
Chapter 4

Classification of On-Line

Handwritten Symbols

4.1 Introduction

As stated in Chap. 2, almost every existing recognition method can be used for

the labeling of on-line characters. The methods presented in that chapter attempt

to improve recognition accuracy by using selected descriptors and other important

features of on-line symbols.

Following this approach to design specialized classifiers, we designed a classifier

based on the number of strokes. In total, we constructed three classifiers, one each

corresponding to symbols having one stroke, two strokes, and three or more strokes.

Fig. 4.1. After preprocessing, we obtain a simplified version of the symbol, which is

used to construct the feature vector which is fed into the classifier. See Fig. 4.1.

This chapter has two sections, one gives an overview of classification methods

and the other describes our experimental results. For a complete reference of the

classification methods we used in this chapter, we refer the reader to [93, 72, 24, 21,

101].

4.2 Classification Approaches

In artificial intelligence, classification means the use and implementation of algorithms

to map objects of datasets into a set of labels: computers “learn” to classify objects

without human guidance or intervention. Human influence in the learning process is

generally reduced to the construction of different representations of these objects.

40

Figure 4.1: Classifiers.

A variety of authors consider two types of learning algorithms:

• Supervised Learning. In this case, a dataset

D = {(x(i), y(i)) : i ∈ I} (4.1)

consists of data pairs, where x(i) represent an object, y(i) its corresponding label,

and i is an element of the index set I. Algorithms use the dataset to “learn”

to classify new data. These algorithms construct a function f(x) = y, which

assigns an object x to a label y.

• Unsupervised Learning. In this case, we don’t know a priori which label

corresponds to a given object. Thus, unsupervised learning deals with sets of

unlabeled objects

D = {x(i) : i ∈ I}. (4.2)

Algorithms for unsupervised learning try to describe the underlying nature and

structure of the data. This is accomplished by constructing groups (clusters) of

41

Figure 4.2: Classification procedure.

data or by selecting the “right” features from data. These algorithms not only

construct a classification function but also construct labels which are associated

with different clusters.

The set D is also known as a training set, because the function f is the result of

“training” functions (or the parameters) using the data set D.

The objects x(i) are normally represented by vectors taking numerical values, e.g.

x(i) ∈ R
n. An object in D is also known as a pattern, sample, example, vector, etc.

When the label y(i) takes two values, frequently from the sets {0, 1} or {−1, 1}, we

are dealing with binary classification. When y(i) takes the values {c1, . . . , cN}, N > 2,

we have multiclass classification. If the value y(i) takes continuous numerical values,

we have regression.

Normally, it is assumed that the map f belongs to a family of functions which

is characterized completely by a set of parameters Λ. This parameter dependence is

indicated by f = fα, α ∈ Λ. Learning algorithms normally consist of methods to

obtain the parameters α∗ ∈ Λ, which optimize certain “performance” or loss criterion

involving the example patterns. The selection of the parameter dependence and the

loss criterion characterize the different classification approaches.

4.2.1 Bayesian Classification

Bayesian classification uses Bayes’ Theorem as follows. If we assume that P (cj),

j = 1, . . . , N , describe the prior probability of the objects belonging to the class

cj, then the posterior probabilities P (cj|x), i.e. the probability of label cj given the

pattern x, can be calculated with the formula

P (cj|x) =
P (x|cj)P (cj)

P (x)
. (4.3)

42

Given a new example x, the Bayes classification rule consists of labeling x with the

class having the maximum probability:

f(x) = cjmax
, (4.4)

where

jmax = arg max
j

P (cj|x) = arg max
j

P (x|cj)P (cj). (4.5)

The quantity P (x) is eliminated, because does not play any role to obtain the max-

imum index. The prior probabilities P (cj) are taken as the proportion of each class

in the training set. Note that the conditional probability P (x|cj) characterizes com-

pletely the classification rule.

Training Bayesian Classifiers

It is commonly assumed that P (x|cj) is described as a multivariate normal distribu-

tion:

P (x|cj) =
1

√

2π det Σj

exp
1

2
(x− µj)

T Σ−1
j (x− µj). (4.6)

Thus, the learning process consists of finding the optimal parameters Σ∗
j and µ∗

j

using the dataset D. Under the assumption of independence of features and classes,

it suffices to estimate the priors of each class independently using the methods of

maximum likelihood. Using this method, one can show that the optimal parameters

Σ∗
j and µ∗

j correspond to the covariance matrix and the mean vector of the data D

respectively.

