
Chapter 2

Related Work

2.1 Introduction

When considering common issues in the recognition problem, authors have divided

the recognition of mathematical expressions into the stages shown in Fig. 1.7. As

mentioned in the last chapter, we concentrate on the stages corresponding to symbol

recognition and structural analysis. These steps can be further divided as shown

in Fig. 2.1. Most of the differences between recognition methods for mathematical

notation and their improvements are generated by variations of these major steps.

In this chapter we offer a survey of the existent work related to this thesis. In

Sect. 2.2, we describe the symbol recognition task step by step. We also review some

relevant work in this field. We give an overview of recent and the most important

techniques for structural analysis in Sect. 2.3. The most remarkable work on user

interfaces for on-line handwriting is described in Sect. 2.4.

The review given in this chapter intends to give the reader an idea of the state

of the art of the corresponding areas and should not be considered exhaustive. We

refer the reader to [89, 67, 70] for more detailed descriptions and references in the

area of on-line handwriting recognition. In the area of recognition of mathematical

expressions, we refer the reader to [9, 55, 14].

2.2 Symbol Recognition

2.2.1 Segmentation

Segmentation is the process of decomposing, grouping, or isolating the data into

classifiable units which represent single symbols. In the case of on-line run-on hand-

11



Figure 2.1: Diagrammatic representation of the stages to recognize symbols and of the struc-

tural analysis.

writing recognition, the segmentation problem consists of properly grouping a given

list of strokes. For the recognition of cursive handwriting, segmentation consist of

decomposing the main stroke, which forms an entire word, into strokes representing

symbols and transitions from one to another.

An example of a simple heuristics-based segmentation is the method used by

Mandler [60]. He associates the input strokes with a predetermined thickness by

dilating them with a rectangle. With this criterion, two strokes belong to the same

symbol if their dilated versions intersect.

Sometimes, segmentation methods use the information given by the classifier.

Winkler et al. [46, 100] generate a symbol hypothesis net from the given strokes.

The hypothesis net generates all possible combinations of strokes in order to handle

ambiguity during symbol grouping. The different combinations of strokes in the

net, which represent potential symbols, are classified using a Hidden Markov Model

(HMM). The probabilistic output of the classifier serves to associate a likelihood

value to each combination of strokes, and the one with the highest likelihood value is

selected as the final segmentation result. Examples of classifier-based segmentation

12



are used by some of the systems we describe in Sect. 2.4.

2.2.2 Preprocessing

Preprocessing is necessary to eliminate noise, to reduce the amount of information,

and to normalize handwriting [89, 34].

An example of preprocessing to eliminate noise is simply the application of a

Gaussian filter to a handwritten stroke. In this case, processed points in the stroke

are the result of a weighted average of itself and its neighbors. Dehooking, point

clustering, filtering, and stroke connection are useful preprocessing procedures to

eliminate unnecessary information from the stroke. Examples of normalization for

on-line data are scaling, slant correction, and equidistant resampling. Chapter 3

gives detailed descriptions of some of these preprocessing methods.

2.2.3 Feature Extraction

Feature extraction means deriving measures and characteristics from the raw data

which are useful in making predictions. It is common that feature extraction methods

are based on invariance, reconstruction, and expected distortions.

Features may be local or global. The source of information of on-line data are

points and strokes. When we talk about local features, we refer to characteristics

of a specific point in strokes derived from its neighboring points. Global features

normally refer to topological (morphological) characteristics of the stroke based on

the trajectory it describes.

The first local feature we consider are the coordinates of a point. They serve, for

example, to derive important local characteristics, like curvature or direction. Points

having a high curvature are important to decompose strokes in static elements. This

decomposition is a structural description of the underlying shape of strokes [34].

Global features normally serve to obtain a categorical (not numerical) classification

of strokes. For example, the ratio of the distance between a stroke’s end points and

its length is a global feature, which serves to determine if the stroke is closed or

open, when comparing this ratio against a predetermined threshold. Similarly, when

considering a symbol formed by two strokes, we can say that they cross or does not

cross, or only touch. This kind of information serves to construct a decision tree which

reduces the given data into a small set used in a later analysis using more complex

features [89].

