Neutralisierende Antikörper gegen die transmembranen Hüllproteine von Retroviren

Dissertation

zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr.rer.nat.)

eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

vorgelegt von

Dipl. biol. Stefan Langhammer aus Stade

12/2005

Gutachter: Prof. Dr. Kurth
Gutachter: Prof. Dr. Mutzel

Disputation am 21.02.06

Table of contents

1. I	1. Introduction		
		-	
1.1	Retroviruses	7	
	1.1.1 Gag (group specific antigens)	10	
	1.1.2 Pol (enzymatic enzymes)	11	
	1.1.3 Env (envelope glycoproteins)	12	
	1.1.4 Regulatory proteins	14	
	1.1.5 Acessory proteins	15	
	1.1.6 The retroviral cycle of replication	15	
1.2	The interaction of the immune system with retroviral infections	17	
	1.2.1 The immune system is based on different ways of reaction specific for the	17	
	type of pathogen		
	1.2.2 The innate immune system displays the first line of defense	17	
	1.2.3 The adaptive cellular immune response is important in the defense of intra-	18	
	cellular pathogens		
	1.2.4 The B-cell mediated adaptive humoral immune response is important in the	18	
	defense of extra-cellular pathogens		
	1.2.5 Antibody characteristics	19	
	1.2.6 Neutralising antibodies	21	
	1.2.7 The HIV-1 neutralising monoclonal antibodies 2F5 and 4E10	22	
	1.2.8 Neutralising antibodies in the course of FeLV infection in cats	23	
1.3	Vaccine development against retroviruses	23	
	1.3.1 Vaccination strategies	23	
	1.3.2 Vaccination with recombinant proteins can provide protection from retroviral	24	
	infections		
	1.3.3 FeLV is a useful model to explore the factors that should be taken into	25	
	account in developing a successful HIV vaccine		
1.4	Goals of this study-Targeting at FeLV-A and HIV-1		
		26	

2. Materials and methods	
2.1 Chemicals	27
2.2 Cloning and expression of recombinant proteins used for immunisations	27
2.2.1 FeLV-A p15E ectodomain	27
2.2.2 ΔISU p15E and p15E/gp41 hybrid proteins I and II	27
2.3 Experimental animals	28
2.3.1 Immunisation of rats and goat with the FeLV-A p15E ectodomain	
2.3.2 Immunisation of rats with ΔISU p15E and p15E/gp41 I and II hybrid proteins 2.3.3 Immunisation of rats with p15E and p45	28
2.3.4 FeLV-A infected pet cats, immunisation of cats with p15E and p45	28 29
2.4 Purification of antisera by p15E affinity and proteinG columns	29
2.5 Characterisation of antisera in Western blot and ELISA	29
2.6 Epitope mapping on FeLV-A p15E and HIV-1 gp41	30
2.7 Immunofluorescence on FEA cells	30
2.8 Retroviral neutralisation assays	31
2.8.1 FeLV-A neutralisation assay with FEA cells	31
2.8.2 HIV-1 and PERV virus neutralisation assays with C8166 cells	31
2.9 Determination of retroviral provirus integration by real time PCR	32
2.9.1 FeLV-A real time PCR	32
2.9.2 HIV-1 real-time PCR	32
2.9.3 PERV real-time PCR	32
2.9.4 Calculation of provirus integration and neutralisation efficiency	32
2.10 Quantification of p27 antigen and provirus load in FeLV-A infected cats	33
2.11 Generation of hybridoma cells from rat lymphocytes	33

3. Results3.1 Induction of neutralising antibodies against FeLV-A p15E in rats and goat	
3.1.2 Characterisation of binding antibodies	35
3.1.3 Neutralising antibodies against p15E	36
3.1.4 Epitope mapping	36
3.1.5 p15E-specific antibodies recognise viral protein at the surface of FeLV-	38
infected FEA cells	
3.2 Induction of neutralising antibodies against FeLV-A ΔISU p15E-antigen	39
improvement	
3.2.1 Characterisation of the antigen	39
3.2.2 Characterisation of binding and neutralising antibodies	40
3.2.3 Epitope mapping	40
3.3 Comparative studies between p15E and Leucogen induced neutralising	41
antibodies in rats	
3.3.1 Binding antibodies specific for p15E and p45	41
3.3.2 Induction and characterisation of neutralising antibodies	44
3.3.3 Epitope mapping	45
3.4 Induction of neutralising antibodies against p15E in cats	47
3.4.1 Induction of binding antibodies specific for p15E in cats	47
3.4.2 Induction of neutralising antibodies specific for p15E in cats	48
3.4.3 Epitope mapping	48
3.4.4 Sequences homologous to the epitopes are present in endogenous retroviruses	49
3.4.5 p15E-specific antibodies recognise viral protein at the surface of FeLV- infected cells	49
3.4.6 Neutralising antibodies in the sera of FeLV-infected cats	50
3.5 Challenge studies in p15E and p45 immunised cats	52
3.5.1 Immune response of the vaccinated and control animals before challenge	52
3.5.2 Protection was induced by the TM protein p15E as well as by Leucogen	54
3.5.3 Immunisation with Leucogen, with the transmembrane envelope protein	55