Because independence assumptions do not necessarily describe the complex nature

underlying the data in D, this classification schema is also known as naive Bayesian

classification. Actually, these “naive” assumptions simplify calculations during the

learning process. Bayes classification also has an theoretical importance because there

are some theorems relating the Bayes error to errors of other classification methods.

4.2.2 Nearest Neighbors

One of the simplest approaches for classification is the nearest neighbor rule. In this

classification criterion we assume that a certain distance function d is defined in the

set of patterns. Thus, the label of an unclassified object x is the same of the nearest

x(imin) pattern in D:

f(x) = y(imin), (4.7)

43

where

imin = arg min
i

d(x, x(i)). (4.8)

Note that this classification function classifies correctly all data in D. A variation of

this rule is to take k nearest neighbors x(i1), . . . , x(ik) of x. A simple voting scheme

assigns a label to the unclassified vector: the label {c1, . . . , cN} which most frequently

appears in the set {y(i1), . . . , y(ik)} is assigned to x. This rule guarantees that a

numerical output is generated which can be used to estimate the degree of class

membership of x, which is useful for post-processing purposes. This estimation is

accomplished by counting the times a certain label appears in {y(i1), . . . , y(ik)}, and

dividing this quantity by k.

Computationally, the nearest neighbor makes no effort to learn from examples.

But a price must to be paid for this lazy classification: this rule does not guarantee

good performance for new patterns, unless we provide a really big dataset D. In the

limit, when the number of examples approaches infinity, the error rate of the single

nearest neighbor rule is not worse that twice the optimal Bayes error. However,

having a big database increases the classification time, and the performance of the

nearest neighbor classifier in terms of speed deteriorates.

4.2.3 Classification Trees

Classification trees work by partitioning the training set using a set of decision rules.

Figure 4.3 shows the structure of a binary classification tree. The nodes of the tree

corresponds to a test or decision, which can be either true of false. The evaluation

of input data begins at the root and, depending on the test, we follow the right or

the left branch until we reach a leaf. There, the final decision assigns a class to the

pattern. No binary trees are allowed to have more than two branches at any node.

One of the benefits of classification trees is that their structure allows interpretation

of the rules generated during training: a path joining the root to one of the leaves

corresponds to a decision rule, constructed with a conjunction (AND operator) of all

the tests taken at each node.

In the case of numeric data, the test taken at each node N is to compare some

of the coordinates xi of the sample x to a determined value xiN , using the rule

xi < xiN . Geometrically, this corresponds to constructing hyperplanes perpendicular

to the coordinate axes which separate the data. Thus, every time the we reach a node,

the training set is partitioned into two sets, one satisfying the evaluation rule and the

44

Figure 4.3: Structure of a classification tree.

other not satisfying it. This decision outcome is called a split, because it corresponds

to a splitting of the data. We concentrate in this section on binary classification trees.

Training Classification Trees

The process of learning the structure of a classification tree is also known as rule

induction. The induction method starts with the root node and the training set.

We select a value xiN to create a new rule which divides the training data into two

disjunct sets. Two new nodes are created and assigned to this sets. The procedure

is repeated in these nodes and the split data, unless the nodes themselves become a

leaf. A node becomes a leaf if all the elements in the set belong to a single class or

when the examples satisfy certain criteria or confidence levels.

Most of the rule creation criteria reduce impurity within successive nodes when

splitting the current one. The most used impurity functions are the entropy impurity

i(N) = −
N
∑

j=1

pj log pj (4.9)

and the Gini impurity

i(N) = 1−
N
∑

j=1

p2
j , (4.10)

where pj is the fraction of patterns at node N that belongs to the class cj.

In the training algorithm, the value xiN is selected as the one which minimizes

the increment of impurity:

∆i(N) = i(N)− pli(Nl)− pri(Nr), (4.11)

45

where pl and pr are the fractions of patterns associated to the left node Nl and right

node Nr respectively.