13



2.2.4 Symbol Classification

Symbol classification means the use of a certain method to obtain the symbol’s label.

Actually, we can potentially use any of the great number of existing classification

methods to such purpose. In this section we review some of such methods which were

specially developed for symbol classification.

Similarity Measures

Similarity measures for strokes allow the use of distance-based classifiers. Generally,

unknown symbols are matched against stored references (prototypes), and the label

corresponding to the unknown symbol is the same as that of the symbol which best

matches it. Similarity measures are normally defined at stroke (curve) level.

Tappert [86] uses elastic matching as a similarity measure. The procedure to

calculate it is based on the alignment of points which constitute the stroke using the

dynamic time warping (DTW) algorithm. The optimal matching corresponds to the

minimum sum of matching costs, which are normally the distance between strokes’

points obtained by dynamic programming. This algorithm allows the comparison of

strokes having a different number of points. In this case, the feature-extraction step

can be skipped.

Li and Yeung [57] also use time warping to calculate similarities between strokes.

Their method converts strokes into a character string. The string describes the stroke

as a sequence of eight directions. They find the distance between two string sequences

by calculating costs of three string transformations, namely compression, expansion,

and substitution.

Schwenk [79] proposes a similarity measure based on constrained tangent dis-

tance. The distance is locally invariant under the following local transformations:

translation, scale, axis deformation, rotation, diagonal deformation, and slope trans-

formation. This method tries to incorporate knowledge about geometrical variations

of handwriting. In Chap. 3 we explain these transformations in more detail.

Other similarity measures for curves which can be useful for on-line symbol clas-

sification can be found in [95].

Structural Methods

Structural methods are based on the assumption that handwriting is made up of

some elementary or primitive shapes, also known as allographs. They describe the

14



morphological characteristics of strokes. For example the symbol ‘6’ can be describes

through two primitives: a descending curve and a loop.

Parizeau and Plamondon [65] construct a set of basic allographs using a fuzzy

syntactic approach to model handwriting. For example, a primitive can be of type

‘c’ or ‘ci’, which corresponds to stroke’s segments with a shape similar to the letter

‘c’ where the ‘i’ indicates “inversion”, i.e. a horizontal or vertical reflection of the

shape. In this way, they consider twenty allographs, which correspond to i-shapes,

c-shapes, t-crossings, loops, etc. A symbol is coded using a grammar formalism as a

sequence of these primitives and the similarity between symbols is measured by using

a sequence distance. Similar approaches are used in [11, 74, 102].

Neural Network and Statistical Models

Guyon et al. [35] developed a neural network system for the recognition, based on

so-called time delay neural networks. The system integrates recognition and segmen-

tation in the same neural network architecture. The network is used to estimate a

posteriori probabilities for characters in a word. One of the layers of the network

converts the temporal information, point position, curvature, and direction in a two-

dimensional image representation. Similar approaches are used in [59], which have

been specially developed for the recognition of on-line handwritten words.

One of the most recent statistical approaches used for on-line recognition are

Hidden Markov Models (HMM). They use dynamic programming to find the optimal

alignment which performs character segmentation and recognition simultaneously.

Bellegarda [5] uses local features, point’s positions and curvature, to feed a simple

two-state HMM. Sin and Kim [80] also uses a HMM to model inter-letter relations,

also known as ligatures. They train a HMM for each letter and ligature type. Schenkel

et al. [75] uses a hybrid neural-network-HMM system for on-line word recognition.

Shwenk [79] uses an autoencoder neural network to construct a model for each

symbol class. This autoencoder network actually describes each symbol class by

finding the principal components that describe the class population. New symbols

are fed into each network and projected to a hyperplane generated by the principal

components. The tangent distance between the encoded (projected) vector and the

original one is calculated. The class label assigned to the new vector corresponds to

the one where the minimum distance is reached.

