
Chapter 3

Preprocessing Techniques for

On-Line Handwriting

3.1 Introduction

Most of the classification techniques assume that the data is given in a predetermined

form, which satisfy certain requirements as to quality, size, invariance, etc. However,

these characteristics are commonly not satisfied by on-line handwritten data, as we

can see in Fig. 3.1. The low quality of the data is due basically to the combination

if three facts. One is the addition of noise during digitalization, which is generally

generated by a badly configured digital tablet. The other is the irregularity generated

by inexperienced users having an erratic handwriting. The last are variations in

handwriting styles.

To overcome these problems, we use preprocessing, which involves the substitu-

tion, removal, reordering, and/or extraction of the data. Preprocessing eliminates

noise, normalizes handwriting, and reduces the amount of redundant information, in

order to fix the variations of handwriting and facilitate encoding of raw data into

feature vectors.

Throughout this chapter we will represent a stroke s as an ordered sequence of

points {pi}ni=1, where pi = (xi, yi). The points p1 and pn correspond to the first and

last touches of the stylus. New data obtained by preprocessing is labeled with an

asterisk.

This chapter is organized as follows. Section 3.2 refers to preprocessing methods

for noise and data reduction. Section 3.3 explains the methods for handwriting nor-

malization we used. Section 3.4 refers to a method for artificial symbol generation and

24



Figure 3.1: Left: original data. Right: data after smoothing. We used the coefficients α−1 =

1/4, α0 = 1/2, and α1 = 1/4.

Sect. 3.5 describes the symbol’s features used to construct the input of the classifiers.

3.2 Noise and Data Reduction

3.2.1 Smoothing

Smoothing is one of simplest approaches for data filtering. See Fig. 3.1. As most

preprocessing methods, it consists of substituting the coordinates of the original point.

It is done using a weighted sum of the neighboring points:

p∗i =
n
∑

k=−n

αkpi+k, (3.1)

where
n
∑

k=−n

αk = 1.

The most commonly-used coefficients are αk = 1/(2n + 1) and coefficients gener-

ated by a discrete approximation of a Gaussian distribution, as shown in Fig. 3.2. By

default, we use three coefficients with values α−1 = 1/4, α0 = 1/2, and α1 = 1/4.

3.2.2 Point Clustering

This kind of filtering also involves averaging with neighboring points. In this case, we

consider the neighboring points of pi that belong to a predetermined vicinity Vr(pi)

with a radius r > 0 , where

Vr(pi) = {p ∈ s : ‖pi − p‖ <= r}.

25



−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.2: Coefficient obtained by a discrete approximation of a Gaussian distribution. In this

case, eleven coefficients are used in the filter.

The original point is substituted by

p∗i =
1

#(Vr(pi))

∑

p∈Vr(pi)

p,

where # means the number of points in the neighborhood. In this way we obtain the

new stroke s∗ = {p∗ik}mk=1, where

ik+1 = min{ik < i ≤ n : pi 6∈ Vr(pik)}, k = 2, . . . ,m− 1, i1 = 1. (3.2)

This filter smooths the stroke and removes repeated points. This method also helps

to remove some features which are smaller than the given radius. Figure 3.3 shows

that the little hook on the left symbol is removed, as well as the points clustering in

a stroke’s corners. In some cases, points of the filtered strokes tend to have a regular

separation between them. This occurs when the distance between consecutive points

in the stroke is smaller than the neighborhood radius. The default value we used for

the radius is L/80, where L represents the length of the stroke.

3.2.3 Dehooking

Hooks are very common artifacts found at the ends of the strokes, see Fig. 3.4. They

are generated during fast writing, when pen-down and pen-up events are generated

26



Figure 3.3: Left: original data. Right: data after clustering.