The criterion to stop splitting mentioned above, when patterns in the node belong

to a single class, can generate very large classification trees which correctly classify

training data but the accuracy on new samples is poor. This undesirable phenomenon

also occurs when the tree continues to grow until the leaves reach minimal impurity.

To void this, we can use some other criteria to stop splitting. This can be, for example,

stopping when the number of examples in the split falls below fixed threshold, e.g.

5 % of the training data. Similarly, when the impurity is below some threshold. There

are more criteria based on exceeding thresholds, e.g. the one estimating the chi square

statistic χ2. Other criterion is cross validation: the tree is trained on a fraction of

the data (for example 90 % of it) and the rest is kept as a validation set. Splitting

continues until the classification error on the validation set increases. In all cases, the

class assigned to the new leaf corresponds to the label having the greatest frequency.

4.2.4 Artificial Neural Networks

Artificial neural networks are one of the most popular classification techniques widely

applied to a great quantity of pattern-recognition problems in the areas of computer

vision, character recognition, speech recognition, etc. Artificial neural networks try

to mathematically model biological networks, i.e. neurons are represented by single

calculation units highly interconnected each other. For this reason, this research area

of artificial intelligence is also known as connectionism.

The Perceptron

An artificial neural net is constituted by numerical values, weighted edges, and cal-

culation units. Figure 4.4(a) represents the minimal net calculation unit, also known

as perceptron. When the edges connect numerical values, they transmit these values

multiplied by the corresponding weights, as shown in Figure 4.4(b). The circles rep-

resent the nodes of the net and constitute the calculation units. The edges connected

at the left of units transmit values which are summed. The function s associated to

this node is applied to the result of the sum and further transmitted to the left to

obtain the final output f(x), expressed as

f(x) = s(
n
∑

i=1

wixi + b) = s(w · x + b). (4.12)

46

Figure 4.4: A weighted edge and the result of the transmission.

The parameters w and b are known as weight and bias respectively.

The perceptron rule is normally used for binary classification: the function s is

taken as the sign function, where s(u) = 1 if x ≥ 0 and s(u) = −1 if x < 0. The

perceptron has a geometrical interpretation: it divides the real space R
n into two

regions separated by the hyperplane defined by the equation

w · x + b = 0. (4.13)

If there is a such hyperplane that correctly classify the training set D, D is said to

be linearly separable.

The training algorithm for the perceptron consist of the correction of the param-

eters w and b when the i-th training pattern is incorrectly classified: initialize both

parameters to zero and for each i = 1, . . . , ` take (x(i), y(i)) and update the parameters

w ← w + y(i)x(i) (4.14)

b ← b + y(i), (4.15)

when

y(i)(w · x(i) + b) > 0 (4.16)

does not hold, i.e. x(i) is not correctly classified. Theoretical results show that the

perceptron algorithm takes a finite number of steps when D is linearly separable.

However, it is not possible to know that beforehand, so we can stop the algorithm

when a determined number of steps has been reached or when all patterns in D are

correctly classified.

Some authors work with an extended version of the input vector x and the

weight w:

x̂ = (x1, . . . , xn, 1)T and ŵ = (w1, . . . , wn, b)T . (4.17)

47

The bias b is now included in the weight vector and the rules (4.12)-(4.15) are sim-

plified to:

f(x) = s(ŵ · x̂), (4.18)

y(ŵ · x̂) > 0, (4.19)

ŵ ← ŵ + y(i)x̂(i). (4.20)

Neural Networks

Figure 4.5 shows the structure of a neural network with a hidden layer, a more

complex structure of calculation units. In total, the net consists of three layers x(k),

k = 0, 1, 2. The input layer x(0) is an extended version (x1, . . . , xn, 1)T of the input

vector x. The vector x(1) of dimension m corresponds to the output of the hidden

layer. The vector x(2) of dimension N is the final output layer. The n entries of x

are propagated through the net to obtain the N output values x(2) at the left. Thus,

the classification rule corresponds to

f(x) = cjmax
, (4.21)

where

jmax = arg max
j

xj(2). (4.22)

The layers are connected with two matrices: W (1) of size (n+1)× (m+1) for the

weights connecting the input with the hidden layer, and W (2) of size (m + 1)×N for

the ones connecting the hidden values with the output layer. (Note that this matrices

include also a bias, as in the extended version of the perceptron rule.) For example,

the value W
(1)
i,j is the weight associated with the edge connecting the i-th entry of x

with the j-th hidden unit. In this way, the calculation of the final output of the net

can be seen as a product of matrices and function composition:

x(k) = s(x(k − 1)W (k)), k = 1, 2. (4.23)

Note that this formula can be easily generalized for any number of hidden units.