15



Clustering Methods

Some of the above recognition approaches were developed in a user-dependent manner.

Clustering methods in on-line handwriting are developed to remedy this situation.

They try to model intra-class variations caused by different writing styles found in

large databases. Vuori [96] uses a self-organizing map to cluster writing styles. She

uses variations of the elastic matching method as a similarity measure. Her clustering

algorithms can be used for prototype selection, which serves to classify characters

according to the k Nearest Neighbors (k-NN) rule. The recognition system adapts to

new writing styles by modifying its prototype set. In the same fashion, Connell and

Jain [20] use also elastic matching to measure intra-cluster and inter-class measures,

to be used in a hierarchical clustering algorithm.

2.3 Structural Analysis

2.3.1 Expression Formation

Expression formation consists of translating the results obtained in the symbol recog-

nition step into a tree which describes the relations between symbols of the mathe-

matical expression. The nodes that constitute this tree are a data structure which

stores the symbol’s label and other numerical parameters, for example size and lo-

cation. Nodes are a compact representation of the original raw symbol. After an

analysis of the relative positions of symbols, the nodes in the tree are linked to each

other depending on which one of the spatial relations –above-left, above, superscript,

right, subscript, below, below-left, and subexpression– they satisfy [9, 55]. As we will

see, most of the methods described in this section rely on this principle.

Fateman et al. [29] developed a recognizer for typeset mathematical expressions.

The recognized symbols are grouped into box tokens representing numbers, function

names, and variables. They use a bottom-up recursive descent parser to obtain the

final result as a lisp expression.

Lavirotte and Pottier [52] define a context-sensitive graph grammar to represent

mathematical formulas and to remove ambiguities during structural analysis. Rules

in graph grammars consist of collapsing a subgraph in a node, if they satisfy a given

condition. They define a set of rules to describe the mathematical relation and apply

a bottom-up parsing algorithm to obtain the final result. If we consider the expression

‘ex+1’, a rule is defined to collapse the two nodes representing the symbols ‘e’ and ‘x’.

16



They now represent a single token, and the process can be continued by collapsing

the new tokens ‘ex’ and ‘1’ to construct the final result.

Miller and Viola [62] use a generative model approach based on a stochastic-free

grammar. The recognition process of the structure consists in finding the productions

of the grammar with the highest probability when considering the overall probability

of generating the expression. They use a convex hull condition to prune the searching

space of the grammar productions. A production in the grammar is not admissible if

the convex hull of a symbol group intersects a symbol not belonging to the group.

Winkler et al. [100] used HMMs for segmentation and classification of symbols.

Using a soft-decision approach, they construct a hypothesis net of all possible seg-

mentations of strokes. They store the information of the possible spatial relations

between symbols in a directed graph, and a set of alternative interpretations of the

expression is given.

Kosmala et al. [48] also present a statistical approach based on the application of

HMMs. The system allows simultaneous segmentation and symbol classification, as

well as the interpretation of the symbols’ spatial relationships. One of the conditions

for correct segmentation and recognition is that the expression be written from left to

right and from top to bottom. Delayed symbols are not allowed, as when first writing

an expression and then enclosing it in parenthesis. In an posterior work [47] they use

graph rewriting for the structure analysis to avoid the above-mentioned restrictions

of handwriting.

Chan and Yeung [13] propose the use of a definite-clause grammar (DCG) to

define precise replacement rules when parsing mathematical expressions. They use

DCG because a grammar expressed through this formalism is declarative and easy to

maintain and extend. They use a parsing scheme using left-factoring to reduce the

time for the expression’s interpretation.

Eto and Suzuki [26] use a weighted graph to represent spatial relations between

symbols. The nodes in the tree represent the symbols obtained during the segmen-

tation stage. They are connected depending on whether they satisfy the superscript,

subscript, or right relations. Because of the multiple results obtained during the

recognition step, nodes have multiple edges which store a symbol’s label and weight.