Figure 3.4: Left: original data. Right: data after dehooking.

with a delay, such that the events do not match with the real touch and lifting of the

stylus. The way hooks are detected in strokes consists of locating abrupt changes of

the turning angle. Given a point pi in the stroke, the turning angle θi is formed by

the consecutive line segments pi−1pi and pipi+1, see Fig. 3.5.

To eliminate the parts of a stroke which constitute a hook, two conditions must

be met. The first one is that the turning angle satisfies θi > θ, where θ is a given

threshold. The second condition is that the point pi satisfies some of the the arc

length conditions

i−1
∑

k=1

‖pk+1 − pk‖ < αL, (3.3)

n−1
∑

k=i

‖pk+1 − pk‖ < αL, (3.4)

where alpha is a real number 0 < α < 1 and L is the stroke’s length. Conditions (3.3)-

27



Figure 3.5: Turning angle.

Figure 3.6: Two recursion steps of the method for polygonal approximation.

(3.4) correspond the hook analysis at initial and end points respectively. The default

values we used are θ = 85 degrees and α = 0.12.

3.2.4 Polygonal Approximation

To approximate strokes using a polygonal line with a fixed number of points, we

proceeded in the following way. We start by considering the segment AB formed by

the first and the last point of the stroke, see Fig. 3.6. This segment is the basis of

the triangle formed with point C of the stroke. Among all the points of the stroke,

we select the one which reaches the maximal height CC ′ of the triangle ABC. The

first approximation of the stroke is formed by the points {A,C,B}. We repeat the

procedure to the two the sub-strokes {p1, . . . , pk} and {pk, . . . , pn}, where p1 = A,

pk = C, and pn = B. The procedure finishes when a desired number of points

is reached. A variation of the method consists of taking the minimum area of the

28



Figure 3.7: Left: original data. Right: result after applying polygonal approximation.

(a) (b) (c) (d)

Figure 3.8: (a) Original symbol. (b) Original symbol after smoothing. (c) Original symbol

after adding extra points. (d) The symbol in (c) after smoothing.

triangle instead of its height.

Sometimes, we need the opposite procedure, namely addition of points, because

the number of points is so low that some undesirable results can be obtained when

applying preprocessing methods, as shown if Fig. 3.8. In this case, the sampling rate

of the handwriting device is decreased and only few points are stored. As we can

see, smoothing degrades the data and an incorrect label could be assigned to the

symbol. To overcome this problem we add points as follows. A recently added point

corresponds to the middle point of the longest segment in the stroke. This procedure

is repeated until the desired number of points is reached.

3.2.5 Arc Length Resampling

In this preprocessing step, we obtain new samples of points that are regularly spaced

with respect to the arc length. The method which is used to resample new points is

29



Figure 3.9: Result of arc length resampling. The solid line represents the original stroke while

the dashed one represents the new stroke obtained by linear interpolation.

a simple linear interpolation, see Fig. 3.9. Suppose that the stroke s = {pi}ni=1 has

length L. The new stroke s∗ is initialized with the point p1. i.e. s∗ = {p1}. If L 6= 0

and n > 1, we can find an index 1 ≤ k ≤ n such that

k−1
∑

i=1

‖pi+1 − pi‖ ≤
L

m− 1
<

k
∑

i=1

‖pi+1 − pi‖, (3.5)

where m is the desired number of points and L the length of the stroke. We find the

point p∗2 by interpolating linearly in the segment pkpk+1 such that

k−1
∑

i=1

‖pi+1 − pi‖+ ‖p∗2 − pk‖ =
L

n− 1
. (3.6)

We then reinitialize s∗ = {p1, p
∗
2}. We repeat the procedure with the stroke {p∗

1, pk+1, . . . , pn}
to construct the rest of the points p∗

3, . . . , p
∗
m−1, p

∗
m = pn that satisfy the arc length

condition (3.6). See Fig.3.10.