The function s in (4.23) is applied to each element and is selected to be continuous

and differentiable. A classic selection of this function is the sigmoid

s(x) =
1

1 + e−x
(4.24)

or the hyperbolic tangent

s(x) =
ex − e−x

ex + e−x
. (4.25)

48

Figure 4.5: Structure of an artificial neural network with a hidden layer.

Training Artificial Neural Networks

As we can see from the structure of the network, the function is characterized com-

pletely by the edge weights. The weights are selected such that they minimize the

quadratic error

E =
∑̀

i=1

‖x(i)(2)− y‖2, (4.26)

where x(i)(2) represent the net’s output of the training pattern x(i) and

yj =







1, if x belongs to class cj,

0, otherwise.
(4.27)

The choice of the sigmoid is not a coincidence: this function makes also (4.26) to be

continuous and differentiable with respect to the weights. This allows the application

of a gradient descendent method to obtain the optimal weight values that minimize

the quadratic error. The idea is to iteratively update the weights using the formula

W
(k)
ij ← W

(k)
ij − η

∂E

∂W
(k)
ij

, (4.28)

where η is the learning factor. The calculation of the partial derivative at the left

of (4.28) involves various steps which constitute the well-known back-propagation

49

algorithm for training neural networks [72].

One of the drawbacks in the method is that the weights found by back-propagation

can correspond to a local minimum of (4.26). To overcome this problem, the calcu-

lation of the partial derivatives used in (4.28) takes place in a subset of randomly

selected training patterns rather than in the complete dataset, also known as stochas-

tic training. Other problems correspond to the long duration of the training, which

can be hours or even days when dealing with big databases. To accelerate the training,

authors use the second derivative of (4.26) (second-order methods), adjust dynami-

cally the learning rates, or implement algorithms in parallel computers, among other

methods. Another important problem is the so called over-specialization, which cor-

responds to obtaining excellent classification rates on a training set but poor accuracy

on new patterns. As a solution, authors multiply the first term in (4.28) by a factor

< 1 (weight decay), remove the weights that are least needed (weight pruning), and

stop training when the error in an independent dataset increases (early stopping).

4.2.5 Support-Vector Machines

Most of the pattern-recognition methods, as in the case of neural networks, are based

on minimizing an empirical function that measures the classification error with given

patterns. An empirical performance measure is the empirical risk, defined as

Remp(α) =
1

n

∑̀

i=1

λ(y(i), fα(x(i))), (4.29)

where λ is the loss function. When learning binary classification, taking the labels

y ∈ {−1, 1}, one uses the 0/1-loss function

λ(y, f(x)) =







1 yf(x) ≥ 0

0 yf(x) < 0
. (4.30)

Learning algorithms try to find the parameters α∗ which minimize the risk Remp.

However, the parameters α∗ not necessarily minimize the structural risk

R(α) =

∫

λ(y, fα(x)) dp(x, y), (4.31)

which is the actual error of misclassification of the new patterns generated according

to probability distribution p. Unfortunately, the minimization of (4.31) cannot be

done directly, because the fixed probability distribution p is not known.

50

The theory developed by Vapnik and Chervonenkis [94] provides upper bounds for

the structural risk. These bounds depend on the empirical risk and the VC dimension

h = VCdim(F) of the family of classification functions F = {fα}α∈Λ: for all δ > 0

and α ∈ Λ the inequality

R(α) ≤ Remp(α) +

√

h(ln 2n
h

+ 1)− ln δ
4

n
(4.32)

holds with probability 1− δ for h < n and λ is the 0/1-loss function.

The VC dimension h = VCdim(F) associated to the family of functions F , the

learning machines, is an integer value (or infinite) which is a measure of the classifi-

cation capacity of these machines. Given a number ` of patterns, they can be labeled

in 2` ways, using binary labeling. If there is a function in F which correctly classifies

these data, we say that the data is shattered by F . The VC dimension of F is defined

as the maximum number of training points which can be shattered by the function

family.

