The Paleostress History

of the Central European Basin System

Judith Sippel

The Paleostress History

of the Central European Basin System

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

dem Fachbereich Geowissenschaften

der Freien Universität Berlin

vorgelegt von

Judith Sippel

Berlin, 2009

- Gutachter: Prof. Dr. Onno Oncken Freie Universität Berlin Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum – GFZ
 Gutachter: Prof. Dr. Klaus Reicherter
- 2. Gutachter: Prof. Dr. Klaus Reicherter Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)

Tag der Disputation: 13.02.2009

Eidesstattliche Erklärung

Hiermit versichere ich, dass die vorliegende Dissertation ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Literatur angefertigt wurde. Die Stellen der Arbeit, die anderen Werken wörtlich oder inhaltlich entnommen sind, wurden durch entsprechende Angaben der Quellen kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Potsdam, November 2008

to my family

Contents

Abstract

Zusammenfassung

1	Introduction	5
	1.1 Paleostress analysis	7
	1.2 Geological Setting of the CEBS	8
	1.3 Study areas	11
	1.3.1 The southern margin of the CEBS	11
	1.3.2 The Oslo Graben area	16
2	Fault-slip analysis and paleostress reconstruction	20
	2.1 Basics	20
	2.1.1 Multiple Inverse Method (MIM; Yamaji, 2000)	23
	2.1.2 PBT-axes Method (PBT; Sperner et al., 1993)	24
	2.2 A new strategy for stress inversion from (heterogeneous) fault-slip data	25
	2.2.1 Stress Inversion Via Simulation (SVS)	25
	2.2.2 Stress inversion by MIM and simulation - a comparative test	29
	2.2.3 Discussion	31
	2.2.4 Summary	32
	2.3 From local fault-slip data to regional stress fields	35
	2.3.1 Data acquisition	35
	2.3.2 Data presentation	36
	2.3.3 Data correction	36
	2.3.4 Stress inversion	36
	2.3.5 Constraints on the chronology of stress states	37
3	Structural evolution of the CEBS – state of the art	42
	3.1 Initial rift phase	42
	3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence	42 43
	 3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence 3.3 Mid-Triassic – Jurassic phase of E-W extension 	42 43 45
	 3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence 3.3 Mid-Triassic – Jurassic phase of E-W extension 3.4 Mid-Jurassic phase of uplift 	42 43 45 46
	 3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence 3.3 Mid-Triassic – Jurassic phase of E-W extension 3.4 Mid-Jurassic phase of uplift 3.5 Late Jurassic – Early Cretaceous phase of localized subsidence 	42 43 45 46 47
	 3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence 3.3 Mid-Triassic – Jurassic phase of E-W extension 3.4 Mid-Jurassic phase of uplift 3.5 Late Jurassic – Early Cretaceous phase of localized subsidence 3.6 Late Cretaceous – Early Tertiary phase of inversion 	42 43 45 46 47 48
	 3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence 3.3 Mid-Triassic – Jurassic phase of E-W extension 3.4 Mid-Jurassic phase of uplift 3.5 Late Jurassic – Early Cretaceous phase of localized subsidence 3.6 Late Cretaceous – Early Tertiary phase of inversion 3.7 Cenozoic subsidence and transition to present-day stress conditions 	42 43 45 46 47 48 50
	 3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence 3.3 Mid-Triassic – Jurassic phase of E-W extension 3.4 Mid-Jurassic phase of uplift 3.5 Late Jurassic – Early Cretaceous phase of localized subsidence 3.6 Late Cretaceous – Early Tertiary phase of inversion 3.7 Cenozoic subsidence and transition to present-day stress conditions 3.8 Salt tectonics 	42 43 45 46 47 48 50 51
