
Chapter 5

Structural Analysis of

Mathematical Expressions

5.1 Introduction

In this chapter, we describe a structural analysis method for the recognition of on-

line handwritten mathematical expressions based on a minimum spanning tree (MST)

construction and symbol dominance. Matsakis [61] proposed a MST construction as a

“starting point” for the structural analysis of mathematical expressions. He considers

the strokes as the nodes of a totally connected weighted graph. His method groups

strokes into symbols, obtaining a tree which connects symbols in the expression and

describes in approximation the final structure of the expression, see Fig. 5.1(a)-(b).

Unfortunately, this does not occur when dealing with more complex expressions as

the one shown in Fig. 5.1(c)-(d).

We also consider the recognized symbols as the nodes of a totally connected

weighted graph. Our method handles some layout irregularities frequently found

in on-line handwritten formula-recognition systems, like irregular horizontal layouts

and symbol overlapping. It also handles arguments of operators with non-standard

layouts as well as tabular arrangements, like matrices.

In our method, the crucial step in the MST construction will be the weight calcu-

lation of edges. We use three main constructions. The first one is a “preprocessing”

step during the structural analysis. It helps to handle irregular horizontal layouts by

locating fraction bars in the expressions. The second MST construction helps to group

symbols in clusters. They are associated recursively to spatial regions which define

mathematical relations. The last construction is used to locate rows in matrices.

In this chapter we define algorithms, functions, and relations for symbols and

66

(a) (b)

(c)

(d)

Figure 5.1: Figures (a)-(c): the minimum spanning tree. Figures (b)-(d): the desired relation

tree.

other data structures. Because most of them are easy to implement, we do not give

their implementations, pseudo-code, or return values, all of them should be easily

derived through the function’s name. It should also be clear from the context that

some functions can modify their arguments, as done in the language C, when passing

variables by reference. Section 5.2 introduces the concepts and data structures we

need for the rest of the chapter. In Sect. 5.3 we describe the construction of the

minimum spanning tree based on symbol dominance. Section 5.4 concludes with a

discussion about our method.

67

5.2 Structural Analysis

5.2.1 Symbol Regions and Symbol Attributes

Relations and operator dominance in mathematical notation are defined explicitly or

implicitly by the position and relative size of symbols in an expression. The spatial

regions above-left, above, superscript, right, subscript, below, below-left and subexpres-

sion are used to determine such relations. For example, the operands (numerator

and denominator) of the horizontal bar (fraction operator) are expected to lie in the

regions above and below of the horizontal bar. See Fig. 5.2.

By comparing symbol attributes, we can test whether or not a symbol belongs to

a determined spatial region. Given a symbol s, we consider its label and its bounding

box as the basic attributes. The label is obtained by means of a classifier, as described

in the previous chapter. The bounding box is defined by the minimum x and y

coordinates (xs, ys) of all points in the symbol, its height Hs, and weight Ws. Once

raw symbols are endowed with attributes, we can collect them in ordered attributed

lists. The order of a symbol in a list is determined by its leftmost x coordinate, i.e.

if the list L is formed by the symbols (s1, . . . , sk), it means that xsi
≤ xsj

for i < j.

In this chapter, when we refer to a list we are talking about an ordered list. The

attributes of a list L are its label and its bounding-box attributes (xL, yL), HL and

WL. The label of a symbol list is obtained during the structural analysis process by

the spatial and geometrical relations between symbols.

From the basic attributes, we derive the superscript threshold and the subscript

threshold. They are numeric attributes used to delimit the regions around symbols.

We also derive the centroid. It is a point attribute which determines the symbol’s

location in regions. To determine these symbol attributes, we classify the symbol

as ascendent, descendent, or central, as shown in Table 5.1. The reason for doing

so becomes clear if we observe the layout differences in the subindex relation of the

central symbol x∗ and the descendent symbol y∗ (see Fig.5.2). The way to calculate

attributes for a symbol s is given in Table 5.2. After obtaining symbol attributes we

can determine which region a symbol lies in. For example, given the symbols s and

a, we can define a boolean function to determine whether a lies in the above region

of s, and other regions in a similar way, as follows:

liesInAboveRegion(s, a)

1. Return getMinX(s) ≤ getCentroidX(a) ≤ getMaxX(s) &&

68

Figure 5.2: Regions, thresholds, and centroids of different symbol types. From left to right:

non-scripted, horizontal bar, square root, scripted, sum-like, and product operators. The regions

marked with an asterisk determine the range of different symbol types.

