Chapter 2

State of the Art

In this chapter, we briefly review the existing techniques for the modeling of de-
formable objects, which have been developed within the last three decades for
different computer graphics and medical imaging applications.

2.1 Deformable M odeling

Deformable modeling of physical objects has a long history. Since computers
become an indispensable tool in modeling, sophisticated simulation of complex
physical scenes becomes a major everlasting trend in computer graphics and many
other applications dealing with the computer assisted modeling of physical reality.

The simulation of deformable objects is essential for many applications. His-
torically, deformable models appeared in computer graphics and were used to
create and edit complex curves, surfaces and solids. Computer aided design uses
deformable models to simulate the deformation of industrial materials and tissues.
In image analysis, deformable models are used for fitting curved surfaces, bound-
ary smoothing, registration and image segmentation. Later, deformable models
are used in character animation and computer graphics for the realistic simulation
of skin, clothing and human or animal characters [66, 86, 59, 47]. The model-
ing of deformable soft tissue is, in particular, of great interest for a wide range of
medical imaging applications, where the realistic interaction with virtual objects
is required. Especially, computer assisted surgery (CAS) applications demand the
physically realistic modeling of complex tissue biomechanics.

Generally, existing modeling approaches can be ranged into two major groups.
Models based on solving continuum mechanics problems under consideration of
material properties and other environmental constraints are called physical mod-
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els. All other modeling techniques, even if they are somehow related to mathe-
matical physics, are known as non-physical models. A comprehensive review of
deformable modeling for medical applications can be found in [87].

2.2 Non-physical Modeling

Non-physical methods for modeling of deformable objects are usually based on
pure heuristic geometric techniques or use a sort of simplified physical principles
to achieve the reality-like effect. These techniques are very popular in computer
graphics and sometimes used in real time applications, since they are computa-
tionally efficient in comparison with expensive physical approaches.

Spline techniques. Many early approaches for modeling deformable objects
were developed in the field of computer aided geometric design (CAGD), where
flexible tools for creation of interpolating curves and surfaces as well as the intu-
itive ways to modify and refine these objects were needed. From this need came
Bezier-curves and subsequently many other methods of compact description of
warped curves and surfaces by a small vector of numbers, including B-splines,
non-uniform rational B-splines (NURBS) and other types of spline techniques.

The spline technique is based on the representation of both planar and 3D
curves and surfaces by a set of control points, also called landmarks. The main
idea of spline based methods is to modify the shape of complex objects by varying
the position of few control points. Also the number of landmarks as well as their
weights can be used for adjustment of the object deformation. Such parameter-
based object representation is computationally efficient and supports interactive
modification. A comprehensive introduction in curve and surface modeling with
splines can be found in [6].

A particular group of landmark-based techniques represent methods, which
are used in the elastic image registration and based on radial basis functions de-
rived from some special closed-form solutions of elasticity theory. In [9], a spline
technique based on the radial basis function r log(r) derived from the linear elas-
tic solution of the thin-plate deformation problem is proposed. Such thin-plate
splines (TPS), globally defined in the image domain, are used for interpolation of
the deformation given by the prescribed displacements of control points. Extended
TPS-techniques are described in [102, 107]. In [26], an analogous landmark-based
approach is proposed, where elastic body spline (EBS) derived from the special
solution of 3D elasticity is used as an interpolating radial basis function.
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Free-form deformation. Free-form deformation (FFD) became popular in com-
puter assisted geometric design and animation in the last decade. The main idea
of FFD isto deform the shape of an object by deforming the space in which it is
embedded. In early work [5], ageneral method based on the geometric mappings
of 3D space was proposed. This deformation technique uses a set of hierarchical
transformations for deforming an object, including rigid motion, stretching, bend-
ing, twisting and other operators. The elementary space-warpings are obtained by
using the surface normal vector of the undeformed surface and a transformation
matrix to calculate the normal vector of an arbitrarily deformed smooth surface.
Complex objects can be created from ssimpler ones, since the deformations are
easily combined in ahierarchical structure. The position vector and normal vector
in more complex objects are cal culated from the position vector and normal vector
in simpler objects. Each level in the deformation hierarchy requires an additional
matrix multiply for the normal vector calculation.