Given a set of learning machines in F , a structure in F is a sequence of nested

subsets F1 ⊂ F2 ⊂ . . . ⊂ FM ⊂ F . This structure has the property that

Remp(α
∗
1) ≥ Remp(α

∗
2) ≥ . . . ≥ Remp(α

∗
M) ≥ Remp(α

∗), (4.33)

and

R(h) ≤ R(h1) ≤ R(h2) ≤ . . . ≤ R(hM), (4.34)

where α∗
j is the optimal parameter which minimizes Remp in Fj, and R(hj) is the

term at the left of (4.32), see Fig. 4.6. The Structural Risk Minimization Principle

(SRMP) is a learning scheme which uses the properties of (4.33)-(4.34). It consist

of fixating a structure in F and taking the index j∗ which minimizes the right side

of (4.32).

Training Support-Vector Machines

The idea behind support-vector machines (SVMs) is to define a structure on linear

machines, the classification functions defined by the perceptron rule

f(x) = sign(w · x + b), (4.35)

under the condition

min
i∈I
|w · x(i) + b| = 1. (4.36)

51

Figure 4.6: Illustration of the Structural Risk Minimization Principle. The curve labeled R(hj)

represents the values of the second term of the sum in (4.32). The learning principle selects the

optimal index j∗ which minimizes the sum of the values Remp(α
∗
j) and R(hj).

If the hyperplane w · x + b = 0 fulfills (4.36), we say that it has the canonical form.

Note that the set of canonical hyperplanes coincides with all hyperplanes, because

canonical hyperplanes use a normalized form of the parameters w and b.

Vapnik proved that the VC dimension h of the canonical hyperplanes satisfies the

inequality

h ≤ R2A2 + 1, (4.37)

where R is the radius of the smallest sphere containing D and ‖w‖ ≤ A. Defining a

structure on canonical hyperplanes corresponds to taking a sequence of values Aj [94].

Training linear machines, consist of minimizing ‖w‖ while keeping correct classi-

fication of the data. If the data is linearly separable, this is accomplished by solving

the following quadratic programming problem:

minimize
1

2
‖w‖ (4.38)

subject to y(i)(w · x(i) + b) ≥ 1 (4.39)

The solution of (4.38)-(4.39) has an interesting geometric interpretation. If x ∈ D

and γx is the distance from the separating hyperplane to point x, then we know that

γx =
|w · x+ + b|
‖w‖ (4.40)

52

The minimum of the distance

γ = min
x∈D

γx (4.41)

is called the margin. Observe that

γ = min
x∈D

γx (4.42)

= min
x∈D

|w · x+ + b|
‖w‖ (4.43)

=
1

‖w‖ min
x∈D
|w · x+ + b| (4.44)

=
1

‖w‖ , (4.45)

(4.46)

since we are dealing with canonical hyperplanes. Thus, minimizing ‖w‖/2, corre-

sponds to the maximization of 2/‖w‖ we can deduce that parameters obtained by

training linear machines correspond to the hyperplane having the maximum mar-

gin. The points of D where the maximum margin is reached – the case of equality

in (4.39) – are known as support vectors. (See Fig. 4.7.) The margin is related to the

VC dimension by (4.37).

However, linear separability is a very strong assumption which in general is not

satisfied. The optimizing problem (4.38)-(4.39) is modified to handle non-linearly-

separable data, and one solves the following quadratic programming problem:

minimize
1

2
‖w‖+ C

∑̀

i=1

ξi (4.47)

subject to y(i)(w · x(i) + b) ≥ 1− ξi (4.48)

ξi ≥ 0. (4.49)

The constrain (4.48) assures the classification of the pattern x(i) with a tolerance ξi.

The parameter C can be regarded as a regularization parameter.

To avoid certain numeric and implementation problems, the problem (4.47)-(4.49)

is transformed into a dual problem using the technique of Lagrange multipliers:

maximize
∑̀

i=1

αi −
1

2

∑̀

i,j=1

αiαjy
(i)y(j)(x(i) · x(j)) (4.50)

subject to 0 ≤ αi ≤ C, (4.51)

∑̀

i=1

y(i)αi = 0. (4.52)

53

Figure 4.7: Geometric interpretation of the linear machine trained on linearly separable data.