4	 3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence 3.3 Mid-Triassic – Jurassic phase of E-W extension 3.4 Mid-Jurassic phase of uplift 3.5 Late Jurassic – Early Cretaceous phase of localized subsidence 3.6 Late Cretaceous – Early Tertiary phase of inversion 3.7 Cenozoic subsidence and transition to present-day stress conditions 3.8 Salt tectonics The southern margin of the CEBS	42 43 45 46 47 48 50 51 53
4	 3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence 3.3 Mid-Triassic – Jurassic phase of E-W extension 3.4 Mid-Jurassic phase of uplift 3.5 Late Jurassic – Early Cretaceous phase of localized subsidence 3.6 Late Cretaceous – Early Tertiary phase of inversion 3.7 Cenozoic subsidence and transition to present-day stress conditions 3.8 Salt tectonics The southern margin of the CEBS 4.1 Estimated paleostress tensors	42 43 45 46 47 48 50 51 53 53
4	 3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence 3.3 Mid-Triassic – Jurassic phase of E-W extension 3.4 Mid-Jurassic phase of uplift 3.5 Late Jurassic – Early Cretaceous phase of localized subsidence 3.6 Late Cretaceous – Early Tertiary phase of inversion 3.7 Cenozoic subsidence and transition to present-day stress conditions 3.8 Salt tectonics The southern margin of the CEBS 4.1 Estimated paleostress tensors 4.2 Analysis of chronological indicators	42 43 45 46 47 48 50 51 53 53 62
4	 3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence 3.3 Mid-Triassic – Jurassic phase of E-W extension 3.4 Mid-Jurassic phase of uplift 3.5 Late Jurassic – Early Cretaceous phase of localized subsidence 3.6 Late Cretaceous – Early Tertiary phase of inversion 3.7 Cenozoic subsidence and transition to present-day stress conditions 3.8 Salt tectonics The southern margin of the CEBS 4.1 Estimated paleostress tensors 4.2 Analysis of chronological indicators 4.2.1 Faulting vs. folding 	42 43 45 46 47 48 50 51 53 53 62 63
4	 3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence 3.3 Mid-Triassic – Jurassic phase of E-W extension 3.4 Mid-Jurassic phase of uplift 3.5 Late Jurassic – Early Cretaceous phase of localized subsidence 3.6 Late Cretaceous – Early Tertiary phase of inversion 3.7 Cenozoic subsidence and transition to present-day stress conditions 3.8 Salt tectonics The southern margin of the CEBS 4.1 Estimated paleostress tensors 4.2 Analysis of chronological indicators 4.2.1 Faulting vs. folding 4.2.2 Stress states vs. large-scale structures - the Osning Lineament area 	42 43 45 46 47 48 50 51 53 53 62 63 71
4	 3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence 3.3 Mid-Triassic – Jurassic phase of E-W extension 3.4 Mid-Jurassic phase of uplift 3.5 Late Jurassic – Early Cretaceous phase of localized subsidence 3.6 Late Cretaceous – Early Tertiary phase of inversion 3.7 Cenozoic subsidence and transition to present-day stress conditions 3.8 Salt tectonics The southern margin of the CEBS 4.1 Estimated paleostress tensors 4.2 Analysis of chronological indicators 4.2.1 Faulting vs. folding 4.2.2 Stress states vs. large-scale structures - the Osning Lineament area 4.2.3 Oblique stress states 	42 43 45 46 47 48 50 51 53 53 62 63 71 72
