin fibers
embedded in the gelatinous ground substance. The thickness of the skin varies
between 1.5mm and 4mm. The dermis layer of the skin is continuously connected
by collagen fibers to a subcutaneous fatty tissue, called the hypodermis. In turn,
the hypodermis is connected to the fibrous fascia layer, which surrounds the mus-
cle bundles. The contact between the lower subcutaneous tissue layer and the
muscle fascia is flexible, which appears as a kind of sliding between the skin and
other internal soft tissues.

Biomechanics. Biomechanics combines the field of engineering mechanics with
the fields of biology and physiology and is concerned with the analysis of mechan-
ical principles of the human body. While studying the living tissue biomechanics,
the common practice has always been to utilize the engineering methods and mod-
els known from ”classic” material science. However, the living tissues have prop-
erties that make them very different from normal engineering materials. The first
important fact is that all living tissues are open thermodynamic systems. Living
organisms permanently consume energy and exchange matter with their environ-
ment to maintain the essential metabolic processes. For example, living tissues
have self-adapting and self-repairing abilities, which enable wound healing and
stress relaxation of loaded tissue.

Numerous experimental and theoretical studies in the field of tissue biome-
chanics have been carried out in recent years [44, 85, 90, 7]. Summarizing the
facts observed in different experiments with different tissue types, soft tissues gen-
erally exhibit non-homogeneous, anisotropic, quasi-incompressible, non-linear
plastic-viscoelastic material properties, which we briefly describe hereafter.

Non-homogeneity, anisotropy. Soft tissues are multi-composite materials con-
taining cells, intracellular matrix, fibrous and other microscopical structures. This
means that the mechanical properties of living tissues vary from point to point
within the tissue. Essential for modeling are the spatial distribution of material
stiffness and the organization of fibrous structures such as collagen and elastin
fibers, which have some preferential orientation in the skin. The dependence on
coordinates along the same spatial direction is called non-homogeneity. If a mate-
rial property depends on the direction, such material is called anisotropic. Facial
tissue is both non-homogeneous and anisotropic. However, there are practically
no quantitative data about these properties and thus their importance for modeling
of relatively thin facial tissue is uncertain.



20 Chapter 3. Background Knowledge

Figure 3.4: Non-linear stress-strain curve of soft tissue (from [44, 90]).

Non-linearity. The stress-strain relationship, the so-called constitutive equation
of the skin and other soft tissues is non-linear [70]. The non-linear stress-strain
curve, shown in Figure 3.4, is usually divided in four phases. At low strains (phase
I: ε < εA ), the response of soft tissue is linear; at average strains (phase II:
εA ≤ ε < εB), the straightening of collagen fibers occurs and the tissue stiff-
ness increases; at high strains (phase III: εB ≤ ε < εC), all fibers are straight
and the stress-strain relationship becomes linear again. By larger strains (phase
IV: ε > εC), material destruction occurs. The phase II is often neglected and the
stress-strain curve is considered piecewise linear. There are no quantitative data
about the stiffness coefficientsEI−III and the critical strains εA,B,C for the bilin-
ear approximation of facial tissue. However, it is observed that these parameters
depend on different factors and may vary from person to person. For instance, the
critical strain εC decreases with age [85].

Plasticity. The deformation of physical bodies is reversible in the range of small
strains only. Large deformations lead to irreversible destruction of material, which
appears as a cyclic stress-strain curve that shows the basic difference of material
response in loading and unloading, i.e., the so-called hysteresis loop, see Figure
3.5. Such deformations are called plastic in a difference to the reversible elastic
deformations. It is reasonable to assume that soft tissue exhibits plastic behavior
up to some critical strain as every known engineering material. However, living
tissues possess the self-reparing ability, which means that after a certain period of
time the destructive alterations are reversed by repairing mechanisms. Obviously,
the ”factor time” is essential for the choice of an appropriate material model of
soft tissue biomechanics. Within a comparatively short period of time (immedi-
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Figure 3.5: Hysteresis loop for an elasto-plastic material (from [90]).

ately after the destructive impact), soft tissue behaves as every ”normal material”.
However, even massive destructions completely disappear without any markable
irreversible alterations after several days or weeks of healing. At present, too little
is known about the plastic behavior of living tissues to estimate its relevancy for
the modeling of the quasi-static deformations.

Viscoelasticity. The time-dependent material behavior is called viscoelasticity.
The response of such materials depends on the history of the deformation, that
is the stress σ = σ(ε, ε′) is a function of both the strain ε and the strain rate
ε′ = dε/dt , where t is the time. Viscosity is originally a fluid property. Elasticity
is a property of solid materials. Therefore, a viscoelastic material combines both
fluid and solid properties. Soft tissue, for example the skin, exhibits properties that
can be interpreted as viscoelastic. Two characteristics of tissue time-dependent
behavior are creep and stress relaxation or recovery. Both creep and recovery can
be explained by observing the material response to a constant stress σ0 applied at
time t0 and removed at time t1. The responses of a linear elastic solid, a viscoelas-
tic solid and a viscoelastic fluid are shown in Figure 3.6. A linear elastic material
shows an immediate response and completely recovers the deformation after the
loading is removed, see Figure 3.6 (b). A viscoelastic material responds with an
exponentially increasing strain ε ∼ (1 − exp(−t/τ1)) between times t0 and t1.
After the loading is removed, at time t1, an exponential recovery ε ∼ exp(−t/τ1)
begins. A viscoelastic solid will completely recover, see Figure 3.6 (d). For a
viscoelastic fluid, see Figure 3.6 (c), a residual strain will remain in the material
and complete recovery will never be achieved. The characteristic time τ of the ex-
ponential recovery curve ε ∼ exp(−t/τ) of soft tissue lies between milliseconds
and seconds [44, 68]. Since soft tissue does not exhibit long time memory, the vis-
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Figure 3.6: Creep and recovery (from [90]). (a): constant stress σ0 applied at time
t0 and removed at time t1. (b): response of a linear elastic material. (c): response
of a viscoelastic fluid. (d): response of a viscoelastic solid.
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coelastic phenomena can be assumed neglectable for the ”long term” prediction,
i.e., t� τmax = 10 s.

Quasi-incompressible material. A material is called incompressible if its vol-
ume remains unchanged by the deformation. Soft tissue is a composite material
that consists of both incompressible and compressible ingredients. Tissues with
high proportion of water, for instance the brain or water-rich parenchymal organs
are usually modeled as incompressible materials, while tissues with low water
proportion are assumed quasi-incompressible. In this works, we describe facial
tissue as a quasi-incompressible material. Further discussion of the constitutive
model of soft tissue is in Chapter 5.

In Table 3.1, the material properties of soft tissue in conjunction with their rel-
evancy for the modeling of quasi-static facial tissue are summarized. Comprising
this information, facial tissue can be approximated as a piecewise homogeneous,
isotropic, quasi-incompressible non-linear elastic solid.

