
Chapter 7

Conclusion

There exists a great variety of methods for the recognition of on-line handwritten

mathematical expressions. Most of them share a common approach: recognition

of mathematical expressions is divided into two subproblems, namely recognition of

characters and structural analysis of the mathematical expression. However, authors

concentrate only on one of the subproblems or on the development of a user interface,

offering only a partial solution to the whole problem.

The objective of this thesis was to develop a system for the recognition of on-

line handwritten mathematical expressions. Instead of giving partial solutions to the

problem, we offered an integrated solution in a real environment. Our system handles

on-line handwritten mathematical expressions with a minimum of restrictions: the

expression can be written using the usual mathematical conventions.

The main contributions of this work are the following:

Classification of On-Line Symbols

Our experiments indicate that Support-Vector Machines are best suited for the recog-

nition of isolated on-line handwritten symbols.

We propose a system for the recognition of isolated on-line handwritten characters

which is based on support vector classification. We also propose a suitable represen-

tation for strokes and symbols which is used to improve the classification rates of the

classifier.

We realize a variety of experiments using user-dependent and user-independent

data. In addition to Support-Vector Machines, in our experiments we used other

popular classification techniques: nearest neighbors, naive Bayes, classification trees,

and artificial neural networks. Among all these classifiers, the one we developed

96



achieved the best classification rates with the data. This could be accomplished

by extensive preprocessing of the data and by parameter selection for the support

vector classification. From experiments, we can also conclude that our classifier was

superior, in terms of classification rates to others classifiers found in the literature.

Our experiments suggest that the Support-Vector approach optimizes the trade-off

between training time and classification rates.

Structural Analysis of Mathematical Expressions

We propose a new structural analysis method for the recognition of on-line hand-

written mathematical expressions based on a minimum spanning tree construction

and symbol dominance. Our method addresses important layout problems frequently

encountered in on-line handwritten formula-recognition systems. Our method also

aims to handle input as naturally as possible, i.e. using the usual mathematical

conventions, without restrictions in the order the symbols are written.

We introduce a technique to locate fraction lines in expressions to overcome hori-

zontal irregularities. Irregular horizontal layouts are normally caused by neighboring

symbols of fractions. Locating fraction lines also helps to find the correct association

of superindices taking the form b
1

2 when the arguments of the fraction overlaps the

horizontal region of the base. Our method also addresses the problem of argument

association to sum-like operators. These arguments are symbols located above and

below the sum, integral, product operators, etc.

Our method handles symbols with non-standard layout, like
∗

∗

∏∗

∗
, as well as tab-

ular layouts, e.g. matrices. To our knowledge, solutions to handle these important

layout structures cannot be found in the literature. This novel solution can be easily

extended to recognize other important mathematical layouts, for example the ones de-

fined by the LATEX commands \overbrace and \begin{cases}–\end{cases}, among

others.

A User Interface for the Recognition of Mathematical Expressions.

We developed a prototype system for editing and recognition of on-line handwritten

mathematical expressions, which has the following characteristics:

• Near-natural handwriting recognition. Since the editor uses our recogni-

tion engine for mathematical expressions, the user writes following the usual

mathematical conventions.

97



• User-Friendly input interface. Our editor integrates more editing and vi-

sualization capabilities than other free programs aimed to the same purpose,

providing a user-friendly user interface.

• Use of gestures. The editor allows manipulation and correction of expressions

via gestures. This new tool minimizes the use of menus, buttons and other GUI

components, although they are also available to the user.

• Manipulation of output. Our editor is unique in the way it handles the

output it generates. Its output is suitable not only for word processing but

also for symbolic computation. The output of the editor generates a LATEX

expression which is used for the visualization of the recognition results. If the

output is interpreted as an algebraic expression and Mathematica is available,

the expression can be manipulated algebraically as well as used for function

plotting.

Integration with E-Chalk

We integrated our recognition engine with the E-Chalk System.

The recognition stage in E-chalk starts when the lecturer puts the system in recog-

nition mode by selecting a reserved color to draw the strokes. In this way, when a

set of strokes is grouped into symbols, they are preprocessed and classified. If the

classifier gives the \end symbol as output, the system analyzes the complete list of

recognized symbols and the expression is constructed. It is translated into a Mathe-

matica or Maple expression and then evaluated. The recognition capabilities in the

E-chalk are similar to the ones of our editor, except for editing via GUI components.

The user engine can be also used by animation applets, which can be constructed

using the animation libraries of the E-Chalk Team. Developers can use the recognition

engine in their own animations. Examples of the application of our recognition engine

to other scenarios are the E-Chalk Applets for algorithm visualization by Esponda [25]

and the applets for simulation of biological neurons by Krupina [51]. Our recognition

engine can potentially be used by any E-Chalk developer.

98