4	 3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence 3.3 Mid-Triassic – Jurassic phase of E-W extension 3.4 Mid-Jurassic phase of uplift 3.5 Late Jurassic – Early Cretaceous phase of localized subsidence 3.6 Late Cretaceous – Early Tertiary phase of inversion 3.7 Cenozoic subsidence and transition to present-day stress conditions 3.8 Salt tectonics The southern margin of the CEBS 4.1 Estimated paleostress tensors 4.2 Analysis of chronological indicators 4.2.1 Faulting vs. folding 4.2.2 Stress states vs. large-scale structures - the Osning Lineament area 4.2.3 Oblique stress states 	42 43 45 46 47 48 50 51 53 53 62 63 71 72 77
4	 3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence 3.3 Mid-Triassic – Jurassic phase of E-W extension 3.4 Mid-Jurassic phase of uplift 3.5 Late Jurassic – Early Cretaceous phase of localized subsidence 3.6 Late Cretaceous – Early Tertiary phase of inversion 3.7 Cenozoic subsidence and transition to present-day stress conditions 3.8 Salt tectonics The southern margin of the CEBS 4.1 Estimated paleostress tensors 4.2 Analysis of chronological indicators 4.2.1 Faulting vs. folding 4.2.2 Stress states vs. large-scale structures - the Osning Lineament area 4.2.3 Oblique stress states 4.3 Cross-outcrop correlation of paleostress states 4.3.1 Consistencies between folding and faulting 	42 43 45 46 47 48 50 51 53 53 62 63 71 72 77 77
4	 3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence 3.3 Mid-Triassic – Jurassic phase of E-W extension 3.4 Mid-Jurassic phase of uplift 3.5 Late Jurassic – Early Cretaceous phase of localized subsidence 3.6 Late Cretaceous – Early Tertiary phase of inversion 3.7 Cenozoic subsidence and transition to present-day stress conditions 3.8 Salt tectonics The southern margin of the CEBS 4.1 Estimated paleostress tensors 4.2 Analysis of chronological indicators 4.2.1 Faulting vs. folding 4.2.2 Stress states vs. large-scale structures - the Osning Lineament area 4.3.1 Consistencies between folding and faulting 4.3.2 Locally estimated chronologies of paleostress states 	42 43 45 46 47 48 50 51 53 53 62 63 71 72 77 77 78
4	 3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence 3.3 Mid-Triassic – Jurassic phase of E-W extension 3.4 Mid-Jurassic phase of uplift 3.5 Late Jurassic – Early Cretaceous phase of localized subsidence 3.6 Late Cretaceous – Early Tertiary phase of inversion 3.7 Cenozoic subsidence and transition to present-day stress conditions 3.8 Salt tectonics The southern margin of the CEBS 4.1 Estimated paleostress tensors 4.2 Analysis of chronological indicators 4.2.1 Faulting vs. folding 4.2.2 Stress states vs. large-scale structures - the Osning Lineament area 4.3.1 Consistencies between folding and faulting 4.3.2 Locally estimated chronologies of paleostress states 4.3.3 Consistencies in the directions of principal axes 	42 43 45 46 47 48 50 51 53 53 62 63 71 72 77 77 78 81
4	 3.1 Initial rift phase 3.2 Post-rift phase of thermal subsidence 3.3 Mid-Triassic – Jurassic phase of E-W extension 3.4 Mid-Jurassic phase of uplift 3.5 Late Jurassic – Early Cretaceous phase of localized subsidence 3.6 Late Cretaceous – Early Tertiary phase of inversion 3.7 Cenozoic subsidence and transition to present-day stress conditions 3.8 Salt tectonics The southern margin of the CEBS 4.1 Estimated paleostress tensors 4.2 Analysis of chronological indicators 4.2.1 Faulting vs. folding 4.2.2 Stress states vs. large-scale structures - the Osning Lineament area 4.3.1 Consistencies between folding and faulting 4.3.2 Locally estimated chronologies of paleostress states 4.3.3 Consistencies in the directions of principal axes 4.4 Regional vs. local phenomena 	42 43 45 46 47 48 50 51 53 53 62 63 71 72 77 77 78 81 84