Table 3.1: Relevancy of general material properties for quasi-static facial tissue
modeling.

Property Relevancy remarks

non-homogeneity piecewise homogeneous approximation assumed
anisotropy isotropic approximation assumed
non-linear elasticity basic continuum property
plasticity short term prediction and large deformations only
viscosity short term prediction only
compressibility quasi-incompressible approximation assumed
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Figure 3.7: 3D domain deformation.

3.2 Basics of Continuum Mechanics

In this section, we describe the basic mathematical definitions of elasticity theory.
In elasticity theory, physical bodies are described as continua. Under the impact
of external forces, physical bodies are deformed, which means that they change
both their shape and volume. Let Ω ⊂ R

3 be a domain representing the volume
occupied by a body before the deformation. The state of a body associated with
such ”undeformed” domain is called the reference configuration.

Deformations. A deformation of the reference configurationΩ with Lipschitz-
continuous boundary Γ is defined by a smooth orientation-preserving vector field

φ : Ω → R
3 , (3.1)

which maps the reference configuration onto the deformed configuration Ω′ =
φ (Ω) , see Figure 3.7. Further, we define thedeformation gradient as a matrix

∇φ =





∂1φ1 ∂2φ1 ∂3φ1

∂1φ2 ∂2φ2 ∂3φ2

∂1φ3 ∂2φ3 ∂3φ3



 , (3.2)

where ∂k = ∂/∂xk. The orientation-preserving condition for the deformation is
given by

det(∇φ) > 0. (3.3)
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Displacements. For practical reasons, it is often convenient to use the displace-
ment field (displacements) u : Ω → R

3 instead of the deformation fieldφ

u = φ(x) − x = x′ − x , (3.4)

where x ∈ Ω and x′ ∈ Ω′ denote the coordinates of the same point in the refer-
ence and deformed configuration, respectively. Variables defined as a function
of coordinates in the reference configurationx are called Lagrange variables and
those of coordinates in the deformed configurationx′ are called Euler variables.
Analogously to (3.2), the displacement gradient is defined

∇u =





∂1u1 ∂2u1 ∂3u1

∂1u2 ∂2u2 ∂3u2

∂1u3 ∂2u3 ∂3u3



 (3.5)

and (3.3) can be re-written as

det(I + ∇u) > 0. (3.6)

Strain tensor. Consider an infinitesimal distance between two pointsP (x) and
P ′(x + dx). The square of an Euclidian infinitesimal distance in the reference
configuration is given by

ds2 = dxTdx . (3.7)

The square of an infinitesimal distance in the deformed configuration can be sim-
ilarly written as

ds′2 = dx′Tdx′ . (3.8)

Recalling that

dx′ = ∇φ dx (3.9)

(3.8) can be re-written in terms of the reference configuration

ds′2 = dxT
∇φT

∇φ dx = dxTCdx , (3.10)

where C = ∇φT
∇φ denotes the Cauchy-Green strain tensor. With φ = x + u

we can write

C = ∇φT
∇φ = I + ∇uT + ∇u + ∇uT

∇u . (3.11)



26 Chapter 3. Background Knowledge

The deviation from the identity in (3.11) is the Green-St. Venant strain tensor or
simply the strain tensor ε

ε(u) =
1

2
(C − I) =

1

2
(∇uT + ∇u + ∇uT

∇u) (3.12)

or componentwise under consideration of Einstein’s sum notation

εij =
1

2
(∂jui + ∂iuj + ∂iul∂jul) . (3.13)

Since the strain tensor is obviously symmetric, i.e., εij = εji , there is a coordinate
system called principal axes of the tensor, where it only has diagonal non-zero
components (εI , εII , εIII) . Such principal axes transformation is local and gen-
erally holds for an infinitesimal surrounding of the pointP (x) only. In principal
axes, the infinitesimal distance (3.10) can be written

ds′2 = (1 + 2εI)dx′21 + (1 + 2εII)dx′22 + (1 + 2εIII)dx′23 , (3.14)

which means that every local deformation can be represented as a superposition
of three independent strains along the orthogonal principal axes

dx′i
dxi

=
√

1 + 2εi . (3.15)

Thus, the expressions
√

1 + 2εi represent the elongation of the i-th principal axis.
In the case of small deformations, the relative elongations are small in comparison
with 1, i.e., εi � 1 and are given by

dx′i − dxi

dxi

=
√

1 + 2εi − 1 ≈ εi . (3.16)

We then consider an infinitesimal volume around the pointP (x) , which is
given by dV ′ = dx′1dx

′
2dx

′
3 in the deformed configuration and bydV = dx1dx2dx3

in the reference configuration, respectively. Under consideration of (3.16), the
differential quotient dV ′/dV , which indicates the variation of an infinitesimal
volume by the deformation, is given by

dV ′

dV
= (1 + εI)(1 + εII)(1 + εIII) ≈ (1 + εI + εII + εIII) . (3.17)

The sum of eigenvalues εI +εII +εIII is an invariant of the strain tensor ε , which
does not depend on the coordinate system and is generally given by the sum of the
diagonal components of ε. (3.17) can be re-written as follows

dV ′ − dV

dV
= tr(ε) , (3.18)
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where tr(ε) = εll . Thus, the trace of ε describes the relative volume difference by
the deformation. In the case of volume preserving deformations, for example by
incompressible materials, the trace of the strain tensor vanishes, tr(ε) = 0 .

Generally, the strain can be represented as a sum of pure shearing and homo-
geneous dilatation. The corresponding terms of the strain tensor are called the
deviatoric (subscript d) and volumetric or mean component (subscript m) and are
given by

ε = εd + εm ,

εd = ε − 1
3
tr(ε) I ,

εm = 1
3
tr(ε) I .

(3.19)

Geometrical non-linearity. The mapping u → ε is generally non-linear, cf.
(3.12). This fact is known as geometrical non-linearity. In the case of small
deformations, the maximal eigenvalue of the strain tensor εi, which represents the
maximal elongation of the principle axes, is significantly smallerthan 1

ε = max(|εi|) � 1 . (3.20)

In this case, the quadratic term in (3.12) can be neglected and the strain tensor can
be linearized

ε(u) ≈ e(u) =
1

2
(∇uT + ∇u) . (3.21)

For the monitoring of the local linearization error, (3.20) can be used in a more
exact form

ε = max(|ei|) < εmax , (3.22)

where ei are the eigenvalues of the gradient matrix ∇u and εmax denotes a typi-
cal threshold for the maximum relative linearization error of approximately three
percent, i.e., εmax = 0.03 .