69

Table 5.1: The symbols used in our system.

central ascendent descendent

non-scripted + − ∗ / (∞ →
superscripted e π

√
log sin cos tan 0 1 2 3 4 5 6 7 8 9

scripted a c x z) b d ∂ ∆ ∇ g y

sum-like
∑
∫
∏

lim-like lim max min

Table 5.2: Attributes for different symbol types.

super threshold sub threshold centroid

ascendent ys + 0.8Hs ys + 0.2Hs (x + 0.5Ws, y + 0.33Hs)

descendent ys + 0.9Hs ys + 0.6Hs (x + 0.5Ws, y + 0.66Hs)

central ys + 0.8Hs ys + 0.2Hs (x + 0.5Ws, ys + 0.5Hs)

getSuperThreshold(s) ≤ getCentroidY(a).

5.2.2 Symbol Dominance

The range of a symbol is the expected location area of its arguments, see Fig. 5.2.

Chang [17] defines dominance as follows. A symbol s dominates a symbol a if a lies

in the range of s and s does not lie in the range of a. We say that symbols dominate

their arguments. Arguments have lower precedence than the dominant symbol.

We define dominates(s, a) as a boolean relation which depends on the set of

operator classes

T = {−,
√

, scripted, superscripted, non-scripted, sum-like},

the spatial regions, and symbol attributes of s and a. The symbol ‘−’ represents the

horizontal bar and ‘
√

’ the square root. If dominates(s, a) is true, it means that

s dominates a. Observe that we added some extra conditions to the definition of

70

(a) (b) (c)

Figure 5.3: Examples of expressions where (a) dominance is determined by range, (b) dom-

inance is determined by considering symbol sizes and (c) dominance between fraction lines is

hard to determine.

Chang, namely comparison of symbol sizes and attributes, to determine dominance

and to resolve ambiguity.

To clarify the concept of dominance, let us give a few examples. Consider the sum

symbol in Fig. 5.3(a). It dominates the symbol ‘∞’, because the later lies in the range

(superscript region) of the first and we do not expect any symbol lying in any of the

regions of ‘∞’. By analogy, the constant ‘e’ in Fig. 5.3(b) dominates the symbols ‘−’

and ‘
∫

’. The horizontal bar lies in the superscript region of ‘e’, but the latter does not

lie above or below the symbol ‘−’. Observe that ‘e’ lies in the range of the integral,

but the dominance in this case is resolved by comparing their sizes. Figure 5.3(c)

also shows a case where symbol dominance is not clear. We can not determine which

one of the fraction lines dominates the other, because both of them lie in the range

of the other and have the same size. We can avoid the confusion here by taking as

the dominant fraction bar the one with the greater centroid’s y-coordinate.

As we can see in these examples, dominance can be established by convention

and can vary from one author to another. Different definitions of dominance define

different dialects of mathematical notation.

5.2.3 Baseline Representation of Expressions

We describe mathematical notation as a hierarchical structure of nested baselines [103].

A baseline is a list which represents a horizontal arrangement of symbols in the ex-

pression. Each symbol has links to other baselines, which satisfy the spatial relations

mentioned in Sect. 5.2.2, relative to it. The dominant baseline of an expression is the

baseline which is not linked by any symbol. For example, the expression xij ∗y+ a+b
c

is

71

determined by the baselines (x, ∗, y, +,−), (i, j), (a, +, b) and (c). The last two base-

lines satisfy the relations above and below relative to the horizontal bar respectively.

The dominant baseline of this expression is (x, ∗, y, +,−).

The data structure which represents the whole expression in the form described

above is called baseline tree, see Fig. 5.4. This representation exploits the left-to-

right reading of mathematical expressions. When reading an expression, one normally

searches for the leftmost dominant symbol, then for the next leftmost dominant one,

and so on until no more symbols are found. Given an ordered symbol list L, we can de-

termine the leftmost dominant symbol in L through the function getDominantSymbol,

which is defined as:

getDominantSymbol(L)

1. Let n = length(L).

2. If n == 1, return s1.

3. If sn dominates sn−1, remove sn−1 from L, else remove sn.

4. Return getDominantSymbol(L).

Observe that this function uses the order of symbols in L.

In this way, given a list L, we construct its dominant baseline Db through the

function:

constructDominantBaseline(Db, L)

1. If Db is empty, then set Db = addSymbol(Db, getDominantSymbol(L)).

2. Set s = getLastSymbol(Db).

3. Construct a list Hs = getRightNeighbors(s, L) of symbols in L which

are right horizontal neighbors of s.

4. If Hs is empty, return.

5. Find the dominant symbol of the horizontal neighbors,

sd = getDominantSymbol(Hs).