8	Acknowledgements	149
7	References	135
6	Synthesis	129
	5.4 Conclusions	127
	5.3.2 Mechanisms	124
	5.3.1 Chronology	123
	5.3 Discussion	123
	5.2.2 Regional implications	109
	5.2.1 Direct constraints on the relative timing of stress states	109
	5.2 Estimated paleostress states	103
	5.1.3 Post-rift evolution	103
	5.1.2 Permo-Carboniferous rift evolution	102
	5.1.1 Geometry and structure of the Oslo Rift System	101
3	5.1 The Oslo Graben as part of the Oslo Rift System	101
5	The Osla Crahan area	101
	4.6 Summary and conclusions	100
	4.5.2 Mechanisms	96
	4.5.1 Chronology	93
	4.5 Discussion	93
	4.4.5 Local phenomena	91
	4.4.4 Tensional stress states postdating compressional or strike-slip stress states	90
	4 4 3 Strike-slip stress states with a W- to NNW-directed maximum compression	88
	4.4.2 Strike-slip stress states with a N- to NE-directed maximum compression	86

Parts of Chapters 2 and 4 are already in press in the following journal:

Paleostress states at the south-western margin of the Central European Basin System application of fault-slip analysis to unravel a polyphase deformation pattern Sippel, J., Scheck-Wenderoth, M., Reicherter, K. and Mazur, S. Tectonophysics (in press), available online since April 2008, DOI: 10.1016/j.tecto.2008.04.010

Abstract

The Central European Basin System (CEBS) in North Central Europe is a complex intracontinental system of sedimentary basins that evolved through several geodynamic phases since Late Carboniferous times. At present, the basin system is framed by the Tornquist Zone in the north and the Elbe Fault System in the south. The main structural configuration of the basin system is well established due to decades of scientific research and intense industrial exploration for mineral resources. The scope of this PhD thesis is to assess which paleostress fields controlled the evolution of the basin system.

The base for the present study is provided by fault-slip data (striated fault planes with known sense of slip) measured in outcrops of two structural domains: along the Elbe Fault System as part of the inverted southern margin of the CEBS (906 fault-slip data) and in the Oslo Graben area located north of the Tornquist Zone (2191 data). The first part of this thesis (Chapter 2) introduces a new strategy for estimating paleostress states from heterogeneous sets of fault-slip data (Stress Inversion Via Simulation, SVS). This stepwise technique combines two well established methods, the PBT-axes-Method (Sperner et al., 1993) and the Multiple Inverse Method (Yamaji, 2000), with a final simulation of stress states (Yamaji & Sato, 2005). The simulation allows interactively fitting the parameters of a 'reduced stress tensor' comprising (1) the directions of the principal stress axes, σ_1 , σ_2 , σ_3 (with $\sigma_1 \ge \sigma_2 \ge \sigma_3$) and (2) the ratio of principal stress differences, $R=(\sigma_2-\sigma_3)/(\sigma_1-\sigma_3)$, to a set of fault-slip data. One improvement of SVS compared to former stress inversion techniques is that an estimated stress tensor fulfils both the criterion of low misfit angles (Wallace-Bott slip criterion) and that of high shear-to-normal-stress ratios (Mohr-Coulomb criterion) for the associated faults.

In the second part of this thesis (Chapters 4 and 5), estimated paleostress tensors -77 tensors from the Elbe Fault System area and 194 tensors from the Oslo Graben area - are presented. It is demonstrated, that based on occurrences of stress states in different stratigraphic formations, chronological constraints derived from field observations, and consistencies in the reduced stress tensors, most of the locally estimated stress states can be related to a small number of regionally traceable stress fields.

A compressional stress field with a horizontal NW-SE-directed maximum compression (σ_1) characterises the Caledonian imprint in the Oslo Graben area. The most prominent regional stress field reconstructed in the Oslo Graben area is tensional in character with a horizontal WNW-ESE-directed σ_3 and related to the stages of Permo-Carboniferous rifting. The youngest stress states detected correspond to a wrench regime with a roughly N-S-directed σ_1 and a maximum age of Permian. The absolute timing of this stress field is poorly constrained because of the lack of any exposed rocks younger than Permian. Possibly, the Oslo Graben area remained widely unaffected by any major tectonic activity during much of the Mesozoic and Cenozoic.