Stress tensor. Consider a physical body occupying the deformed configuration
Ω′. The forces that cause the deformation are called external forces. Under the im-
pact of external forces F′

ex internal forces (stresses) F′
in arise. Generally, external

forces can act inside the deformed domain F′
ex : Ω′ → R

3 (applied body forces)
or on its boundary G′

ex : Γ′ → R
3 (applied surface forces). In accordance with

Euler-Cauchy stress principle, there exists the vector t′ : Ω′ → R
3 (the Cauchy
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stress vector or traction) such that: for any subdomain V ′ of Ω′ and any point of
its boundary x′ ∈ S′ ∩ ∂V ′

F′
in =

∫

∂V ′

t′(x′,n′) dS ′ , (3.23)

where n′ is the unit outer normal vector to ∂V ′ . Furthermore, according to
Cauchy’ theorem there exists the symmetric tensor of rank 2 (Cauchy stress ten-
sor) T′ : Ω′ → R

3×3 such that

t′(x′,n′) = T′(x′)n′ . (3.24)

Static equilibrium state. In static equilibrium, the sum of external and internal
forces vanish

F′
ex + F′

in = 0 . (3.25)

By applying the Gauss theorem [42] to (3.23) and (3.24) one obtains

F′
in =

∫

∂V ′

T′(x′)n′ dS ′ =

∫

Ω′

divT′(x′) dV ′ . (3.26)

If f ′(x′) denotes the density of external forces in the deformed configuration

F′
ex =

∫

Ω′

f ′(x′)dV ′ (3.27)

the equation of static equilibrium (3.25) can be written as
∫

Ω′

f ′(x′)dV ′ +

∫

Ω′

divT′(x′) dV ′ = 0 (3.28)

or in differential form

−divT′(x′) = f ′(x′). (3.29)

(3.29) describes the static equilibrium for an infinitesimal volume element in the
deformed configuration. With the help ofPiola transformation one can obtain an
analogous formulation in the reference configuration

−divT(x) = f(x), (3.30)
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where T(x) = det(∇φ)T′(x′)∇φ−T is the first Piola-Kirchhoff stress tensorand
f(x) denotes the density of external forces in the reference configuration. Instead
of the first Piola-Kirchhoff stress tensor, we will use the symmetricsecond Piola-
Kirchhoff stress tensor or simply the stress tensor

σ(x) = ∇φ−1T(x) , (3.31)

which is directly related to constitutive equations. By setting (3.31) in (3.30) one
obtains the equation of the static equilibrium in the reference configuration (La-
grange formulation) in respect to σ

−div {(I+∇u) σ(x)} = f(x). (3.32)

Constitutive equation. In continuum mechanics, material properties are de-
scribed by the so-called response function, which implies the strain-stress rela-
tionship (constitutive equation), or by the stored energy function. The correct
modeling of material properties is a challenging task studied within the scope
of materials science. Though, some special energy functionals for living tissues
were proposed in the past [28, 44, 61], no established and extensive investigations
have yet been reported, which would underlay the advantages of one constitutive
model of soft tissue over the others. Taking into account that the strain-stress re-
lationship for soft tissue can be approximated by a bilinear function (see Section
3.1), a constitutive model of soft tissue based on the piecewise linear stress-strain
relationship seems to be a reasonable approximation. Generally, the linear rela-
tionship between two tensors of rank 2 is given by the tensor of rank 4

σ(ε) = C ε . (3.33)

In respect to the strain-stress relationship (3.33), the tensor C is called the tensor of
elastic constants and the constitutive equation (3.33) is known as the generalized
Hook’s law.

St. Venant-Kirchhoff material. Under consideration of the frame-indifference,
i.e., the invariance under coordinate transformations, the tensor of elastic con-
stants C for isotropic and homogeneous materials contains only two independent
constants and (3.33) can be written in explicit form

σ(ε) = λtr(ε)I + 2µε . (3.34)

A material described by the constitutive equation (3.34) is called a St. Venant-
Kirchhoff material. Although the mapping ε → σ(ε) for a St. Venant-Kirchhoff
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material is linear, the associated mapping u → σ(ε(u)) is due to the non-linearity
of the strain tensor basically non-linear

σ(ε(u)) = λ(tr∇u)I+µ(∇uT +∇u)+
λ

2
(tr∇uT

∇u)I+µ∇uT
∇u . (3.35)

The two positive constants in (3.34)

λ > 0 and µ > 0 (3.36)

are the so-called Lamé constants 1. Besides the Lamé constants, another two elas-
tic constants are widely used in material science. These are the Young modulus E,
which describes the material stiffness, and the Poisson ratio ν, which describes the
material compressibility. (λ, µ) and (E, ν) are related by the following equations

ν =
λ

2(λ+ µ)
, E =

µ(3λ+ 2µ)

λ+ µ

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)

(3.37)

From (3.36) and (3.37) it follows that

0 < ν < 0.5 and E > 0 . (3.38)

With E and ν (3.34) can be re-written as follows

σ(ε) =
E

1 + ν
(

ν

1 − 2ν
tr(ε)I + ε) . (3.39)

Finally, a third alternative form of the constitutive equation is sometimes useful.
It represents the relationship between the volumetric and deviatoric components
of the stress and the strain, cf. (3.19)

σd = 2Gεd ,

σm = 3Kεm ,
(3.40)

where G denotes the shear modulus, which is identical with µ , and K = E
3(1−2ν)

is another elastic constant called the bulk modulus.

1(3.36) follows from thermodynamic considerations, see [77].
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Anisotropic materials. In the case of anisotropic materials, the 9 × 9 tensor of
elastic constants C may generally have a very dense, complex structure. However,
if a material has particular planar or axial symmetry, it can be written in a reduced
symmetric form. For example, the constitutive equation of an orthotropic mate-
rial, i.e., a material with three mutually perpendicular planes of elastic symmetry,
is of the following form

{σ} =

















C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

















{ε}, (3.41)

where

{σ}T = {σ11, σ22, σ33, σ23, σ31, σ12} ,
{ε}T = {ε11, ε22, ε33, 2ε23, 2ε31, 2ε12} .

(3.42)

Thus, for modeling an orthotropic material 9 independent constants related to
Young moduli Eij and Poisson ratios νij in three corresponding space direc-
tions are needed. The constitutive equation of a transversely isotropic material,
i.e., unidirectional fibered material, already contains only5 independent constants
[85, 76].

Physical non-linearity. The non-linear strain-stress relationship of soft tissue,
which is given by the empiric curve, shown in Figure 3.4, is called the physical
non-linearity. Reflecting the increasing stiffness of soft tissue with the increasing
deformation, this curve can be subdivided into two or more intervals (phases) each
one described by the linear strain-stress relationship (3.39). Such a piecewise
linear approximation can formally be written as

σ(ε(u)) = C(En, ν) ε(u) u ∈ [un−1, un[ , (3.43)

where u = |u| and En denotes the stiffness of n-th linear elastic interval in the
range [un−1, un[ . For the stress-strain curve of soft tissue (cf. Figure 3.4), the
bilinear approximation (n = 2) with an empirically estimated threshold value of
u1 can be applied.