6. Set Db = addSymbol(Db, sd).

7. Use recursion: constructDominantBaseline(Db, L).

72

Figure 5.4: Above: a node of the baseline tree stores the symbol’s label and other attributes, it

has also links which correspond to different spatial relations. Center: the original mathematical

expression. Below: the representation of the expression as a baseline tree.

73

We take special care in the definition of the function getRightNeighbors to handle

irregular horizontal layouts.

Now we are ready to construct the baseline tree of the mathematical expression

described by the ordered symbol list L by recursively finding dominant baselines.

This is done by the function constructBaselineTree:

constructBaselineTree(L)

1. If L is empty, return.

2. Set Db = ∅.
3. constructDominantBaseline(Db, L).

4. Update Db by grouping together symbols which define operator and func-

tion names, like lim, sin, log, etc.

5. constructDominanceMST(Db, L).

6. locateMatrices(Db, L).

7. For each symbol s ∈ Db, construct new symbol lists with its children

obtained in the MST step, depending on which spatial relations they satisfy

and assign these lists to the corresponding links. The identity of these lists

corresponds to the spatial relation they satisfy.

8. Set L = Db.

9. For each symbol s ∈ Db, use recursion applying constructBaselineTree

to each of its child lists obtained in step 7.

5.3 MST Construction and Symbol Dominance

The pseudo-code of the function constructBaselineTree outlines the procedure to

construct the baseline tree. Steps 3, 5, and 6 are key steps to achive this purpose.

Each of these steps requires an MST construction to handle the irregular horizontal

layouts, to group symbols, and to locate rows in matrices respectively. The first MST

construction is handled as a preprocessing step prior to the construction of the base-

line tree. The last two are done at each recursion step of constructBaselineTree.

The following sections explain how this is done.

74

Figure 5.5: Above: Attractor points of symbols not belonging to the MST. Below: Attractor

points of symbols and operators belonging to the MST.

MST Construction and Attractor Points

We consider the recognized symbols as the nodes of a totally connected weighted

graph. The MST of such a graph is constructed as follows. Given the list L, we

consider the symbols in L as the nodes of a totally connected weighted graph. Then,

we use Prim’s algorithm to construct its MST: a new edge (st, sn) is added to the MST

if its corresponding weight w(st, sn) is the minimum of all edges, where st belongs

to the MST and sn does not belong to the MST. This is the general MST algorithm

for each of the constructions. They differ from each other in the way the weights are

calculated.

The edge weight is the minimum distance between attractor points (AP) of sym-

bols. They are located in the boundary of the symbol bounding box. The number

of such points depends on the operator class. Figure 5.5 shows the attractor points

corresponding to different symbol classes when the first a and the integral (sum-like

operators and square root) are dominated by x (scripted) and 2 (superscripted), the

second a is dominated by + (non-scripted), and when the third a is dominated by

sum-like operators and the horizontal bar.

5.3.1 Construction of the Dominant Baseline

The Right Relation

The construction of the dominant baseline consists of finding symbols which describe

horizontal arrangements in the expressions. The key is to have a robust definition of

the relation “right horizontal”.

75

(a)

(b)

Figure 5.6: Horizontal layout irregularities when (a) writing horizontally in the subscript region,

(b) writing arguments of fraction bars below the superscript region. The figures at the left show

fraction bars in the expression located through MST construction. Dominant baselines are shown

at the right.

Given the symbols s and sr, an attempt to give a more flexible definition of the

right relation is simply to consider sr as a right horizontal neighbor of s, if sr lies in

the right region of s or s lies in the left region sr. This condition is more robust but

still restrictive because it only considers symbols having “acceptable” right and left

regions. That is not the case when writing horizontal lines, as we can see in Fig. 5.6.

In this case, the right region for the horizontal lines is practically eliminated. Note

that the expressions in the figure are written in a regular way.

There are two common horizontal layout irregularities when writing mathematical

expressions. One of them occurs when writing horizontal bars below the subscript

threshold. For example, the fraction lines in Fig. 5.6(a) satisfy the relation subscript

and not the desired relation right horizontal, as defined above. Other irregularities

occur when superscripted fractions extend beyond their corresponding superscript

region. This is illustrated in Fig. 5.6(b). The fraction argument ‘σ’ satisfies the

relation right with respect to ‘e’, and not the relation superscript.

To avoid these layout problems, we use an MST construction to re-label horizontal

lines into fraction lines and to reconstruct their left and right regions.

