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Chapter 1

Introduction

The topic of this thesis is a new representation for quantum systems on weakly expo-

nential Lie groups in terms of a non-commutative algebra of functions, the associated

non-commutative harmonic analysis, and some of its applications to specific physical sys-

tems.

Recall that in ordinary quantum mechanics of a point particle on a flat space Rd,

one can either choose to represent the wave functions in the position representation, that

is, realizing the Hilbert space of the system as (square-integrable) L2-functions on the

configuration space Rd, or in the momentum representation, given again by L2-functions

on the cotangent space T ∗
x R

d ∼= Rd. These two realizations can be independently defined,

once a quantization map of the classical Poisson algebra of observables has been chosen. On

a Euclidean space the usual Fourier transform gives a map between these representations,

i.e., between the two L2(Rd) spaces, relating them self-dually.1 Explicitly, for ψ ∈ L2(Rd),

the Fourier transform is given by

ψ̃(~p) =

∫

Rd

ddx e−i~p·~x ψ(~x) ∈ L2(Rd) , (1.1)

where e−i~p·~x are unitary irreducible representations of the group of translations ∼= Rd in

Rd, and ~x, ~p ∈ Rd. Thus, in the flat case, points ~p of the cotangent space T ∗
x R

d, which is

the classical momentum space, are in one-to-one correspondence with unitary irreducible

representations of the translational symmetry group of the configuration space.

For a generic curved manifold, a momentum representation in terms of L2-functions on

its cotangent space cannot be defined in the absence of symmetries, nor a notion of Fourier

transform. On the other hand, for symmetric spaces and, in particular, for Lie groups

1Actually, there are certain technicalities related to the convergence of the Fourier transform, so that one
needs to initially consider a smaller space than L2(Rd) as the domain of the transform, and then complete
the construction in the L2-norm. In this introductory chapter we neglect these subtleties, to which we will
come back later.

1



2 CHAPTER 1. INTRODUCTION

the notion of Fourier transform can be generalized as an expansion in terms of unitary

irreducible representations of the same group, acting transitively on the configuration

manifold. For locally compact abelian groups the transform is mediated by the Pontryagin

duality, while for compact non-abelian groups the exact formulation is given by the Peter-

Weyl theorem. In both cases, the Fourier transform is defined as a unitary map between

L2(G) and L2(Ĝ), where Ĝ denotes the spectrum of a suitable set of differential operators

on the group. Such harmonic analysis has proven a very useful tool in quantum mechanics,

quantum field theory in curved spaces, and quantum gravity.

However, some of the nice features of the usual momentum representation and of the

usual Euclidean Fourier transform are inevitably lost in this formalism. When considering

a physical system, whose configuration space is a more general Lie group G, the momen-

tum space coincides with the dual of the Lie algebra g∗, which generically differs from Ĝ.

For example, for U(1), Û(1) = Z, while u(1)∗ ∼= R. That is, the dual space Ĝ is a very

different object from the cotangent space of a configuration space, the classical momentum

space, coinciding only in very special cases such as G = Rd above. Therefore, the dual

representation obtained from harmonic analysis is not in terms of functions of classical

momenta, i.e., functions on the dual of the Lie algebra. This implies that one is bound

to lose contact with the classical theory, at least at the formal level, when working with

quantum observables that are functions of the momenta. Of course, the same physical

information can be recovered in any representation of the quantum system, but in some

cases it might be beneficial to maintain a closer formal resemblance with the classical

quantities. For example, this may in turn help to have a clearer picture of the underlying

physics. In particular, several quantum gravity approaches, most notably loop quantum

gravity [66, 60, 61], spin foam models [56] and group field theories [52, 51, 9], work with an

underlying classical phase space based on the cotangent bundle over a Lie group, specifi-

cally, a direct product of either SU(2)’s or SL(2,C)’s. While the group elements encode

the degrees of freedom of the gravitational connection, the elements of the Lie algebra are

related directly to the triad field, thus to the metric itself. A representation which makes

directly use of functions of such Lie algebra elements then brings the geometric aspects of

the theory to the forefront.

Another possible benefit of having a representation with classical-like continuous mo-

mentum variables at disposal in quantum theory, even in the case of a compact configu-

ration space, is that (as we will show below) one then has a direct access to the classical

limit of a model via the stationary phase approximation of the first order phase space path

integral. To derive this approximation one needs to consider infinitesimal variations of the

phase space variables, which is possible only if the variables are continuous.

Such a non-commutative representation has first been proposed in the context of Loop

Quantum Gravity, where it also goes under the name of flux representation, and its develop-
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ment and application is now a growing area of research [25, 26, 36, 6, 7, 8, 5, 53, 57, 54, 20].

However, it had mainly been introduced as a derived product of the usual group repre-

sentation, obtained from a non-commutative Fourier transform, whose mathematical basis

had remained only partially explored, and which still had a certain flavour of arbitrariness

in its defining details (e.g., plane waves and star-product).

In the first part of this thesis, Chapter 2, after introducing the necessary mathematical

preliminaries, we show how the non-commutative representation can be defined indepen-

dently of the group representation on the sole basis of the choice of a quantization map

of the classical Poisson algebra, and we identify more clearly the conditions for its exis-

tence. Secondly, we clarify under which conditions a unitary map between such a non-

commutative representation and the usual group representation can be constructed, and

characterize the non-commutative Fourier transform together with the corresponding non-

commutative plane waves. In looking to the above, we try to work with as general a Lie

group G as possible. Thirdly, we consider specific and interesting choices of quantization

maps and Lie groups, and exhibit the corresponding star-products, non-commutative rep-

resentations and the plane waves. On the one hand, the examples presented prove the non-

emptiness of the definitions provided together with the existence of their non-commutative

representation and of their non-commutative Fourier transforms; on the other hand, the

results of specific quantization maps can find direct applications, as we discuss in the fol-

lowing, to physics models. In particular, we identify the non-commutative plane waves

and star-product for the Duflo map — a special case of the Kontsevich star-product —,

which has been suggested to be useful in several quantum gravity contexts [1, 63, 62, 49].

The construction we present extends earlier work on the non-commutative Fourier

transform by several authors. The concept arose originally in considerations of the phase

space structure of 3-dimensional Euclidean quantum gravity models. The earliest notion

(to our knowledge) of a non-commutative Fourier transform for the group SU(2) appeared

in a paper by Schroers [64] (see also [43] by Schroers & Majid), where the construction

is based on the duality structure of the quantum double DSU(2), which is introduced as

a quantization of the classical phase space ISO(3). Later, more explicit notions of what

became to be called ‘group’ Fourier transform were introduced, first for the group SO(3)

by Freidel & Livine in [25], and later extended to SU(2) and related to the quantum group

Fourier transform by Freidel & Majid [26], Joung, Mourad & Noui [36] and Dupuis, Girelli

& Livine [20], each in their own different ways. See also [59, 28]. To a certain extent,

our construction can be considered as yet another extension of the original concept in

[25] to more general classes of non-commutative structures and Lie groups. However, it

derives from the canonical structures of the classical phase space, the cotangent bundle of

G, of the quantization map applied to it, and of the corresponding quantum observable
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algebra. Thus, it also provides a better general understanding of the relation of the non-

commutative Fourier transform to these fundamental underlying structures.2

Our first physics application of the above non-commutative methods is the formulation

of a non-commutative momentum representation for quantum mechanics on a Lie group

in Section 3.1. Quantum mechanics on a Lie group has been considered, following the

seminal work of DeWitt [15] on quantum mechanics on general curved manifolds, first by

Schulman [65] for SU(2) and later by Dowker [19] for semi-simple Lie groups. This work

has been later expanded upon, e.g., by Marinov and Terentyev [45]. In the case of group

manifolds, the group structure, and thus ensuing homogeneity and representation theory,

admit a considerable simplification compared to the general case considered by DeWitt.

These formulations are considered largely satisfactory, apart from some disagreement about

quantum correction terms in the path integral formulation [15, 47, 39]. Therefore, it is of

a particular interest to apply the new non-commutative methods to a well-known physics

model, quantum mechanics on SO(3), to be able to compare the results, and to gain more

insight into the interpretation of the non-commutative variables. We show that the phase

space path integral obtained via the non-commutative approach yields the correct classical

equations of motion in the classical limit, via the stationary phase approximation, and

produces quantum corrections to the action consistent with those obtained originally by

DeWitt [15], provided that one takes into account the non-commutative deformation of

the phase space in the variational calculus. In Section 3.1, we review our results from [54],

while generalizing to other Lie groups using the results of [29] where possible.

Another physics application we consider is in the context of spin foam models, which

have in recent years arisen to prominence as a possible candidate formulation for the

quantum theory of spacetime geometry. (See [56] for a recent review.) The formalism of

spin foams derives mainly from topological quantum field theories [3] and Loop Quantum

Gravity [60, 66], but it can also be seen as a generalization of matrix models for 2d

quantum gravity via group field theory [52, 23]. For 3d quantum gravity, the relation

between spin foam models and canonical quantum gravity is understood. In particular, it

is known that the Turaev-Viro model is the covariant version of the canonical quantization

(à la Witten) of 3d Riemannian gravity with a positive cosmological constant, while the

Ponzano-Regge model is the limit of the former for a vanishing cosmological constant

[2]. However, in 4d the situation is less clear. Several different spin foam models for

4d quantum gravity have been proposed in the literature, and there is thus far no solid

consensus on the correct choice in the sense of defining a spacetime covariant formulation

2For other directions to Fourier analysis on Lie groups, let us in particular point to the extensive work
on the Kirillov orbit method [38], subsequent (Fourier) analysis based on the decomposition of Ĝ into orbits
in g∗ [68], and the Helgason Fourier transform [34] for further reference.
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of Loop Quantum Gravity. These 4d models differ specifically in their implementation of

the necessary simplicity constraints on the underlying topological BF theory, which should

impose geometricity of the two-complex corresponding to a discrete spacetime manifold

and give rise to local degrees of freedom [55]. Therefore, further study of the geometric

content of spin foam models is called for. In the 3d case, the Ponzano-Regge spin foam

model is known to reproduce Regge gravity, the discretized version of general relativity, in

the classical limit [18]. In 4d, Regge action was recovered first for a single 4-simplex [10]

and later for a fixed spin labeling, when both boundary and bulk variables are scaled to

the classical limit [14, 31, 32]. Recently, in [35], the first asymptotic analysis of the full

4d partition function was given in terms of wave front sets, which revealed some worrying

accidental curvature constraints on the geometry of several widely studied 4d models.

Classically, spin foam models, as discretizations of continuum theories, are based on a

phase space structure, which is a direct product of cotangent bundles over a Lie group that

is the structure group of the corresponding continuum principal bundle (e.g., SU(2) for 3d

Riemannian gravity). The group part of the product of cotangent bundles thus corresponds

to discrete connection variables on a triangulated spatial hypersurface, while the cotangent

spaces correspond to discrete metric variables (e.g., edge vectors in 3d, or face bivectors

in 4d). Accordingly, the geometric data of the classical discretized model is transparently

encoded in the cotangent space variables. However, when one goes on to quantize the

system to obtain the spin foam model, the cotangent space variables get quantized to

differential operators on the group. Typically (for compact Lie groups), these geometric

operators possess discrete spectra, and so the transparent continuous classical geometry

gets replaced by somewhat more obscure quantum geometry, which is described by discrete

spin labels. (Hence the name ‘spin’ foams.) This is bound to make the geometric content

of the models less obvious.

Our aim in Section 3.2 is to initiate the application of the above non-commutative

methods in analysing the geometric properties of spin foam models, in particular, in the

classical limit. Indeed, in the context of spin foams, the non-commutative but continuous

metric variables obtained through the non-commutative Fourier transform correspond to

the classical metric variables in the sense of deformation quantization. Thus, it enables

one to describe the quantum geometry of spin foam models and group field theory [6, 5]

(and Loop Quantum Gravity [4, 16]) by classical-like continuous metric variables. We will

restrict our considerations to the 3d Ponzano-Regge model to have a better control over

the formalism in this simpler case. However, already for the Ponzano-Regge model we dis-

cover non-trivial properties of the metric representation related to the non-commutative

structure, which elucidate aspects of the use of non-commutative Fourier transform in

the context of spin foam models. In particular, the choice of quantization map for the

algebra of geometric operators turns out to have unexpected consequences for the geo-
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metric interpretation of metric boundary data obtained through the transform. Again,

in general, only if the deformation structure of the phase space is taken into account in

the variational calculus, one finds the correct classical geometric constraints corresponding

to simplicial geometry. In any case, the non-commutative Fourier transform is seen to

facilitate a straightforward asymptotic analysis of the full partition function via stationary

phase approximation.

In summary, the plan of the presentation is as follows: After introducing the necessary

mathematical aparata in Section 2.1 that we will use in the rest of the thesis, we define

the algebra that quantizes the canonical symplectic structure over a Lie group in Section

2.2. Subsequently, we define two complementary faithful representations of this quantum

algebra as operators on spaces of functions. The first representation is the canonical one

in terms of functions on the group itself, while the second is a representation defined on a

non-commutative function space obtained via deformation quantization of the subalgebra

corresponding to canonically conjugate cotangent space variables. Finally, we define the

integral transform, which we call the non-commutative Fourier transform, that intertwines

these two complementary representations.

In the second part of the thesis, Chapter 3, we consider the applications mentioned

above of the just introduced formalism in the treatment of some specific models in physics.

First, in Section 3.1, using the non-commutative Fourier transform, we write down the

phase space path integral for quantum mechanics on an exponential Lie group. We show

that the non-commutative conjugate variables allow for a convenient study of the semi-

classical limit through variational methods even for compact groups, for which the spectra

of invariant operators, the quantum mechanical momentum space, is discrete. Secondly, in

Section 3.2, we apply the non-commutative methods to define a metric representation of the

Ponzano-Regge model of 3d quantum gravity. In this case, the non-commutative variables

correspond physically to discretized triad variables, which encode explicitly the discrete

spacetime geometry of the model. Thus, the non-commutative representation allows for a

more transparent view on the geometric properties of spin foam models. Last, as above for

quantum mechanics, we show that one may conveniently study the geometric properties

of the model in the semi-classical limit by utilizing the full power of path integral methods.

The research, whose results are to be exhibited hereon, has been conducted in col-

laborations with Carlos Guedes and Daniele Oriti, and derives from the publications

[29, 58, 54, 50]. However, any errors in the following presentation are solely the responsi-

bility of the current author.



Chapter 2

Non-commutative Representation

for Lie Groups

2.1 Mathematical Preliminaries

2.1.1 Structure of Lie groups and algebras

In this subsection we recall some basic facts about the structure of Lie groups and their

canonical fiber bundles. For more details, see for example [34, 33, 67].

A group is a set G equipped with a multiplication map m : G × G → G, m(g, h) ≡

gh ∈ G, which satisfies the following axioms:

1. The existence of a unit element e:

There exists an element e ∈ G such that eg = ge = g for all g ∈ G.

2. The existence of inverse elements g−1:

For all g ∈ G there exists an element g−1 ∈ G such that gg−1 = g−1g = e.

With these axioms, both the unit element and the inverse elements are unique. A group is

called abelian, if the multiplication is commutative, i.e., ∀ g, h ∈ G gh = hg and non-abelian

otherwise.

A Lie group G is a group, which is also a differentiable manifold, referred to as the group

manifold of G, or just as G. In particular, there exists an atlas {(Ui, φi)}i of coordinate

patches on G, where {Ui ⊂ G}i is an open covering of G, and the coordinate functions

φi : Ui → Ri ⊆ Rd are homeomorphisms to open subsets Ri of R
d for some constant d ∈ N

called the dimension dim(G) of G.1 The transition functions φi ◦ φ
−1
j : φj(Ui ∩ Uj) →

φi(Ui∩Uj) are required to be smooth for all i, j. In addition, we require the multiplication

map (g, h) 7→ gh to be differentiable.

1In this work we will be concerned only with finite dimensional Lie groups.

7
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The group properties give a differential manifold important extra structure. In partic-

ular, the left and right multiplications h 7→ gh and h 7→ hg, where g, h ∈ G, respectively,

induce automorphisms of the manifold. By the virtue of such automorphisms, we know

everything local about the manifold just by knowing a neighborhood of the unit element.2

Let us denote the linear vector space of smooth functions on G by C∞(G). A smooth

curve in G passing through the point g ∈ G is a smooth map γ : (−ǫ, ǫ) ⊂ R→ G such that

γ(0) = g. We may define the tangent space TgG at the point g ∈ G as the linear vector

space of directional derivative operators, or tangent vectors, X̂g : C∞(G)→ R at g ∈ G,

X̂gφ :=
d

dt
φ(γ(t))

∣∣∣∣
t=0

, (2.1)

where the curve γ is defined as above. TgG is isomorphic to Rd for d = dim(G) and for all

g ∈ G. The union of the tangent spaces T G := ∪g∈GTgG of G is called the tangent bundle

over G. Sections of the tangent bundle are vector fields X̂ : C∞(G) → C∞(G) defined via

the point-wise restriction (X̂φ)(g) ≡ X̂gφ.

For a Lie group the tangent space TeG at e ∈ G can be identified with the Lie algebra

g of the group G: In a neighborhood Ue ⊂ G of the unit element e ∈ G, we may locally

exponentiate the action of the directional derivative, so that exp(tX̂e)φ ≡ φ(eitX ) for all

φ ∈ C∞(G), t ∈ R small, for a unique group element denoted as eitX ∈ Ue. By definition,

X ∈ g is a unique Lie algebra element. The Baker-Campbell-Hausdorff (BCH) formula

B(X,Y ) := −i ln(eiXeiY )

= X + Y +
i

2
[X,Y ]−

1

12
[X, [X,Y ]] +

1

12
[Y, [X,Y ]] + . . . ∈ g , (2.2)

where [X,Y ] := XY −Y X is the Lie bracket, pulls back the group multiplication onto the

Lie algebra. It can be shown that all the higher order terms may also be expressed solely

in terms of Lie brackets. From this relation we see that, importantly, the Lie algebra is

closed under the Lie bracket, so that −i[g, g] ⊂ g. Thus, we may write [ei, ej ] = ic k
ij ek for

an orthonormal basis ei ∈ g, where c k
ij ∈ R are called the structure constants of g.3

A Lie group G is called exponential, if exp(ig) = G, i.e., if the exponential map exp :

ig→ G is surjective onto G. If the image of exp is dense in G, G is called weakly exponential.

The logarithm map ln : G → ig, the formal inverse of exp, is generally multivalued, but

in the exponential case we can construct an injective map −i lnR : G → g by restricting

its values onto the principal branch. Then, we have exp ◦ lnR = idG , the identity map

idG(g) = g on G, and lnR ◦ exp =: RG : g → g is the canonical surjective restriction onto

2More generally, this is true about symmetric spaces, which have a transitive group action on them, but
are not necessarily groups themselves.

3We will be using the physicists’ convention of multiplying the Lie algebra by the imaginary unit, which
gives Hermitean Lie algebra elements for unitary groups.
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the principal branch that identifies all elements of g that map to the same group element

through the exponential map. We may also define a corresponding embedding map for

functions4 ig : C∞(G) → C∞(g) as ig(f)(X) = f(eiX). ig(f) ∈ C∞(g) is evidently G-

periodic, meaning that ig(f)(X) = ig(f)(RG(X)) for all X ∈ g. Let us denote the space of

G-periodic smooth functions on g by

C∞
G (g) := {f ∈ C∞(g) : ig(f)(X) = ig(f)(RG(X)) ∀ X ∈ g} . (2.3)

Any G-periodic function on g can be unambiguously mapped onto G via i−1
g : C∞

G (g) →

C∞(G) given by i−1
g (f)(g) = f(−i lnR(g)), because all the branches of the logarithm map

to the same values.

A linear smooth map π : G → Aut(V ), where Aut(V ) is the algebra of automorphisms

of a vector space V , is called a representation of G, if π(gh) = π(g)π(h) for all g, h ∈ G and

π(e) = idV . A representation π is called faithful if ker π := {g ∈ G : π(g) = idV } = {e}.

We call

π̃ : g→ Aut(V ), π̃(X) = −i
d

dt
π(eitX )

∣∣∣∣
t=0

(2.4)

the induced representation of the Lie algebra g corresponding to the representation π

of G. Then, we may characterize the relation between the tangent space at unity and

the Lie algebra more concretely: In a neighborhood of the identity we have π(eiX) =

eiπ̃(X), and π̃(X) = −iX̂eπ. Typically, we would have, for example, V ∼= Cn and thus

Aut(V ) ∼= GL(n,C), the algebra of n × n invertible complex-valued matrices, but other

useful possibilities do exist, as we will see.

The right multiplication induces a corresponding translation on C∞(G) via (Rhφ)(gh) =

φ(g). Now, with the push-forward of the right translation Rh∗ : T G → T G, defined fiber-

wise via

(Rh∗X̂g)φ ≡ X̂g(Rh−1φ) , (2.5)

we may translate the tangent space TeG ∼= g at the unit element e ∈ G to a tangent space

TgG at any other element g ∈ G by the virtue of transitivity of the group multiplication.

In particular, by applying Rg∗ to any vector X̂e ∈ TeG as

X̂g ≡ Rg∗X̂e ∈ TgG (2.6)

we induce a right-invariant vector field X̂ on T G. (Similar remarks apply to the left

multiplication.) Thus, any orthonormal basis of g ∼= TeG induces an orthonormal basis T̂i ∈

4These definitions apply obviously to other (generalized) function spaces on G just as well, but we
restrict our formulation to smooth functions for the sake of concreteness.
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T G of right-invariant vector fields, which satisfy the Lie algebra commutation relations5

[T̂i, T̂j ] = c k
ij T̂k . (2.7)

Due to the existence of a global basis of vector fields, the tangent bundle is parallelizable,

and we have T G ∼= G × g.