The oldest and predominant regional stress fields reconstructed for the Elbe Fault System area are related to the Late Cretaceous - Early Tertiary phase of inversion that affected much of the CEBS. The phase of inversion was controlled by a horizontal N-S- to NE-SW-directed σ_1 which characterised both an older compressional stress field as well as a younger strike-slip stress field. Strike-slip stress states with horizontal E-W- to NW-SE-directed σ_1 -axes, on the other hand, might be interpreted as indicating a separate regional stress field that postdated the inversion or as being related to permutations of principal axes still under the N-S- to NE-SWdirected strike-slip stress field of inversion. The youngest reconstructed stress regime in the Elbe Fault System area is tensional in character combining various directions of horizontal extension. The associated stress states locally reveal low stress ratios indicating vertical flattening which partly can be related to the occurrence and potential movements of salt structures underneath. The scarcity of pre-Late Cretaceous signs of faulting in the Elbe Fault System area indicates that the inversion-related deformation widely overprinted potential traces of earlier deformation which corresponds to an extensive "reprogramming" of the observable strain patterns along the inverted southern margin of the CEBS.

Finally, the last part of this thesis presents implications drawn from a synthesis of various studies on paleostresses and recent stresses in North Central Europe. Since the stress fields from the two study areas cannot be correlated temporally, conclusions on the Permo-Carboniferous to recent evolution of stress fields affecting the entire Central European Basin System are strongly limited. The lack of any indications of Late Cretaceous - Early Tertiary inversion tectonics in the Oslo Graben area might be related to the N-S trend of this fault-bounded block which like other N-S-trending domains in the CEBS was in line with the N-S-directed contraction during inversion. Another explanation may be provided by strain localisation along the Tornquist Zone due to which the Oslo Graben area has been shielded from inversion-related far field stresses. Strain localisation along the Elbe Fault System and the Tornquist Zone exposes the special role of these pre-existing zones of crustal weakness for the spatial variation of stresses and strain patterns.

Zusammenfassung

Das Zentraleuropäische Beckensystem (CEBS) im nördlichen Zentraleuropa ist ein komplexes intrakontinentales System sedimentärer Becken, das sich seit dem spätesten Karbon im Zuge verschiedener geodynamischer Phasen entwickelt hat. Die gegenwärtige Struktur dieses Beckensystems wird entscheidend durch die Tornquist Störungszone im Norden und das Elbe-Störungssystem im Süden geprägt. Das strukturelle Inventar dieses Beckensystems ist weitgehend bekannt, was eine Folge jahrzehntelanger wissenschaftlicher Aktivitäten und industrieller Untersuchungen zur Exploration mineralischer Rohstoffe im Gebiet ist. Im Rahmen dieser Dissertation zu Erlangung des akademischen Grades Dr. rer. nat. soll rekonstruiert werden, welche tektonischen Paläospannungsfelder die Entwicklung des CEBS kontrollierten.

Die vorliegende Studie basiert auf Harnischflächen-Daten (gestriemte Störungsflächen mit bekanntem Bewegungssinn), die in Aufschlüssen zweier struktureller Einheiten eingemessen wurden: zum einen entlang des Elbe-Störungssystems am invertierten Südrand des CEBS (906 Daten), zum anderen im Gebiet des Oslograbens nördlich der Tornquist Störungszone (2191 Daten). Im ersten Teil dieser Arbeit wird eine neue Strategie zur Ermittlung von Paläospannungszuständen aus heterogenen und polyphasen Harnischflächen-Datensätzen vorgestellt (Spannungsinversion mittels Simulation, SVS). Dieses schrittweise Verfahren kombiniert zwei bereits bewährte Methoden, die PBT-Achsenmethode (Sperner et al., 1993) die Multiple Inversionsmethode (Yamaji, 2000), mit einer abschließenden und Spannungssimulation (Yamaji & Sato, 2005). Mittels Spannungssimulation können die Spannungstensors', Parameter des reduzierten Richtungen d.h. die der Hauptspannungsachsen σ_1 , σ_2 , σ_3 (mit $\sigma_1 \ge \sigma_2 \ge \sigma_3$) und der Spannungsdifferenzenquotient, $R=(\sigma_2-\sigma_3)/(\sigma_1-\sigma_3)$, variiert und interaktiv an einen Harnischflächen-Datensatz angepasst werden. Eine Optimierung, die SVS gegenüber früheren Inversionsmethoden auszeichnet, betrifft die Qualität der ermittelten Spannungstensoren: sie passen optimal zu den betrachteten Harnischflächen-Daten, da sie nicht nur die beobachteten Scherrichtungen herbeiführen, sondern auch ein großes Verhältnis zwischen Scher- und Normalspannung auf den Flächen induzieren würden (Wallace-Bott-Scherbewegungskriterium und Reibungskriterium erfüllt).