76

MST Construction for Horizontal Bars

To construct the MST, we initialize it with the leftmost symbol in L. Let (st, sn) be a

new edge with st ∈ MST and sn 6∈ MST. If st is a horizontal bar and dominates(st, sn)

is true, the weight is the minimum distance between the AP. If st is a horizontal bar

and dominates(st, sn) is false, the weight is the minimum distance between the AP

of st and the centroid of sn. If sn is a horizontal, we repeat the calculation as above,

considering whether sn dominates st or not. If both st and sn are not horizontal bars,

the weight is the distance between their centroids.

Updating Attributes for Horizontal Lines

Once the MST is constructed, we update symbol attributes as follows. Let h be a

horizontal bar. Consider also the list Dh, which collects those symbols having edges

incident to h and being dominated by h. If symbols in Dh lie in both regions above

and below h, it is re-labelled as fraction bar. If symbols are found only in the above

region, the horizontal bar is re-labelled as underline. If it is the case for the below

region, h is re-labelled as over bar. For all the previous cases, lower left corner and

height are updated as yh = yDh and Hh = HDh, as well as the corresponding derived

attributes. Figure 5.6 shows the MST of the expressions and the bounding boxes of

the renamed horizontal bars.

Once the attributes of fraction bars are updated, we proceed as follows. Consider

again the symbols s and sr. If sr is a fraction bar not belonging to the superscript

region of s, then sr is a horizontal right symbol of s if it satisfies the conditions

described above. If sr is a symbol in the right region of s and there is a fraction bar

in the superscript region which dominates sr, then sr is not a horizontal right symbol

of s. Finally, suppose s and sr are two horizontal bars, then sr is a horizontal right

symbol of s if the angle between the x-axis and the segment defined by the centroid

of s and the centroid of sr is less than some threshold.

5.3.2 Construction of the Baseline Tree

Symbol Regions

When we defined the symbol regions in Sect. 5.2.1, we considered them as unbounded

regions extending through the plane. Some authors consider the range of symbols ly-

ing in the dominant baseline not limited by the threshold attributes alone, but also by

“neighbor” operators [103]. They bound the superscript, subscript, and right regions

77

(a) (b)

(c)

Figure 5.7: (a) The boxes are the bounded superscript and above regions of ‘b’ and the fraction

bar respectively. (b) The same arguments, ‘α’ and ‘2’, are written beyond the bounded regions,

but they still satisfy the same mathematical relations. (c) A more complicated expression

showing the difficulties with sum-like operators.

at the right by the leftmost x-coordinate of the next right symbol in the baseline.

This makes sense because such spatial considerations avoid ambiguity. But these

considerations can be very restrictive if we want to correct an expression by adding

some superindexes after entering it. The same applies when associating arguments to

sum-like operators lying too near to each other and when writing operators like
∗

∗

∏∗

∗

whose arguments have non-standard layouts. Figure. 5.7 shows examples of this.

The key in the MST construction is to associate symbols not only considering

where they lie, but also how near they lie to each other and how dominance occurs

during weight construction.

78

MST Construction for Symbol Clustering

The function constructMST(Db, L) constructs the MST of the symbol list L. We

initialize the MST to the dominant baseline Db of L. Let (st, sn) be a new edge

with st ∈ MST and sn 6∈ MST. The edge weights are computed as follows. If

dominates(st, sn) is true, the weight w(st, sn) is the minimum distance between at-

tractor points of symbols st and sn. If dominates(st, sn) is false, the weight cor-

responds to the distance between the centroids of st and sn. Finally, if the relation

right(st, sn) or right(sn, st) is true, the weight is the minimum distance among their

corresponding black points as shown in the second a of Fig. 5.5. Figure 5.7(b)-(c)

shows the MST derived by this weight computation.

Arguments to Special Operators

In some way, the MST construction we use for grouping does not bound regions; on

the contrary, it makes them grow. To illustrate this, consider Fig. 5.8. It shows how

attractor points and symbol dominance help to define dominance regions.

To draw the grey regions in the figure, we proceeded as follows. First, we took a

pixel from the whole region and translated the symbol ‘a’, the leftmost symbol in the

figure, so that its centroid and the pixel coincide. Secondly, we associated the symbols

of the baseline (x,−, y,
∑

, z,
∏

) with a grey tone. Finally, the pixel was colored with

the grey tone corresponding to the symbol s of the baseline, whose weight w(s, a)

reaches the minimum value among all symbols in the baseline. Figure 5.8(a) shows

the regions for each symbol, using the distance between centroids as edge weights.

We can appreciate in Fig. 5.8(b) that using symbol dominance to delimit regions

corresponds to the expected range of symbol operators. Figure 5.8(d) shows how

regions grow during MST construction. In this example, the regions of the symbols

z and a are merged in such a way that the new symbol b lies within their range and

ambiguities arising from argument association with
∏

are overcome. The regions

were found as described before, but in this case we used the symbol b instead of a.