The maximum margin γ = 1/‖w‖ is reached by the hyperplane represented by the continuous

line. The dotted line is another separating hyperplane, but with a smaller margin. The support

vectors are represented by wide-margin circles.

An important characteristic of this learning scheme is that the classification func-

tion f can be expressed in terms of the training vectors x(i) for which the solutions

αi of (4.50)-(4.52) are positive, called support vectors (SVs), by setting w and b as

follows:

w =
∑

αi∈SV

y(i)αi(x
(i) · x), b =

1

2
(w · x+ + w · x−), (4.53)

where x+ and x− are two SVs which belong to the positive and negative class respec-

tively. The SVs are interpreted as the relevant patterns in the classification process.

Frequently, the number of SVs is small with respect to the number of training data,

thus giving a compact representation and efficient implementation of the classifier.

Another important characteristic of SVMs is that non-linearity can be introduced

by replacing the inner product in (4.52) by a kernel function

K(x(i), x(j)) = φ(x(i)) · φ(x(j)), (4.54)

where φ maps the patterns into a high (possibly infinite) dimensional inner product

54

(a) (b)

Figure 4.8: (a) Binary classification applied to a separable set using a linear SVM. (b) Binary

classification of a non-separable set using an RBF function.

space. Some of the best known (and most widely used) kernel functions are:

K(x, z) = exp (−γ‖x− z‖) , (4.55)

K(x, z) = (γ((x · z) + 1))d , (4.56)

K(x, z) = tanh(γ(x · z)− θ)), (4.57)

which are know as radial basis functions (RBFs), polynomial kernels, and hyperbolic

kernels respectively.

Multi-Class Support-Vector Machines

For multi-class SVMs, one can use Directed Acyclic Graphs SVM (DAG-SVM) [69].

The classification criterion is determined via a rooted binary graph. The nodes are

arranged in a triangle with the root at the top and the leaves at the bottom, as showed

in Fig. 4.9. Binary SVM classifiers are implemented in the k(k − 1)/2 internal nodes

of the graph. The k leaves indicate the class predicted label. Given a new example x,

classification starts with the classifier in the root. A node is exited via the left edge

if the label in the classification is positive, or the right edge if the label is negative.

In this way, the next classification node is evaluated. One continues this procedure

until reaching a leaf.

55

Figure 4.9: DAG for three classes.

4.3 Experimental Results

In this section we present the results of our experiments with two kind of data: user-

dependent data and the UNIPEN database. We used the user dependent data in our

first implementation of the support-vector approach for on-line symbol classification.

As expected, the results in this database were very good. To verify whether these

results could also be accomplished with user independent data, we continued our

experiments with the UNIPEN database.

4.3.1 User-Dependent Classification

Our data were obtained from a Wacom Graphire 2 tablet connected to a Sony Vaio

PCG-FX502 notebook. The symbols were written by a volunteer, and each class con-

tains fifty symbols (see Fig. 4.10). The number of symbols was artificially increased

ten times by means of transformations related to the tangent distance, as described

in Sect. 3.4. We randomly selected 50 % of the data for training, 25 % for testing

and 25 % for validation. We assumed that the symbols were composed at most of

tree strokes, and tree classifiers were used to classify them, depending of the number

of strokes. They were preprocessed as described in Chap. 3. The number of points

of each stroke was limited to sixteen. The features used are the ones described in

Sect. 3.5, and if a symbol had more than one stroke, we constructed their correspond-

ing feature vectors and then concatenated them to obtain the final vector.

Our system uses a DAG-SVM as multi-class SVM-classifier. Sequential Minimal

56

Figure 4.10: Symbols constituting the user-dependent database.

Optimization (SMO) algorithm was used to train the classification nodes [68, 43]. We

used the RBF kernel for all the classification nodes of the DAG-SVM. Experiments

suggested a value of γ = 0.001. For comparison, we trained a neural network with the

RPROP algorithm with the standard sigmoid and its standard parameter values [71].

The training was finished by using an early stopping criterion with the validation set.

The number of hidden units for each net were the same as those of the dimension of

the feature vector.