They generate a set of spanning trees of the initial graph, which result from the

minimization of the edge costs. If they result in an admissible (not contradictory)

mathematical structure, one of them is selected as the final result if it minimizes a

global cost criterion.

17



Zanibbi et al. [103] describe a mathematical expression as a structure of nested

baselines, a so-called baseline structure tree. Baselines constitute horizontal arrange-

ments of symbols. The first step in the procedure recursively constructs the baseline

tree in the handwritten expression by handling irregular or poor horizontal layout

structures. The second step converts the structure tree into an operator tree, which

is further processed by applying tree transformations using the TXL language. Tree

transformations consists of locating patterns in the tree structure and applying re-

placing rules on them. Defining different replacing rules helps to define a particular

dialect or recognition scope of mathematical notation.

2.3.2 Error Correction

Most of the approaches mentioned before convert a two-dimensional representation

of the expression into a one-dimensional one, a string of characters, which represents

the expression in a certain computer language. Erroneous symbol segmentation and

classification can generate incorrect results during structural analysis.

Lee and Wang [55] propose heuristics for the correction of the most common errors

derived by false recognized symbols. They consider four heuristic rules. One of them

is “for every binary operator there must exist two operands”. By applying this rule

the expression ‘/ < i < n’ is corrected to ‘1 < i < n’. They also define a rule to

consider errors encountered during the construction of function names. An expression

like ‘5inx’ should be corrected to ‘sin x’. Numerals with subindexes are considered

as an error. Expressions like ‘12’ and ‘5b’ are corrected to ‘l1’ and ‘Sb’ respectively.

The last rule considers the correction derived by case confusion of letters and other

character properties, considering whether it is italic, bold, etc., because letters forming

a determined group in the expression are similar. Expressions like ‘3Pqr’ and ‘x · y’

are transformed to ‘3pqr’ and ‘x · y’.

Chan and Yeung [15] extend their system based on definite-clause grammar to

handle lexical, syntactic, and semantic errors. They implement some rules to iden-

tify common errors in string grammar, namely substitution, deletion, and insertion.

They also incorporate rules for the correction of some common syntactic errors, like

incorrect implicit operators, missing binding and fence symbols, or missing operands.

The semantic errors they consider are corrected heuristically, similar to the way Lee

and Wang do. The lexical errors they consider take place at the recognition and seg-

mentation level, caused by poor digitalization or irregular writing. They also propose

some performance measures that concern the recognition of expressions, symbols, and

18



Figure 2.2: The Natural Log system.

operators, as well as an integrated performance measure.

Actually, not much effort is expended on the error correction task. Some other

authors does not handle automatically the correction of errors. For this purpose,

they offer instead user-friendly interfaces which allow immediate feedback and have

undo-redo and visualization capabilities, as we will see in the next section.

2.4 User Interfaces

2.4.1 The Natural Log System

The Natural Log system is a user-dependent system developed by Matsakis [61]. The

system was written in Java and is only available on-line as an applet on the internet.

See Fig. 2.2.

To classify on-line symbols, he constructs a high-dimensional normal distribution,

which describes the population of each class. The symbol label corresponds to the

class that has the maximum probability. Low probability values are used to reject

symbols which can represent potential errors in the handwriting. The procedure to

recognize a given mathematical expression begins by finding an optimal grouping of

the written strokes into isolated symbols. The final grouping of stroked is determined

19



by evaluating all possible groupings and taking the one which minimizes a sum-cost

function. This function is the sum of the log likelihood of the classifier’s output of

each symbol in the current partition. To make the optimization of the cost function

manageable, its evaluation is constrained by the minimum spanning tree of strokes,

considering the centers of strokes’ bounding boxes as nodes of a completely connected

weighted graph. Different combinations of subtrees of the minimum spanning tree are

evaluated and the optimal one is taken as the final segmentation result.