To each tangent space TgG we may relate a cotangent space T ∗
g G, which is the vector

space of linear maps αg : TgG → R called covectors. The union of the cotangent spaces

at each g ∈ G is called the cotangent bundle T ∗G := ∪g∈GT
∗
g G of G. The pull-back of the

right multiplication R∗
h−1 : T ∗

gh → T
∗
g in the cotangent bundle is defined via

(R∗
h−1αgh)(X̂g) ≡ αgh(Rh∗X̂g) (2.8)

for all X̂g ∈ TgG, αhg ∈ T
∗
hgG. An orthonormal basis ei for T ∗

e G is defined through

ei(ej) = δij , where ej is an orthonormal basis of TeG ∼= g. Thus, in fact, as a vector space

T ∗
e G
∼= g ∼= Rd. As for the tangent bundle, we may then induce right-invariant covector

fields, i.e., 1-forms α ∈ T ∗G via the right multiplication as αg = R∗
gαe, and similarly

obtain orthonormal bases of right-invariant 1-forms ηi ∈ T ∗G by applying R∗
g to ei ∈ T ∗

e G.

Accordingly, also the cotangent bundle is parallelizable, and we have T ∗G ∼= G × g∗.

Obviously, ηi(T̂j) = δij .

Two important invariant tensors may be defined in terms of a right-invariant basis

of 1-forms: A right-invariant nowhere-vanishing Haar integration measure on G may be

defined as given by the dim(G)-form

dg := η1 ∧ η2 ∧ · · · ∧ ηdim(G) , (2.9)

where ∧ denotes the exterior product of 1-forms. The existence of dg makes G orientable.

The right-invariant metric tensor on G may be written as gR =
∑

i η
i ⊗ ηi. One can

show that right-invariant vector fields are Killing with respect to gR, i.e., X̂gR = 0 for a

right-invariant vector field X̂ .

T ∗G has the so-called canonical symplectic structure as a cotangent bundle: We may

define a projective map τ : T ∗G → G, (g, αg) 7→ g, from the cotangent bundle onto the

base manifold. The pull-back of this map τ∗ : T ∗G → T ∗(T ∗G) ∼= T ∗G × T G defines the

canonical 1-form θ fiber-wise as

θπg := τ∗πg = (πg, 0̄g) ∈ T
∗
πg
(T ∗G) (2.10)

on T ∗G, where 0̄g ∈ TgG is the zero vector. The canonical symplectic structure on T ∗G is

5Here, orthonormality is defined with respect to the right-invariant metric obtained via pull-back of the
right multiplication applied to the Euclidean metric of g.
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then given by the exterior derivative ω := −dθ.

In order to obtain a more explicit form for the symplectic structure, let ηi and T̂i

constitute right-invariant bases of T ∗G and T G, respectively. Then the set of (ηi, 0̄) =: dgi

and (0̄, T̂i) =: dXi constitutes a right-invariant basis of T ∗(T ∗G) ∼= T ∗G × T G. Through

an explicit calculation we find

ω = dgi ∧ dXi + c k
ij Xkdg

i ∧ dgj , (2.11)

where Xi are coordinate functions in T ∗G obtained by integrating dXi.
6 If we denote the

dual basis of T (T ∗G) ∼= T G × T ∗G by (T̂i, 0̄) =: ∂
∂gi
, (0̄, ηi) =: ∂

∂Xi
, the matrix-inverse7 Λ

of ω is

Λ =
∂

∂gi
⊗

∂

∂Xi
−

∂

∂Xi
⊗

∂

∂gi
− c k

ij Xk
∂

∂Xi
⊗

∂

∂Xj
. (2.12)

Now, the Poisson bracket of functions f, f ′ ∈ C∞(T ∗G) can be defined through the action

of Λ as

{f, f ′} := −(m ◦ Λ)(df ⊗ df ′) =
∂f

∂Xi

∂f ′

∂gi
−
∂f

∂gi
∂f ′

∂Xi
+ c k

ij Xk
∂f

∂Xi

∂f ′

∂Xj
, (2.13)

where m denotes the point-wise product of functions on T ∗G.

Here, in fact, this notation is somewhat misleading, since in general there does not

exist globally well-defined coordinates gi on G. Instead, ∂f
∂gi

denote here the Lie derivatives

Lif(g) ≡ T̂if(g) :=
d

dt
f(eiteig)

∣∣∣∣
t=0

(2.14)

with respect to the basis of right-invariant vector fields T̂i ∈ T G, which are not necessarily

globally integrable. Having chosen a system of Euclidean coordinatesXi on the Lie algebra,

the same Poisson bracket on T ∗G may be written more concretely as

{f, f ′} ≡
∂f

∂Xi
Lif

′ − Lif
∂f ′

∂Xi
+ c k

ij

∂f

∂Xi

∂f ′

∂Xj
Xk , (2.15)

where Li act only on the first factor and ∂
∂Xi

act only on the second factor of T ∗G ∼= G×g∗.

The classical Poisson algebra P(T ∗G) of T ∗G arising solely from the canonical symplectic

structure is constituted by elements of C∞(T ∗G) equipped with point-wise product and

6(dgi,dXi) is not a canonical basis, since ω is not of the form
∑

i dg
i ∧ dXi in the basis 1-forms. By

Darboux theorem, a canonical basis always exists locally, but in general not globally. The basis we use
respects the factorization of the cotangent bundle, and is globally defined in the second factor, which makes
it a natural choice for a basis despite it not being canonical.

7Inverse in the sense Λ ◦ ω = Id
(
T (T ∗G)

)
, ω ◦ Λ = Id

(
T ∗(T ∗G)

)
, where ω and Λ are considered

as mappings ω : T (T ∗G) → T ∗(T ∗G), X 7→ ω(·, X) and Λ : T ∗(T ∗G) → T (T ∗G), α 7→ Λ(·, α), i.e.,
Λ
(
·, ω(·,X)

)
= X ∀ X ∈ T (T ∗G) and ω

(
·,Λ(·, α)

)
= α ∀ α ∈ T ∗(T ∗G), or in the component form

ωikΛ
kj = Λjkωki = δji .
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the Poisson bracket.

2.1.2 Universal enveloping algebras

As was mentioned above, to any Lie group G is associated a Lie algebra g, which can

be identified with the linear vector space of right-invariant vector fields in T G. The Lie

algebra is closed under the Lie bracket, −i[g, g] ⊂ g, and fully characterized by the structure

constants c k
ij ∈ R, which determine the commutators [ei, ej ] = ic k

ij ek for an orthonormal

basis ei ∈ g. Note, however, that in general the Lie algebra does not fully characterize the

Lie group G, since as first order differential operators it only accounts for local properties

of the group.

From the Lie algebra g we may further construct the universal enveloping algebra U(g)

of g. (See for example [17] for further details.) Consider first the tensor algebra T (g) over

g

T (g) :=
∑

n∈N

g⊗n , (2.16)

where g⊗0 ≡ C1 and g⊗(n+1) ≡ g⊗n ⊗ g. Addition and multiplication are defined as usual

for A,B ∈ T (g)

A+B ≡

(∑

n∈N

An

)
+

(∑

n∈N

Bn

)
=
∑

n∈N

(An +Bn) , (2.17)

A⊗B ≡

(∑

n∈N

An

)
⊗

(∑

n∈N

Bn

)
=
∑

n∈N

∑

k,l∈N
k+l=n

Ak ⊗Bl , (2.18)

where An, Bn ∈ g⊗n. Now, the set of elements

{X ⊗ Y − Y ⊗X − [X,Y ] : X,Y ∈ g} , (2.19)

where [X,Y ] ∈ g is the Lie bracket of X,Y ∈ g, generates a two-sided ideal I(g) of T (g).

The universal enveloping algebra is then defined as the quotient U(g) := T (g)/I(g). This

means that the elements

X ⊗ Y − Y ⊗X − [X,Y ] ∈ T (g) (2.20)

are equated to zero, so that the tensor product factors of U(g) satisfy the Lie algebraic

commutation relations. Accodingly, U(g) is naturally identified with the space of right-

invariant differential operators on G of all orders. We call the subalgebra

Z(g) := {A ∈ U(g) : [A,B] = 0 ∀B ∈ U(g)} (2.21)
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the center of U(g).

As for the Lie algebra, also the universal enveloping algebra carries only local infor-

mation about the group. In the following we will also consider completions U(g) of the

universal enveloping algebra, which contain infinite sums of elements of arbitrary high or-

der. In practice, we will consider U(g) to be the linear space of right-invariant differential

operators, under which the space of smooth functions C∞(G) on G is closed. It is important

to realize that such a completion encodes also global information about G. If we denote

by πG the representation of U(g) as right-invariant differential operators on C∞(G), the

exponentials

eitX :=
∞∑

n=0

(it)n

n!
Xn ∈ U(g) , (2.22)

in particular, induce finite translations

etπG(X)φ(g) = φ(eitXg) (2.23)

of φ ∈ C∞(G) along the integral curves of the right-invariant vector fields πG(X). This

corresponds exactly to the G-periodicity of the embedding map ig discussed above. If

πG(X) generates a compact U(1) subgroup of G, then there exists t ∈ R, t 6= 0, such

that etπG(X) = idC∞(G), and correspondingly Rg(tX) = 0, because the integral curve is

periodic. Therefore, we will assume that the ideal I ′(g) generated by the set of elements

{eiX − 1 : X ∈ ker(Rg)} is quotiented out in any such completion U(g). Then, assuming

that G is an exponential Lie group, the set of exponential elements

E(g) := {eiX ∈ U(g) : X ∈ g} (2.24)

of the completion constitute a faithful representation of G, which is nothing but the group of

left translations Lhφ(g) = φ(hg) acting on the linear vector space of functions φ ∈ C∞(G).

Accodingly, we have E(g) ∼= G.

2.1.3 Hopf structures of exponential Lie groups

In addition to universal enveloping algebras, we will be needing some basic notions of

Hopf algebras (also known as quantum groups). In comparison to ordinary algebras, Hopf

algebras carry some extra structure, which give them interesting duality properties. (For

more details on Hopf algebras, see for example [37, 44].)

The Hopf algebra structure (H, e,m, ǫ,∆, S) is given by a linear vector space H over a

field K and five different maps:
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• Product: m : H⊗H → H such that (associativity)

m ◦ (idH ⊗m) = m ◦ (m⊗ idH) , (2.25)

where idH : H → H is the identity map A
idH7→ A.

• Unit: e : K→H such that

m ◦ (e⊗ idH) = idH = m ◦ (idH ⊗ e) . (2.26)

• Coproduct: ∆ : H → H⊗H such that (coassociativity)

(idH ⊗∆) ◦∆ = (∆⊗ idH) ◦∆ . (2.27)

• Counit: ǫ : H → K such that

(ǫ⊗ idH) ◦∆ = idH = (idH ⊗ ǫ) ◦∆ . (2.28)

• Antipode: S : H → H such that

m ◦ (S ⊗ idH) ◦∆ = e ◦ ǫ = m ◦ (idH ⊗ S) ◦∆ . (2.29)

These maps are required to satisfy also the following consistency relations:

• ∆ ◦ m = (m ⊗ m) ◦ (id ⊗ τ ⊗ id) ◦ (∆ ⊗ ∆), where τ : H ⊗ H → H ⊗ H is the

transposition map A⊗B
τ
7→ B ⊗A.

• ǫ ◦m = ǫ⊗ ǫ and correspondingly ∆ ◦ e = e⊗ e.

Let us then consider some concrete examples of Hopf structures related to Lie groups,

which will turn out to be relevant for our later developments. First of all, the universal

enveloping algebra U(g) of G can be endowed with a natural Hopf algebra structure with

K = C and the following definitions for the generators 1 and X ∈ g: We set for

• the coproduct ∆g(1) = 1⊗ 1 and ∆g(X) = X ⊗ 1+ 1⊗X,

• the counit ǫg(1) = 1 and ǫg(X) = 0,

• the antipode Sg(1) = 1 and Sg(X) = −X,

linearly extended to the whole of U(g). Notice that the Leibniz rule is encoded into the

coproduct, when U(g) is represented as the space of right-invariant differential operators.

We have a natural compatibility condition between the point-wise product

mG : C∞(G) ⊗C∞(G)→ C∞(G), mG(φ1 ⊗ φ2) = φ1φ2, (2.30)
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of smooth functions on G and the coproduct ∆g on U(g), which reads

πG(A) ◦mG = mG ◦ πG(∆g(A)) (2.31)

for all A ∈ U(g).

Importantly, this compatibility condition may be straightforwardly generalized to the

case, where H is any Hopf algebra represented as operators acting on an algebra A (i.e.,

A is an H-module) with product mA as the commutative diagram

A⊗A
mA−−−−→ A

π(∆(h))

y
yπ(h)

A⊗A
mA−−−−→ A

(2.32)

for all h ∈ H.

Another important example is given by the group algebra C[G], which is the linear

algebra over C generated by the elements of G. For C[G] we may set

• ∆G(g) = g ⊗ g,

• ǫG(g) = 1, and

• SG(g) = g−1.

It is easy to see that, in the case of an exponential group, the Hopf algebra structure for

U(g) extended to the exponential elements of a completion U(g) corresponds exactly to

the Hopf structure of the group algebra C[G]. Indeed, the Hopf algebra structure extends

to representations πG : G → Aut(V ) of G with the above definitions, since by definition

πG is linear. If we set V = C∞(G) and πG(g)φ = Lgφ, this is exactly the action of the

exponential elements of U(g) on C∞(G). One may again easily verify the compatibility

condition (2.32) with the point-wise product for C∞(G).

Now, let us consider the dual space H∗ of linear forms φ : H → K. We may define a

complementary Hopf algebra-like structure on H∗ as dual to that of H by setting for

• the product mH∗(Z ⊗W )(A) = (Z ⊗W )(∆H(A)),

• the unit uH∗(1)(A) = ǫH(A),

• the coproduct ∆H∗(Z)(A⊗B) = Z(mH(A⊗B)),

• the counit ǫH∗(Z) = Z(eH),

• the antipode SH∗(Z)(A) = Z(SH(A)),

for all Z,W ∈ H∗, A,B ∈ H. For a finite dimensional Hopf algebra H, the dual H∗ really

forms another Hopf algebra, whereas for the infinite dimensional case there are subtleties,
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which we will shortly encounter.8 Notice that if H is cocommutative (i.e., τ ◦∆H = ∆H),

then H∗ is commutative (i.e., mH∗ ◦ τ = mH∗), and vice versa.

In particular, for the smooth linear forms Z ∈ C[G]∗, Z : C[G] → C, we may write

Z(A) := (πG(A)φZ)(e), where φZ ∈ C
∞(G), and πG : C[G]→ Aut(C∞(G)) is the represen-

tation of C[G] induced by the left translations. The duality with C[G] makes C∞(G), in a

sense, almost a Hopf algebra. Namely, we obtain

• a counit ǫ′(φ) = φ(e),

• an antipode S′(φ)(g) = φ(g−1), and

• a map analogous to a coproduct ∆′ : C∞(G)→ C∞(G×G) such that ∆′(φ)(g1, g2) =

φ(g1g2).

However, ∆′ is not a proper coproduct (unlike in the case of group algebra of a finite group),

since the image fails to be in C∞(G)⊗C∞(G). As mentioned, this problem arises, because

C[G] is an infinite dimensional algebra. We note that the formal coproduct ∆′ that arises

for the algebra C∞(G) this way is compatible, in the sense of the diagram (2.32), with

the convolution product (ϕ ∗ϕ′)(g) :=
∫
G ϕ(gh

−1)ϕ′(h) on the space of smooth compactly

supported functions C∞
c (G), when we consider φ ∈ C∞(G) as operators acting on C∞

c (G)

via point-wise product.

We may also consider the dual U(g)∗ of the universal enveloping algebra and its comple-

tion U(g). Again, U(g) is infinite dimensional, so U(g)∗ will not form exactly a proper Hopf

algebra, but we may still derive some interesting and useful structure for it through the

duality, which can be considered as a generalization to the usual Hopf algebra structure. In

fact, by identifying the elements A ∈ U(g) with right-invariant differential operators on G

through the representation πG, we may write again Z(A) = (πG(A)φZ)(e) for φZ ∈ C
∞(G).

The resulting dual structure on C∞(G) agrees with that of the previous paragraph.

On the other hand, consider the linear operators ∂i : U(g)→ U(g) given by

∂i :=

∞∑

n=1

n∑

m=1

id
⊗(m−1)
g ⊗ ηi ⊗ id

⊗(n−m)
g , (2.33)

where ηi ∈ g∗ constitute a right-invariant orthonormal basis of g∗. The idea is that ∂i

correspond to partial derivative operators on U(g), since we have ∂i(e⊗n
j ) = nδije

⊗(n−1)
i

for the dual basis elements ei ∈ g. Notice that [∂i, ∂j ] = ∂i∂j − ∂j∂i = 0 for all i, j. Now,

8Specifically, in the infinite dimensional case the duals may be too big: the dual of a dual is not
the space itself. For example, the dual of the group algebra is the algebra of bounded functions on the
group, but the dual of bounded functions on the group is a much bigger space than the group algebra. It
contains integrations with arbitrary compactly supported weights on the group. Loosely speaking, these
are continuous sums of point-wise evaluations, and therefore not in the group algebra, which contains only
finite sums. The problem may in some cases be solved by restricting the dual to a smaller subalgebra.
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consider the composite operators

Ẑ =
∞∑

n=0

Zi1···in∂
i1 · · · ∂in . (2.34)

It is not difficult to verify that any element Z ∈ U(g)∗ can be expressed formally as Z(A) =

(P0 ◦ Ẑ)A, where P0 is the projection onto the zero degree part, i.e., P0(A) = A0 ∈ C for

A =
∑

nAn, An ∈ g⊗n.

We may extend the action of the operators ∂i onto the completion U(g). Remember

that for an exponential Lie group we may identify the set of exponential elements E(g) ⊂

U(g) with the group G. Then, acting on the exponential elements gives −i∂ieiX = XieiX ,

where Xi are the coordinates of X in the dual basis ηi. This again shows that ∂i may

be considered as partial derivative operators on U(g) that are dual to the basis elements

ei ∈ g. In fact, Xi ≡ ηi(−i ln(g)) are exactly the canonical coordinates (of the first kind)

on G. In order to have consistency with the equivalence relations introduced by quotienting

out the ideal I ′(g), we will eventually restrict to consider only G-periodic functions of ∂i,

i.e., pseudo-differential operators (igφ)(−i~∂), where φ ∈ C
∞(G). Such functional operators

may be considered to be defined through their action

(igφ)(−i~∂)e
iX ≡ (igφ)(X)eiX = φ(eiX)eiX (2.35)

on the exponential elements.

Now, we may define through duality some generalized Hopf structure for the derivative

operators ∂i on U(g). Namely, let us define a coproduct for the operators −i∂i through

the duality by requiring ∆∂(−i∂
i)(A ⊗ B) = −i∂i(A ⊗ B) for all A,B ∈ U(g). For the

exponential elements we obtain

∆∂(−i∂
i)(eiX ⊗ eiY ) = −i∂ieB(X,Y ) = Bi(X,Y )eiB(X,Y )

= Bi(−i∂1,−i∂2)(e
iX ⊗ eiY ) , (2.36)

where the subindices for ∂1, ∂2 denote the first and second factor of the tensor product, on

which ∂i act, and Bi(X,Y ) are the components of the Baker-Campbell-Hausdorff (BCH)

formula (2.2) in the basis ei of g. Explicitly,

Bi(−i∂1,−i∂2) =
∞∑

n=1

(−i)n
∞∑

k,l=1
k+l=n

Bi
p1···pkq1···ql

∂p1 · · · ∂pk ⊗ ∂q1 · · · ∂ql , (2.37)

where Bi
p1···pkq1···ql

∈ R are the expansion coefficients of the BCH formula. Consequently,

we define ∆∂(−i∂
i) = Bi(−i∂1,−i∂2). Notice that for G-periodic functions of ∂i this
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coproduct corresponds to the one defined for the dual of C[G] above, namely,

(igφ)(∆∂(−i∂
i))(eiX ⊗ eiY ) = φ(eiXeiY )(eiX ⊗ eiY )

= ∆′(φ)(eiX , eiY )(eiX ⊗ eiY ) , (2.38)

and so we have

P0 ◦ (igφ)(∆∂(−i∂
i))(eiX ⊗ eiY ) = ∆′(φ)(eiX , eiY ) (2.39)

for all φ ∈ C∞(G).

We can also make an explicit identification to the dual U(g)∗ above, as we have for

A =
∑

n a
i1···inei1 ⊗ · · · ⊗ ein ∈ U(g) and φ ∈ C∞(G)

(πG(A)φ)(e) =

(∑

n∈N

(−i)nai1···in
∂

∂Xi1
· · ·

∂

∂Xin

)

Xi1=···=Xin=0

eπG(iX)φ(e)

=

(∑

n∈N

(−i)nai1···in
∂

∂Xi1
· · ·

∂

∂Xin

)

Xi1=···=Xin=0

P0 ◦ (igφ)(−i∂
i)eiX

= P0 ◦ (igφ)(−i∂
i)A , (2.40)

where we used the identity

eπG(iX)φ(e) = φ(eiX) = P0 ◦ (igφ)(−i∂
i)eiX . (2.41)

Therefore, we have for all Z ∈ U(g)∗ that Z(A) ≡ (πG(A)φZ)(e) = P0 ◦ (igφZ)(−i∂
i)A,

and the two duals of U(g) defined above can be identified.

To conclude, let us emphasize the important structural observations above:

• We considered the Hopf algebras C[G] and U(g), which were shown to coincide in

the completion U(g) for exponential Lie groups.

• The algebraic duals of linear forms of each were considered, for which dual generalized

Hopf structures were derived. We noted that for C[G]∗ the dual coproduct ∆′ :

φ(g) 7→ φ(g1g2) is compatible in the sense of the commutative diagram (2.32) with

the convolution product on C∞
c (G), when C∞(G) is considered as an algebra of

operators acting by point-wise multiplication on C∞
c (G).

• On the other hand, we identified the dual spaces C∞(G) and C∞
G (−i∂i) of U(g) via

the formula

(πG(A)φ)(e) = P0 ◦ (igφ)(−i∂
i)A , (2.42)

and coproduct ∆′ with the coproduct ∆∂ of the derivative operators ∂i on U(g),
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which was derived from the compatibility with the product in U(g).