The term free-form deformation has been introduced in a later work [110],
where a more generalized approach based on the embedding an object in a grid
of mesh points of some standard geometry, such as a cube or cylinder, has been
proposed.

The basic FFD method has been extended by several others[22, 17]. In [84],
amodally-controlled FFD technique based on a combination of the FFD method
and the modal analysis[97] for the non-rigid registration in image-guided surgery
IS presented.

2.3 Physical Modeling

In the applications, which demand the realistic simulation of deformable physical
bodies, thereisno alternative to consistent physical modeling, i.e., numerical solv-
ing partial differential equations (PDES) of elasticity theory. The major problem
of physical modeling is that

e the observed physical phenomena can be very complex and
e solution of underlying PDES requires substantial computational expenses.
The answers to these two questions consist in

¢ finding an adequate simplifi ed model of the given problem covering the
essential observations and

¢ applying effi cient numerical techniques for solving the PDES.
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A variety of approaches for deformable modeling, which have been developed in
the past, were bound to give their particular answers to these two questions.

It is diffi cult to trace who fi rst proposed a working physical model of de-
formable living tissue. The list of names and research groups, which made their
contributions to this topic, is quite long. The study of biomechanical properties
of living tissues and their numerical modeling was triggered by single research
programs of car-, space- and military-industry beginning from the 50s and later
substantially boosted in the early 80s with the development of computer tomog-
raphy [15, 3]. Further physically motivated techniques for elastic registration and
segmentation of medical images are in [67, 4, 19]. At the same time, fi rst funda-
mental theoretical and experimental investigations of tissue biomechanics appear.
In the last decade, a plethora of various approaches and applications related to
biomechanical modeling is developed. These methods can be classifi ed by differ-
ent criteria. One of such classifi cations is based on the type of the numerical tech-
nigue used in the modeling approach. There are four common numerical methods
for physically based modeling of deformable objects. These are

e Mass-spring-damper systems,
¢ thefi nite difference method,
¢ the boundary element method,

o thefi nite e ement method.

Mass-spring-damper systems. In the early approaches to soft tissue modeling,
an approximation of mechanical continuum by a mass-spring-damper (MSD) sys-
tem was used. The physical body is represented by a set of mass-points connected
by springs exerting forces on neighbor points when a mass is displaced from its
rest positions. MSD systems can be seen as a simplifi ed model of particle inter-
action, since physical bodies in fact consist of discrete sub-elements, atoms and
molecules. The spring forces Fs are usually considered to be linear (Hookean)

Fo= —ku, (2.1)

where u isthe displacement of mass-point and & denotes the spring constant corre-
sponding to the material stiffness. The Newton equations of motion for the entire
system of N mass-points under the external forces Fe are given by

d*u du
M —— — +Ku=F 2.2
gz T TRu=TFe (22)



2.3. Physical Modeling 11

where M, C and K are the 3N x 3N mass, damping and stiffness matrices,

respectively. The solution of (2.2) respectively the displacements u yields the

linear elastic deformation of a physical body discretized by N mass-points. In

one of the first works on the field of facial animation [101], a muscle model based
on MSD systems, which essentially solve the static system

Ku=Fy, (2.3)

is presented. The face is modeled as a two-dimensional mesh of points connected
by linear springs. Muscle actions are represented by forces applied to the corre-
sponding region of mesh nodes. This approach was expanded in the later works,
where a more sophisticated MSD model of muscles was developed. In [115, 93],
muscles directly displace nodes within zones of influence, which are parameter-
ized by radius, fall-off coefficients and other parameters. In [113], dynamic mass-
spring systems for facial modeling are described. In this approach, a multi-layer
mesh of mass points representing three anatomically distinct facial tissue layers:
the dermis, the subcutaneous fat layer and the muscle layer is used. This approach
has been extended in [79], where a mesh adaptation algorithm is used that tailors
a generic mesh to the individual features by locating these features in a laser-
scanned image. For improved realism, this formulation also includes constraint
forces to prevent muscles and fascia nodes from penetrating the skull.