5.3.3 Recognition of Matrices

To recognize matrices, we have to define row structures. Note that, in some sense,

we defined row structures when locating symbols in subscript, superscript, and right

regions. The advantage we have in this case is that the mentioned regions are well

defined by the threshold attributes. In contrast, matrices do not have predefined row

79

(a)

(b)

(c)

(d)

Figure 5.8: Regions defined (a) using only the centroids, (b) using the attractor points and

symbol dominance without distance factor, and (d) with distance factor. (d) Growing regions

in the MST construction.

80

Figure 5.9: The area-projection function and the MST found in the matrix mode.

regions, they have to be found on the fly. It is done by dynamically finding APs, as

explained in the following section.

MST Construction for Matrices

The symbols ‘[’ and ‘]’ were taken as reserved symbols to construct matrices. The

range of the symbol ‘[’ is the bounding box which contains it and its corresponding

closing square bracket. Symbols lying in that region are dominated by ‘[’ and are

automatically associated to it during MST clustering. Then we check for each s ∈ Db

whether it is an open square bracket or not. If it is, we proceed to identify row

structures in the child list Ds of symbols dominated by s. For this purpose, we define

the area-projection function f as

f(y) =
∑

s∈Ds

ys≤y≤ys+Hs

WsHs, (5.1)

where yDs ≤ y ≤ yDs+HDs. We use local maxima of a smoothed version of f , located

at yi, i = 1, . . . , n, to define the attractor points (xDs, yi) of s (see Fig. 5.9). The

next step is to construct the MST of s and Ds using the dynamically constructed

attractor points. Because we want to find rows in the symbol list, we multiply the

x-coordinates of attractor points and centroids by a factor 0 < β < 1 and we re-

calculate the weights of the graph with this modification. Finally, we assign rows to

the corresponding child lists of s, locate spaces in the rows, and apply the method

recursively to those lists.

81

Figure 5.10: Examples of expressions which can be recognized by the proposed extension for

fraction location.

5.4 Discussion

5.4.1 Extensions

Fraction Location

The preprocessing step for fraction location allows to locate other fraction-like con-

structions. It can be used to locate and to determine attributes of the symbols like

‘overbrace’ and ‘underbrace’. Other extensions could be the location of function

names by using “arrow notation” for this purpose. See Fig. 5.10.

Symbol Clustering

The MST construction for symbol clustering can be easily extended to recognize

expressions that contain, for example, operators like nCk, or other operators with

similar layouts. It can be also extended to recognize not only square roots but also

the structure ∗√ .

Matrix Recognition

The method for the recognition of matrices can be easily extended to recognize stacked

arguments of sum-like operators, like the one used in (5.1). The tabular mode can be

set by default when analyzing the subscript list of sum-like operators. This MST con-

struction can also be useful to recognize structures which describe equation systems

as well as functions defined by cases. For these structures, we can use the symbol ‘{’
as indicator of the tabular mode. See Fig.5.11

82

(a) (b) (c)

Figure 5.11: Examples of expressions which can be recognized by the proposed extension for

matrix recognition.

(a) (b)

Figure 5.12: The result of the MST construction (a) without using the α factor in weight

calculation and (b) using this factor.

5.4.2 Limitations of the Method

Symbol Grouping

Our method encounters problems when scripted symbols lie too close to the arguments

of fraction or sum-like operators. The horizontal baselines of dominated symbols are

merged incorrectly when they are written too far away from operators and the latter

are written too close to each other. See Fig. 5.8(c) and Fig. 5.12(a) for an example

of this. To avoid the problem, we multiply the corresponding weight by a factor

0 < α < 1 during MST construction if the symbol in the dominant baseline is a

sum-like operator or a fraction line. See Fig. 5.12(b).

Parameter Estimation

Determining heuristic values for α and β requires some experimentation. We have

obtained satisfactory results by using the values α = 1/4 and β = 1/15. We plan to

construct a benchmark of on-line handwritten mathematical expression to determine

the optimal values of the parameters α and β and others required by our algorithm,

as well as to obtain a precise estimation of recognition rates.

83

Symbol Recognition

The results of the previous chapter showed that classification errors can occur. This is

a serious problem when incorrectly recognizing key operators, for example ‘
∫

’ as ‘5’,

because they are crucial for baseline construction. Recall that our method assumes

perfect recognition rates. To avoid problems generated by misrecognized symbols,

we can use an interface which allows immediate feedback and has undo-redo and

visualization capabilities, as we will see in the following chapter.

84