Im zweiten Teil dieser Dissertation werden die ermittelten Paläospannungstensoren präsentiert: 77 Tensoren aus dem Gebiet des Elbe-Störungssystems und 194 Tensoren aus dem Gebiet des Oslo Grabens. Es wird gezeigt, dass sich diese lokal ermittelten Paläospannungen aufgrund ihre Auftretens in verschieden alten Gesteinsformationen, aufgrund von Geländebefunden zu relativen Altersbeziehungen und aufgrund von Übereinstimmungen in den Parametern der "reduzierten Spannungstensoren" zu wenigen regional wirkenden Spannungsfeldern vereinen lassen.

Ein kompressionales Spannungsfeld mit horizontaler NW-SE-gerichteter maximaler Kompression (σ_1) charakterisiert die Einflüsse der Kaledonischen Orogenese im Gebiet des Oslograbens. Das am stärksten ausgeprägte regionale Paläospannungsfeld im Oslograbengebiet entspricht einem extensionalen Regime mit horizontaler WNW-ESEgerichteter σ_3 -Achse. Dieses Paläospannungsfeld kann zeitlich der Hauptphase der permokarbonen Riftentstehung im Gebiet zugeordnet werden. Die jüngsten rekonstruierten Paläospannungstensoren im Oslograbengebiet entsprechen einem Seitenverschiebungsregime mit etwa N-S-gerichteter σ_1 -Achse. Diese Paläospannungen sind maximal permischen Alters, wobei sich ihr absolutes Alter aufgrund des Fehlens mesozoischer und känozoischer Gesteinsformationen nicht weiter spezifizieren lässt. Es ist möglich, dass das Oslograbengebiet über weite Zeiträume des Mesozoikums und Känozoikums nicht von stärkeren tektonischen Aktivitäten erfasst wurde.

Die ältesten und zugleich am deutlichsten erkennbaren regionalen Paläospannungsfelder, die für das Gebiet des Elbe-Störungssystems ermittelt wurden, lassen sich mit der spätkretazischfrühtertiären Phase der Beckeninversion in weiten Teilen des CEBS in Verbindung bringen. Diese Phase der Inversion wurde von einer horizontalen N-S- bis NE-SW-gerichteten σ_1 -Achse beherrscht, die sowohl ein älteres Kompressions- als auch ein jüngeres Seitenverschiebungsfeld charakterisiert. Lokal auftretende Seitenverschiebungsspannungen mit horizontal E-W- bis NW-SE-gerichteter σ_1 -Achse können zum einen als ein separates, nach der Inversion eintretendes Spannungsfeld interpretiert werden. Zum anderen lassen sie sich auch durch lokale Permutationen von Hauptspannungsachsen während der Seitenverschiebungsphase der Inversion erklären. Die jüngsten Paläospannungen im Elbe-Störungssystem entsprechen einem extensionalen Regime, das durch eine große Variation lokaler Extensionsrichtungen (σ_3) gekennzeichnet ist. Verbreitet sind diese Spannungen mit niedrigen Spannungsdifferenzenquotienten verbunden, die zum Teil mit dem Auftreten und den potentiellen Bewegungen von Salzstrukturen im Untergrund in Verbindung gebracht werden können. Die seltene Nachweisbarkeit von prä-spätkretazischer Störungsaktivität im Gebiet des Elbe-Störungssystems ist ein Indiz dafür, dass Spuren älterer Deformationsphasen im Zuge der Inversion großflächig überprägt wurden, was einer weitgehenden "Neuprogrammierung" der beobachtbaren Deformationsmuster gleichkommt.