Based on the above observations, one may then expect that there, in fact, should exist

a relation between the convolution product on C∞
c (G) and the operator product in U(g)

and, in general, the respective algebras. We will see that this link is provided by the

non-commutative harmonic analysis introduced below.

2.1.4 ∗-algebras and quantization

An abstract ∗-algebra over C is defined as a linear vector space A over C equipped with

• a multiplication map mA : A⊗A → A, a⊗ b 7→ ab, and

• an involutive anti-automorphism ∗ : A → A, a 7→ a∗, such that (λa+µb)∗ = λa∗+µb∗

and (ab)∗ = b∗a∗ for all λ, µ ∈ C, a, b ∈ A,

where the overline denotes complex conjugation. a∗ is called the adjoint of a. An element

a ∈ A such that a∗ = a is called self-adjoint.

A ∗-algebra homomorphism is a C-linear map ξ : A → B between ∗-algebras such that

• ξ(ab) = ξ(a)ξ(b), and

• ξ(a∗) = ξ(a)∗

for all a, b ∈ A. A representation of a ∗-algebra A is a ∗-homomorphism π : A → Aut(V )

onto the algebra of automorphisms of a vector space V . Such an explicit realization of a

∗-algebra is called a concrete ∗-algebra.

Now, let P(S) be a Poisson algebra, which is constituted by smooth (complex-valued)

functions f ∈ C∞(S) on S equipped with the point-wise product and a Poisson bracket

{·, ·} : C∞(S)×C∞(S)→ C∞(S). We call a quantization of P(S) a map Q : C∞(S)→ A,

where A is an abstract ∗-algebra. Usually it is required that Q(1) = 1, the unit of A,

and possibly Q ◦ φ = φ ◦Q for φ : R → R, when both sides are well-defined. Optimally,

one would like to also require that Q({f, f ′}) = [Q(f),Q(f ′)], where [a, b] := ab − ba

is the operator commutator, in general for all f, f ′ ∈ P(S), but very strict quantization

obstructions have been proved that prevent the definition of such a quantization map [27].

Physically acceptable quantization maps can be, however, defined on a case-by-case

basis, which reflect the idea of the transition from classical to quantum physics by imposing

a non-zero minimal action proportional to the Planck constant ~. The strategy is to pick a

preferred set of classical observables, usually the canonical phase space variables, in terms

of which all other observables may be expressed, and define the quantum commutators

to reproduce the Poisson brackets of these variables exactly. The commutators of other

observables may then receive quantum corrections proportional to Planck constant ~, which

vanish in the classical limit ~→ 0.
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For example, if we consider quantization of a Poisson algebra on a Euclidean space,

S = T ∗Rd ∼= Rd×Rd, the Poisson brackets of the canonical coordinate variables xi, pi read

{xi, xj} = 0 = {pi, pj} , {xi, pj} = δij . (2.43)

Then, the corresponding quantum algebra Q(P(T ∗Rd)) =: A may be defined as the tensor

algebra generated by the unit 1 ∈ A and the self-adjoint generators Q(xi) =: Xi, Q(pi) =:

Pi modulo the canonical commutation relations

[Xi,Xj ] = 0 = [Pi, Pj ] , [Xi, Pj ] = i~δij1 , (2.44)

for all i, j. In other words, we take the quotient of the tensor algebra by the two-sided

ideal that is generated by the elements

Xi ⊗Xj −Xj ⊗Xi , Pi ⊗ Pj − Pj ⊗ Pi , Xi ⊗ Pj − Pj ⊗Xi − i~δ
i
j1 . (2.45)

The involution satisfies (A⊗B)∗ = B∗⊗A∗. We may further consider, at least formally, the

quantization map for the full Poisson algebra, Q : P(T ∗Rd) → A, via some completion.

The above strategy can be applied also in many other instances, in particular, for the

Poisson algebra P(T ∗G) of a Lie group, as we will see below.

It is important to notice that the definition of a quantization map, associating a non-

commutative algebra to a commutative one, is never unique. As the simplest example,

there is no unique way to map the function xipi ∈ P(T
∗Rd) into A, since Xi and Pi do

not commute in A. We could define, for example, Q(xipi) = Xi ⊗ Pi, Q(xipi) = Pi ⊗X
i,

or Q(xipi) = (Xi⊗Pi+Pi⊗X
i)/2, which differ by elements proportional to ~. Thus, one

is forced to make a choice of the map Q. Of course, there are further requirements that

one may impose on Q, often motivated by physical considerations. For example, one could

ask Q(xipi) to be a self-adjoint element of A, which would prefer the symmetric choice

Q(xipi) = (Xi⊗Pi+Pi⊗X
i)/2 over the two others, but this is still by no means a unique

choice. There are certain standard choices of Q that one can make, such as the symmetric

quantization map QS defined by symmetrization of the tensor product factors, or the Duflo

quantization map. We will explore further the different choices of quantization maps in

Section 2.4, where we consider some concrete examples.

2.1.5 Representations of Q(T ∗Rd) and Fourier transform

Let Q(T ∗Rd) now be the quantum algebra of Euclidean space defined as above.9 Now,

let us define the canonical representations of this quantum algebra. The set of operators

Xi constitute a maximal set of commuting self-adjoint operators, and similarly for Pi.

9We set ~ = 1 for the rest of this chapter.
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Accordingly, we may simultaneously diagonalize either one of the two sets of operators.

Moreover, by the spectral theorem, their eigenstates constitute a basis of a representation

space, which is the Hilbert space of square-integrable functions on the joint spectrum of Xi

or Pi, respectively. In fact, since Xi and Pi can all be shown to be unbounded operators,

strictly speaking, their eigenfunctions are generalized functions, which do not belong to

the Hilbert space. However, any element of the Hilbert space may be expressed, through

the spectral decomposition, in terms of the eigenstates. Moreover, we must restrict the

domains of Xi and Pi to a dense subset of the Hilbert space in order for their images to

lie in the Hilbert space.10

With the above technicalities in mind, we may then consider the space of smooth

compactly supported functions on the joint spectrum ~x ∈ Rd of the operators Xi, C∞
c (Rd).

On this space, the Xi operators are represented by scalar multiplication (πx(X
i)φ)(~x) =

xiφ(~x). More generally, we could consider the action of functional operators corresponding

to functions f ∈ C∞(Rd) with the point-wise multiplication as

(πx(f(X
i))φ)(~x) = f(~x)φ(~x) ∈ C∞

c (Rd) . (2.46)

One may easily show that by setting

(πx(Pi)φ)(~x) = −i
∂

∂xi
φ(~x) (2.47)

we obtain the correct commutation relations for the canonical variables. Notice that the

action of Pi operators may be exponentiated to induce finite translations (πx(e
i~y·~P )φ)(~x) =

φ(~x + ~y), and that there is no ambiguity here due to the integrability of the coordinate

vector fields ∂
∂xi in Euclidean space.

One may then finally complete C∞
c (Rd) in the L2-norm |φ|2 =

∫
Rd d

dx φ(~x)φ(~x) to

obtain the Hilbert space L2(Rd).11 A similar treatment applies in the case of the operators

Pi. In this case we consider again functions ϕ ∈ C∞
c (Rd). The representation of the

quantum algebra is given by

(πp(Pi)ϕ)(~p) = piϕ(~p) and (πp(X
i)ϕ)(~p) = i

∂

∂pi
ϕ(~p) . (2.48)

Now, we want to define an intertwiner between these two representations, namely, a

linear invertible transformation F : C∞
c (Rd)→ C∞

c (Rd) such that F ◦πx = πp ◦F . It may

be shown [29] that the unique unitary intertwiner is given by an integral transform

F(φ)(~p) =

∫

Rd

ddx e−i~p·~xφ(~x) . (2.49)

10Alternatively, we could generalize our considerations to the rigged Hilbert space formalism [12].
11Due to the Stone-von Neumann theorem, the above representation is unique up to unitary equivalence.
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Thus, the usual Euclidean Fourier transform may be understood as the intertwiner be-

tween the canonical representations of the quantum algebra Q(T ∗Rd). The above line of

reasoning will serve as a general strategy below to understand the non-commutative Fourier

transform for exponential Lie groups. Indeed, since Rd itself is an exponential Lie group,

our construction can be considered as a generalization of the usual Fourier transform. (See

Subsection 2.4.1.)

2.1.6 Deformation quantization

In the previous subsections we defined an abstract ∗-algebra as the quantization of a

Poisson algebra, and considered its canonical representations and the resulting harmonic

analysis. However, it is often difficult to work with abstract or concrete operators. More-

over, physically the connection to the classical phase space structure is somewhat indirect

and obscure. For these reasons, alternative ways to represent the algebra in terms of

ordinary functions have been considered. (See, for example, [11, 30, 40, 22].)

Specifically, we may define a non-commutative product, denoted by ⋆, for functions on

T ∗R, which reflects the quantum operator product. Namely, we require

Q(f ⋆ f ′) = Q(f)Q(f ′) (2.50)

for f, f ′ functions on T ∗R. This implies that Q : F⋆(T
∗R) → A is an algebra homomor-

phism, where we denote an algebra of functions on T ∗R equipped with the ⋆-product by

F⋆(T
∗R). For polynomials the ⋆-product is rather easy to compute explicitly from the

expression above, as soon as the quantization map is determined. Obviously, the form of

the ⋆-product depends on the non-unique choice of the quantization map, but generically

it is of the form

f ⋆ f ′ = ff ′ +

∞∑

k=1

~kBk(f, f
′) , (2.51)

where Bk are linear bidifferential operators of degree at most k.12 We see that in the

limit ~→ 0 the ⋆-product coincides with the point-wise product. From this point of view,

quantization may be considered as a deformation of the commutative pointwise product

with the deformation parameter ~.

Accordingly, we may consider the formal inverse map D : A → F⋆(T
∗R)/ kerQ, a

D
7→

π⋆(a), to the quantization map Q such that

D ◦Q = idF⋆(T ∗R) − PkerQ and Q ◦D = idA , (2.52)

where PkerQ is the projection onto the kernel of Q. D defines a representation of the

12In general, this series diverges, and convergence has to be established for suitable subalgebras.
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quantum algebra A, since we have by definition π⋆(ab) = π⋆(a) ⋆ π⋆(b) and π⋆(1) = 1.

The elements in F⋆(T
∗R)/ kerQ act by ⋆-multiplication on F⋆(T

∗R)/ kerQ itself, thus

defining automorphisms of F⋆(T
∗R)/ kerQ. We call such D the deformation quantization

corresponding to Q.

One may also consider the deformation quantization associated to the universal en-

veloping algebra U(g). In this case the quantization Q is a map from the symmetric tensor

algebra to the universal enveloping algebra, where the non-commutativity [ei, ej ] = ic k
ij ek

is controlled by the structure constants. Notice that if we identify the symmetric tensor

algebra with the space of polynomial functions on g∗, its quantization to U(g) is exactly

the quantization of the Poisson algebra P(T ∗G) associated to the corresponding Lie group

G, restricted to the second factor of T ∗G ∼= G × g∗. A uniform scaling of the structure

constants c k
ij 7→ λc k

ij corresponds to a respective scaling of the metric on the group man-

ifold. Introducing such a scaling, one may define a ⋆-product for functions on g∗ of the

form

f ⋆ f ′ = ff ′ +

∞∑

k=1

λkBk(f, f
′) , (2.53)

which reflects the Lie algebra commutation relations.

2.2 Formulation of the Non-commutative Representation

In this section we present the mathematical formulation of the non-commutative represen-

tation for exponential Lie groups, and the non-commutative Fourier transform intertwining

the non-commutative representation. We start by defining the quantum algebra associ-

ated to the canonical symplectic structure of the cotangent bundle of an exponential Lie

group. Accordingly, we define two conjugate representations for the quantum algebra in

terms of group and algebra variables. The latter representation is given in terms of a non-

commutative deformation quantization star-product. We further determine the integral

transform that intertwines the two representations, and consider its properties. Finally,

we present elementary examples of the Lie groups Rd, U(1) and SU(2), which illustrate

different aspects of the general formalism.

2.2.1 Quantum algebra of T ∗G

As we have seen in Subsection 2.1.1 Equation (2.15), the canonical symplectic structure of

the cotangent bundle T ∗G ∼= G × g∗ over a Lie group G is described by the Poisson algebra

P(T ∗G), whose Poisson bracket is explicitly given by

{f, f ′} ≡
∂f

∂Xi
Lif

′ − Lif
∂f ′

∂Xi
+ c k

ij

∂f

∂Xi

∂f ′

∂Xj
Xk . (2.54)
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Here, as before, Xi are coordinate functions on g∗, Li are Lie derivatives on G with respect

to an orthonormal basis of right-invariant vector fields, and c k
ij are the structure constants

of G. Notice that C∞(G) and C∞(g∗) are Poisson subalgebras of the algebra C∞(G × g∗),

since they are closed under point-wise multiplication and the Poisson brackets.

We then want to quantize this Poisson algebra, along the lines described in Subsection

2.1.4. Accordingly, we want to define a quantization map Q : P(T ∗G) → A from the

Poisson algebra P(T ∗G) to an abstract ∗-algebra A. However, due to the quantization

obstructions, we must first restrict to a subalgebra of P(T ∗G) by choosing a preferred set

of elements in terms of which the rest can be expressed, for which the quantization is exact

(by definition). We will therefore first consider only elements of the polynomial ring C[Xi]

of the coordinate functions Xi on g∗ instead of the full subalgebra C∞(g∗) of C∞(G × g∗).

For C∞(G) we do not have such problems, since it is an abelian subalgebra of the Poisson

algebra.

We then denote Q(f) =: f̂ ∈ A for f ∈ C∞(G) and Q(Xi) =: X̂i ∈ A. We require

f̂∗ = f̂ for all f ∈ C∞(G) and X̂∗
i = X̂i. The algebra A is considered to be a completion of

the tensor algebra generated by the elements f̂ , X̂i and quotiented by the ideal generated

by the relations

f̂ ⊗ f̂ ′ = f̂ f ′ ,

X̂i ⊗ f̂ − f̂ ⊗ X̂i = iL̂if ,

X̂i ⊗ X̂j − X̂j ⊗ X̂i = ic k
ij X̂k (2.55)

for all f, f ′ ∈ C∞(G), which follow from the Poisson structure. The quantum algebra

A again contains the subalgebras Q(C∞(G)) and Q(C[Xi]) as they are closed under the

algebra product and the commutation relations.

In particular, we have Q(C[Xi]) ∼= U(g), the universal enveloping algebra of g, as

they have the same generators and commutation relations. Accordingly, we may identify

Q(C[Xi]) with the algebra of right-invariant differential operators on G. Thus, the ex-

tension of Q onto C∞(g∗) amounts to a completion Q(C∞(g∗)) ∼= U(g) of the universal

enveloping algebra. As discussed above, in such a completion we have eiX ∼ 1 for X such

that Rg(X) = 0. Let E ∈ C∞(g) be such that Q(E) = eiX̂ and Rg(X) = 0. Then, for any

such function E, E − 1 ∈ C∞(g) must be in the kernel of the quantization map Q.

Notice that, in general, we do not have a globally well-defined set of coordinates on G,

and accordingly there are no natural canonically conjugate variables as in the Euclidean

case. However, for an exponential Lie group, we may always consider f ∈ C∞(G) as G-

periodic functions of the canonical coordinates ki = ηi(−i ln(g)) on G. Writing f̂ ≡ f(k̂i),

we may then formally write for the commutators of the coordinate operators Q(ki) =: k̂i,
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such that (k̂i)∗ = k̂i,

[k̂i, k̂j ] = 0 , [X̂i, k̂
j ] = iL̂ikj , [X̂i, X̂j ] = ic k

ij X̂k . (2.56)

Moreover, we have

L̂ikj =
∞∑

n=1

Bj
iq1···qn−1

k̂q1 · · · k̂qn−1 , (2.57)

where Bj
iq1···qn−1

∈ R are the coefficients of the BCH formula (2.2). We saw before that the

coordinates ki correspond also to the ‘partial derivative’ operators −i∂i on the universal

enveloping algebra U(g), which suggests to consider ki and Xi as canonically conjugate

variables, even though their commutation relations are not exactly canonical. We must of

course restrict to consider only G-periodic functions of ki in the end.

2.2.2 Group representation

Let us then consider representations of the quantum algebra A defined above. We may

define a canonical representation πG in terms of automorphisms of smooth functions on

G as πG(f̂)φ = fφ and πG(X̂i)φ = iLiφ for φ ∈ C∞
c (G). It is easy to check that the

commutation relations are correctly reproduced. Again, we may consider formally the

coordinate operators k̂i acting as πG(k̂
i)φ = kiφ, but eventually restrict to consider G-

periodic functions of k̂i. Furthermore, as in the Euclidean case, we may restrict to consider

compactly supported functions in C∞
c (G), and then complete C∞

c (G) in the L2-norm in

order to obtain a representation of A acting on a Hilbert space.

We note the important role the coproduct of U(g), following from the Leibniz rule

for Lie derivatives, plays in the reproduction of the commutation relations by πG . In

particular, we have

πG(X̂i)πG(f̂)φ = πG(X̂i)(fφ) = mG ◦∆g(πG(X̂i))(f ⊗ φ)

= (πG(X̂i)f)φ+ f(πG(X̂i)φ) , (2.58)

since ∆g(πG(X̂i)) = πG(X̂i)⊗ 1+ 1⊗ πG(X̂i). On the other hand

πG(f̂)πG(X̂i)φ = f(πG(X̂i)φ) , (2.59)

so that we get for all φ ∈ C∞
c (G)

[πG(X̂i), πG(f̂)]φ = (πG(X̂i)f)φ = (iLif)φ = πG(iL̂if)φ , (2.60)

as required.
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2.2.3 Algebra representation

Another, in the sense of the factorization of the cotangent bundle, canonically conjugate

representation of the quantum algebra A can be defined in terms of the universal enveloping

algebra. We set

πg(X̂i)A = ei ⊗A and πg(f̂)A = (igf)(−i~∂)A (2.61)

for all A ∈ U(g), where ∂i are as in Equation (2.33). These definitions may be further

extended to the completion U(g) ∼= Q(C∞(g∗)).

The correct reproduction of the commutators among either f̂ or X̂i by themselves are

trivial to show. The commutator [X̂i, f̂ ] = iL̂if is slightly less trivial. We note that using

the coproduct ∆∂ we get

−i∂i(ej ⊗A) = ∆∂(−i∂
i)(ej ⊗A) = Bi(−i~∂1,−i~∂2)(ej ⊗A)

=

(
∞∑

n=1

(−i)n
∑

k+l=n

Bi
p1···pkq1···ql∂

p1 · · · ∂pk ⊗ ∂q1 · · · ∂ql

)
(ej ⊗A)

= ej ⊗ (−i∂iA)− i
∞∑

l=1

(−i)lBi
jq1···ql∂

q1 · · · ∂qlA , (2.62)

where we used Bi
j = δij . We have πg(k̂

i) = −i∂i, and accordingly

πg([X̂i, k̂
j ])A = ei ⊗ (−i∂jA)− (−i∂j)(ei ⊗A)

= i
∞∑

l=1

(−i)lBj
iq1···ql

∂q1 · · · ∂qlA = πg(iL̂ikj)A (2.63)

for all A ∈ U(g), which proves the correct reproduction of the commutation relations for

the coordinate operators. This extends formally to the full algebra via

∆′((igf)(−i~∂))(A⊗B) = (igf)(∆∂(−i~∂))(A ⊗B) , (2.64)

for all A,B ∈ U(g), which is equivalent for G-periodic functions to the coproduct ∆′ on

C∞(G) for the exponential elements in U(g).

2.2.4 Non-commutative representation

Now, in order to have a more concrete connection to the original cotangent bundle vari-

ables, one may apply the formalism of deformation quantization to the above algebraic

representation, as discussed in Subsection 2.1.6. In particular, we want to define a map

D : Q(C∞(g∗)) ∼= U(g) → F⋆(g
∗) such that D(AB) = D(A) ⋆ D(B) for all A,B ∈ U(g)

and D(1) = 1, corresponding to a quantization of the cotangent space Q : C∞(g∗) →
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Q(C∞(g∗)). As was mentioned above, the choice of a quantization map Q, and thus that

of D, is not unique, and for each choice of Q there is a corresponding choice of D.

Let us first, as the simplest concrete example, consider the symmetric quantization

map. As a formal power series, we may write it as

QS(f) =

∞∑

n=0

ei1 ⊗ · · · ⊗ ein

(
∂

∂Xi1

)
· · ·

(
∂

∂Xin

)
f( ~X)

∣∣∣∣∣
~X=0

∈ U(g) (2.65)

for all f ∈ C∞(g∗). In particular, QS(e
i~k· ~X) = eik for k := kiei ∈ g, so that the plane

waves ei
~k· ~X are mapped to the exponential elements. Accordingly, QS(e

i~k· ~X) = 1 in U(g)

for Rg(k) = 0, where RG is again the canonical restriction onto the principal branch of the

logarithm map. Thus, we have for the linear span

span {ei
~k· ~X − 1 ∈ C∞(g∗) : RG(k) = 0} ⊂ kerQS . (2.66)

The corresponding deformation quantization DS is then given by

DS(A)( ~X) = P0

(
∞∑

n=0

Xi1 · · ·Xin∂
i1 · · · ∂inA

)
(2.67)

for all A ∈ U(g). We have DS(e
ik)( ~X) = eiRG(~k)· ~X , and thus

eiRG(~k)· ~X ⋆ eiRG(~k
′)· ~X = DS(e

ik)( ~X) ⋆DS(e
ik′)( ~X) = DS(e

ikeik
′
)( ~X)

= DS(e
iB(k,k′))( ~X) = eiRG( ~B(k,k′))· ~X . (2.68)

More generally, one may write

Q(f) =

∞∑

n=0

ei1 ⊗ · · · ⊗ ein Q
i1···in(~∂X)f( ~X)

∣∣∣∣∣
~X=0

∈ U(g) , (2.69)

where ~∂X = (∂/∂Xi)i, and Q
i1···in(~∂X) are (pseudo-)differential operators determining the

quantization map. In order for this expression to make sense, one must of course impose

appropriate convergence properties. The corresponding deformation quantization may be

written as

D(A)( ~X) = P0

(
∞∑

n=0

Xi1 · · ·XinD
i1···in(~∂)A

)
. (2.70)

In the following, we will consider in particular quantization maps of the form

Qi1···in(~∂X) = η(|~∂X |)
−1

n∏

k=1

ξ(|~∂X |)
∂

∂Xik

, (2.71)
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and the corresponding deformation quantization maps of the form

Di1···in(~∂) = η(|~∂|)
n∏

k=1

ζ(|~∂|)∂ik , (2.72)

such that ξ(ζ(|~k|)|~k|)ζ(|~k|) = 1 for all ~k ∈ Rd, where η(0) = 1, and ζ(|~k|)~k define coordi-

nates on G with ζ(0) = d
d|k|ζ(0) = 1. This gives

D(eik) = ei
~k· ~X
⋆ = η(|~k|)eiζ(|

~k|)~k· ~X , (2.73)

where we introduced the star-exponential notation

e
f(X)
⋆ :=

∞∑

n=0

1

n!
(f ⋆ · · · ⋆ f︸ ︷︷ ︸

n times

)(X) . (2.74)

Then, one has

η(|~k|)eiζ(|
~k|)~k· ~X ⋆ η(|~k′|)eiζ(|

~k′|)~k′· ~X

= D(eik)( ~X) ⋆D(eik
′
)( ~X) = D(eikeik

′
)( ~X)

= D(eiB(k,k′))( ~X) = η(|RG
~B(k, k′)|)eiζ(|RG

~B(k,k′)|)RG
~B(k,k′)· ~X . (2.75)

In addition to the symmetric quantization map, we will consider two other special cases of

this more general form, namely, the Duflo and the Freidel-Majid-Livine quantization maps

specified below.