p15E and with a combination of both did not result in sterilizing immunity	
3.5.4 Provirus load and virus load correlate inversely with neutralising antibodies	56
3.6 Induction of neutralising antibodies against HIV-1 gp41	58
3.6.1 Characterisation of the antigen	58
3.6.2 Characterisation of neutralising antibodies	59
3.6.1 Epitope mapping	60
3.7 Generation of monoclonal antibodies against p15E/gp41 hybrid protein I	63
3.7.1 Characterisation of monoclonal antibodies binding to the HIV-1 gp41 E2 peptide	63
4. Discussion	
4.1 Induction and characterisation of neutralising antibodies against FeLV-A	66
p15E in different species	
4.1.1 Immunisation with FeLV-A p15E induces neutralising antibodies in different	67
species including cats	~ =
4.1.2 The humoral immune response against the transmembrane proteins of HIV, PERV and FeLV-A shows the detection of similar located epitopes	67
4.1.3 The deletion of the ISU domain from FeLV-A p15E does not improve the	70
antigen, but maintains an identical humoral immune response as observed for immunisation with p15E	
4.1.4 Sequences homologue to the epitopes are present as endogenous retroviral sequences in cats	71
4.1.5 Combined immunisation with FeLV-A p15E and Leucogen induces an	72
increased response of neutralising antibodies in rats	
4.2 FeLV-A p15E vaccine studies in cats	73
4.2.1 Immunisation with FeLV-A p15E alone can protect cats from productive	73
infection	
4.3 Induction of neutralising antibodies against HIV-1 gp41 in rats by	76
immunisation with p15E/ gp41 hybrid protein I	. •
5. Summary	78

6. Deutschsprachige Zusammenfassung	79
7. References	80
8. Appendix	93
9. List of publications	96
10. Acknowledament	97

Abbreviations

aa amino acid

AIDS Acquired Immune Deficiency Syndrom

Amp ampicillin

CBP calmodulin-binding protein

CCR chemokine receptor for CC chemokines

CD cluster of differentiation **CHR** C-terminal helix region

CTL cytotoxic T-cells

CXCR chemokine receptor for CXC-

chemokines

ddH2O Aqua bidest

DNA Desoxyribonucleinacid

E.coli Escherichia coli

ELISA enzyme linked immunosorbent assay

Env envelope protein

Fab fragment antigen binding

FeLV feline leukemia virus

FIV Feline Immune Deficiency Virus

FCS fetal calf serum

ffu/ml focus forming units per milliliter

FP fusion peptide

Gag group specific antigen

HAART highly active anti retroviral therapy

HAT hypoxanthine-aminopterin-thymine

HIV human immune deficiency virus

HTLV human T cell leukemia virus

 ${\bf Ig} \ immunglobuline$

IN Integrase

ka association constant

kp dissociation constant

kB kilo base

 ${\bf kD}$ kilo Dalton

LTR long terminal repeat

MCS multiple cloning site

MHC major histocompatibility complex

MVA modified vaccinia Ankara virus

Nef negative factor

NHR N-terminal helix region

NIAID National Institute of Allergy and

Infectious Diseases

NIH National Institute of Health

NMR nuclear magentic resonance,

PBS phosphate buffered saline

PCR polymerase chain reaction

PEG poly ethylene glycol

PERV Porcine Endogenous Retrovirus

Pol Polymerase

POD Peroxydase

RNA Ribonucleinacid

RT Reverse transcriptase

SCID severe combined immune deficiency

SHIV SIV-HIV-hybride viruses

SIV Simian Immune Deficiency Virus

Tat Transactivator of transcription

TM transmembrane region

UNAIDS United Nations Department of AIDS

Vif virion infectivity factor

WHO World Health Organisation

wt Wildtyp

Amino acid sequences in single letter code:

A Alanin

C Cystein

D Asparaginacid

E Glutaminacid

F Phenylalanin

G Glycin

H Histidin

I Isoleucin

K Lysin

L Leucin

M Methionin

N Asparagin

P Prolin

Q Glutamin

R Arginin

S Serin

T Threonin

V Valin

W Tryptophan

X optional amino acid

Y Tyrosin

Bases of nucleotide sequences:

A Adenin

C Cytosin

 ${\bf G}$ Guanin

T Thymin