In [69], a mass spring model of facial tissue for the soft tissue prediction in
craniofacial surgery simulations is proposed. Alternatively to (2.1), non-linear
springs Fs(u) ~ u™ can be used to model soft tissue, which generally exhibits
non-linear elastic behavior [114].

The major drawback of MSD systems is their insufficient approximation of
true material properties. Being a very simplified model of mechanical continuum,
particle systems do not provide the required accuracy for the realistic simulation
of complex composite materials such as soft tissue. MSD systems are also weak,
if complex, arbitrary shaped objects such as thin surfaces, which are resistant to
bending, are to be modeled.

Finite difference method. The finite difference method (FDM) is historically
the first true discretization technique for solving partial differential equations. The
general approach of the FDM is to replace the continuous derivatives within the
given boundary value problem with finite difference approximations on a grid
of mesh points that spans the domain of interest. Consequently, the differential
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operator is approximated by an algebraic operator as for instance

df(x) _ flz+h) - f(z)

dr ~ h ’
CF(x) _ flo+h) —2f(x) + flz = h) &4
dx? h? ’

where h isthe characteristic dimension of the discretization. The resulting system

of equations can then be solved by avariety of standard techniques. A general al-

gorithm for the fi nite difference discretization of linear boundary value problems
isasfollows:

1. Convert continuous variables to discrete variables.

2. Approximate the derivatives at each point using formulae derived from a
Taylor series expansion using the most accurate approximation available that is
consistent with the given problem.

3. Assemble the linear system of equations respectively to the nodal values.
4. Apply boundary conditions on the boundary points separately.

5. Solve the resulting set of coupled equations using either direct or iterative
schemes as appropriate for the given problem.

The FDM achieves effi ciency and accuracy when the geometry of the problem
iIsregular. The FDM is usually applied on cubic grids, which are naturally given
by pixels or voxels of 2D or 3D digital images, respectively. However, the dis-
cretization of objectswith theirregular geometry becomes extremely dense, which
reguires extensive computational resources for data storage and system solving.

In [105], the FD approach for the linear elastic prediction of facial tissue in
craniofacial surgery planning is applied. Massively paralel super-computers are
used to compute the deformation of 120 x 120 x 150 voxel-grids derived directly
from 3D tomographic datasets.

Boundary element method. A genera principle of solving the boundary value
problem given by the partial differential equation (PDE) and the boundary con-
ditions consists in bringing the differential problem into an integral form. For
a certain class of problems, the resulting integration over the whole domain of
interest (2 can be substituted by the integration over the boundary I' C 2. Con-
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sequently, only the boundary of the domain has to be discretized, which in turn
means that

o the dimension of the resulting system of equations is significantly smaller
than in the case of total volume discretization,

o the difficult problem of volumetric mesh generation becomes redundant.

For the differential operator of elasticity theory, such boundary integral formula-
tion can be obtained. In [12, 8], the boundary element method (BEM) for static
and dynamic problems of continuum mechanics is described. Unfortunately, the
volume integrals in the BEM can be completely eliminated only if

o the material is homogeneous and
e no volumetric forces are given.

This is generally not the case in soft tissue modeling. Furthermore, the system
matrix when using BEM is fully occupied, which makes the application of effi-
cient iterative solving techniques difficult or even impossible. The investigation
carried out in [48] shows that the condition of the BEM system matrix essentially
depends on the smoothness of the domain boundary, which possibly requires ad-
ditional boundary smoothing to achieve the required accuracy of the solution. For
elastic registration of medical images, the BEM is, in general, not that robust and
flexible as the finite element method [49].