As we have discussed above, the deformation quantization mapD gives a representation

π⋆ : U(g)→ F⋆(g
∗) of the completion of the universal enveloping algebra, where the latter

can be taken to act by ⋆-multiplication onto F⋆(g
∗). Importantly, this representation can

be extended to the whole of A for some cases of quantization maps. For example, for the

symmetric quantization map we have

DS(ei ⊗A) = Xi ⋆DS(A) and DS(∂
iA) = −i

∂

∂Xi
DS(A) . (2.76)

More generally, if D is of the form (2.72), we have D(∂iA) = −iξ(|~∂X |)
∂

∂Xi
D(A). Ac-

cordingly, D intertwines the algebraic representation with another given in terms of a

deformation quantization ⋆-product, and thus setting

π⋆(X̂i)ϕ = Xi ⋆ ϕ and π⋆(k̂
i)ϕ = −iξ(|~∂X |)

∂

∂Xi
ϕ (2.77)

for all ϕ ∈ F⋆(g
∗) defines a representation of A on F⋆(g

∗). We call this the non-commutative
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representation of A. Alternatively, one may write ζ(|k̂|)k̂i =: ζ̂ i and

π⋆(ζ̂
i) := π⋆(ζ(|k̂|)k̂

i)ϕ = −i
∂

∂Xi
ϕ (2.78)

for the second operator, when ζ i := ζ(|~k|)ki determine a set of coordinates on G.

2.2.5 Non-commutative Fourier transform

We have defined above different representations of the quantum algebra A, the group

representation πG , the algebra representation πg and the non-commutative representation

π⋆. Now, we want to find the intertwiners between these representations. Let us first

consider a map F : C∞
c (G)→ U(g) of the form

F(φ) :=

∫

G
dg eik(g)φ(g) ∈ U(g) (2.79)

for all φ ∈ C∞
c (G), where we identify g ∈ G with the exponential element eik(g) ∈ U(g)

for k(g) = lnR(g) ∈ g, and dg is the right-invariant Haar measure. F is an intertwiner

between the representations πG and πg, since we have for the generators of A

F(πG(f̂)φ) =

∫

G
dg eik(g)f(g)φ(g) =

∫

G
dg (igf)(−i~∂)e

ik(g)φ(g) = πg(f̂)F(φ) , (2.80)

and

F(πG(X̂i)φ) =

∫

G
dg eik(g)(iLiφ)(g) =

∫

G
dg (−iLie

ik(g))φ(g)

=

∫

G
dg (ei ⊗ e

ik(g))φ(g) = πg(X̂i)F(φ) , (2.81)

where we used integration by parts for the second equality. The possible boundary terms

resulting from the integration are in kerQ and therefore vanish in U(g). Moreover, we find

by an explicit calculation

F(φ)F(φ′) = F(φ ∗ φ′) , (2.82)

which provides the link between the operator (tensor) product in U(g) and convolution

product (φ ∗ φ′)(g) :=
∫
G dg φ(gh

−1)φ′(h) in C∞
c (G) alluded to before in relation to the

Hopf structures.

Now, consider a formal linear trace operation Tr on U(g) defined through the relation

Tr(eik(g)) = δ(g), where δ is the Dirac distribution with respect to the (right-invariant)

Haar measure on G peaked at the unit element. An inverse transform may be then defined



30 CHAPTER 2. NON-COMMUTATIVE REPRESENTATION FOR LIE GROUPS

as

F−1(A)(g) = Tr(e−ik(g) ⊗A) . (2.83)

We have

F−1(F(φ))(g) =

∫

G
dh Tr(e−ik(g) ⊗ eik(h))φ(h) = φ(g) , (2.84)

where we used Tr(e−ik(g) ⊗ eik(h)) = Tr(eik(g
−1h)) = δ(g−1h). Thus, we have F−1 ◦ F =

idC∞
c (G) and, correspondingly, F ◦ F

−1 gives the projection onto the image of F .

As before, in order to make the expressions more concrete, we may translate the above

algebraic construct onto a non-commutative space using a deformation quantization map,

which gives

F⋆(φ)(X) := D(F(φ))(X) =

∫

G
dg D(eik(g))(X)φ(g) =

∫

G
dg e

ik(g)·X
⋆ φ(g) . (2.85)

By construction, D being an algebra homomorphism, F⋆ intertwines the representations

πG and π⋆ of A.

Let us list some important properties of the kernel Eg(X) := D(eik(g)) = e
ik(g)·X
⋆ of the

transformation F⋆, the non-commutative plane wave [29]:

Ee(X) = 1 , (2.86)

Q(Eg(X)) = ei
~k(g)·X̂ ∈ Ag∗ , (2.87)

Eg−1(X) = Eg(X) = Eg(−X) , (2.88)

Egh(X) = Eg(X) ⋆ Eh(X) , (2.89)

Eg(Ad
∗
hX) = Ehgh−1(X) , (2.90)

where (Ad∗hX)(Y ) ≡ X(AdhY ) for all X ∈ g∗, Y ∈ g. The non-commutative plane wave

also acts as the generating function of ⋆-monomials, as we have

Xi1 ⋆ · · · ⋆ Xin = (−i)nLi1 · · · LinEg(X)|g=e . (2.91)

Now, assume that the deformation quantization map is such that we have

∫

g∗

ddX

(2π)d
e
i~k(g)· ~X
⋆ = δd(~k(g)) ≡ δ(g) , (2.92)

which is the Dirac delta distribution with respect to the Haar measure peaked at the unit

element. In other words, we require the intertwining property to extend to the formal trace
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operation Tr, so that D(Tr(A)) =
∫
g∗

ddX
(2π)d

D(A)(X) for all A ∈ U(g), where ddX is the

Lebesgue measure on g∗.13 Indeed, this is true for example for the symmetric deformation

quantization map, for which D(eik)(X) = ei
~k· ~X . This key property allows us to define an

inverse transform F−1
⋆ as

F−1
⋆ (ϕ)(g) =

∫

g∗

ddX

(2π)d
e
−i~k(g)· ~X
⋆ ⋆ ϕ(X) , (2.93)

since then we have

F−1
⋆ (F⋆(φ))(g) =

∫

g∗

ddX

(2π)d
e
−i~k(g)· ~X
⋆ ⋆

∫

G
dh e

i~k(h)· ~X
⋆ φ(h)

=

∫

G
dh

(∫

g∗

ddX

(2π)d
e
−i~k(g)· ~X
⋆ ⋆ e

i~k(h)· ~X
⋆

)
φ(h)

=

∫

G
dh

(∫

g∗

ddX

(2π)d
e
−i~k(gh)· ~X
⋆

)
φ(h)

=

∫

G
dh δ(gh)φ(h) = φ(g) , (2.94)

and thus F−1
⋆ ◦ F⋆ = idC∞

c (G). Moreover, we have

F⋆(F
−1
⋆ (ϕ))(X) =

∫

G
dg e

i~k(g)· ~X
⋆

∫

g∗

ddY

(2π)d
e
−i~k(g)·~Y
⋆ ⋆ ϕ(Y )

=

∫

g∗

ddY

(2π)d

(∫

G
dg e

i~k(g)· ~X
⋆ e

−i~k(g)·~Y
⋆

)
⋆ ϕ(Y ) . (2.95)

If ϕ = F⋆(φ) for some φ ∈ C∞
c (G), then we must have F⋆(F

−1
⋆ (ϕ)) = ϕ due to F−1

⋆ ◦F⋆ =

idC∞
c (G). Accordingly, F⋆ ◦ F

−1
⋆ =: P⋆ is a projection, P⋆ ◦ P⋆ = P⋆, and

δ⋆(X,Y ) :=

∫

G
dg e

i~k(g)· ~X
⋆ e

−i~k(g)·~Y
⋆ (2.96)

is the kernel of the projection onto F⋆(C
∞
c (G)) =: F c

⋆ (g
∗), which acts as the delta distri-

bution with respect to the ⋆-product on F c
⋆ (g

∗).

Consequently, we have defined the non-commutative Fourier transform

ψ̃ := F⋆(ψ)(X) =

∫

G
dg e

ik(g)·X
⋆ ψ(g) , (2.97)

13Here it might be possible to generalize the construction to allow for a more general measure, so that

D(Tr(A)) =
∫
g∗

ddX

(2π)d
ω(X)D(A)(X) for some weight function ω on g∗. Indeed, such a relation occurs for

the spinorial construction of [20]. However, we will restrict to consider the translationally invariant case in
what follows.
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and its inverse

ψ = F−1
⋆ (ψ̃)(g) =

∫

g∗

ddX

(2π)d
e
−i~k(g)· ~X
⋆ ⋆ ψ̃(X) , (2.98)

that intertwine the two conjugate representations, the group and the non-commutative

representation, of the quantum algebra A in terms of automorphisms of C∞
c (G) and F c

⋆ (g
∗).

2.3 Properties of the Non-commutative Representation

Let us now consider some properties of the transform F⋆ and the non-commutative function

space F⋆(g
∗):

• Group multiplication from the right is dually represented on F⋆(ψ)(X) by ⋆-multi-

plication by Eg−1(X) from the right:

F⋆(Rgψ)(X) =

∫

G
dhEh(X)ψ(hg)

=

∫

G
dhEhg−1(X)ψ(h) = F⋆(ψ)(X) ⋆ Eg−1(X) (2.99)

using the right-invariance of the Haar measure.

• If G is unimodular, i.e., the left- and right-invariant Haar measures coincide, we have

Eg(X) ⋆ f(X) = f(Ad∗gX) ⋆ Eg(X) , (2.100)

where (Ad∗gX)(Y ) ≡ X(Adg(Y )) for all Y ∈ g.

• Consider the L2
⋆(g

∗) inner product of two functions obtained through the transform

〈ψ̃, ψ̃′〉g∗ :=

∫

g∗

ddX

(2π)d
ψ̃(X) ⋆ ψ̃′(X)

=

∫

g∗

ddX

(2π)d

[∫

G
dg Eg−1(X)ψ(g)

]
⋆

[∫

G
dhEh(X)ψ′(h)

]

=

∫

G
dg

∫

G
dhψ(g)ψ′(h)

[∫

g∗

ddX

(2π)d
Eg−1h(X)

]
. (2.101)

Using (2.92), we find

〈ψ̃, ψ̃′〉g∗ ≡

∫

g∗

ddX

(2π)d
ψ̃(X) ⋆ ψ̃′(X) =

∫

G
dg ψ(g)ψ′(g) ≡ 〈ψ,ψ′〉G , (2.102)

so F⋆ is, in fact, an isometry from L2(G) to L2
⋆(g

∗). Therefore, we may identify

L2
⋆(g

∗) = F⋆(L
2(G)).
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• It is easy to check that the kernel of P⋆ = F⋆◦F
−1
⋆ , ker(P⋆) = {ψ̃ ∈ L

2
⋆(g

∗) : P⋆(ψ̃) =

0}, contains all functions of the form (eik(e)·X − eik
′(e)·X) ⋆ ψ̃(X), ψ̃ ∈ L2

⋆(g
∗), where

k(e), k′(e) ∈ g are any two values of −i ln(e), and therefore P⋆ implements the

aforementioned kerQ-equivalence classes in L2
⋆(g

∗).

• If D is of the form (2.72), We have two equivalent expressions for the ⋆-product

under integration in terms of a pseudo-differential operator σ, namely,

∫

g∗
ddX ψ̃(X) ⋆ ψ̃′(X) =

∫

g∗
ddX

(
σ(i~∂) ψ̃(X)

)
ψ̃′(X)

=

∫

g∗
ddX ψ̃(X)

(
σ(−i~∂) ψ̃′(X)

)
∀ ψ̃, ψ̃′ ∈ L2

⋆(g
∗) ,

(2.103)

where σ(ζ) :=
(
ω(ζ)|η(ζ)|2

)−1
for ζ ∈ g, dg ≡ ω(ζ(g)) dζ(g) for the right-invariant

Haar measure, and η(ζ(g)) ≡ E(g, 0). For the proof of this identity we refer to [29],

Appendix B.

• Due to (2.103), we may write the inverse transform F−1
⋆ : L2

⋆(g
∗) → L2(G) from

(2.98) explicitly without a star-product as

F−1
⋆ (ψ̃)(g) = σ(g)

∫

g∗

ddX

(2π)d
Eg(X) ψ̃(X) , (2.104)

where σ(g) :=
(
ω(ζ(g))|η(g)|2

)−1
.

• Finally, due to Eg ⋆Eh = Egh the ⋆-product is dual to the convolution product under

the non-commutative Fourier transform, that is,

ψ̃ ⋆ ψ̃′ = ψ̃ ∗ ψ′ , (2.105)

where the convolution product is defined on the group as usual

ψ ∗ ψ′(g) =

∫

G
dhψ(gh−1)ψ′(h) . (2.106)

2.4 Basic Examples

In this section, we consider some concrete examples of the non-commutative representa-

tion and the Fourier transform for specific elementary Lie groups, namely, Rd, U(1) and

SU(2). For each example we will determine the explicit form of the lowest order star-

polynomials, the non-commutative plane wave, the corresponding Fourier transform and

its inverse for some choices of deformation quantization map. On the one hand, the exam-

ples presented prove the non-emptiness of the definitions, together with the existence of
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their non-commutative representation and of their non-commutative Fourier transforms.

On the other hand, the results on specific quantization maps find direct applications to

physics models in Chapter 3.

2.4.1 Rd

The Euclidean vector space Rd equipped with vector addition constitutes a Lie group, and

provides the simplest possible example of our general construction above. In Section 2.1, we

have already reviewed how the usual Fourier transform can be undestood as an intertwiner

between the group/position and the algebra/momentum representations. Since the group

Rd is abelian and has no compact subgroups, the deformation quantization ⋆-product for

U(Rd) coincides with the point-wise product, we have D(eik) = ei
~k· ~X and ei

~k· ~X ⋆ ei
~k′· ~X =

ei(
~k+~k′)· ~X . Accordingly, we obtain the familiar formalism of Fourier transform on Euclidean

space. Therefore, the non-commutative Fourier transform formulated above presents a

generalization to the Euclidean Fourier transform.

2.4.2 U(1)

U(1) is given by the set of complex numbers z ∈ C with modulus one |z| = 1. Accordingly,

we can set z = eiθ, θ ∈ R. The canonical coordinates k(g) = −i ln(g) ≡ θ are restricted to

the principal branch of the logarithm as θ ∈]− π, π]. The dual of the Lie algebra u(1)∗ is

simply given by the real numbers X ∈ R.

In the abelian case, and in particular for u(1), which has just one generator, no ordering

ambiguity arises, so that there is no difference between quantization maps in this respect.

Therefore, the natural choice of a star-product coincides with the pointwise product. How-

ever, first of all the group is compact, and this topological feature already makes things

a little more interesting. Second, we have seen how the quantization map also affects the

choice of coordinates appearing in the plane waves. It is then worth to consider this simple

case in some detail.

For the symmetrization map QS (and also for the Duflo map QD which we will consider

below, as they coincide for abelian groups) we indeed have QS(X
n) = X̂n and, therefore,

QS(e
iθX) = eiθX̂ , (2.107)

that is, as expected, the plane waves are given by eiθX , for θ ∈] − π, π], X ∈ R, and the

corresponding ⋆-product on monomials is simply the pointwise product

X ⋆ · · · ⋆ X︸ ︷︷ ︸
n times

= Xn . (2.108)

Nevertheless, the ⋆-product eiθX ⋆ eiθ
′X = eiR(θ+θ′)X of plane waves, where R is the re-
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striction map onto the principal branch ] − π, π] of the logarithm, is still non-trivial due

to the compactness of the group.

Furthermore, from (2.103) we have that

∫
dX f(X) ⋆ f ′(X) =

∫
dX f(X)f ′(X) , (2.109)

since in this case dg = dθ ⇒ ω(θ) = 1 and Eg(X) = eiθX ⇒ η(θ) = 1, so σ = 1. The

non-commutative Fourier transform is thus given by

ψ̃(X) =

∫ π

−π

dθ

2π
eiθX ψ(eiθ) , (2.110)

while its inverse is

ψ(eiθ) =

∫

R

dX e−iθX ψ̃(X) . (2.111)

Let us now point out the consequence of the existence of normal subgroups correspond-

ing to the identity element in this simple case. The periodicity of the group is taken care

of by the restriction map R, which translates it into the equivalence class of functions on

the Lie algebra ψ̃(X) = ei2πnX ⋆ ψ̃(X), n ∈ Z, which are all mapped to the same function

in F⋆(u(1)
∗) by the projection P⋆ = F⋆ ◦ F

−1
⋆ . This is the counterpart, in our setting, of

the the restriction X ∈ Z for the usual Fourier transform on the circle, where the inverse

transform is given by a sum over the integers.14

We have thus seen that the symmetric (and Duflo) map leads to plane waves equivalent

to the usual ones. Still, we have also seen within the general formalism that the choice of

quantization maps affects non-trivially also the coordinates appearing in the plane waves.

Vice versa, by choosing non-linear coordinates on the group, one can end up with non-

trivial star-products, despite the abelianess of the group. Let us say we have D such

that

D(eiθX̂) = e2i sin
θ
2
X . (2.112)

ζ(θ) = 2 sin θ
2 can be seen as new coordinates on the group valid for θ ∈]−π, π]. According

14In fact, it was proved in [16] that this U(1) non-commutative Fourier transform defined for the full
R can, in fact, be determined by its values on the integers; thus, even though the U(1) non-commutative
Fourier transform is defined distinctively from the usual Fourier transform on the circle, they were shown
to coincide due to this form of sampling.
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to (2.91), we get for the ⋆-product on monomials already a diverting result at third order

X ⋆ X = X2 , (2.113)

X ⋆X ⋆ X = X3 +
1

4
X , (2.114)

...

and, therefore, as remarked before, we see that the quantization map, choice of coordinates,

and a star-product are related in a highly non-trivial way.

We may give an expression for the corresponding ⋆-product under integral, from (2.103),

as a (non-trivial) pseudo-diffential operator

∫
dX f(X) ⋆ f ′(X) =

∫
dX f(X)

√
1 + 1

4

(
d
dX

)2
f ′(X) , (2.115)

(where d
dX may act either left or right) as we now have, in contrast to the previous

parametrization, a non-trivial relation between the Haar measure dθ and the Lebesgue

measure dζ, namely, dθ = (
√

1− ζ2/4)−1dζ, so σ(ζ) =
√

1− ζ2/4.

The non-commutative Fourier transform is thus given by

ψ̃(X) =

∫ π

−π
dθ e2i sin

θ
2
X ψ(eiθ) , (2.116)

while its inverse is, from (2.104),

ψ(eiθ) = cos(θ2)

∫

R

dX

2π
e−2i sin θ

2
X ψ̃(X) . (2.117)

2.4.3 SU(2)

We now consider a simple but very important non-abelian example, SU(2), which is par-

ticularly relevant also for quantum gravity applications.

The Lie algebra su(2) has a basis given (in the defining representation) by a set of

two-by-two traceless hermitian matrices {σj}j=1,2,3, which read

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
, (2.118)

and satisfy σiσj = δij + iǫijkσk, or rather, the relations [σi, σj ] = 2iǫijkσk. Thus, a

generic element k ∈ su(2) can be written as k = kjσj, k
j ∈ R, while for any group

element g ∈ SU(2) we may write g = eik
jσj – SU(2) is an exponential Lie group. Another

convenient parametrization of SU(2) can be written as

g = p01+ ipiσi , (p0)2 + pipi = 1 , pi ∈ R . (2.119)
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Here, the pi’s are constrained by the R3 vector norm |~p|2 ≤ 1. Thus, this last parametriza-

tion naturally identifies SU(2) with the 3-sphere S3. p0 ≥ 0 and p0 ≤ 0 correspond to the

upper and lower hemispheres of S3, respectively, in turn corresponding to two copies of

SO(3). Parametrization of the group elements in terms of ~p ∈ R3 is one-to-one only on

either of the two hemispheres, whereas the canonical coordinates ~k parametrize the whole

group except for −1 ∈ SU(2).