Table 4.1 summarizes the results obtained for each classifier. The number indicates

the correspondence of the classifier and the number of strokes in the symbols. We

trained each ANN five times and selected the best one with respect to the error rate

on the validation set. We used the support vectors found in the SVM training to train

other ANN (marked with an asterisk in the table). Because of the size of the support

vectors, we found that the training time is faster and classification rates improve.

When we added more features to the vector, we found some improvement in the

classification rates and a reduction in the number of SVs, which is a good result

because it increases the speed of the classification. The results for the one-stroke

classifiers are shown in Table 4.2. The features were added in their order of description

in Sect. 3.5.

57

Table 4.1: Classification rates for user-dependent classification.

Classifier Support Vectors Training error Test error Val

SVM1 29.65 % 0.31 % 0.93 % 0.76 %

ANN1 - 0.72 % 1.17 % 1.27 %

ANN1* - 0.98 % 1.0 % 1.06 %

SVM2 36.73 % 0.00 % 0.62 % 0.70 %

ANN2 - 0.69 % 1.31 % 2.09 %

ANN2* - 1.26 % 1.78 % 2.08 %

SVM3 39.41 % 0.00 % 0.00 % 1.17 %

ANN3 - 0.00 % 1.17 % 1.17 %

ANN3* - 0.00 % 1.17 % 1.17 %

Table 4.2: Classification rates with feature integration.

Classifier Support vectors Training error Test error Val

SVM1 45.45 % 2.43 % 2.86 % 3.07 %

SVM2 46.64 % 1.84 % 2.76 % 2.27 %

SVM3 27.85 % 1.00 % 1.41 % 1.31 %

SVM4 29.44 % 0.29 % 0.86 % 1.07 %

SVM5 29.23 % 0.17 % 1.31 % 0.76 %

SVM6 29.13 % 0.24 % 0.79 % 1.07 %

SVM7 29.70 % 0.31 % 0.75 % 0.82 %

SVM8 29.65 % 0.31 % 0.93 % 0.76 %

4.3.2 Experiments with the UNIPEN Database

The UNIPEN foundation provides a public database of on-line handwritten data

donated by researchers from universities and research centers around the world [36].

The version of the database we used in the experiments is UNIPEN Train-R01/V07.

This data is formed by isolated characters, isolated words, as well as by free text.

Because of the great variety of sources, the database is considered as difficult and

challenging.

Unfortunately, this database does not contain Greek letters or mathematical oper-

ators, let alone complete mathematical expressions. For that reason, our experiments

with this database consider only the data 1a, 1b, and 1c, which correspond to isolated

58

Table 4.3: Lost of data when reading the UNIPEN database.

Database Number of symbols Read symbols Lost

1a 15953 15950 0.0188 %

1b 28069 28066 0.0106 %

1c 61351 57484 6.0303 %

digits, isolated upper letters, and isolated lower case letters respectively. In each case,

the data were preprocessed as described in Chapt. 3. In addition to these preprocess-

ing steps, strokes that had a length smaller than 12 % of the symbol’s diagonal were

removed. The data were extracted from the database using the uptools3 programs

which can be found on the UNIPEN Foundation website. During the extraction pro-

cess, we encountered some problems when reading the files from the database and

some data where not included in our experiments. Table 4.3 summarizes the amount

of data that was lost.

The library libsvm-2.6 by Chang and Lin [16] was used to train the SVM-classifier.

Their software offers n-fold cross-validation to verify the accuracy of the classification.

This accuracy proof consist of randomly dividing the data into n subsets of the same

size and taking n−1 sets for training and one for testing the obtained classifier. This

is repeated n times, so that all the n accuracy measures are obtained and averaged to

obtain the final accuracy estimation. We used the RBF kernel for all the classification

nodes of the DAG-SVM. We used the values of C and γ as indicated in Table 4.4.

These values were obtained using a grid search and five-fold cross-validation in the

intervals 0 ≤ log2 C ≤ 16 and −16 ≤ log2 γ ≤ 0, see Fig. 4.11. The results of the

accuracy for the classification is shown in Table 4.5.

The total accuracy on the whole is calculated using the formula

Total accuracy =

∑3
i=1 aini
∑3

i=1 ni

, (4.58)

where ai, ni, i represent the accuracy, the number of symbols in the subset, and the

stroke number respectively.