Hyperelasticity. In elasticity theory, a material is called hyperelastic, if there
exists a stored energy function W : Ω × M

3
+ → R such that

σ(ε) =
∂W

∂ε
. (3.44)
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It can be easily shown that a St. Venant-Kirchhoff material with the response func-
tion (3.34) is hyperelastic and its store energy function is given by

W (ε) =
λ

2
(trε)2 + µtr(ε2) . (3.45)

Boundary conditions. The boundary conditions (BC) arising in the soft tissue
modeling are usually given by the prescribed boundary displacements or external
forces. Besides the Dirichlet boundary conditions, which in continuum mechanics
are better known as the essential boundary conditions

u(x) = û(x) x ∈ Γessential , (3.46)

the so-called natural boundary conditions are not analogous to the Neumann
boundary conditions of the potential theory (∂u

∂n
= 0)

t(x,n) = g(x) x ∈ Γnatural , (3.47)

where t(x,n) = σ(x)n is the Couchy stress vector or the traction, cf. (3.24),
and g(x) is the density of surface forces, which is further assumed vanishing on
the free boundary g(x) = 0 , x ∈ Γnatural . With (3.35) the natural boundary
conditions (3.47) in the linear elastic approximation can be written in an explicit
form respectively the displacement [8]

ν

1 − 2ν
n (div u) +

∂u

∂n
+

1

2
[n × rot u ] = 0 . (3.48)

Special contact problems. Besides the essential and natural boundary condi-
tions described above, special contact problems appear in the modeling of facial
tissues. The contact between the different tissue layers, in particular, between the
skin and muscle layers, or the sliding phenomena between the lips and the teeth
cannot be reduced to the essential or natural boundary conditions. However, the
local sliding over the surface S ⊂ Γ can formally be interpreted as a kind of ho-
mogeneous essential boundary condition and treated analogously to (3.46) with
respect to the projection of the displacement on the the direction of the normal
vector

u(x) ⊥ nS(x) : u(x)T nS(x) = 0 x ∈ S , (3.49)

where nS(x) is the normal vector to the surface S at point x. The handling of
linear elastic contact problems is given, for example, in [75].
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Boundary value problem. Putting it all together, the boundary value prob-
lem (BVP) that describes the deformation of an isotropic and homogeneous hyper-
elastic material under the impact of external forces in the reference configuration
is given by











A(u) = f in Ω ,

u(x) = û(x) x ∈ Γessential ⊂ Ω ,

t(x,n) = 0 x ∈ Γnatural ⊂ Ω ,

(3.50)

where û(x) is the predefined boundary displacement and

A(u) = −div {(I + ∇u) σ(ε(u))} (3.51)

denotes the operator of non-linear elasticity.

Linear elasticity. Under assumption of small deformations, a completely linear
formulation of the BVP (3.50) with respect to the displacement can be derived.
The equation of the static equilibrium (3.32) in the linear approximation takes the
form

−div σ(e(u)) = f , (3.52)

where e(u) is the linearized strain tensor (3.21). The linear elastic approximation
can be also interpreted as the first step of the iterative solution scheme (see (3.93))

A′(0)u = f , (3.53)

where A′(0) denotes the first derivative of (3.51). After neglecting all terms of
the order higher than 1 with respect to the displacement, (3.53) can be re-written
in the following form

− E

2(1 + ν)
(∆ +

1

1 − 2ν
grad div)u(x) = f(x) . (3.54)

(3.54) yields the explicit relationship between the displacement and the density of
applied body forces and is known as the Lamé-Navier partial differential equation.
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3.3 Finite Element Method

The boundary value problem (3.50) can be generally solved with the help of nu-
merical techniques only. In this work, the finite element method (FEM) is used
for modeling and simulation of the deformation of the arbitrary shaped elastic
objects. In what follows, the basics of the FEM for solving elliptic partial differ-
ential equations and, in particular, the linear and non-linear elastic boundary value
problems are described.

Weak formulation. The basic idea of an FE approach is to replace the exact
solution u(x) defined on the function space of the continuous problemV by an
approximative solution uN(x) defined on the finite-dimensional subspaceVN ⊂
V as a set of linear independent functions ϕi ∈ VN (basis functions) building a
basis of VN

uN(x) =
N

∑

i=1

uiϕi(x) , (3.55)

where ui are the nodal values for a discrete number of mesh nodes N . Consider

L(u) = b (3.56)

the linear elliptic PDE to be solved. The approximative solution (3.55) in (3.56)
produces the residual error or residuum such that

L(uN) − b = r 6= 0 . (3.57)

Since it is usually impossible to force the residuum r to be zero for each node, the
error can be distributed in the domain Ω with weighting functions ψj

N
∑

j=1

∫

Ω

rψj dV = 0 . (3.58)

The technique of solving PDEs based on (3.58) is called the method of weighted
residuals. Furthermore, if the function subspace that spans the basis {ψ1, ψ2, ...ψN}
is identical with the subspace VN , i.e., the weighting functions are identical with
the basis functions, (3.58) defines the projection of the exact solution u of the
problem (3.56) over the space VN

〈r, ϕj〉 = 0 , ∀j (3.59)

where 〈· , ·〉 notifies theL2 scalar product in the Sobolev space H1(Ω) . The for-
mulation of the FEM based on (3.59) is known as the Galerkin method.
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The method of weighted residuals applied to continuum mechanics problems
can be also interpreted as a variational problem of energy minimization. Consider
the equation of the static equilibrium in the linear approximation (3.52). The
weighted residuum (3.58) formulated with r = div σ + f and test displacements
υ : Ω → R

3 as weighting functions

〈(div σ + f), υ〉 = 〈div σ, υ〉 + 〈f , υ〉 = 0 (3.60)

is identical to the principle of virtual work that postulates ”the balance of work
of all forces along the virtual displacement”. Applying the fundamental Green’s
formula [42] to the first term in (3.60)

〈div σ, υ〉 = −〈σ, ∇υ〉 +

∫

∂Ω

σn dS . (3.61)

and recalling that ∇υ = e(υ) and σn = 0 we then write (3.60)

〈σ(e(u)), e(υ)〉 = 〈f , υ〉 , (3.62)

or under consideration of the strain-stress relationship σ(e(u)) = Ce(u)

〈Ce(u), e(υ)〉 = 〈f , υ〉 . (3.63)

Summarizing, we make a conclusion that finding an approximate solution of
the BVP (3.50) (strong formulation) in the discrete functional subspace VN is
formally equivalent to finding a solution of the correspondingweak formulation

a(u, υ) = l(υ) ∀υ ∈ VN , (3.64)

where

a(u, υ) = 〈Ce(u), e(υ)〉 ,
l(υ) = 〈f , υ〉 .

(3.65)

Since (3.65) results from the linear elastic approximation of (3.50), the derivation
of the weak form of the non-linear elastic BVP is analogous.