The relation between these two parametrizations is mediated by the following change

of coordinates

~p =
sin |~k|

|~k|
~k , p0 = cos |~k| , ki ∈ R , (2.120)

where |~k| ∈ [0, π2 [, or |
~k| ∈ [π2 , π[ according to p0 ≥ 0, p0 ≤ 0 respectively, and g ∈ SU(2)

assumes the form

g = cos |~k|1+ i
sin |~k|

|~k|
~k · ~σ = ei

~k·~σ . (2.121)

We call the coordinates introduced the ~k-parametrization and the ~p-parametrization,

respectively. The Haar measure on the group takes then the form

dg = d3~k

(
sin |~k|

|~k|

)2

, ~k ∈ R3 , |~k| ∈ [0, π[ , (2.122)

dg =
d3~p√
1− |~p|2

, ~p ∈ R3 , |~p|2 < 1 , (2.123)

where the latter is again applicable only for one of the two hemispheres.

We now consider three choices of quantization maps, and derive the corresponding

⋆-product, non-commutative representation and plane waves.

Symmetrization map

Given a set of su(2) coordinates Xi1 , . . . ,Xin , the symmetrization map QS takes the sym-

metric ordering of the corresponding coordinate operators X̂i1 , . . . , X̂in ,

QS(Xi1 · · ·Xin) =
1

n!

∑

σ∈Sn

X̂iσ1
· · · X̂iσn , (2.124)

where Sn is the symmetric group of order n.

Thus, for instance, for an exponential of the form ei
~k· ~X , we have

QS(e
i~k· ~X) = ei

~k·X̂ , (2.125)
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which implies that the function ei
~k· ~X gives exactly the ⋆-exponential (plane wave) for

symmetric quantization with the ~k-parametrization.

The composition of coordinates can be inferred from

ei
~k1· ~X ⋆S e

i~k2· ~X = DS(QS(e
i~k1· ~X)QS(e

i~k2· ~X)) = eiRB(~k1,~k2)· ~X , (2.126)

where RB(~k1, ~k2) is the value of the BCH formula restricted onto the principal branch of

the logarithm. This star-product is referred to as the Gutt (or ‘standard’) ⋆-product [30].

Under integration, using (2.103) and (2.122), the ⋆S -product acquires the form

∫

g∗
d3X f( ~X) ⋆S f

′( ~X) =

∫

g∗
d3X f( ~X)

(
|~∂X |

sin |~∂X |

)2

f ′( ~X) . (2.127)

Given the plane waves just computed, we may then write the explicit form for the

non-commutative Fourier transform as

ψ̃( ~X) =

∫

R3,|~k|∈[0,π[
d3k

(
sin |~k|

|~k|

)2

ei
~k· ~X ψ(~k) , (2.128)

with the inverse, from (2.104), being

ψ(~k) =

(
|~k|

sin |~k|

)2 ∫

R3

d3X

(2π)3
e−i~k· ~X ψ̃( ~X) . (2.129)

Duflo map

The defining property of the Duflo quantization map QD is that it provides an algebra

isomorphism between the G-invariant (Casimir) operators of U(g) and the subspace of

functions in F⋆(g
∗) that are invariant under the adjoint action of G on g∗. In this respect,

it is the most natural quantization map to consider, as it translates maximally the set of

invariants from the classical level to the quantum level. Duflo map is given explicitly by

QD = QS ◦ j
1
2 (∂) , (2.130)

where j is the following function on g:

j(X) = det

(
sinh 1

2adX
1
2adX

)
. (2.131)
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For X ∈ su(2), j computes to

j(X) =

(
sinh |X|

|X|

)2

. (2.132)

The application of the Duflo quantization map to exponentials ei
~k· ~X gives

QD(e
i~k· ~X) =

sin |~k|

|~k|
ei
~k·X̂ , (2.133)

which can be inverted to yield

DD(e
i~k·X̂) =

|~k|

sin |~k|
ei
~k· ~X ≡ ei

~k· ~X
⋆ , (2.134)

that is, we have found the plane wave Eg(X) under the Duflo deformation quantization

DD with the ~k-parametrization.

Once again, we may now use (2.91) to compute the ⋆D-product on monomials:

Xi ⋆D Xj = XiXj + iǫ k
ij Xk −

1

3
δij , (2.135)

Xi ⋆D Xj ⋆D Xk = XiXjXk + i(ǫ m
ij Xk + ǫ m

ik Xj + ǫ m
jk Xi)Xm

+
1

3
δjkXi −

2

3
δikXj +

1

3
δijXk , (2.136)

...

This star-product coincides with the star-product introduced by Kontsevich in [40]. For

the non-commutative plane wave we again have the corresponding projected star-product

⋆D, which satisfies

|~k1|

sin |~k1|
ei
~k1· ~X ⋆D

|~k2|

sin |~k2|
ei
~k2· ~X =

|RB(~k1, ~k2)|

sin |RB(~k1, ~k2)|
eiRB(~k1,~k2)· ~X . (2.137)

Again, an expression for the ⋆D-product under integration can be obtained from (2.103).

However, for the Duflo map the factors ω and η2 cancel out exactly, and we have σ(ζ)−1 ≡

ω(ζ)|η(ζ)|2 = 1. Accordingly,

∫

g∗
d3X f( ~X) ⋆D f

′( ~X) =

∫

g∗
d3X f( ~X)f ′( ~X) , (2.138)

i.e., the Duflo star-product of two functions coincides with the pointwise product (only)

under integration. In particular, this implies that the Duflo L2
⋆ inner product coincides

with the usual L2 inner product, and therefore L2
⋆(g

∗) ⊆ L2(g∗) (as an L2 norm-complete

vector space) for the Duflo map.
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The explicit form of the non-commutative Fourier transform is thus

ψ̃( ~X) =

∫

R3,|~k|∈[0,π[
d3k

(
sin |~k|

|~k|

)
ei
~k· ~X ψ(~k) , (2.139)

while the inverse is

ψ(~k) =

∫

R3

d3X

(2π)3

(
|~k|

sin |~k|

)
e−i~k· ~X ψ̃( ~X) . (2.140)

Freidel-Livine-Majid map

The Freidel-Livine-Majid ordering map QFLM [26], which has found several applications in

the quantum gravity literature (cited in the introduction), can be essentially seen as sym-

metrization map in conjunction with a change of parametrization for SU(2). In particular,

for exponentials of the form ei~p·
~X it is defined as

QFLM(ei~p·
~X) := e

i sin
−1 |~p|
|~p|

~p·X̂
, (2.141)

which implies

QFLM(e
i sin |~k|

|~k|
~k·X

) = ei
~k·X̂ , (2.142)

that is, with the ~k-parametrization, the plane wave is given by ei
~k· ~X
⋆ = e

i sin |~k|

|~k|
~k· ~X

. Accord-

ingly, we have

DFLM(ei
~k·X̂) = e

i sin |~k|

|~k|
~k· ~X

. (2.143)

Of course, the transformation sin |~k|

|~k|
~k defines the ~p-parametrization as of (2.120), and there-

fore we may simply write ei
~k· ~X
⋆ = ei~p(

~k)· ~X .15 However, the coordinates ~p only cover the

upper (or lower) hemisphere SU(2)/Z2
∼= SO(3), and the resulting group Fourier transform

is applicable only for functions on SO(3).

Now, since the ~p-parametrization is applicable only for the upper hemisphere of SU(2),

that is SO(3), instead of restricting the parametrization of the non-commutative plane

waves to the principal branch of the logarithm, we restrict to the upper hemisphere, and

obtain by an explicit calculation [29]

ei~p1·
~X ⋆FLM ei~p2·

~X = ei(~p1⊕~p2)· ~X , (2.144)

15Notice the close resemblance of the ~p-coordinates to the non-linear coordinates 2 sin(θ/2) we defined
for U(1) above. Indeed, the two coincide for the U(1) subgroups of SO(3).
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where

~p1 ⊕ ~p2 = ǫ(~p1, ~p2)
(√

1− |~p2|2 ~p1 +
√

1− |~p1|2 ~p2 − ~p1 × ~p2
)
. (2.145)

The sign factor

ǫ(~k1, ~k2) := sgn(
√

1− |~p1|2
√

1− |~p2|2 − ~p1 · ~p2) , (2.146)

introduced by the restriction, is 1 if both ~p1, ~p2 are close to zero or one of them is infinites-

imal, and −1 when the addition of two upper hemisphere vectors ends up in the lower

hemisphere (thus projecting the result to its antipode on the upper hemisphere).

The ⋆FLM-monomials thus read

Xi ⋆FLM Xj = XiXj + iǫ k
ij Xk , (2.147)

Xi ⋆FLM Xj ⋆FLM Xk = XiXjXk + i(ǫijmXk + ǫikmXj + ǫjkmXi)Xm

+ δjkXi − δikXj + δijXk , (2.148)

...

which coincide with ⋆S to second order, but no further.

As was already shown in [24, 41], but rederivable from the general expression (2.103)

and (2.123), for the Freidel-Livine-Majid star-product we have under integration

∫

g∗
d3X f( ~X) ⋆FLM f ′( ~X) =

∫

g∗
d3X f( ~X)

√
1 + ~∂2X f ′( ~X) . (2.149)

Now, given the plane waves just computed, we may write the explicit form of the

non-commutative Fourier transform as

ψ̃( ~X) =

∫

R3,|~p|2<1

d3p√
1− |~p|2

ei~p·
~X ψ(~p) , (2.150)

as well as the inverse

ψ(~p) =
√
1− |~p|2

∫

R3

d3X

(2π)3
e−i~p· ~X ψ̃( ~X) . (2.151)
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Chapter 3

Applications to Physics

3.1 Phase Space Path Integral for Quantum Mechanics on

a Lie Group

In this section, using the non-commutative representation for Lie groups reviewed in the

previous chapter, we formulate the first order phase space path integral for quantum

mechanics on a Lie group G. We show that its classical limit yields the correct classical

equations of motion, if the deformation of the phase space structure introduced by the non-

commutativity is taken into account in the variational calculus. As a concrete example

of the general formalism, we consider a free quantum particle on SU(2), and show the

agreement with previous results in the literature. We will follow closely the exposition

in [54], except for generalizing, where possible, from the Freidel-Majid-Livine transform

for SO(3) considered in [54] by taking the full advantage of the more general formalism

introduced above.

3.1.1 Classical mechanics on G

The formulation of classical mechanics of a physical system is based on the canonical

symplectic structure of its phase space. (For more details on the differential geometric for-

mulation of classical mechanics, see [46, 48].) For a system with a Lie group configuration

space G, the phase space will be the cotangent bundle T ∗G. As we have seen in Subsection

2.1.1, the canonical symplectic structure of T ∗G is given by the Poisson bracket

{f, f ′} =
∂f

∂Pi
(Lif

′)− (Lif)
∂f ′

∂Pi
+ λc k

ij Pk
∂f

∂Pi

∂f ′

∂Pj
(3.1)

for f, f ′ ∈ P(T ∗G), where we now denote the cotangent space variables by Pi, since

they correspond to the classical momentum variables. Moreover, we have introduced a

dimensionful quantity λ that controls the physical scale that is associated to the variable

described by the group manifold. In particular, the dimensionful Lie derivatives satisfy

43
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[Li,Lj ] = λc k
ij Lk, where c

k
ij are the dimensionless structure constants of G, and so in

the limit λ → 0 the commutators vanish, and the Poisson algebra becomes that of (the

one-point-compactification of) Rd.

The classical Hamiltonian dynamics of a dynamical system, whose configuration space

is G, is determined by specifying the Hamiltonian function, H ∈ P(T ∗G), typically corre-

sponding to the total energy of the system, which gives the time-evolution of the observ-

ables f ∈ P(T ∗G) via

df

dt
≡ {H, f} . (3.2)

In other words, we specify a vector field d
dt ∈ T (T

∗G) as

d

dt
≡ {H, ·} =

∂H

∂Pi

∂

∂gi
−
∂H

∂gi
∂

∂Pi
+ λc k

ij Pk
∂H

∂Pi

∂

∂Xj
, (3.3)

which generates the time-evolution of the system. In particular, we obtain the classical

Hamiltonian equations of motion for the coordinate functions as

dki

dt
≡ {H, ki} =

∂H

∂Pj
Ljk

i ,

dPi

dt
≡ {H,Pi} = −LiH + λc k

ij Pk
∂H

∂Pj
. (3.4)

Whereas the Hamiltonian mechanics are formulated in terms of the cotangent bun-

dle T ∗G, the Lagrangian formulation of mechanics uses the tangent bundle T G instead.

However, contrary to the case of cotangent bundle, on the tangent bundle we do not have

any canonical symplectic structure, and therefore we must utilize a differentiable function

L : T G → R, the Lagrangian function, to begin with, which we use to pull back the canon-

ical structure on T ∗G onto T G. In particular, we may define a map FL : T G → T ∗G, s.t.

FL(Xg) ∈ T
∗
g G ∀ Xg ∈ TgG, called the Legendre transform, via the relation

FL(Xg) · Yg :=
d

ds
L(Xg + sYg)

∣∣∣∣
s=0

∀ X,Y ∈ T G , (3.5)

i.e., it gives the directional derivative of L to the direction Yg in the fiber at Xg. By an

explicit calculation we find

FLi =
∂L

∂ġi
(3.6)

in a right-invariant basis, where we introduced the notation (0̄, ei) =: ∂
∂ġi

for the basis

vectors in the tangent spaces on T G. Since FL is fiber-preserving, i.e., FL : TgG →
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T ∗
g G ∀ g ∈ G, we may further write

FL(g,Xg) =

(
g,
∂L

∂ġi
(g,Xg)e

i

)
∈ T ∗

g G . (3.7)

The associated energy function E : T G → R is defined as

EL(Xg) = FL(Xg) ·Xg − L(Xg) . (3.8)

The Hamiltonian H corresponding to the Lagrangian L is then obtained as H = EL◦FL
−1,

i.e, as the inverse Legendre transformation of the energy function.1

Now, using FL we may pull back the canonical 2-form ω on T ∗G onto T G, and define

the Lagrangian 2-form ωL := FL∗ω. Explicitly, it reads

ωL ≡ FL∗ω =

(
∂2L

∂ġi∂gj
+ c k

ij

∂L

∂ġk

)
dgi ∧ dgj +

∂2L

∂ġi∂ġj
dgi ∧ dġj . (3.9)

Now, correspondingly to the Hamiltonian case, the physical trajectories of the system are

the integral curves of Lagrangian vector fields Z ≡ (ġ, g̈) ∈ T (T G), which satisfy the

condition

ωL(Z, ·) = dE . (3.10)

By substituting the definition (3.8) of the energy function into the condition (3.10), we

may find the Lagrangian equations of motion

d

dt

(
∂L

∂ġi

)
=
∂L

∂gi
− 2c k

ij ġ
j ∂L

∂ġk
. (3.11)

Thus, we find an extra term −2c k
ij ġ

j ∂L
∂ġk

arising from the noncommutativity. However,

interestingly this term vanishes for Lagrangians, which have the usual quadratic kinetic

term and no velocity dependence in the potential term, if the structure constants are

totally antisymmetric.

One may show that the above Lagrangian equations of motion are also obtained from

the principle of least action, which states that the classical trajectories are those which

extremise the action, defined as the integral of the Lagrangian over the trajectory. In other

words, we require of the action

δS =

∫ t1

t0

dt δL
(
(g(t), ġ(t)

)
= 0 (3.12)

under any infinitesimal variation of the path g(t). This is the form of the classical mechanics

1Strictly speaking this is only true if FL is a diffeomorphism. This is true if and only if det
(

∂2L

∂ġi∂ġj

)
6= 0

everywhere on T G [46]. In such a case the Lagrangian is called hyperregular.
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that is most immediately connected to the corresponding quantum mechanics in the path

integral approach. It is therefore important to make a connection to our subsequent semi-

classical analysis of the non-commutative phase space path integral.

3.1.2 Dual bases of generalized states for quantum theory

In Subsection 2.2.1 we defined the quantum algebra A corresponding to the cotangent

bundle T ∗G, whose commutators read with all the constants in place as

[f̂ , f̂ ′] = 0 , [P̂i, f̂ ] = i~L̂if , [P̂i, P̂j ] = i~λc k
ij P̂k . (3.13)

We also formulated two complementary representations of A in terms of Hilbert spaces

L2(G) and L2
⋆(g

∗), which are intertwined by the non-commutative Fourier transform.

Corresponding to the first representation, using Dirac notation, we may abstractly

consider the complete set of orthonormal basis states {|g〉 : g ∈ G}, labelled by group

elements, which we will call the group basis.2 This basis is chosen such that it satisfies

〈g|g′〉 ≡ λdδ(g−1g′) ,

∫

G

dg

λd
|g〉〈g| ≡ 1̂ , and f̂ |g〉 ≡ f(g)|g〉 (3.14)

for any function f ∈ C∞(G). Thus, |g〉 simultaneously diagonalize the operators f̂ ∈ AG =

Q(C∞(G)). As usual, we then define the Hilbert space of states H to consist of those states

|ψ〉, whose decomposion in the |g〉 basis can be expressed in the form

|ψ〉 =

∫

G

dg

λd
ψ(g)|g〉 , (3.15)

where ψ ∈ L2(G,dg/λd), and 〈ψ|ψ〉 =
∫
G

dg
λd |ψ|

2 = 1.

Through the non-commutative Fourier transform formulated in the previous chapter,

we may also consider the dual momentum space representation of quantum mechanics on

G in terms of the non-commutative representation of A on L2
⋆(g

∗). (See, e.g., [42, 21] for

earlier treatments of quantum mechanics on Lie algebraic non-commutative spaces.) Let

us define a set of states {|P 〉 | P ∈ g∗} via their inner product with the group basis

〈g|P 〉 ≡ Eg(P ) , (3.16)

which satisfy, due to the properties of the non-commutative Fourier transform, the follow-

ing identities

〈P |P ′〉 = (2π~)dδ⋆(P,P
′) and

∫

g∗

ddP

(2π~)d
|P 〉 ⋆ 〈P | = 1̂ . (3.17)

2Dirac notation can be given a fully rigorous definition in the framework of rigged Hilbert spaces [12].
Here, we apply this convenient notation in the usual physics fashion without striving for absolute rigor.
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Accordingly, they form a basis with respect to the ⋆-product structure in the non-commu-

tative momentum space, and any state may be expressed as

|ψ〉 =

∫

g∗

ddP

(2π~)d
|P 〉 ⋆ ψ̃(P ) , (3.18)

where ψ̃ := F⋆(ψ) for ψ ∈ L
2(G).

3.1.3 Non-commutative phase space path integral

Next we will give the first order path integral formulation of quantum mechanics on G using

the non-commutative momentum space defined above, and in particular the momentum

basis {|P 〉 | P ∈ g∗}. The derivation follows similar lines to the commutative Euclidean

case, but some extra subtleties arise due to the non-commutative structure.

The quantum mechanical evolution operator is given by

Û(t′ − t) ≡ e−
i
~
(t′−t)Ĥ , (3.19)

where Ĥ is the Hamiltonian operator, as usual. Accordingly, we have for the propagation

amplitude from the group element g at time t to g′ at time t′

〈g′, t′|g, t〉 ≡ 〈g′|Û(t′ − t)|g〉 . (3.20)

Now, we introduce the time-slicing via the decomposition

Û(t′ − t) ≡
N−1∏

k=0

Û(tk+1 − tk) , (3.21)

where tk+1 > tk ∀k and t0 = t, tN = t′. We set tk+1 − tk ≡ ǫ ∀ k = 0, . . . , N − 1, so we

have t′ − t ≡ Nǫ. By inserting the resolution of identity

1̂ =

∫

G

dg

λd
|g〉〈g| (3.22)

N − 1 times in between the evolution operators we obtain

〈g′, t′|g, t〉 = lim
N→∞

[
N−1∏

k=1

∫

G

dgk
λd

][
N−1∏

k=0

〈gk+1|Û(ǫ)|gk〉

]
. (3.23)

Furthermore, for each of the factors we use the resolution of identity

1̂ =

∫

g∗

ddP

(2π~)d
|P 〉 ⋆ 〈P | (3.24)
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to express them as

〈gk+1|Û(ǫ)|gk〉 =

∫

g∗

ddPk

(2π~)d
〈gk+1|Pk〉 ⋆ 〈Pk|Û(ǫ)|gk〉 . (3.25)

At this point, we restrict to systems with Hamiltonian operators of the form Ĥ = Ĥg∗+ĤG ,

where Ĥg∗ ∈ Ag∗ and ĤG ∈ AG , to avoid additional operator ordering issues, on top of

those stemming from the non-commutativity of momentum variables and encoded by the

⋆-product structure defined above.3 Then we get 〈P |Ĥ |g〉 = H⋆(P, g) ⋆ 〈P |g〉, where the

function H⋆(P, g) is now obtained from the Hamiltonian operator Ĥ by replacing the

momentum operators P̂i in Ĥ by the non-commutative momentum variables Pi and the

operator product of the momentum operators is replaced by the ⋆-product, whereas the

operators f̂ are replaced by the corresponding functions f ∈ C∞(G). We may take the

linear approximation in ǫ as

〈P |e−
i
~
ǫĤ |g〉 ≈

(
1−

i

~
ǫH⋆(P, g)

)
⋆ 〈P |g〉 ≈ e

− i
~
ǫH⋆(P,g)

⋆ ⋆ 〈P |g〉 , (3.26)

since the linear order in ǫ for the time-slice propagators is sufficient in order to obtain the

correct finite time propagator satisfying the Schrödinger equation [15]. Accordingly, we

obtain

〈gk+1|Û(ǫ)|gk〉 ≈

∫

g∗

ddPk

(2π~)d
Egk+1

(Pk) ⋆ e
− i

~
ǫH⋆(Pk,gk)

⋆ ⋆ Eg−1
k
(Pk)

=

∫

g∗

ddPk

(2π~)d
Egk+1g

−1
k
(Pk) ⋆ e

− i
~
ǫH⋆(Ad∗gk

Pk,gk)
⋆ , (3.27)

where we used the properties Eg(P ) = Eg−1(P ),

Eg(P ) ⋆ Eh(P ) = Egh(P ) and Eg(P ) ⋆ f(P ) = f(AdgP ) ⋆ Eg(P ) (3.28)

of the ⋆-product. (The last equality holds for unimodular G.) Furthermore, we have

Egk+1g
−1
k
(Ad∗

g−1
k

Pk) = Eg−1
k

gk+1
(Pk), so by making the change of variables Pk 7→ Ad∗

g−1
k

Pk

3To handle more general Hamiltonians with mixed terms in g and P variables, one should introduce
an additional ⋆-product, encoding in the definition of the path integral the operator ordering between
group and momentum operators [13]. This would then lead to more complicated forms for the discrete
and continuum phase space path integrals. However, for the arguments we wish to present here, the
generalization is not important, as we focus on how the ⋆-product between momentum variables encodes
their non-commutativity in the same path integral representation of the dynamics, so we restrict to the
simpler case.
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the full propagator reads in the first order form

〈g′, t′|g, t〉 = lim
N→∞

[
N−1∏

k=1

∫

G

dgk
λd

][
N−1∏

k=0

∫

g∗

ddPk

(2π~)d

] [
N−1∏

k=0

Eg−1
k gk+1

(Pk) ⋆ e
− i

~
ǫH⋆(Pk,gk)

⋆

]
.