To compare the accuracy of the SVM-based classifier, we trained other classifiers

using the data-mining tool weka-2.4.2 [101]. We used a computer with a Pentium III

processor at 800 MHzand 512 MB of RAM running Debian GNU/Linux operating

system. The accuracy is measured using stratified 10-fold cross validation, an eval-

uation option available in the software. For classifier training, we used the default

59

Figure 4.11: Contour plot of the classification error using the 1a subset of the UNIPEN data.

The error was calculated by five-fold cross-validation of 20 % of the original data. The figures

correspond to the symbols of one, two, and three strokes respectively.

60

Figure 4.12: Contour plot of the classification error using the 1b subset of the UNIPEN data.

61

Figure 4.13: Contour plot of the classification error using the 1c subset of the UNIPEN data.

62

Table 4.4: Optimal parameters of the RBF kernel for the UNIPEN database.

Database Strokes C γ

1a (digits)

1 64 0.015625

2 16 0.00390625

3 256 0.0009765625

1b (upper case)

1 16 0.015625

2 16 0.00390625

3 16 0.00390625

1c (lower case)

1 256 0.015625

2 4 0.015625

3 128 0.015625

parameter values of weka-2.4.2, except when training the MultilayerPerceptron. In

this case, the dimension of the input data was reduced using principal component

analysis, and 20 % of the corresponding training set was used for early stopping.

To get an idea of the effectiveness of our approach, we compared the results of all

the classifiers we trained with other results from the literature that use the UNIPEN

database. We should point out that, although these results where obtained using

the UNIPEN database, symbol sets differ. Different authors use different versions of

the database, different subsets of the database for tests, and training and tests are

done on multi and omni-writer sets. For this reason, comparisons of classification

errors should be made carefully. Tables 4.6-4.7 summarize the results obtained in

this section.

63

Table 4.5: Classification rates for the UNIPEN database using SVM-DAG classifiers with the

RBF kernel.

Database Strokes Symbols Accuracy Total accuracy Total error

1a (digits)

1 11867 98.7191 %
98.6520

%
1.3480 %2 3943 98.8587 %

3 140 87.1429 %

1b (upper case)

1 13509 94.0928 %
94.8299

%
5.1701 %2 10184 97.2407 %

3 4373 91.4932 %

1c (lower case)

1 48194 91.6317 %
91.9455

%
8.0545 %2 9030 94.0532 %

3 260 76.9231 %

Table 4.6: Comparison of different classification approaches using the 1a (digits) subset. Ap-

proaches without references correspond to results presented in this chapter.

Approach Error Database

Support Vector 1.3480 %

Nearest neighbor 1.4799 %

Neural network 2.5021 %

Perceptron [64] 3.0000 % DevTest-R02/V02

Hidden Markov Model [39] 3.2000 % Train-R01/V06

Fuzzy-Geometric [37] 3.7000 %

Decision tree 4.0070 %

Naive Bayes 8.3841 %

64

Table 4.7: Classification rates for the subset 1a (digits) of the UNIPEN database using different classifiers.

Time rates Classification rates

Classifier Strokes Symbols Training Test Accuracy Total accuracy Total error

1 11867 187.54 0.56 96.1396 %

Decision tree 2 3943 75.14 0.25 96.0183 % 95.9930 % 4.0070 %

3 140 1.87 0.02 82.8571 %

1 11867 9.76 63.34 91.5964 %

Naive Bayes 2 3943 5.28 44.73 91.9858 % 91.6159 % 8.3841 %

3 140 0.25 1.85 82.8571 %

1 11867 - 9829.58 98.5587 %

Nearest neighbor 2 3943 - 2370.98 98.6558 % 98.5201 % 1.4799 %

3 140 - 3.86 91.4286 %

1 11867 2806.76 10.43 97.6062 %

Neural network 2 3943 1346.16 8.61 97.7682 % 97.4979 % 2.5021 %

3 140 10.05 0.1 80.7143 %

1 11867 236.1 39.327 98.7191 %

Support vector 2 3943 64.348 9.31 98.8587 % 98.6520 % 1.3480 %

3 140 1.337 0.102 87.1429 %

65