Existence and uniqueness of the weak solution. Now, we provide a brief out-
line of the existence and the uniqueness of the weak formulation (3.64) of the
linearized BVP (3.50) as it is stated in [21]. For a detailed review of the varia-
tional formulation of elliptic PDEs as well as the existence theory, we refer to the
corresponding literature, for example [20, 11].

Following theorem gives the definition of the V-ellipticity of a bilinear form
a(· , ·) and that the quadratic functional J(υ) = 1

2
a(u, υ) − l(υ) related to the

weak formulation (3.64) has an unique solution.
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Theorem 1 Let V be a Banach space with norm ‖ · ‖, let l : V → R be a
continuous linear form, and let a(· , ·) : V × V → R be a symmetric continuous
V-elliptic bilinear form in the sense that there exists a constant β such that

β > 0 and a(υ,υ) ≥ β‖υ‖2, ∀υ ∈ V.

Then the problem: Find u ∈ V such that

a(u,υ) = l(υ) ∀υ ∈ V,

has one and only one solution, which is also the unique solution of the problem:
Find u ∈ V such that

J(u) = inf
υ∈V

J(u), where J : υ ∈ V → J(u) =
1

2
a(u, υ) − l(υ)

�

The generalization of the theorem 1 for the case of the non-symmetric bilinear
form is stated by the Lax-Milgram lemma [20].

Remark. The functional J is convex in the sense that

J ′′(υ) ≥ 0 ∀υ ∈ V

and it satisfies acoerciveness inequality:

J(u) =
1

2
a(u, υ) − l(υ) ≥ β

2
‖υ‖2 − ‖l‖ ‖υ‖ ∀υ ∈ V .

In order to decide in which particular space V one should seek a solution of
the weak formulation (3.64), we observe that

a(u, υ) = 〈Ce(u), e(υ)〉 =

λ〈 tr e(u), tr e(υ)〉 + 2µ〈e(u), e(υ)〉 ≥ 2µ〈e(u), e(υ)〉 ,

which follows from (3.36). Hence the V-ellipticity of a(· , ·) will follow if it can
be shown that, on the space V, the semi-norm

υ ∈ H1(Ω) → |e(υ)|0,Ω = {〈e(u), e(υ)〉 } 1

2

is a norm, equivalent to the norm ‖ · ‖1,Ω . This results from the following funda-
mental Korn’s inequality.
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Theorem 2 Let Ω be a domain in R
3 . For each υ = (υi) ∈ H1(Ω), let

e(υ) = (
1

2
(∂jυi + ∂iυj)) ∈ L2(Ω) .

Then there exists a constant c > 0 such that

‖υ‖1,Ω ≤ c{|υ|20,Ω + |e(υ)2
0,Ω|}

1

2 ∀υ ∈ H1(Ω) ,

and thus, on the space H1(Ω) , the mapping

υ → {|υ|20,Ω + |e(υ)|20,Ω}
1

2

is a norm, equivalent to the norm ‖ · ‖1,Ω . �

With Korn’s inequality, it can be further shown that

c−1‖υ‖ ≤ |e(υ)|20,Ω ≤ c1‖υ‖ ∀υ ∈ V

(see Theorem 6.3-4., [21]) and that the bilinear form υ → 〈e(u), e(υ)〉 and con-
sequently the bilinear form a(u, υ) are V-elliptic.

Assembling the previous results, the existence of a solution u ∈ H1(Ω) of the
weak form of the linear elastic BVP (3.64), the so-called weak solution can be
established, see Theorem 6.3-5. [21].

The proof of the existence and the uniqueness of the weak form of the non-
linear elastic BVP in conjunction with the discussion of different iterative solution
schemes is in given [20, 21].

Abstract error estimate. With each functional subspace VN ⊂ V is associated
the discrete solution uN that satisfies

a(uN , υN) = l(υN) ∀υN ∈ VN (3.66)

and should be convergent in the sense that

lim
N→∞

‖u − uN‖ = 0 . (3.67)

We are interested in giving sufficient conditions for convergence and the abstract
error estimate. This can be done by using the following theorem [11]
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Theorem 3 (Cea’s lemma). Let a(·, ·) be a bilinear V-elliptic form and u and
uN are the exact and discrete solution of the variational problem over V and
VN ⊂ V respectively. There exists a constant C independent of the subspace VN

such that

‖u − uN‖ ≤ C inf
υN∈VN

‖u − υN‖

�

C = 1 for elliptic PDE. Cea’s lemma has several important consequences for the
choice of the proper solution subspace and the whole discretization scheme.

Locking effect. In finite element computations of solid mechanics problems, it
is sometimes observed that the discrete solution of the given BVP significantly di-
verges from the theoretically predicted one. A collective term for such deviations
is called by engineers the locking effect, since the obtained numerical solution of-
ten yields too small displacements in comparison with the theory. The locking
effect may happen due to several reasons. From the mathematical point of view,
the problem consists in the dependence of the constant C in Cea’s lemma (theo-
rem 3) on a small parameter α, which causes strong increase of C by approaching
to some critical value α → αC . In [11], some particular cases of the locking
effect are described.

Poisson-locking. This type of the locking effect results from the strong depen-
dence of C(ν) on the Poisson ratio ν in the case of the bilinear form (3.64)

a(u, υ) =

∫

Ω

E

1 + ν
(

ν

1 − 2ν
〈 tr e(u), tr e(υ)〉 + 〈e(u), e(υ)〉) dV (3.68)

with a singularity occurring by C(ν = 0.5) = ∞ . To avoid the Poisson locking
of the pure displacement formulation (3.68) for the incompressible material with
ν = 0.5, the so-called mixed formulation of (3.64) with an additional variable,
pressure p : Ω → R resulting in a (non-elliptic) saddle point problem is proposed

〈p, tr e(υ)〉 +
E

1 + ν
〈e(u), e(υ)〉 = l(υ) υ ∈ H1(Ω), p ∈ L2(Ω)

〈q, tr e(u)〉 = 0 q ∈ L2(Ω)

(3.69)

Besides the Poisson-locking there are several other types of the locking effect,
which for instance may result from the insufficient order of the interpolating func-
tions as it is observed for shells and membranes. Thus, the occurrence of the
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Figure 3.8: Arbitrary and reference tetrahedron.

locking effect should be taken into account and investigated in each particular
case. Finally, it is to be mentioned that one of the general measures proposed to
avoid the locking is the so-called reduced integration [56, 11], which consists in
taking a preferably low number of sample points for the numerical integration via
Gauss-Legendre quadrature.