Examples of the application of the boundary element method for the modeling
of deformable objects are given in [88, 65, 64].

Finite element method. The finite element method (FEM) becomes the ulti-
mate “state of the art” technique in physically based modeling and simulation.
The FEM is superior to all previously discussed methods when accurate solution
of continuum mechanics problems with the complex geometry has to be found.
It also provides the most flexible modeling platform free of all limitations with
respect to the material type and the boundary conditions.

More accurate physical models treat deformable objects as a mechanical con-
tinuum: solid bodies with mass and energies distributed throughout the three-
dimensional domain they occupy. Unlike the discrete MSD systems, the FEM is
derived directly from the equations of continuum mechanics. In a difference to
the FDM, the differential operators are not approximated by simple algebraic ex-
pressions, but applied “as they are” on the subspaces of those admissible solution
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fi elds. The difference to the BEM consists in the volume integration, which en-
ables amore general approach to the continuum modeling.

In elasticity theory (Section 3.2), the deformation of a physical body is de-
scribed as the equilibrium of external forces and internal stresses. The static equi-
librium for an infi nitessimal volume is given by the partial differential equations,
which implies the relationship between the deformation variables such as stresses,
strains or displacements and the applied force density, and also contains the con-
stants describing the object material properties. To compute the object deforma-
tion, the PDESs of elasticity theory have to be integrated over the domain occupied
by abody. Sinceit is usualy impossible to fi nd a closed-form analytical solution
for an arbitrary domain, numerica methods are used to approximate the object
deformation for a discrete number of points (mesh nodes). MSD or FD methods
approximate objects as afi nite mesh of nodes and discretize the equilibrium equa-
tion at the mesh nodes. The FEM divides the object into a set of elements and
approximate the continuous equilibrium equation over each element. The main
advantage of the FEM over the node-based discretization techniques is the more
fiexible node placement and the substantial reduction of the total number of de-
grees of freedom needed to achieve the required accuracy of the solution.

The main idea of continuum based deformable modeling consists in the min-
imization of the stored deformation energy, since the object reaches equilibrium
when its potential energy is at aminimum. The basic steps of the FEM approach
to compute the object deformations are the following:

1. Derive an equilibrium equation for a continuum with given material prop-
erties.

2. Select the appropriate fi nite elements and corresponding interpol ation func-
tions for the problem.

3. Subdivide the object into the elements.

4. All relevant variables on each element have to be interpolated by interpola-
tion functions.

5. Assemble the set of equilibrium equations for al of the elements into a
single system.

6. Implement the given boundary constrains.
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7. Solve the system of equations for the vector of unknowns.

A detailed description of the linear and non-linear elastic fi nite element ap-
proach isin Section 3.3.

Finite element methods enable the most realistic simulation of deformable liv-
ing objects. However, even this sophisticated approach has its limitations. The
material properties of living tissues are highly complex and usualy have to be
estimated empirically. Living objects are composite materials with a very com-
plex geometrical structure. Various contact and obstacle problems are associated
with the modeling of such multi-body systems. A general problem concerns the
modeling of large deformations. A widely used linear elastic approach can only
be applied under the assumption of small deformations, which often does not hold
for soft tissue rearrangements in craniofacial surgery interventions. All these and
many other problems make the consistent FE based modeling of soft tissue avery
challenging task.

The FE analysisiswidely used for modeling deformable living tissuesin med-
ical imaging and CAS applications [23, 14, 13, 27, 40]. The most advanced FE
based approach for modeling of facial tissue within the scope of the craniofacial
surgery planning isin [73, 103]. Throughout all these and other early works, the
linear elastic approximation of soft tissue behavior is typicaly usually used. In
[99, 117], the application of the non-linear elastic FEM for real-time simulations
of surgical interventionsis reported. Till now, no investigations of non-linear FE-
based models of facia tissue are known.