Im abschließenden Teil dieser Arbeit werden Schlussfolgerungen formuliert, die auf einer Synthese verschiedener Studien zu Paläospannungen und rezenten Spannungsfeldern im nördlichen Zentraleuropa basieren. Da eine zeitliche Korrelation der in den zwei Untersuchungsgebieten ermittelten Paläospannungen möglich sind nicht ist. Schlussfolgerungen, die die permo-karbone bis rezente Entwicklung von Paläospannungen im gesamten Zentraleuropäischen Beckensystem betreffen, stark eingeschränkt. Das Fehlen jeglicher Indikationen für eine spätkretazisch-frühtertiäre Deformation im Oslograbengebiet könnte Folge der N-S-Ausrichtung dieser strukturellen Einheit sein, die somit (ähnlich wie andere N-S-gerichtete Strukturen im CEBS) für eine Reaktivierung durch N-S-gerichtete Kontraktion und Inversion nicht geeignet war. Ein alternatives Szenario berücksichtigt die starke Konzentration von Deformation auf Gebiete der Tornquist Störungszone, durch die das Oslograbengebiet gegen die Fernwirkung inversionssteuernder Spannungen eventuell abgeschirmt wurde. Die Lokalisation von Deformation auf die Gebiete des Elbe-Störungssystems und der Tornquist Störungszone spiegelt den Einfluss präexistierender krustaler Schwächezonen auf die räumliche Variation und den örtlichen Wirkungsgrad von Spannungsfeldern wider.

1 Introduction

Understanding sedimentary basins is of great and ever growing importance for society as these geological archives provide great amounts of economic recourses as oil and water while at the same time they are getting in the focus for waste disposal and the usage of geothermal energy. To understand the present configuration of a basin system and to potentially forecast its future evolution requires comprehending as much as possible of its development through the past. Under changing external forces, a sedimentary basin may become complex in terms of geometry of sub-basins, distribution of sedimentary products, or heat flux, for instance. Accordingly, successive deformation phases are often related to a complex pattern of superposing structures archived in the stratigraphic sequence of a basin. The base for the present study is provided by structures of brittle deformation accessible in outcrops of the Central European Basin System. The goal of the study, finally, is to assess which paleostress fields had controlled the evolution of this complex system of basins.

The Central European Basin System (CEBS) in North Central Europe is a complex intracontinental sedimentary basin system that evolved through a series of Late Carboniferous to Cenozoic deformation phases (Fig. 1; Scheck-Wenderoth and Lamarche, 2005). The CEBS has been extensively explored over the past decades, not least for the sake of its economically important resources of hydrocarbons. As a result, the sedimentary fill and the present crustal structure of the basin system are well constrained by geophysical and geological data acquired in particular during seismic experiments like DEKORP Basin '96, MONA LISA, or BABEL.

Figure 1: Sketch map of the main structural elements and the location of the Central European Basin System. The present study focuses on two areas along the Elbe Fault System (Fig. 5, 6) and an area structured by the Permo-Carboniferous Oslo Graben (Fig. 7).

CDF – Caledonian Deformation Front (EUGENO-S Working Group, 1988), VDF – Variscan Deformation Front (Lokhorst, 1998), CG – Central Graben, EFS – Elbe Fault System, GG – Glücksstadt Graben, HG – Horn Graben, SG – Skagerrak Graben, STZ – Sorgenfrei-Tornquist Zone, TTZ – Teisseyre-Tornquist Zone (all after Scheck-Wenderoth & Lamarche, 2005).