Finite elements. The basic idea of the finite element discretization method con-
sists in finding an approximate solution of the continuous problem for a discrete
number of mesh nodes. For this purpose, the domain Ω occupied by a physical
body has to be subdivided into a discrete number of not overlapping subdomains
Ωi, the so-called finite elements, such that Ω =

⋃

Ωi and Ωi ∩ Ωj = ∅, i 6= j .
In this work, domain partitioning based on the tetrahedral 3D elements is used.
Allowing flexible triangulation of arbitrary 3D domains, tetrahedral elements are
widely used in the finite element analysis of solid structures [109]. In Figure 3.8,
the arbitrary and reference tetrahedron are shown. Consequently, all continuous
variables of the problem have to be interpolated with basis functions in accor-
dance with (3.55). From the numerical point of view it is more advantageous, if
the resulting system of equations associated with the discrete problem has a sparse
structure. This is the case if the basis functions ϕi have local supports, i.e.,

ϕi(xj) = δij , i, j = 1...N . (3.70)

Furthermore, the basis functions have to satisfy other additional constraints such
as the requirements to have a predefined behavior and to be continuous on each
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subdomain Ωi , as well as to be of the order that is sufficient for the approximation
of the highest order derivatives in the weak form of the corresponding BVP. In
the weak form of both linear and non-linear elastic BVPs, only the first order
derivatives have to be approximated. Hence, the simplest interpolation of elastic
continuum with linear basis functions is possible. Linear basis functions satisfying
the above requirements and corresponding to the reference tetrahedron in Figure
3.8 are

ϕ1 = 1 − ξ1 − ξ2 − ξ3,
ϕ2 = ξ1,
ϕ3 = ξ2,
ϕ4 = ξ3.

(3.71)

Besides the linear basis functions, quadratic, cubic and higher order polynomi-
als can be used as admissible basis functions. On the one hand, the non-linear
basis functions enable more smooth interpolation. On the other hand, higher or-
der polynomial require additional nodes to be placed in the middle of the edges
and faces of the tetrahedron. Since the quadratic interpolation requires N = 10
and the cubic interpolation already N = 20 nodes per element, the dimension of
the system matrix O(3N × 3N) increases for non-linear elements dramatically.
Furthermore, the precision of the numerical solution cannot be substantially im-
proved with the increasing smoothness of the interpolating functions, but with the
sufficient domain refinement ([11], see comments to Cea’s lemma).

Since the basis functions (3.71) are defined on the reference tetrahedron with
the unit edge length ξi ∈ [0, 1] , each arbitrary tetrahedron with node coordinates
xn

i has to be mapped onto the reference one, see Figure 3.8. Such mapping is
described by the general Jacobi transformation

x = J ξ , (3.72)

where J is the corresponding Jacobi matrix

J =
∂xi

∂ξj
=





(x2
1 − x1

1) (x3
1 − x1

1) (x4
1 − x1

1)
(x2

2 − x1
2) (x3

2 − x1
2) (x4

2 − x1
2)

(x2
3 − x1

3) (x3
3 − x1

3) (x4
3 − x1

3)



 . (3.73)

The inverse transformation is then

ξ = J−1 x =
JT

6Vt

x , (3.74)

where Vt = |J|/6 is the volume of a tetrahedron (xn
i ), and thus the condition of

the inverse Jacobi matrix decisively depends on the geometry of the tetrahedral
element.
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Linear elastic FEM. The starting point for the linear elastic FEM is the weak
formulation (3.64) of the linearized BVP (3.50). Comprising the previous results,
we seek for the discrete solution uN ∈ VN ⊂ V of the following BVP



























































∫

Ω

Ce(uN) e(υN) dV =

∫

Ω

f υN dV in Ω ,

e(uN) =
1

2
(∇uT

N + ∇uN) ,

uN =
N

∑

i=1

uiϕi , υN =
N

∑

i=1

υiϕi ,

uN(x) = ûN(x) x ∈ Γ ⊂ Ω ,

(3.75)

or componentwise in a more explicit form

up
k

∫

Ω

Cijkm ∂kϕp ∂jϕq dV =

∫

Ω

fiϕq dV , (3.76)

where i, j, k,m = 1, 2, 3, p, q = 1...N , {ui
j} denotes the 3 × N vector of nodal

values and

Cijkm = λ δijδkm + µ (δikδjm + δimδjk) . (3.77)

The partial derivatives of the basis functions ϕ(ξ) in (3.76) have to be calculated
as follows

∂ϕk

∂xj

=
∂ϕk

∂ξi

∂ξi
∂xj

=
∂ϕk

∂ξi
J−1 . (3.78)

Here, it is one more time to be pointed out that because of J−1 ∼ 1
Vt

the gradient
field (3.78) and consequently∇u depends on the quality of the discretization. In
particular, degenerated tetrahedrons with Vt ≈ 0 can cause the deterioration of the
resulting system condition.

Further, the volume integrals on both sides of (3.78) are usually to be com-
puted numerically via Gauss-Legendre quadrature. Recalling the discussion about
the locking effect, integration with one Gauss point is used in this work, which
also shortens the assembly time.

The system (3.76) can be written in a matrix form

Au = b, (3.79)

where u is the vector of nodal values, the right-hand side vector b is known as
load vector and the 3N × 3N matrix A is called the stiffness matrix. The stiffness
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matrix basically contains the integrals over all volume elements of the domain
of interest, which are stored in N2-th 3 × 3 nodal stiffness matrices Anm

ij , where
n,m = 0...(N − 1) are nodal indexes and i, j = 0, 1, 2.

As a consequence of the local support of basis functions and a finite number
of node neighbors for each mesh node the stiffness matrix consists of a small
number of non-zero elements. Thereby, the structure of i-th row of the stiffness
matrix reflects the structure of i-th node neighborhood in a mesh: the maximum
number of non-zero elements of i-th row is equal to 3×Ni, whereNi is the number
of i-th node neighbors. Such a sparse structure enables a very compact storage of
the stiffness matrix, and is also of crucial importance for the application of the
efficient solving algorithms.

Since the bilinear form a(· , ·) is symmetric and V-elliptic, the resulting stiff-
ness matrix A is symmetric and positive definite as well. These properties are
important for the application of the efficient numerical techniques for the solution
of (3.79).

Incorporation of boundary conditions. In order to obtain a non-trivial solu-
tion, the linear system of equations (3.79) has to be modified with respect to the
given boundary conditions. Generally, the boundary conditions are given in the
form of

• prescribed boundary displacements, which is usually the case in soft tissue
modeling and medical imaging analysis, and/or

• applied forces.

In the first case, the solution has to be obtained from the modified system

Âu = b̂, (3.80)

where Â is the stiffness matrix with incorporated prescribed displacements û and
b̂ = −Aû is the load vector corresponding to the prescribed boundary displace-
ments û . The incorporation of the prescribed displacement of i-th node, i.e., the
essential boundary condition, consists in setting i-th row and i-th column of A to
zero and setting the i-th diagonal element of A to identity Aii = 1 . The homoge-
neous natural boundary conditions t = σn = 0 , cf. (3.50), require in the finite
element method no extra implementation, since they are implicitly considered by
the assembly of the stiffness matrix. The transformed stiffness matrix Â still has
to be symmetric and positive definite, in order the modified system (3.80) to have
a non-trivial and unique solution.
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Iterative numerical techniques. In order to solve linear and non-linear systems
of equations, iterative numerical techniques are usually applied. Hence, we briefly
describe the method of conjugate gradients and the Newton method, which have
been used in this work for iterative solving linear and non-linear elliptic problems,
respectively.