(3.29)

We observe that each of the factors in the product over Pk’s is exactly the group Fourier

transform of the function exp⋆[−
i
~
ǫH⋆(Pk, gk)] from the momentum variable Pk to the

group variable g−1
k gk+1. It is not difficult to verify that the time-slice propagator

〈gk+1|Û(ǫ)|gk〉 =

∫

g∗

ddPk

(2π~)d
Eg−1

k gk+1
(Pk) ⋆ e

− i
~
ǫH⋆(Pk,gk)

⋆ (3.30)

satisfies the Schrödinger equation exactly. However, we would like to express this as an

integral over a single exponential. Let us assume that the non-commutative plane wave is

of the form Eg(P ) = η(g)eiζ(g)·P/~, where η is a class function on G. Using the expression

(2.103) for the ⋆-product under integration, and taking again the linear approximation in

ǫ, we obtain

〈gk+1|Û(ǫ)|gk〉 =

∫

g∗

ddPk

(2π~)d
η(g−1

k gk+1) exp

{
i

~
ǫ

[
ζ(g−1

k gk+1)

ǫ
· Pk −Hq(Pk, gk)

]}
,

(3.31)

where

Hq(P, g) := σ(i~∂P )H⋆(P, g) (3.32)

is an effective Hamiltonian containing additional terms, which arise from the non-trivial

phase space structure and ensure that the time-slice propagator satisfies the Schrödinger

equation up to first order in ǫ. Accordingly, we may write

〈g′, t′|g, t〉 = lim
N→∞

[
N−1∏

k=1

∫

G

dgk
λd

] [
N−1∏

k=0

∫

g∗

ddPk

(2π~)d

][
N−1∏

k=0

η(g−1
k gk+1)

]

× exp

{
i

~

N−1∑

k=0

ǫ

[
ζ(g−1

k gk+1)

ǫ
· Pk −Hq(Pk, gk)

]}
, (3.33)

This is clearly analogous to the first order form of path integral in the usual Euclidean case.

The second order path integral can, in principle, be obtained from this first order form by

integrating out the momentum or group variables, but since these integrations can only be

performed explicitly for certain special cases (quadratic Hamiltonians, in particular), for

greater generality we will stay at the first order level. (See Subsection 3.1.5 for the case of

a free particle on SU(2).)
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We may write (3.33) in the continuum limit as

〈g′, t′|g, t〉 =

∫
g(t)=g
g(t′)=g′

Dg DP exp

{
i

~

∫ t′

t
ds
[
ġ(s) · P (s)−Hq(P (s), g(s))

]}
, (3.34)

where ġ(t) := − i
λLg−1(t)∗

dg
dt (t) ∈ g, since we have

lim
ǫ→0

ζ(g−1
k gk+1)

ǫ
= −

i

λ

d

dǫ

∣∣∣∣
ǫ=0

g−1(tk)g(tk + ǫ) ≡ ġ(tk) . (3.35)

Moreover, since η is a class function, η(g−1
k gk+1) = 1 + O(ǫ2), so we may approximate

η(g−1
k gk+1) ≈ 1 for all k. In the expression (3.34) of the propagator, the action

Sb[g, P ] =

∫ t′

t
ds
[
ġ(s) · P (s)−Hq(P (s), g(s))

]
(3.36)

appearing in the exponent is the classical action, i.e., the time integral over the classical

Lagrangean function obtained through Legendre transformation, except that the classical

Hamiltonian is replaced with the effective Hamiltonian Hq. The Hamiltonian Hq can be

interpreted as introducing quantum corrections into the action, as it contains, in addition

to the classical Hamiltonian function H in the zeroth order, higher order terms in ~. The

presence of such quantum corrections to the classical action in the path integral formulation

of the dynamics is necessary in order for the propagator to satisfy the Schrödinger equation,

and a generic feature of path integrals on curved manifolds [15, 13]. Also, note that at the

Euclidean (no curvature in configuration space, commutative in momentum space) limit

λ→ 0 we have Hq → H and, as should be expected, in this limit the path integral (3.34)

coincides with the path integral for a point particle in Euclidean space. The expression

(3.34) can be taken to confirm the usefulness and interpretation of the non-commutative

momentum basis.

The propagator 〈P ′, t′|P, t〉 in the non-commutative momentum basis is obtained by

applying the group Fourier transform to both sides of the propagator 〈g′, t′|g, t〉 in the

group basis. This results in adding a boundary term into the action:

〈P ′, t′|P, t〉 =

∫

G

dg′

λd

∫

G

dg

λd
〈P ′|g′〉〈g′, t′|g, t〉〈g|P 〉

=

∫

G

dg′

λd

∫

G

dg

λd
e−iζ(g′)·P ′/~+iζ(g)·P/~

×

∫
g(t)=g
g(t′)=g′

Dg DP exp

{
i

~

∫ t′

t
ds
(
ġ(s) · P (s)−Hq(P (s), g(s))

)}



3.1. PHASE SPACE PATH INTEGRAL FOR QUANTUMMECHANICS ONA LIE GROUP51

=

∫
P (t)=P
P (t′)=P ′

Dg DP exp

{
i

~

∫ t′

t
ds
(
ġ(s) · P (s)−Hq(P (s), g(s))

)

−
i

~

(
ζ(g(t′)) · P (t′)− ζ(g(t)) · P (t)

)}

≡

∫
P (t)=P
P (t′)=P ′

Dg DP e
i
~
S[g,P ] , (3.37)

where the action S[g, P ] consists of bulk and boundary terms S[g, P ] ≡ Sb[g, P ]+S∂b[g, P ],

respectively,

Sb[g, P ] =

∫ t′

t
ds
(
ġ(s) · P (s)−Hq(P (s), g(s))

)
,

S∂b[g, P ] = −ζ(g(t
′)) · P (t′) + ζ(g(t)) · P (t) . (3.38)

This boundary term is crucial for obtaining the correct semi-classical limit in our case, as

we will observe in Subsection 3.1.4.

Let us summarize the results of this section. We have shown that one can derive

a first order path integral for a quantum mechanical system with a (unimodular and

exponential) Lie group configuration space G in terms of the non-commutative momentum

space variables. For the propagator in the group basis we obtained the continuum limit

expression (3.34),

〈g′, t′|g, t〉 =

∫
g(t)=g
g(t′)=g′

Dg DP exp

{
i

~

∫ t′

t
ds
(
ġ(s) · P (s)−Hq(P (s), g(s))

)}
, (3.39)

where the measure reads

Dg DP ≡ lim
N→∞

[
N−1∏

k=1

dgk
λd

][
N−1∏

k=0

d3Pk

(2π~)d

]
. (3.40)

The ⋆-product structure gives naturally rise to quantum corrections into the action

Sb[g, P ] =

∫ t′

t
ds
(
ġ(s) · P (s)−Hq(P (s), g(s))

)
(3.41)

via the form of the quantum corrected Hamiltonian Hq(P, g) ≡ σ(i~∂P )H⋆(P, g). Cru-

cially, these corrections ensure that the propagator obtained via path integral satisfies

the Schrödinger equation. In the momentum basis we found that the action receives an

additional boundary term

S∂b[g, P ] = −ζ(g(t
′)) · P (t′) + ζ(g(t)) · P (t) , (3.42)
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and thus the path integral acquires the form (3.37),

〈P ′, t′|P, t〉 =

∫
P (t)=P
P (t′)=P ′

Dg DP exp

{
i

~

∫ t′

t
ds
(
ġ(s) · P (s)−Hq(P (s), g(s))

)

−
i

~

(
ζ(g(t′)) · P (t′)− ζ(g(t)) · P (t)

)}
. (3.43)

The second order path integral, either in terms of the group or the momentum variables,

can be obtained from the first order formalism by integrating out the momentum or the

group variables, respectively.

3.1.4 Classical limit

We are now interested in the classical limit of the transition amplitudes we have derived

above in general form. In [54] we performed the semi-classical analysis for SO(3). Here we

repeat the analysis, but in the more general case of a unimodular exponential Lie group.

Let us, first of all, study the variations to the action (3.38). We choose an arbi-

trary path (ḡ(s), P̄ (s)) in the phase space, and introduce a small variation of the path as

(ḡ(s)eiηZ(s), P̄ (s) + ξQ(s)), where Z(s), Q(s) ∈ g for s ∈ [t, t′], and we assume that the

momentum variation vanishes at the boundary: Q(t) = Q(t′) = 0. We find for the first

order variation of the tangent vector ġ = − i
λLg−1∗

dg
ds the form

δġ(s) = η

(
dZ

ds
(s) + i[ ˙̄g, Z](s)

)
+O(η2) ∈ g . (3.44)

Now, even though we seem to be dealing with a classical action in calculating the

variations, we find that we cannot forget its quantum origin in the case of non-commutative

phase space variables. What we are really dealing with are the underlying non-commutative

quantum amplitudes in which the action appears. We find that, in order to obtain the

correct classical equations of motion, we must take into account this non-commutative

structure in calculating the variations by defining the variation of the action through the

variation of the amplitude as

exp
{ i
~

(
η
δS

δg
[ḡ, P̄ ]δg + ξ

δS

δP
[ḡ, P̄ ]δP

)
+O(η2, ξ2, ηξ)

}

:= exp
{
−
i

~
S[ḡ, P̄ ]

}
⋆ exp

{ i
~
S[ḡeiηZ , P̄ + ξQ]

}
, (3.45)

where the ⋆-product applies for momentum variables in the same time-slice. Although the

mathematical reasons for considering such non-commutative variations are not fully clear

at the moment, we may motivate this definition by noting that the path integral acts as

an integral kernel with respect to the ⋆-product in calculating the transition amplitudes.

We will comment further on the non-commutative variational calculus in Section 3.2.
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In any case, due to the linear approximation in ǫ for the single time-slice actions in

the bulk, we can happily neglect the deformation in the calculation of the variation of the

bulk part of the action. Substituting the variations into the bulk action, we find for the

first order variation in η and ξ

δSb[ḡ, P̄ ] =

∫ t′

t
ds

{
η
(dZ
ds

(s) + i[ ˙̄g, Z](s)
)
· P̄ (s) + ξ

(
˙̄g(s)

)
·Q(s)

− ηZi(s)LiHq(P̄ (s), ḡ(s))− ξQi(s)
∂Hq

∂Pi
(P̄ (s), ḡ(s))

}

= ηZi(s)P̄i(s)
∣∣∣
s=t′

s=t

+

∫ t′

t
ds

{
ηZi(s)

[
−

dP̄i

ds
(s) + λc k

ij
˙̄gj(s)P̄k − LiHq(P̄ (s), ḡ(s))

]

+ ξQi(s)
[
˙̄gi(s)−

∂Hq

∂Pi
(P̄ (s), ḡ(s))

]}
. (3.46)

Let us, at first, neglect the first term in (3.46) associated with the boundary. By requiring

the variation given by the integral to vanish for arbitrary perturbations Zi(s), Qi(s), we

obtain the equations

˙̄gi(s) =
∂Hq

∂Pi
(P̄ (s), ḡ(s))

dP̄i

ds
(s) = λc k

ij
˙̄gj(s)P̄k − LiHq(P̄ (s), ḡ(s)) . (3.47)

Substituting the first equation into the second, and noting that ġi ≡
dkig
dt

∣∣
g
for kh(g) =

−i ln(h−1g) ∈ g, we arrive at the equations

dki

dt
=
∂Hq

∂Pj
Ljk

i ,

dPi

dt
= −LiH + λc k

ij Pk
∂Hq

∂Pj
. (3.48)

In the semi-classical limit ~ → 0 the dominating contribution to the path integral arises

then from the paths satisfying the equations (3.48). Given that in this limit Hq → H,

the equations coincide with the classical equations of motion (3.4) we obtained from the

canonical analysis in Subsection 3.1.1.

We still need to show that the boundary term in the first order variation of the action

(3.46) is cancelled by the variation of the boundary term. Now, for the boundaries no

approximation is available, such as the one in ǫ for the bulk, and therefore the deformation

structure must be taken into account. On the other hand, we observe that it is exactly

the non-commutative variation (3.45), which enables us to cancel the boundary term and



54 CHAPTER 3. APPLICATIONS TO PHYSICS

arrive at the right classical equations of motion: From (3.45), we obtain for the first order

variation in η of the boundary action

δS∂b[ḡ, P̄ ] = −ζ(eiηZ(s)) · P̄ (s)
∣∣∣
s=t′

s=t
≈ −ηZ(s) · P̄ (s)

∣∣s=t′

s=t
, (3.49)

which exactly cancels the boundary term arising from the bulk action (3.46). This further

confirms the correctness of the non-commutative Fourier transform in encoding the relation

between g and P variables, needed to produce the boundary term in the action.

Accordingly, we obtain the correct semi-classical behavior from the path integral (3.37),

but only by taking into account the non-commutative structure of the phase space. In

particular, this means that in the semi-classical limit ~→ 0 we may approximate the full

path integral by a sum over the amplitudes of solutions to the classical equations of motion,

〈P ′, t′|P, t〉 ≈
∑

(gcl,Pcl)

e
i
~
S[gcl,Pcl] , (3.50)

such that Pcl(t) = P , Pcl(t
′) = P ′.

3.1.5 Free particle on SU(2)

In order to show explicitly the compatibility of our analysis and results with those obtained

by more conventional methods, in particular, harmonic analysis on the group manifold,

we first compared our path integral expression for the finite time propagator with the

standard expression in [54], in the special case of a free particle on SO(3). Here we

consider its double-cover SU(2). In this case the Hamiltonian operator reads Ĥ = P̂ 2/2m,

which is a multiple of the Casimir operator. The free particle is an important test case for

the formalism we developed, since it is well-known from previous literature [15, 65, 19, 13].

We will calculate the second order form of the path integral for the free particle in terms

of the group (configuration) variables. For the Hamiltonian Ĥ = P̂ 2/2m the corresponding

quantum corrected Hamiltonian is found to be

Hq(P ) = (P 2 + ~2λ2cq)/2m, (3.51)

where we denote by cq ∈ R a constant, which depends on the choice of the quantization

map. By a direct calculation one finds for the symmetric quantization map cq = −2, for

the Duflo map cq = −1, and for the FLM map cq = 3. Then, each of the N integrals over
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Pk in (3.29)

〈g′, t′|g, t〉 = lim
N→∞

[
N−1∏

k=1

∫

SU(2)

dgk
λ3

][
N−1∏

k=0

∫

su(2)

d3Pk

(2π~)3

]

× exp

{
i

~

N−1∑

k=0

ǫ

[
ζ(g−1

k gk+1)

ǫ
· Pk −

1

2m

(
P 2
k + ~2λ2cq

)
]}

(3.52)

becomes the usual Fourier transform of the function exp
[
− iǫ

2m~

(
P 2
k + ~2λ2cq

)]
to the

coordinate variables ζ(g−1
k gk+1). Thus, by performing the Gaussian integrals we obtain

〈g′, t′|g, t〉 = lim
N→∞

[
N−1∏

k=1

∫

SU(2)

dgk
λ3

]

×




N∏

k=1

( m

2πi~ǫ

) 3
2
exp




iǫ

~

m

2

(
ζ(g−1

k gk+1)

ǫ

)2





 e−

i(t′−t)~λ2cq
2m

= lim
N→∞

[( m

2πi~ǫ

) 3
2
N−1∏

k=1

∫

SU(2)

dgk

(2πi~λ2ǫ/m)
3
2

]

× exp




i

~

N∑

k=1

ǫ
m

2

(
ζ(g−1

k gk+1)

ǫ

)2


 e−

i(t′−t)~λ2cq
2m . (3.53)

The product of integrals including the factors of
(

m
2πi~λ2ǫ

) 3
2 becomes the second order path

integral measure in the continuum limit, as in the usual case of R3, and the function in

the exponent becomes i/~ times the classical action [65, 19], since by defining V̄ǫ(kǫ) by

gk+1 ≡ exp[iǫV̄ǫ(kǫ) · σ̄] gk, where |ǫV̄ǫ(kǫ)| < π, we have

m

2

(
ζ(g−1

k gk+1)

ǫ

)2

=
m

2

V̄ 2
ǫ (kǫ)

λ2
N→∞
→ −

m

2λ2
tr 1

2

(
g−1(t)

dg

dt
(t)g−1(t)

dg

dt
(t)

)
, (3.54)

which is the classical Lagrangean of a free point particle on SU(2), where tr 1
2
is the

normalized trace in the fundamental spin-12 representation. Finally, we can write for the

continuum path integral

〈g′, t′|g, t〉 =

∫
g(t)≡g
g(t′)≡g′

Dg(t) exp

[
i

~

∫ t′

t
dt

m

2λ2
tr 1

2

(
ġ2(t)

)
−
i(t′ − t)~λ2cq

2m

]
, (3.55)

where Dg(t) is the continuum limit of the path integral measure given above, and ġ :=

−ig−1 dg
dt ∈ su(2) is the velocity of the particle. This agrees up to the choice of the

quantization map dependent constant cq with the path integral for free particle on SU(2)

obtained by other methods in [45, 13].
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3.2 Non-commutative Geometry of Ponzano-Regge Model

In this section we consider the application of the non-commutative representation to the

Ponzano-Regge spin foam model for 3-dimensional quantum gravity. We will first intro-

duce the Ponzano-Regge model, seen as a discretization of the continuum 3d BF theory.

We then apply the non-commutative Fourier transform to the Ponzano-Regge model to ob-

tain a representation of the model in terms of non-commutative metric variables, and write

down an explicit expression for the quantum amplitude for fixed metric boundary data in

the case of trivial topology. We further study the classical limit of the Ponzano-Regge am-

plitudes for fixed metric boundary data, and find again that the correct classical geometric

constraints are obtained, in general, only by considering non-commutative variations of the

action. We also compute the classical constraints for the usual commutative variations,

and find that the results differ for different choices of non-commutative structures. Finally,

we offer some comments on the obtained results.4

3.2.1 3d BF theory and Ponzano-Regge model

The Ponzano-Regge model can be understood as a discretization of 3-dimensional Rie-

mannian BF theory. In this section, we will briefly review how it can be derived from the

continuum BF theory, while keeping track of the dimensionful physical constants, which

determine the various asymptotic limits of the theory.

Let M be a 3-dimensional base manifold to a frame bundle with the structure group

SU(2). Then the partition function of 3d BF theory onM is given by

ZM
BF =

∫
DE Dω exp

(
i

2~κ

∫

M
tr
(
E ∧ F (ω)

))
, (3.56)

where E is an su(2)∗-valued triad 1-form on M, F (ω) is the su(2)-valued curvature 2-

form associated to the connection 1-form ω, and the trace is taken in the fundamental

spin-12 representation of SU(2). The wedge ∧ denotes the contraction of tensor indices

with the Levi-Civita tensor ǫijk. ~ is the reduced Planck constant and κ is a constant

with dimensions of inverse momentum. The connection with Riemannian gravity in three

spacetime dimensions gives κ := 8πG, where G is the gravitational constant [60]. Since

the triad 1-form E has dimensions of length and the curvature 2-form F is dimensionless,

the exponential is rendered dimensionless by dividing with ~κ ≡ 8πlp, lp ≡ ~G being

the Planck length in three dimensions. Integrating over the triad field in (3.56), we get

heuristically

ZM
BF ∝

∫
Dω δ

(
F (ω)

)
, (3.57)

so we see that the BF partition function is nothing but the volume of the moduli space of

4The findings exhibited in this section will be the subject of the forthcoming publication [50].
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teif ei+1

e

f ei

Figure 3.1: The subdivision of tetrahedra in ∆ into a finer cellular complex Γ.

flat connections onM. Generically, this is of course divergent, which (among other things)

motivates us to consider discretizations of the theory. However, since BF theory is purely

topological, that is, it does not depend on the metric structure of the base manifold, such

a discretization should not affect its essential properties.

Now, to discretize the continuum BF theory, we first choose a triangulation ∆ of the

manifold M, that is, a (homogeneous) simplicial complex homotopic to M. The dual

complex ∆∗ of ∆ is obtained by replacing each d-simplex in ∆ by a (3 − d)-simplex and

retaining the connective relations between simplices. Then, the homotopy between ∆ and

M allows us to think of ∆, and thus ∆∗, as embedded in M. We further form a finer

cellular complex Γ by diving the tetrahedra in ∆ along the faces of ∆∗. In particular, Γ

then consists of tetrahedra t ∈ ∆, with vertices t∗ ∈ ∆∗ at their centers, each subdivided

into four cubic cells. Moreover, for each tetrahedron t ∈ ∆, there are edges tf ∈ Γ,

which correspond to half-edges of f∗ ∈ ∆∗, going from the centers of the triangles f ∈ ∆

bounding the tetrahedron to the center of the tetrahedron t. Also, for each triangle f ∈ ∆,

there are edges ef ∈ Γ, which go from the center of the triangle f ∈ ∆ to the centers of

the edges e ∈ ∆ bounding the triangle f . See Fig. 3.1 for an illustration of the subdivision

of a single tetrahedron in ∆.