3.3 Normalization

3.3.1 Stroke Grouping

To group strokes into single symbols, we proceed as follows. Two strokes belong to

the same group if their mathematical dilation with a circle of radius αr intersects

some of the strokes of the symbol, where r is the current stroke thickness and α > 1,

see Fig. 5.7. The result of dilating a stroke with the circle is equivalent to increasing

the stroke’s thickness to (1 + α)r.

30



Figure 3.10: Left: original symbol. Right: symbol processed by arc length resampling.

Figure 3.11: Groping of strokes. Left: dilation of strokes intersects. Right: dilation of strokes

does not intersect.

To decide wether two strokes form a single one, we use the following criterion.

If the distance of the end points in the strokes is lower than αr, it is assumed that

the last stroke is a continuation of the previous stroke. In this case, both strokes are

concatenated, instead of being grouped together as one symbol. The default value we

use for both criteria is α = 1.5.

3.3.2 Stroke’s Direction and Order

We experienced that left-handed users write some symbols and letters in the opposite

direction of right-handed ones. For this reason we use the following method to nor-

malize the direction of strokes [61]. First, we classify each stroke as closed, horizontal,

31



vertical, or diagonal, using the ratios

Rx = |xn − x1|/D and Ry = |yn − y1|/D, (3.7)

where D is the length of the diagonal of the symbol’s bounding box. Thus, we select

a threshold δ ∈ [0, 1] and we say that stroke s is

• closed if

Rx < δ and Ry < δ, (3.8)

• horizontal if

Rx ≥ δ and Ry < δ, (3.9)

• vertical if

Rx < δ and Ry ≥ δ, (3.10)

• diagonal if

Rx ≥ δ and Ry ≥ δ. (3.11)

The direction of horizontal strokes are changed if xl < xf . Vertical and diagonal

strokes are normalized if yl < yf . This is done by changing the direction. Given a

stroke s, a new stroke obtained by changing the direction takes the form

s∗ = {pn+1−i}ni=1. (3.12)

Once the direction of strokes is normalized, they are ordered respect to the angle

formed by two segments. One corresponds to the upper segment of the symbol’s

bounding box and the other is formed by the upper left corner of the bounding box

and the last point of the stroke. See Fig. 3.12.

3.3.3 Stroke Reduction

Sometimes, it is desirable that symbols have a fixed number N of strokes. When

the number of strokes in a symbol exceeds this number, we concatenate strokes as

follows. Assuming that the strokes in the symbol are ordered as described in the last

section, we keep the first N − 1 strokes and simply concatenate the rest to form the

N -th stroke.

32



Figure 3.12: Stroke reordering.

3.3.4 Size Normalization

Symbols are scaled and translated such that their bounding box fits the square

[−1, 1] × [−1, 1] and the center of their bounding box and the center of the square

coincide. Note that the ratio between height and width is kept constant.

3.4 Artificial Symbol Generation

Sometimes, there are not enough data to train the classifiers. We overcome this

problem by generating symbols artificially. Schwenk and Milgram [79] define a basic

set of transformations on symbols by representing a stroke s as a vector formed by

coordinate points

s = (x1, y1, . . . , xn, yn)T , (3.13)

and transform it linearly into t(s, α) using the expression:

t(s, α) = s + αt. (3.14)

The vector t determines the transformation, and α is a real value. Seven basic trans-

formations are defined by specifying the values of the vector t = (xt
1, y

t
1, . . . , x

t
n, yt

n):

33



1. Translation x-Axis:

xt
i = 1 and yt

i = 0. (3.15)

2. Translation y-Axis:

xt
i = 0 and yt

i = 1. (3.16)

3. Scale:

xt
i = xi and yt

i = yi. (3.17)

4. Axis deformation:

xt
i = −xi and yt

i = yi. (3.18)

5. Rotation:

xt
i = −yi and yt

i = xi. (3.19)

6. Diagonal deformation:

xt
i = −yi and yt

i = xi. (3.20)

7. Slope-x:

xt
i = ∆xi and yt

i = 0. (3.21)

8. Slope-y:

xt
i = 0 and yt

i = ∆yi. (3.22)

For the slope transformation, we use the following formula to calculate the discrete

derivative:

∆ui =



















u2 − u1, i = 1,

1
2
(ui+1 − ui−1), 1 < i < n,

un − un−1, i = n.