Method of conjugate gradients. The linear elastic finite element method leads
to the linear system of equations Au = b respectively the nodal displacements
u with the symmetric, positive definite and sparsely occupied stiffness matrix
A . This properties enable the application of the efficient solving technique, the
method of conjugate gradients (CG) [57].

The common idea of the iterative methods is to approach the solution of the
given problem u by the successive approximations uk starting from some initial
guess u0. The approximate solution is searched to minimize the residual differ-
ence ‖u−uk‖ w.r.t. an abstract norm ‖ · ‖. A general approach to the formulation
of the CG method is based on the Ritz-Galerkin approximation of the solution in
the Krylov spaces with the scalar product

(x, y) = xTAy (3.81)

and the corresponding norm, the so-called energy norm,

‖y‖A =
√

(y, y) (3.82)

defined for each symmetric, positive definite matrixA. Consequently, the main
operation of the CG algorithm is the matrix-vector multiplication, which in the
case of a sparsely occupied matrix can be performed particularly efficient. For a
detailed derivation of the CG method, we refer to [30].

The CG algorithm requires no additional parameters to achieve the given pre-
cision of the solution ε

ε =
‖u − uk‖A

‖u − u0‖A

(3.83)

after maximum n iterations

n ∼ 1

2

√
κ ln

(

2

ε

)

+ 1 . (3.84)

κ in (3.84) denotes the condition number of the system matrix A with maximal
and minimal eigenvalues λmax and λmin, respectively

κ =
λmax

λmin
. (3.85)
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Preconditioning. As we have seen above, the convergence of the CG algorithm
essentially depends on the condition of the system determined by the condition
number κ (3.85). For ill-conditioned and, in particular, quasi-singular systems,
i.e. the minimal eigenvalue is close to zero 0 < λmin � 1 , the condition number
is large κ� 1 and the convergence rate of the CG method becomes worse. In this
case, the performance of the iteration process can be improved by decreasing the
condition number with the help of preconditioning algorithms.

The idea of preconditioning is to replace the original, ill-conditioned system
Au = b with the modified one, which has a better condition number close to
1. There are several well established strategies for the acceleration of the con-
vergence process in the finite element calculations, see for example [109]. The
choice of the preconditioning method depends on the symmetry, the condition,
the dimension and other characteristics of the concrete problem, since the precon-
ditioning algorithms substantially differ in the performance and the complexity.
In this work, the comparatively simple and fast Jacobi preconditioning is used.
This method consists in scaling the original system

Âij = DiAij Dj , (3.86)

where

Di = 1/
√

Aii . (3.87)

Such scaling yields the symmetric and positive definite matrixA is transformed
into the symmetric and positive definite matrixÂ of the following structure

Â =

{

Âij = 1, i = j

Âij < 1, i 6= j
(3.88)

For the range of problems studied in this work, such scaling already yields a suf-
ficient improvement of the performance. However, in the case of the large and
ill-conditioned system the application of more sophisticated preconditioning tech-
niques such as multigrid methods should be taken into consideration [11].

Iterative solution of non-linear problems. The major difficulty in the numer-
ical computation of deformations of elastic structures is the proper handling of
various non-linearities occurring in the boundary value problem (3.50). A general
approach for solving non-linear problems consists in a successive approximation
of the solution by a set of corresponding linearized problems. Assuming that the
boundary value problem (3.50) has an approximate solution un

A(un) = fn , (3.89)
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we firstly define the next(n+ 1)-st approximate displacement

un+1 = un + δun , (3.90)

where δun = un+1−un denotes the (n+1)-st displacement increment. Applying
the Taylor formula to (3.51) at the point un+1 one obtains

A(un+1) = A(un + δun) = A(un) + A′(un)δun + o(δun) , (3.91)

where A′(un) is the Fréchet derivative, also known as the tangent stiffness. Re-
calling that

A(un+1) − A(un) = fn+1 − fn = δfn , (3.92)

where δfn denotes an increment of body forces corresponding to δun , (3.91) can
be re-written as follows

A′(un)δun = δfn . (3.93)

Thus, the application of the iterative solution scheme results in a successive ap-
proximation of the (n + 1)-st displacement by solving a set of linear equations
(3.93) respectively to the displacement increment with a subsequently update
(3.90). In what follows, we briefly discuss well established iterative techniques
for solving non-linear problems of structural mechanics.

Method of incremental loads. The basic idea of the incremental method is to
let the body forces vary by a small force increment

δfn = (λn+1 − λn)f , 0 ≤ λn ≤ 1 , (3.94)

from 0 to the given force f , and to compute successive approximations un+1 to
the exact solution u(λn+1f) by solving a set of linear equations

A′(un)δun = (λn+1 − λn)f

un+1 = un + δun
(3.95)

The detailed description of the incremental method, including the proof of the
existence and the uniqueness of the solution of the non-linear elastic BVP based
on it, can be found in [21].
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Newton method. The Newton method for solving a non-linear problem of the
type A(u) = f consists in successively solving a set of linearized equations

A′(un)(un+1 − un) = f − A(un) , n ≥ 0 (3.96)

starting with an initial guess u0 .
In accordance with (3.96), each iteration step the tangent stiffness matrix has

to be assembled anew. Since such full update of A′(un) at each iteration step is
relatively time consuming, the simplifiedNewton method consisting in using only
the first Fŕechet derivative A′(u0) can be applied

A′(u0)(un+1 − un) = f − A(un) , n ≥ 0 . (3.97)

In this case, the most expensive part of the non-linear calculation, the assembly of
the tangent stiffness matrix has to be performed only once. An extensive descrip-
tion of the Newton method in structural mechanics can be found in [24]. Various
aspects of application of the Newton method to the ”almost singular” problems,
which often arise in continuum mechanics, are in [29]. A promising approach for
efficient solving non-linear elliptic problems with the help of theinexact Newton
method is proposed in [32, 33].