To obtain the discretized connection variables associated to the triangulation ∆, we

integrate the connection along the edges tf ∈ Γ and ef ∈ Γ as

gtf := Pei
∫
tf

ω ∈ SU(2) and gef := Pei
∫
ef

ω ∈ SU(2) , (3.58)

where P denotes the path-ordered exponential. Thus, they are the Wilson line variables

of the connection ω associated to the edges or, equivalently, the parallel transports from
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the source to the sink of the edges with respect to ω. We assume the triangulation ∆ to

be piece-wise flat, and associate frames to all simplices of ∆. We then interpret gtf as the

group element relating the frame of t ∈ ∆ to the frame of f ∈ ∆, and similarly gef as

the group element relating the frame of f ∈ ∆ to the frame of e ∈ ∆. Furthermore, we

integrate the triad field along the edges e ∈ ∆ as

Xe :=

∫

e
E ∈ su(2)∗ , (3.59)

where an orientation for the edge e may be chosen arbitrarily. Xe is interpreted as the

vector giving the magnitude and the direction of the edge e in the frame associated to the

edge e itself.

In the case that ∆ has no boundary, a discrete version of the BF partition function

(3.57), the Ponzano-Regge partition function, can then be written as

Z∆
PR =

∫ [∏

tf

dgtf

] ∏

e∈∆

δ(He∗(gtf )) , (3.60)

whereHe∗(gtf ) ∈ SU(2) are holonomies around the dual faces e∗ ∈ ∆∗ obtained as products

of gtf , f
∗ ∈ ∂e∗, and dgtf is again the Haar measure on SU(2). Mimicking the continuum

partition function of BF theory, the Ponzano-Regge partition function is thus an integral

over the flat discrete connections, the delta functions δ(He∗(gtf )) constraining holonomies

around all dual faces to be trivial.

Now, we can apply the non-commutative Fourier transform to expand the delta func-

tions in terms of the non-commutative plane waves. We again assume that the non-

commutative plane wave is of the form Eg(P ) = η(g)eiζ(g)·X/~. This yields

Z∆
PR =

∫ [∏

tf

dgtf

][∏

e

dXe

(2π~κ)3

] [∏

e∈∆

η(He∗(gtf ))

]

× exp

{
i

~

∑

e∈∆

Xe · ζ(He∗(gtf ))

}
. (3.61)

Comparing with (3.56), this expression has a straightforward interpretation as a discretiza-

tion of the first order path integral of the continuum BF theory. We can clearly identify

the discretized triad variables Xe in (3.59) with the non-commutative metric variables

defined via non-commutative Fourier transform. We also see that, from the point of view

of discretization, the form of the plane waves and thus the choice for the quantization

map is directly related to the choice of the precise form for the discretized action and the

path integral measure. In particular, the coordinate function ζ : SU(2) → su(2) and the

prefactor η : SU(2)→ C of the non-commutative plane wave are dictated by the choice of

the quantization map, and the coordinates specify the discretization prescription for the
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curvature 2-form F (ω). Similar interplay between ⋆-product quantization and discretiza-

tion is well-known in the case of the first order phase space path integral formulation of

ordinary quantum mechanics [13].

3.2.2 Non-commutative metric representation

If the triangulated manifold ∆ has a non-trivial boundary, we may assign connection data

on the boundary by fixing the group elements gef associated to the boundary triangles

f ∈ ∂∆. Then, the (non-normalized) Ponzano-Regge amplitude for the boundary can be

written as

APR(gef |f ∈ ∂∆) =

∫ [∏

tf

dgtf

][ ∏

ef
f /∈∂∆

dgef

] ∏

e∈∆

ne−1∏

i=0

δ
(
gefe

i+1
g−1
tei f

e
i+1
gtei fe

i
g−1
efe

i

)
. (3.62)

The delta functions are over the holonomies around the wedges of the triangulation pictured

in grey in Fig. 3.1. For this purpose, the tetrahedra tei and the triangles f ei sharing the

edge e are labelled by an index i = 0, . . . , ne − 1 in a right-handed fashion with respect

to the orientation of the edge e and with the identification fne ≡ f0, as in Fig. 3.1. The

expression (3.60) for the Ponzano-Regge partition function can be obtained in the absence

of a boundary by integrating over all gef . However, in considering the amplitude for a

boundary configuration, we need to fix the gef for f ∈ ∂∆, and therefore it is convenient

to write the amplitude in terms of the wedges.

Let us introduce some simplifying notation. We will choose an arbitrary spanning tree

of the dual graph to the boundary triangulation, pick an arbitrary root vertex for the tree,

and label the boundary triangles fi ∈ ∂∆ by i ∈ N0 in a compatible way with respect to

the partial ordering induced by the tree, so that the root has the label 0. (See Fig. 3.2.)

Moreover, we denote the set of ordered pairs of labels associated to neighboring boundary

triangles byN , and label the group elements associated to the pair of neighboring boundary

triangles (i, j) ∈ N as illustrated in Fig. 3.2. The group elements gtf for f /∈ ∂∆ we will

denote by a collective label hl. As we integrate over gef for f /∈ ∂∆ in (3.62), we obtain

APR(gij) =

∫ [∏

l

dhl

][ ∏

e/∈∂∆

δ(He∗(hl))
][ ∏

(i,j)∈N
i<j

δ(gijh
−1
j Kji(hl)hig

−1
ji )
]
. (3.63)

Here hi is the group element associated to the edge going from the boundary triangle i

to the center of the bulk tetrahedron with triangle i on its boundary, and Kij(hl) is the

holonomy along the bulk dual edges from the center of the tetrahedron with triangle j

to the center of the tetrahedron with triangle i. (See Fig. 3.2 for illustration.) There is

a one-to-one correspondence between the pairs (i, j) of neighbouring boundary triangles

and faces of the dual 2-complex touching the boundary. Notice that we have chosen here
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Figure 3.2: On the left: A portion of a rooted labelled spanning tree of the dual graph of
a boundary triangulation (solid grey edges). On the right: Boundary triangles fi, fj ∈ ∂∆
and the associated group elements.

the base points for these holonomies as the boundary dual vertex with a smaller label.

By expanding the delta distributions in (3.63) with boundary group variables into non-

commutative plane waves, we get

APR(gij) =

∫ [∏

l

dhl

] [ ∏

e/∈∂∆

δ(He∗(hl))

]

×



∏

(i,j)∈N
i<j

∫
dYji

(2π~κ)3
E(gijh

−1
j Kji(hl)hig

−1
ji , Yji)


 , (3.64)

where we use the notation Eg(X) ≡ E(g,X) for clarity.

To obtain the expression for metric boundary data, we employ the non-commutative

Fourier transform,

ÃPR(Xij) =

∫ [ ∏

(i,j)∈N

dgij
κ3

]
APR(gij)

∏

(i,j)∈N

E(g−1
ij ,Xij) . (3.65)

Here the variable Xij is understood geometrically as the edge vector shared by the triangles

i, j as seen from the frame of reference of the triangle j. From (3.64) and (3.65) the

amplitude for metric boundary data is obtained by expanding the delta functions as

ÃPR(Xij) =

∫ [ ∏

(i,j)∈N

dgij
κ3

][ dYji
(2π~κ)3

][∏

l

dhl

][ dYe
(2π~κ)3

] [ ∏

e/∈∂∆

E(He∗(hl), Ye)

]

×



∏

(i,j)∈N
i<j

E(gijh
−1
j Kji(hl)hig

−1
ji , Yji)





 ∏

(i,j)∈N

E(g−1
ij ,Xij)


 . (3.66)
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Exact amplitudes for metric boundary data with trivial topology

By integrating over all gij , Yji, Ye in (3.66), we get

ÃPR(Xij) ∝

∫ [∏

l

dhl

] [ ∏

e/∈∂∆

δ(He∗(hl))

]



∏

(i,j)∈N
i<j

E(h−1
i Kij(hl)hj ,Xji)


 ⋆



∏

(i,j)∈N
i<j

δ⋆(Xij ,−Xji)


 , (3.67)

where we have dropped the immaterial finite propotionality constant cancelled by normal-

ization. We see that the edge vectors Xij,Xji corresponding to the same edge in differ-

ent frames of reference are simply identified by the non-commutative delta distributions

δ⋆(Xij ,−Xji) with this choice of base points for the holonomies. We wish to integrate over

the variables hi. For every vertex i there is a unique path via the edges (jn−1, jn)n=1,...,l,

s.t. j0 = 0, jl = i, from the root to the vertex i along the spanning tree. Now, by making

the changes of variables

hi 7→

[←−∏
l
n=0K

−1
jn−1jn

(hl)

]
hi , (3.68)

where by
←−∏

we denote an ordered product for which the product index increases from

right to left, we obtain

ÃPR(Xij) ∝

∫ [∏

l

dhl

] [ ∏

e/∈∂∆

δ(He∗(hl))

]



∏

(i,j)∈tree
i<j

E(h−1
i hj ,Xji)




×




∏

(i,j)/∈tree
i<j

E(h−1
i Lij(hl)hj ,Xji)


 ⋆



∏

(i,j)∈N
i<j

δ⋆(Xij ,−Xji)




=

∫ [∏

l

dhl

] [ ∏

e/∈∂∆

δ(He∗(hl))

]

×



−→∏

i

⋆


E(hi,

∑

j

ǫijXji) ⋆
∏

j
(i,j)/∈tree

E(Lij(hl),Xji)







⋆



∏

(i,j)∈N
i<j

δ⋆(Xij ,−Xji)


 . (3.69)

Here, ǫij := sgn(i − j)Aij , where Aij is the adjacency matrix of the dual graph of the

boundary triangulation. Moreover, Lij(hl) ≡ G−1
ij (hl)Hij(hl)Gij(hl), where Hij(hl) is the
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product of Kkl(hl)’s around the unique cycle of the boundary dual graph formed by adding

the edge (i, j) to the spanning tree, and Gij(hl) is the product of Kkl(hl)’s along the unique

path from the root of the spanning tree to the cycle. The cycles formed from the spanning

tree of a graph by adding single edges span the loop space of the graph. On the other

hand, the product of Kkl(hl)’s around a boundary vertex is constrained to be trivial by

the flatness constraints for the bulk holonomies only if the neighbourhood of the vertex

is a half-ball, since only in this case is the loop around the vertex contractible along the

faces of the 2-complex. Thus, if and only if the neighborhoods of all boundary vertices

have trivial topology, the flatness constraints impose Lij(hl) to be trivial. In this case, we

have

ÃPR(Xij) ∝

∫ [∏

l

dhl

] [ ∏

e/∈∂∆

δ(He∗(hl))

]

×

[−→∏

i

⋆ E(hi, ǫijXji)

]
⋆



∏

(i,j)∈N
i<j

δ⋆(Xij ,−Xji)


 . (3.70)

Integrating over hi then yields the closure constraints for the boundary triangles, and we

end up with

ÃPR(Xij) ∝ [δ(0)]d



−→∏

i

⋆ δ⋆(
∑

j

ǫijXji)


 ⋆



∏

(i,j)∈N
i<j

δ⋆(Xij ,−Xji)


 , (3.71)

where the sum is over vertices j connected to the vertex i, and d is the degree of divergence

arising from the redundant delta distributions over the dual faces e∗ ∈ ∆∗, e /∈ ∂∆.

It is clear that in the Euclidean limit κ → 0, where the ⋆-product coincides with the

point-wise product and δ⋆ → δ, the above amplitude imposes closure and identification

of the edge vectors. However, the case of the classical limit ~ → 0 is more subtle: The

whole notion of a non-commutative Fourier transform breaks down in this limit, since the

non-commutative plane wave becomes ill-defined, having no well-defined limit. We will

see in the following that these extra complications result into a discretization ambiguity

in the classical limit, unless one applies non-commutative variational calculus to the phase

space path integral, as in the case of quantum mechanics. From the above expression

we see that the unambiguous result we will obtain from the non-commutative stationary

phase analysis agrees with identifying the non-commutative dual space in the classical

limit with the corresponding commutative space that would result from rederiving the

dual representation as in Section 2.2 directly in the classical limit (even though in that

case it would not result in a faithful representation of the full algebra). This provides an

important consistency check for the non-commutative variational calculus.
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3.2.3 Classical limit

The general treatment

Let us first consider the classical limit of the phase space path integral for Ponzano-Regge

model, as given by the usual commutative variational calculus. We may use the expression

for the non-commutative plane wave to express (3.66) as

ÃPR(Xij) =

∫ [ ∏

(i,j)∈N

dgij
κ3

][ dYji
(2π~κ)3

][∏

l

dhl

][ dYe
(2π~κ)3

]

×

[ ∏

e/∈∂∆

η(He∗(hl))e
i
~
Ye·ζ(He∗(hl))

]

×



∏

(i,j)∈N
i<j

η(gijh
−1
j Kji(hl)hig

−1
ji )e

i
~
Yji·ζ(gijh

−1
j Kji(hl)hig

−1
ji )




×


 ∏

(i,j)∈N

η(g−1
ij )e

i
~
Xij ·ζ(g

−1
ij )


 , (3.72)

and further by combining the exponentials we obtain

ÃPR(Xij) =

∫ [ ∏

(i,j)∈N

dgij
κ3

η(g−1
ij )
][ dYji

(2π~κ)3

][∏

l

dhl

][ dYe
(2π~κ)3

]

×

[ ∏

e/∈∂∆

η(He∗(hl))

]


∏

(i,j)∈N
i<j

η(gijh
−1
j Kji(hl)hig

−1
ji )




× exp




i

~



∑

e/∈∂∆

Ye · ζ(He∗(hl)) +
∑

(i,j)∈N
i<j

Yji · ζ(gijh
−1
j Kji(hl)hig

−1
ji )

+
∑

(i,j)∈N

Xij · ζ(g
−1
ij )





 . (3.73)

In this form the amplitude is amenable to stationary phase analysis through the study of

the extrema of the exponential

SPR :=
∑

e/∈∂∆

Ye · ζ(He∗(hl)) +
∑

(i,j)∈N
i<j

Yji · ζ(gijh
−1
j Kji(hl)hig

−1
ji )

+
∑

(i,j)∈N

Xij · ζ(g
−1
ij ) ,

to which we now proceed.
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There are five different kinds of integration variables: Ye for e /∈ ∂∆, Yji, hl in the

bulk, hi touching the boundary and gij , whose variations we will consider in the following.

Variation of Ye: Requiring the variation of the exponential to vanish simply gives

ζ(He∗(hl)) = 0⇔ He∗(hl) = 1 (3.74)

for all e /∈ ∂∆, i.e., the flatness of the connection around the dual faces e∗ in the

bulk. Thus, in particular, we have η(He∗(hl)) = 1.

Variation of Yji: Similarly, this gives

ζ(gijh
−1
j Kji(hl)hig

−1
ji ) = 0⇔ gijh

−1
j Kji(hl)hig

−1
ji = 1 (3.75)

for all (i, j) ∈ N , i < j, i.e., the triviality of the connection around the dual faces e∗

to e ∈ ∂∆. We have η(gijh
−1
j Kji(hl)hig

−1
ji ) = 1.

Variation of hl in the bulk: The variations for the group elements are slightly more

non-trivial. Taking right-invariant Lie derivatives of the exponential with respect to

a group element hl′ ≡ gtf in the bulk, we obtain

∑

e/∈∂∆

Ye · L
hl′

k ζ(He∗(hl)) +
∑

(i,j)∈N
i<j

Yji · L
hl′

k ζ(gijh
−1
j Kji(hl)hig

−1
ji ) = 0 ∀k .

Here, only the three terms in the sums depending on the holonomies around the

boundaries of the three dual faces, which contain l′ := tf are non-zero. (Each

dual edge f∗ belongs to exactly three dual faces e∗ of ∆∗, since ∆∗ is dual to a

3-dimensional triangulation.) Now, using the fact uncovered through the previous

variations that the holonomies around the dual faces are trivial for the stationary

phase configurations, and the property ζ(adgh) = Adgζ(h) of the coordinates, we

obtain

∑

e∈∆
e∗∋f∗

ǫfe(AdGfe
Ye) = 0 , (3.76)

where AdGfe
implements the parallel transport from the frame of Ye to the frame

of f , and ǫfe = ±1 accounts for the orientation of hl with respect to the holonomy

He∗(hl) and thus the relative orientations of the edge vectors. Clearly, this imposes

the metric closure constraint for the three edge vectors of each bulk triangle f /∈ ∂∆

in the frame of f .
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Variation of hi: Varying a hi we get

∑

(i,j)∈N
i<j

Yji · L
hi

k ζ(gijh
−1
j Kji(hl)hig

−1
ji )

+
∑

(j,i)∈N
j<i

Yij · L
hi

k ζ(gjih
−1
i Kij(hl)hjg

−1
ij ) = 0 ∀k .

Again there are three non-zero terms in this expression, which correspond to the

boundary triangles fj ∈ ∂∆ neighboring fi, i.e., such that (i, j) ∈ N . We obtain the

closure of the boundary integration variables Yji as

∑

fj∈∂∆
(i,j)∈N

ǫji(AdgjiYji) = 0 , (3.77)

where Adgji parallel transports the edge vectors Yji to the frame of the boundary

triangle fi, and ǫji = ±1 again accounts for the relative orientation.

Variation of gij: Taking Lie derivatives with respect to a gij of the exponential, we obtain

Yji · L
gij
k ζ(gijh

−1
j Kji(hl)hig

−1
ji ) +Xij · L

gij
k ζ(g−1

ij ) = 0 ∀k

⇔ AdgijYji ∓D
ζ(gij)Xij = 0 , (3.78)

where we denote (Dζ(g))kl := L̃kζl(g), and the signs − and + corresponds to the

cases i < j and i > j, respectively. We see that this equation identifies the boundary

metric variables Xij with the integration variables Yji up to a sign and a parallel

transport between the frames of each vector, plus a non-geometric deformation given

by the matrixDζ(gij). (In varying gij we must assume that the measure η(g)dg on the

group is continuous, which should be true for any reasonable choice of a quantization

map, as it indeed is for all the cases we consider below.)

Thus, we have obtained the constraint equations corresponding to variations of all the

integration variables. In particular, by combining the equations (3.78) with the boundary

closure constraint (3.77), we obtain

∑

fj∈∂∆
(i,j)∈N

Dζ(gij)Xij = 0 ∀i , (3.79)

which gives, in general, a deformed closure constraint for the boundary metric edge vari-

ables Xij . In addition, from (3.78) alone we obtain a deformed identification

Ad−1
gij (D

ζ(gij)Xij) = −Ad
−1
gji(D

ζ(gji)Xji) , (3.80)
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naturally up to a parallel transport, of the boundary edge variables Xij and Xji. Accord-

ingly, we obtain for the amplitude

ÃPR(Xij) ∝

∫ [ ∏

(i,j)∈N

dgij
κ3

η(g−1
ij )
]


∏

fi∈∂∆

δ⋆

(∑

fj∈∂∆
(i,j)∈N

Dζ(gij)Xij

)



⋆



∏

(i,j)∈N
i<j

δ⋆

(
Ad−1

gij (D
ζ(gij)Xij) + Ad−1

gji(D
ζ(gji)Xji)

)



⋆ exp




i

~

∑

(i,j)∈N

Xij · ζ(g
−1
ij )




(
1 +O(~)

)
, (3.81)

where the proportionality constant is given by the configuration space volume for the

geometric configurations of the Ye metric variables in the bulk, which is generically infinite

but is cancelled by normalization, and the delta functions impose the boundary constraints

from above. (Note that one must write the integrand in terms of ⋆-products and ⋆-

delta functions in order for the constraints to be correctly imposed, since the amplitude

acts on wave functions through ⋆-multiplication.) The exact form of the deformation

matrix Dζ
kl(g) ≡ {Xk, ζl}(g) = δkl + O(κ, | ln(g)|), and accordingly the geometric content

of these constraints, depends on the coordinates ζ, and therefore on the discretization of

the continuum BF action or, equivalently, the initial choice of the quantization map. We

see that only in the Euclidean limit κ→ 0, |ζ| = const., do the different choices agree, in

general, producing the undeformed discrete geometric constraints

∑

fj∈∂∆
(i,j)∈N

Xij = 0 ∀fi ∈ ∂∆ and Ad−1
gijXij = Ad−1

gjiXji ∀(i, j) ∈ N (3.82)

for the discretized boundary metric variables Xij ∈ su(2)∗.

We emphasize that in the above variation of the amplitude we did not take into ac-

count the deformation of phase space structure, which appeared crucial for obtaining the

correct classical equations of motion in Sec. 3.1 in the case of quantum mechanics. Indeed,

we may define the non-commutative variation δ⋆S of the action S in the amplitude via

e
iδ⋆S+O(δ2)
⋆ ≡ eiS

δ

⋆ ⋆ e−iS
⋆ as in (3.45), where O(δ2) refers to terms higher than first order

in the variations. Then, all the above results for variations remain the same by requiring

the non-commutative variation δ⋆S of the action to vanish except for Eq. (3.78), which

becomes undeformed, i.e., we obtain the geometric relation AdgijYji ∓Xij = 0. Thus, the

non-geometric deformation of the constraints does not appear, and we recover exactly the

simplicial geometry relations for the boundary metric variables, regardless of the choice

of a quantization map. In this case the leading order semi-classical contribution to the
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Figure 3.3: Labeling of boundary edge vectors around a vertex for solving the closure
constraints.

Ponzano-Regge amplitude (3.81) reads

ÃPR(Yji) ∝

∫ [ ∏

(i,j)∈N
i<j

dgijdgji
κ3

η(g−1
ji gij)

]


∏

fi∈∂∆

δ⋆

(∑

(i,j)∈N
i<j

AdgjiYji −
∑

(i,j)∈N
j<i

AdgjiYij

)



⋆ exp




i

~

∑

(i,j)∈N
i<j

Yji · ζ(g
−1
ji gij)





(
1 +O(~)

)
, (3.83)

where we have identified Yji := Ad−1
gjiXji = −Ad−1

gijXij for all (i, j) ∈ N such that i <

j. In fact, the integrand is invariant under the change of variables gji 7→ gjikji and

gij 7→ gijkji for kji ∈ U(1)Yji
⊂ SU(2), i < j, i.e., kji belong to the stabilizing U(1)

subgroup of elements such that AdkjiYji = Yji. Therefore, we may further integrate over

the subgroups U(1)Yji
, and we get exactly the same expression (3.83) as above (modulo

the immaterial propotionality constant), but where now gji, gij ∈ SU(2)/U(1)Yji
∼= SO(2)

for all (i, j) ∈ N , i < j.