(3.23)

This kind of transformation corresponds to a change in the local curvature, see

Fig. 3.13.

The most general transformation takes the form:

f(s, α) = s +
8
∑

k=1

αktk, (3.24)

where the vector tk, k = 1, . . . , 8, corresponds to the transformations listed before.

To generate new symbols, we randomly select different values for the parameter

values αk. We can see from (3.15) and (3.19) that using the values of α = −1 and

34



Figure 3.13: Slope transformation results. The original symbol is shown at the center.

35



Figure 3.14: Random transformation results. The original symbol is shown at the center.

α = −2 deforms the stroke in a single point and rotates it by 180 degrees respectively.

To avoid this extreme deformation of symbols, we select “small” values for αk: we

take α randomly from the interval (−0.15, 0.15), except for the slope transformation.

In that case we use the values (−0.3, 0.3). Actually, the selection of the limits for these

intervals depends strongly on the number of points the stroke contains. Figures 3.13-

3.14 show transformations of the symbol ‘2 using twenty-four points in each stroke.

36



3.5 Feature Extraction

Feature extraction means deriving measures and characteristics from the raw data

that are useful in making predictions. Commonly feature extraction methods are

based on invariance, reconstruction, and expected distortions. We studied several

local and global features that are normally used by authors as mentioned in Chapt. 2.

Among those features, we found the following to yield the best results.

3.5.1 Local Features

Given a stroke s = (p1, . . . , pn) of length `, we use the following local features to

construct the input vector for the classifier:

Point Coordinates

The values (xi, yi) of pi are the main attributes and are the base to derive others

from.

Turning Angle

We use the values sin(θi) and cos(θi) of the turning angle θi at the point pi. The are

calculated by the expressions

cos(θi) =
xi+1 − xi

d(pi, pi+1)
and sin(θi) =

yi+1 − yi

d(pi, pi+1)
, (3.25)

where i = 1, . . . , n − 1. These features describe the direction of the stroke between

consecutive points.

Turning Angle Difference

The values

sin(θi+1 − θi) and cos(θi+1 − θi), (3.26)

represent the turning angle difference for i = 1, . . . , n−2. They describe the curvature

of the stroke at the i-th point.

Length Position

The length position of pi is defined as

Li =
i−1
∑

k=1

d(pk, pk+1)/L, (3.27)

37



where L represents the length of the stroke. This measurement is useful to locate

points, irrelevant of the scale, in strokes having no equidistant points.

3.5.2 Global Features

The following global features of s are also used:

Center of Gravity

The center of gravity
(

n
∑

i=1

xi/n,
n
∑

i=1

yi/n

)

(3.28)

is used to locate strokes for symbols formed by several strokes. This measurement

helps to distinguish symbols formed by strokes with similar structures.

Length

The length of a stroke is a useful measure to distinguish between long and short

strokes.

Relative Length

The relative length is defined as

Lr = d/L, (3.29)

where d is the distance between the first and last points of s. This measure describes

how “closed” a stroke is. The value Lr ≈ 0 corresponds to a “closed” stroke, while

Lr = 1 to a stroke which is actually a line segment.

Accumulated Angle

The accumulated angle

θa =
1

2π

n
∑

i=1

θi, (3.30)

where θi is the turning angle at point i; also describes how “closed” a stroke is in the

sense of angles.

38



Quadratic Error

This feature represents the sum

` =
1

n

n
∑

i=1

d2
i , (3.31)

where di is the distance between the point pi and the line segment formed by the

end points of the stroke. This measure describes how “similar” a stroke is to a line

segment.

39