The structural analysis in this system consists of locating a “key” symbol usually

an explicit mathematical operator. Once the key symbols are located, the parse

algorithm proceeds to find their corresponding operands, and partial subexpression

are formed. The procedure is applied recursively until no more key symbols are

found. The algorithm is extended to support parsing of superscripts, i.e. to non-

explicit operators, but no support for subindexes is offered.

2.4.2 Free Hand Formula Entry System

The Freehand Formula Entry System is a pen-based equation editor developed by

Smithies and Norvins [81] and distributed under the GNU General Public License.

The program runs under Linux and MacOS X platforms.

The classification of symbols is done by using the nearest-neighbor method. The

developers use confidence information supplied by the classifier to group strokes.

Their method proceeds by generating all possible combinations of a fixed number

of strokes (by default they take a maximum of four strokes), which potentially can

constitute a single symbol. Once single symbol is classified, the confidence level of a

combination correspond the lowest output of the classifier. Finally, the group with

the highest confidence is taken and the first symbol in the group is returned and

considered a correctly recognized character. The procedure is repeated, once again,

when a fixed number of input strokes is reached.

For the structural analysis, they first used a method based on graph rewriting,

similar to the method developed by Lavirotte and Pottier [52]. Figure 2.3 shows a

version of their program, modified by Zanibbi [103], which uses the structural analysis

method he developed.

20



Figure 2.3: Free Hand Formula Entry System

2.4.3 Infty Editor

Infty Editor [63] is a commercial system specialized for creating mathematical docu-

ments. The editor is linked to the computer algebra system Mathematica by Mathlink.

It also supports input and output of expressions in TEX format. The editor contains

an real-time recognition system for mathematical expressions. See Fig. 2.4.

The recognition system combines segmentation and recognition of characters to

remedy difficulties in structural analysis due to irregular symbol position and size.

The rewriting puts symbols into extendable symbols and unextendable ones. The

former are extended to form other symbols by adding more strokes and the latter are

written with only one stroke. For example, F can be extended into E. When a stroke

is classified as unextendable, the classification result is rewritten by the computer in

the drawing area using a predefined prototype. If a stroke is classified as an extendable

character, the system waits for the next strokes. The classification result is written

automatically if a predetermined time interval has elapsed or the expected number

21



Figure 2.4: Infty editor

of strokes is reached.

During structural analysis, delayed symbols generate structural layout errors. The

same occurs when super-indexes are added after the whole expressions is entered. For

example, when writing the expression ‘(−x)n’ in the sequence ‘x’, ‘−x’, ‘(−x’, ‘(−x)’,

‘(−x)n’, it is recognized as ‘_x()n’.

2.4.4 MathJournal

Wenzel and Dillner [98] describe another commercial product, MathJournal, devel-

oped for the Tablet PC version of the Windows platform. The interface is very similar

to Microsoft’s Journal program, which is included in the operating system, see Fig. 2.5.

Apparently, the program is still under development and only descriptions of it are

given. The developers also offer the xThink Calculator as an evaluation program.

The recognition capabilities of this program are similar to the ones of MathJournal.

It operates as a normal pocket calculator, the operations are done by recognizing a

handwritten arithmetical expression.

MathJournal uses the recognizer integrated in the operating system for the classi-

fication of isolated handwritten characters. Although it is possible to recognize special

22



(a) (b)

Figure 2.5: MathJournal.

mathematical symbols and constants (square root, calculus operators, and the con-

stant π), the system does not recognize Greek letters. The symbols recognized by the

system are limited to the ones recognized by the Microsoft API.

In the description of the system, they mention that heuristics of graph rewriting

and, when required, a minimum spanning tree construction are used during structural

analysis.

The most relevant aspects of this system are its “solution engines”. They process

the recognized expressions in numeric, graphic, or symbolic formats. Diagrams, such

as function tables, are processed and plotted by using curly braces and arrows as

gestures. Similar gestures are used for the solution of equation systems or for plotting

functions.

23