Non-linear elastic FEM. A more general approach is based on the weak for-
mulation of the original non-linear elastic boundary value problem (3.50). As
we have seen above, the solution of the non-linear elastic BVP can be reduced
to the iterative process consisting in recursively solving the system of equations
linearized respectively the displacement increment δu . For the rest, the finite ele-
ment discretization of the non-linear elastic BVP is analogous to the linear elastic
one. All relevant variables have to be represented in the finite element spaceVN

as weighted sums (3.55) and set into (3.93). The linearization of (3.93) simply
consists in deleting all the terms that are non-linear with respect to the displace-
ment increment δun . The weak form of (3.93) can be written componentwise as
follows, cf. (3.76)

δup,n
k

∫

Ω

C ′
ijkm(∇un) ∂kϕp ∂jϕq dV =

∫

Ω

δfn
i ϕq dV , (3.98)

where i, j, k,m = 1, 2, 3, p, q = 1...N , n ≥ 0 is the iteration index and

C ′
ijpq(∇un) = Cijpq + Ckjpq∂ku

n
i + Cijrp∂ru

n
q +

Ckjpr∂ru
n
q ∂ku

n
i + Cpjsrεsr(u

n)δiq (3.99)
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denotes the tangent stiffness. With δfn
i = (λn+1 − λn)fi = hnfi (3.98) already

represents the discrete form of the incremental method (3.95)

δup,n
k

∫

Ω

C ′
ijkm(∇un) ∂kϕp ∂jϕq dV =

∫

Ω

hnfiϕq dV . (3.100)

The major drawback of the incremental method is that its convergence depends
on the step width hn , which usually should be chosen ”small enough” in order
to stay ”close to path”. As a result of this, comparatively large number of itera-
tions of the incremental method is required. Moreover, the incremental method is
usually used in finite element analysis of solid structures as a ”predictor”, which
firstly provides the starting solution for an iterative ”corrector” [24], for example
Newton method. Such coupled incremental/iterative solution scheme is relatively
expensive. Instead of this, we use the linear elastic approximation as a one-step
predictor and the Newton method as a corrector.

The weak form of the Newton method is given by

δup,n
k

∫

Ω

C ′
ijkm(∇un) ∂kϕp ∂jϕq dV =

∫

Ω

fiϕq dV − A(un) , (3.101)

with

A(un) =

∫

Ω

(δkl + up,n
k ∂lϕp)σlj(u

n) ∂jϕq dV . (3.102)

This integral has to be computed without any linearization so that the stress tensor
σij = Cijkm εkm in (3.102) is now associated with the fully non-linear strain tensor
εij = 1

2
(∂jui + ∂iuj + ∂iul∂jul) .

The solution of (3.101) yields the n-th increment of the displacement vector
δun

i = un+1
i −un

i . Thus, the application of the iterative solution scheme results in
a successive approximation of the (n+ 1)-st displacement

un+1 = un + δun. (3.103)

For each iteration, the linear system of equations (3.96) respectively the n-th incre-
ment of the displacement vector is solved by using the preconditioned conjugate
gradients method (PCG).

For the monitoring of the convergence process of the Newton method, a cri-
terion based on the norm of the residual vector ‖rn‖ = ‖f − A(un)‖ is applied.
The same criterion is also used for termination of the iterative process

‖rn‖
‖r0‖ ≤ 10−3 . (3.104)
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The straightforward computation of the tangent stiffness (3.99), i.e. the full
update of the tangent stiffness matrix at each iteration step, is time consuming. As
it has already been mentioned above, this can be substituted with a weaker formu-
lation, the simplified Newton method, where the first Fŕechet derivative A′(u0)
has to be computed only once.

An additional improvement of performance can be achieved by applying the
true non-linear assembly of elementary stiffness matrix C ′

ijkm(∇un) on large de-
formed elements only. Indeed, if higher order terms in (3.99) are small in compar-
ison with the first linear oneCijkm , they simply can be neglected as it is assumed
in linear elasticity. Such mixed linear/non-linear assembly of the tangent stiffness
matrix can substantially improve the performance, in particular, if only a small
part of the domain is deformed. To switch between linear and non-linear assem-
bly of an elementary stiffness matrix a criterion based on the monitoring of the
displacement gradient (3.22) is used

if max(|∇u|) < εmax on Ωi ⊂ Ω :

assemble C ′
ijkm ≈ Cijkm on Ωi

else :

assemble C ′
ijkm(∇un) on Ωi

In other words, if (3.22) indicates that the local linearization error is small, the
non-linear terms in C ′

ijkm(∇un) can be neglected.

Adaptive mesh refinement. In order to solve the given boundary value prob-
lem via the finite element method, the domain of interest has to be discretized into
subdomains. In accordance with Cea’s lemma (3), the discretization error depends
on the dimension of the finite element subspace, i.e. the number of nodal points
and elements. On the other hand, the same parameters determine the dimension
of the system of equations to be solved, and thus are directly related to the compu-
tational expenses. The key to the solution of this dilemma between the precision
and the efficiency is the selective placement of nodal points, i.e. adaptive mesh
refinement.

There are several strategies for the adaptive meshing. Conventional adaptive
schemes are based on the estimation of the local difference of the numerical so-
lution obtained on the different order approximation spaces. For example, the
error estimation for the solution approximated with linear basis function ul con-
sists in monitoring the difference ‖uq − ul‖ , where uq is the solution obtained
with quadratic basis functions. Efficient error estimators for the adaptive mesh re-
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Figure 3.9: Von Mises and shear stress (Tresca) crack criteria (from [46, 83]).

finement based on hierarchical basis strategy are given in [31, 10]. Unfortunately,
even simplified hierarchical adaption schemes are quite expensive.

In finite element analysis of continuum mechanics problems, the goal of the
adaptive meshing is intuitively evident: only large deformed regions have to be
refined while the quiescent ones remain coarse meshed. The criteria of the ”in-
tensity” of the deformation known from fracture mechanics are based on the mea-
surement of the deformation indicators such as the invariants of the stress or the
strain tensor as for instance the shear stress or Tresca criterion [46, 83]

max|σi − σj| ≤ σc, i 6= j , (3.105)

where (σ1, σ2, σ3) are the principal stresses and σc is a characteristic crack stress;
or the von Mises criterion, see Figure 3.9

3

2
(σ2

1 + σ2
2 + σ2

3) ≤ σ2
c . (3.106)

Since both the stress and the strain are the functions of the displacement gra-
dient, a criterion based on (3.22) can be also used for the indication of large de-
formed regions. Subsequently, the solution on the refined mesh ur have to be
compared with the previously obtained one on the coarse mesh uc. The break
condition is given by

‖ur − uc‖
‖uc‖

� 1 , (3.107)

i.e. if the last refinement is not followed by the significant improvement of the
solution. In order to be able to detect local differences corresponding to small
regions, the norm ‖ · ‖ can be computed over the nodal points of the coarse mesh
that belong to refined elements of these regions.
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After the elements are marked for the refinement, edges and triangles of the
corresponding tetrahedron have to be split as it is shown in Figure 3.10. Different
refinements of tetrahedral elements are used to achieve a regular triangulation, that
is the elements are allowed to intersect only by edges or triangles. Uncompleted
refinements with node-edge or node-triangle intersections are not allowed.

(initial tetrahedron) (green refinement:1 → 2)

(green refinement:1 → 3) (green refinement:1 → 3)

(green refinement:1 → 4) (red refinement:1 → 8)

Figure 3.10: Tetrahedron refinement strategies (from [36]).