The ⋆-delta functions in (3.83) impose closure of boundary triangles up to parallel

transports. In order to connect this expression for the path integral to the exact treatment

we gave before, let us now show how the closure constraints imply the flatness of the

boundary connection for trivial boundary topology. Choose an arbitrary boundary vertex

and label the boundary edge vectors associated to the edges around the vertex as in Fig.

3.3, where we indicate the orientations of the vectors by arrows. The closure constraints

for the boundary triangles formed by these edges now read

Yk = AdGk,k−1
Yk−1 +AdHk,k−1

Zk−1 ∀ k = 1, . . . , n , (3.84)

where Gk,k−1 and Hk,k−1 are the parallel transports from the frames of Yk−1 and Zk−1,

respectively, to the frame of Yk (along the edges of the dual graph to the triangulation).
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By combining these equation for all k = 1, . . . , n, we obtain the equality

Y0 = AdG0,0Y0 +
n∑

k=1

AdH0,k
Zk , (3.85)

where G0,0 := G0,n
←−∏

n
k=1Gk,k−1 is the holonomy around the boundary vertex, and H0,k

are parallel transports from the frame of Zk to the frame of Y0. Clearly, this can be

satisfied only if the holonomy G0,0 ∈ U(1)Y0\SU(2)/U(1)Y0 around the boundary vertex

is trivial, and the boundary edges Zk satisfy closure
∑n

k=1AdH0,k
Zk = 0 up to parallel

transports. If the boundary has genus 0 (i.e., trivial topology), then the triviality conditions

for holonomies around vertices impose triviality for all holonomies around cycles on the

dual graph to the triangulation, since any cycle is contractible in that case.

Despite leading to the correct geometric constraints that agree with the exact analysis,

it is not clear to us at the moment if there exists a rigorous mathematical argument for

considering the non-commutative variational method. If one considers ÃPR(Xij) just as an

ordinary function, then the dominant contribution to it is definitely given by the normal

variational method. However, in calculating transition amplitudes for boundary states,

ÃPR(Xij) acts as an integral kernel with respect to the ⋆-product, which may justify the

use of such a non-commutative analysis. Unfortunately, we have not yet found any general

argument for using the non-commutative variations, except for the fact that it leads to the

correct classical equations of motion, and agrees with the intuitive classical limit of the

exact expression (3.71). Therefore, it is still of interest to consider the normal commutative

variations of the amplitudes for different explicit choices of quantization maps to see how

these differ from each other. We will return to the question of non-commutative versus

commutative variational calculus and to a further analysis of the non-commutative semi-

classical limit of the Ponzano-Regge model in our forthcoming publication [50].

Before we go on to consider for the ordinary commutative variational calculus the

stationary phase boundary configurations for some specific choices of the coordinates ζ,

let us make a few general remarks on the dependence of the limit on this choice. As we have

already emphasized above, the exact functional form of the non-commutative plane waves,

and thus the coordinate choice, is determined ultimately by the choice of the quantization

map and the ⋆-product that we thus obtain. We have found the general expression for the

plane wave as a ⋆-exponential

E(g,X) = e
i
~κ

k(g)·X
⋆ =

∞∑

n=0

1

n!

(
i

~κ

)n

ki1(g) · · · kin(g)Xi1 ⋆ · · · ⋆ Xin . (3.86)

From this expression we may observe that the way the Planck constant ~ enters into the

plane wave is very subtle. There are negative powers of (~κ) coming from the prefactor

in the exponential, while from the ⋆-monomials arise positive powers of (~κ). The way
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these different contributions go together determines the explicit functional form of the

non-commutative plane wave, and accordingly the behavior in the classical limit ~ → 0.

Therefore, it is not too surprising that we may eventually find different classical limits

for different choices of plane waves. In particular, it is important to realize that the non-

commutative plane wave itself is purely a quantum object with an ill-defined classical limit,

and therefore has no duty to coincide with anything in this limit. (On the contrary, in the

Euclidean limit κ → 0 we also scale the coordinates ki on the group, so that ki/κ stays

constant, since κ determines the scale associated to the group manifold. Therefore, the

non-commutative plane wave agrees with the usual Euclidean plane wave in this limit.)

For this reason, the stationary phase solutions corresponding to different ⋆-products may

also differ from each other, even though the ⋆-product itself coincides with the pointwise

product in this limit. Only in the Euclidean limit, for which the class angles of the group

elements are scaled simultaneously, do the different choices coincide for the commutative

variational calculus.

Some choices of quantization maps

Symmetric & Duflo quantization maps

We may calculate for the deformation matrix as a function of the canonical coordinates

k(g) = −i lnR(g) the expression

DS
ab(k) =

(
κ|k|

sin(κ|k|)

)[
cos(κ|k|)δab +

(
sin(κ|k|)

κ|k|
− cos(κ|k|)

)
kakb
|k|2

− κǫabck
c

]
. (3.87)

This deformation matrix has the following nice property: DS
ab(k)k

b = ka. This implies,

in particular, that when the edge vectors are stable under the dual connection variables,

AdgijXij = Xij ⇔ k(gij) ∝ Xij , we have DS(gij)Xij = Xij , and therefore recover the

undeformed closure constraints from (3.79). Accordingly, classical geometric boundary

data with AdgijXij = Xij , Xij = −Xji and
∑

j Xij = 0 satisfies the constraint equations

for the symmetric quantization map. Therefore, in the case of geometric boundary data,

we effectively recover the Regge action (modulo the ambiguous path integral measure) in

the classical limit of the first order Ponzano-Regge amplitude for the Duflo (or symmetric)

quantization.

Except for the stability ansatz AdgijXij = Xij , however, there are undoubtedly other

solutions to the constraint equations in addition to the classical geometries, but we have not

explored the possibilities in this general case. It is nevertheless clear that these additional

solutions do not correspond to classical geometries, in general, since for them the closure

constraint is again deformed. Still, at least, we obtain the classical boundary geometries

as a subset of the space of solutions.
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Freidel-Livine-Majid quantization map

For the coordinates pi = − i
2κtr 1

2
(gσi) associated to the Freidel-Livine-Majid quantiza-

tion map, it is straightforward to calculate the deformation matrix

DFLM
kl (g) =

1

2
tr 1

2
(g)δkl +

i

2
tr 1

2
(gσj)ǫjkl ≡

√
1− κ2|p(g)|2 δkl − κp

j(g)ǫjkl . (3.88)

Thus, according to our general description above, the classical discrete geometricity con-

straints are satisfied by the deformed boundary metric variables

DFLM(gij)Xij =
√

1− κ2|p(gij)|2 Xij − κ(p(gij) ∧Xij) . (3.89)

We have not solved these constraints explicitly, which would generically impose relations

between the stationary phase boundary connection gij and the given boundary metric

data Xij . However, one can easily confirm that data corresponding to generic classical

discrete geometries does not satisfy the constraints, and therefore the geometry resulting

from the constraints does not, in general, describe discrete geometries. In particular, for

a classical discrete geometry we would have that AdgijXij = Xij , and that the usual

closure constraint
∑

j Xij = 0 holds for all i. But data satisfying these requirements does

not generically solve the deformed constraints for the FLM quantization map. In fact,

the deformed and the undeformed closure constraints are compatible only for gij ≡ 1, or

equivalently, in the Euclidean limit. Therefore, we conclude that the non-commutative

metric boundary variables do not have a classical geometric interpretation in the case

of FLM quantization map outside the Euclidean approximation, unless one studies the

non-commutative variation of the action instead.



Chapter 4

Conclusions and Outlook

Let us conclude with a summary of the results, and some further research directions, to

which they point.

In the first part of this thesis, we have studied the representations of the quantum

algebra A obtained by canonically quantizing the Poisson algebra P(T ∗G) associated to

the cotangent bundle of a Lie group G. In addition to the usual representation of A on

the Hilbert space of square-integrable functions L2(G) on G, we have seen that a dual

non-commutative representation of A in terms of a function space, which we denote as

L2
⋆(g

∗), on the Lie algebra dual g∗ can be defined by introducing a suitable deformation

quantization ⋆-product, depending only on the chosen quantization map between P(T ∗G)

and A. We further identified the conditions for the existence of the representation. The

non-commutative Fourier transform is then derived as the intertwining map between these

two representations, generalizing in a natural way the usual Fourier transform on Euclidean

space. We have seen that the explicit form of the non-commutative plane wave, which acts

as the integral kernel of the transform, depends again only on the choice of a quantization

map or, equivalently, a deformation quantization ⋆-product. In terms of the canonical

coordinates k(g) = −i lnR(g) ∈ g on G obtained through the logarithm map restricted on

the principal branch, the plane wave was shown to be given by the star-exponential

Eg(X) = e
ik(g)·X
⋆ ,

where X ∈ g∗. This can then, at least in the cases we have considered, be equivalently

expressed as a standard exponential for some (a priori different) choice of coordinates

on the group multiplied by a class function, also following canonically from the choice of

quantization map.

These results show that the possibility of a non-commutative representation does not

require the existence of the group representation, but only a choice of quantization map.

The non-commutative representation for the quantum system, in other words, can stand

on its own feet. Of course, which representation is more convenient to use depends on the
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specific question being tackled, as different representations have different advantages. The

results also offer a new perspective on the non-commutative Fourier transform and some

more insights into the various elements entering in its definition (e.g., the choice of coor-

dinates), and lead to a prescription for how to define plane waves for generic quantization

maps. This also clarifies the relation with the so-called quantum group Fourier transform

of Majid, extending the work of Freidel & Majid [26].

In general, for an arbitrary quantization map and corresponding ⋆-product, the nec-

essary conditions for the existence of the non-commutative representation would not be

satisfied. However, we have provided some explicit and non-trivial examples satisfying the

necessary conditions of the above construction for the Lie groups R, U(1) and SU(2). In

particular, for SU(2) we considered examples corresponding to three different choices of

quantization maps: the symmetric map, the Duflo map, and the so-called Freidel-Livine-

Majid map used in the quantum gravity literature. For all examples, we have provided the

corresponding ⋆-product, non-commutative representation and plane waves explicitly. On

the one hand, these examples prove the non-emptiness of the definitions provided together

with the existence of their non-commutative representation and of their non-commutative

Fourier transforms. On the other hand, the results of specific quantization maps find direct

applications to physics, as shown in the second part of the thesis.

Besides clarifying some aspects and the underlying logic of the construction of the non-

commutative representation and of the non-commutative Fourier transform, we expect

these results to have further interesting applications in the study of specific quantum

systems arising from the quantization of the phase space we started from. In particular,

we hope to have provided new tools to the development of quantum gravity models in the

context of loop quantum gravity and group field theory. For example, a possible application

of our construction would be to study the flux representation of loop quantum gravity and

the corresponding coherent states for the Duflo map, extending the work of [16, 53]. In

the same direction, the construction of a new 4d gravity model along the same lines as

[8] can now be performed for the non-commutative representation corresponding, again,

to the Duflo map, and it would be very interesting to identify clearly the consequences

for the resulting model of the nice mathematical properties of such a quantization map.

On the other hand, a generalization of the non-commutative representation and the non-

commutative Fourier transform to homogeneous spaces that are endowed with a transitive

action of a weakly exponential Lie group should also be possible.

In the second part of the thesis we considered applications of the non-commutative

representation to some models of physics. We first considered quantum mechanics on a Lie

group, and showed that, starting from the canonical formulation of quantum mechanics on

a Lie group G, a first order path integral can be derived using non-commutative momentum

variables obtained via the non-commutative Fourier transform. This was shown to produce
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the correct equations of motion in the classical limit ~→ 0, but only by taking into account

the quantum deformation of phase space structure in the variational calculus. Moreover,

in the case G = SU(2) we verified the quantum corrections to the classical Hamiltonian,

which in this approach arise from the non-commutative structure, to be consistent with

earlier results in the literature.

The advantages of the approach we have studied are the following: On the one hand,

it provides an alternative to the use of representation theory, and a more intuitive picture

of the quantum dynamics by representing the system with continuous non-commutative

momentum variables, which correspond to the classical momentum variables in the classical

limit. On the other hand, this approach makes the semi-classical analysis much more

straightforward, because one can easily apply the stationary phase approximation to the

phase space path integral.

We have learned from the analysis the following:

• Given the classical phase space of the theory, the use of the non-commutative Fourier

transform and of the ⋆-product described above is very natural, and seems to provide

a correct conjugate representation for quantum states.

• Similarly, it is welcome that the dynamics of the theory in terms of the dual non-

commutative variables takes the form of the expected first order path integral.

• In the case considered, the non-trivial phase space structure gives naturally rise to

quantum corrections into the classical action.

• The use of non-commutative dual variables is advantageous in the study of the semi-

classical approximation, because it brings the quantum dynamics in the form of a

path integral.

• Finally, the additional parameter determining the physical scale of the group man-

ifold (denoted λ above) could play an important role in studying the commutative

Euclidean approximation, which is independent from the classical one.

Altogether, these results further indicate that the new non-commutative variables make

sense, both mathematically and physically, and that the non-commutative methods can

be applied successfully, where found advantageous.

As a second application to physics, we considered the non-commutative metric rep-

resentation of the Ponzano-Regge spin foam model for 3-dimensional quantum gravity

obtained via the non-commutative Fourier transform. In particular, we applied the non-

commutative Fourier transform to express the Ponzano-Regge spin foam amplitude as a

first order phase space path integral in terms of non-commutative metric boundary data.

This reformulation then allowed us to study conveniently the classical limit of the full am-

plitude. We discovered that depending on the choice of non-commutative structure arising



74 CHAPTER 4. CONCLUSIONS AND OUTLOOK

from the deformation quantization applied to the geometric operators, different limiting

behaviors appear for the boundary data. For the normal commutative variational method,

the constraints that arise as the classical equations of motion do not always correspond to

discrete geometries, since the edge vectors in the constraint equations are deformed due

to the non-linearity of the group manifold. In general, only by taking into account the

deformation of phase space structure in studying the variations, as in the case of quantum

mechanics above, we find the undeformed geometrical constraints.

For the examples we considered, we found that in the cases of non-commutative struc-

tures arising from symmetric and Duflo quantization maps, we recover the geometric clo-

sure constraints when each boundary edge vector is stable under the dual parallel transport,

as for classical discrete geometries. Vice versa, if we impose closure on the boundary data,

then the constraints are satisfied by bulk connections corresponding to classical discrete ge-

ometries. However, other non-geometric solutions also exist. For the Freidel-Livine-Majid

non-commutative metric representation, popular in the literature, we found that the clas-

sical limit does not give rise to discrete geometries in the boundary metric variables, for

classical metric boundary data does not solve the constraints in this case.

There are several conclusions to be drawn from these results. First, we have seen

that the non-commutative Fourier transform facilitates the full asymptotic analysis of spin

foam models. As the formalism of non-commutative Fourier transform has been extended

to all exponential Lie groups in the first part of this thesis, and in particular to the case

of the double cover SL(2,C) of the Lorentz group, we hope also to extend our asymptotic

analysis to the 4-dimensional spin foam models in future work. However, for the ordinary

commutative variations, different choices for the explicit form of the non-commutative

Fourier transform seem to lead to different properties of the metric boundary variables,

some of which do not allow a discrete geometrical interpretation in the classical limit. Only

by studying the non-commutative variations we recover the classical geometric constraints

for all cases of non-commutative structures. This curious feature asks for further analysis,

and must be taken into account in any future application of the non-commutative methods

to spin foam models. We intend to address this issue further in a forthcoming publication

[50].

In summary, we have provided a mathematical basis for the non-commutative repre-

sentation of quantum algebras associated to exponential Lie groups, and demonstrated

its usefulness in the analysis of different physics models. Naturally, the scope of further

mathematical and physical applications of such a dual representation may be much vaster

than what we have been able to present within this thesis. It is left for the future research

to show its full extent.



Summary

The topic of this thesis is a new representation for quantum systems on weakly expo-

nential Lie groups in terms of a non-commutative algebra of functions, the associated

non-commutative harmonic analysis, and some of its applications to specific physical sys-

tems.

In the first part of the thesis, after a review of the necessary mathematical background,

we introduce a ∗-algebra that is interpreted as the quantization of the canonical Poisson

structure of the cotangent bundle over a Lie group. From the physics point of view, this

represents the algebra of quantum observables of a physical system, whose configuration

space is a Lie group. We then show that this quantum algebra can be represented either as

operators acting on functions on the group, the usual group representation, or (under suit-

able conditions) as elements of a completion of the universal enveloping algebra of the Lie

group, the algebra representation. We further apply the methods of deformation quantiza-

tion to obtain a representation of the same algebra in terms of a non-commutative algebra

of functions on a Euclidean space, which we call the non-commutative representation of the

original quantum algebra. The non-commutative space that arises from the construction

may be interpreted as the quantum momentum space of the physical system. We derive

the transform between the group representation and the non-commutative representation

that generalizes in a natural way the usual Fourier transform, and discuss key properties

of this new non-commutative harmonic analysis. Finally, we exhibit the explicit forms of

the non-commutative Fourier transform for three elementary Lie groups: Rd, U(1) and

SU(2).

In the second part of the thesis, we consider application of the non-commutative rep-

resentation and harmonic analysis to physics. First, we apply the formalism to quantum

mechanics of a point particle on a Lie group. We define the dual non-commutative mo-

mentum representation, and derive the phase space path integral with the help of the

non-commutative dual variables. In studying the classical limit of the path integral, we

show that we recover the correct classical equations of motion for the particle, if we account

for the deformation of the phase space in the variational calculus. The non-commutative

variables correspond in this limit to the classical momentum variables, further verifying

their physical interpretation. We conclude that the non-commutative harmonic analysis

facilitates a convenient study of the classical limit of quantum dynamics on a Lie group

even if the group is compact, in which case variational calculus cannot easily be applied. As

the second physics application, we repeat our above considerations for the case of Ponzano-

Regge spin foam model for 3-dimensional quantum gravity. The non-commutative dual

variables correspond in this case to discrete metric variables, thus illuminating the geomet-

rical interpretation of the model. Again, we find that a convenient study of the classical

limit is made possible through the non-commutative phase space path integral.
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Zusammenfassung
Das Thema dieser Arbeit ist eine neue Darstellung für Quantensysteme auf schwach exponen-

tiellen Lie-Gruppen im Sinne einer nichtkommutativen Algebra von Funktionen, die zugehörige

nichtkommutative harmonische Analyse, und einige ihrer Anwendungen auf bestimmte physikalis-

che Systeme.

Im ersten Teil der Arbeit, nach einem überblick über den notwendigen mathematischen Hinter-

grund, führen wir eine ∗-Algebra ein, die als Quantisierung der kanonischen Poisson-Struktur des

Kotangentialbündels über eine Lie-Gruppe interpretiert wird. Aus physikalischer Sicht stellt diese

die Algebra der Quantenobservablen eines physikalischen Systems dar, dessen Konfigurationsraum

eine Lie-Gruppe ist. Wir zeigen dann, dass diese Quantenalgebra eine Darstellung entweder als Op-

eratoren hat, welche auf Funktionen auf der Gruppe wirken, die übliche Gruppen-Darstellung, oder

(unter geeigneten Bedingungen) als Elemente einer Vervollständigung der universellen einhüllen-

den Algebra der Lie-Gruppe, die Algebra-Darstellung. Weiterhin wenden wir die Methode der

Deformierungs-Quantisierung an, um eine Darstellung derselben Algebra als nichtkommutative Al-

gebra von Funktionen auf einem euklidischen Raum zu erhalten, die wir als nichtkommutative

Darstellung der ursprünglichen Quantenalgebra bezeichnen. Der aus dieser Konstruktion resul-

tierende nichtkommutative Raum kann als Quanten-Impulsraum des physikalischen Systems in-

terpretiert werden. Wir leiten die Transformation zwischen der Gruppen-Darstellung und der

nichtkommutativen Darstellung her, die auf natürliche Weise die übliche Fourier-Transformation

verallgemeinert, und besprechen wichtige Eigenschaften dieser neuen nichtkommutativen harmonis-

chen Analyse. Schlie’ilich präsentieren wir die explizite Form der nichtkommutativen Fourier-Trans-

formation am Beispiel dreier elementarer Lie-Gruppen: Rd, U(1) und SU(2).

Im zweiten Teil der Arbeit betrachten wir die Anwendung der nichtkommutativen Darstellung

und der harmonischen Analyse auf die Physik. Zuerst wenden wir den Formalismus auf die Quan-

tenmechanik eines Punktteilchens auf einer Lie-Gruppe an. Wir definieren die duale nichtkommu-

tative Impulsdarstellung und leiten das Phasenraum-Pfadintegral mit Hilfe der nichtkommutativen

dualen Variablen her. Bei der Untersuchung des klassischen Limes des Pfadintegrals zeigen wir,

dass wir die richtigen klassischen Bewegungsgleichungen für das Teilchen erhalten, wenn wir in der

Variationsrechnung die Deformierung des Phasenraums berücksichtigen. Die nichtkommutativen

Variablen entsprechen in diesem Limes den klassischen Impuls-Variablen, womit ihre physikalis-

chen Interpretation weiterhin bestätigt wird. Wir schlie’ien daraus, dass die nichtkommutative

harmonische Analyse ein zweckmäßiges Studium des klassischen Limes der Quantendynamik auf

einer Lie-Gruppe ermöglicht, selbst wenn die Gruppe kompakt ist, in welchem Fall die Variation-

srechnung nicht leicht angewendet werden kann. Als zweite physikalische Anwendung wiederholen

wir unsere obigen Betrachtungen für den Fall des Ponzano-Regge-Spinfoam-Modells für dreidimen-

sionale Quantengravitation. Die dualen nichtkommutativen Variablen entsprechen in diesem Fall

diskreten Metrik-Variablen und erhellen damit die geometrische Interpretation des Modells. Auch

hier finden wir, dass das Studium des klassischen Limes in geeigneter Weise durch das nichtkom-

mutative Phasenraum-Pfadintegral ermöglicht wird.
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