The CEBS is framed by two major NW-SE-oriented fault systems: the Elbe Fault System (EFS) in the south and the Tornquist Zone (TZ) comprising the elements of the Sorgenfrei-Tornquist Zone and the Teisseyre-Tornquist Zone in the north (Fig. 2). Between these major fault zones, several sub-basins are arranged with NW-SE-trending axes like the Norwegian-Danish Basin, the North German Basin, and the Polish Basin which, in turn, are separated by the structural highs of the Mid-North-Sea-High and the Ringkøbing-Fyn-High. Beside this prominent NW-SE trend of structures, there are also elements with N-S-oriented axes, such as the Central Graben, the Horn Graben, and the Glückstadt Graben. Despite having developed above a puzzle of different crustal domains with Precambrian, Caledonian and Variscan consolidation ages, the different sub-basins are characterised by partially correlating subsidence histories since Late Carboniferous times – consistencies in their development that unite them to a collective system of basins, the CEBS.

Figure 2: Depth to top pre-Permian in the Central European Basin System (modified after Scheck-Wenderoth & Lamarche, 2005). The major structural elements strike NW-SE as the Elbe Fault System, the Mid-North-Sea High (MNH), the Ringkøbing Fyn High, and the Sorgenfrei- and Teisseyre-Tornquist Zone. A second set of structures trends N-S as the Glücksstadt Graben (GG), the Horn Graben (HG), and the Central Graben (CG). The locations of the studied areas within the Elbe Fault System are indicated (Fig. 5, 6).

Whereas the main structural configuration of the basin system is well known and the documented temporal and spatial variations of depositional and erosional centres provide extensive constraints on the tectonic evolution of the entire CEBS (Chapter 3), to date, the perceptions on the deformation-controlling stress fields are rather qualitatively. Ideas of this kind have evolved from studies that investigate the structural evolution of the CEBS on a basin scale (Scheck-Wenderoth & Lamarche, 2005) or on the scale of sub-basins (Clausen & Pedersen, 1999; Scheck & Bayer, 1999; Hansen et al., 2000; Baldschuhn et al., 2001; Scheck et al., 2002a,b; Evans et al., 2003; Lamarche, et al. 2003). For instance, recurrent changes of the basin-wide stress field can be derived from the fact that two major types of structural elements, striking NW-SE and N-S, respectively, experienced repeated and selective

reactivation during basin evolution. The specific orientations of such elements are the key for any reconstruction of the orientations of related paleostress fields.

A state of stress - fully defined by the orientations and magnitudes of the three mutually perpendicular principal stress axes, $\sigma_1 \ge \sigma_2 \ge \sigma_3$ (Fig. 3) - is a body's instantaneous internal distribution of force per area deriving from external applied loads. By reason of the immediate relationship between stress release and deformation, it is not possible to measure paleostress states directly. However, a base for the reconstruction of paleostress states is yielded by strain which is the detectable product of deviatoric stresses. One very effective link between strain and stress is provided by fault kinematics. The orientation of a fault plane complemented by the direction and sense of slip derived from kinematic indicators such as slickensides forms a 'fault-slip datum'. By considering various fault-slip data and well-known principles of fracturing and faulting in the brittle regime of the crust, certain parameters of the stress state responsible for faulting can be estimated.

As part of this thesis, a new strategy for the inversion of stress states from fault-slip data is introduced (Chapter 2). This new approach is applied to data sampled from outcrops along the southern margin of the CEBS (Chapter 4) and from outcrops in the Oslo Graben area (Chapter 5). The results derived from these study areas deliver new insights into the evolution of paleostress fields that controlled the development of the entire CEBS.

Figure 3: Different stress states illustrated as stress ellipsoids which are spanned by the three mutually perpendicular principal stress axes, $\sigma_1 \ge \sigma_2 \ge \sigma_3$. The relative magnitudes of stress in the directions of σ_1 , σ_2 , and σ_3 are expressed by the ratio of principal stress differences, R, which corresponds with $\Phi=(\sigma_2-\sigma_3)/(\sigma_1-\sigma_3)$ as defined by Bishop (1966). From R=0.0 which indicates the magnitudes of σ_2 and σ_3 to be equal to R=1 expressing σ_1 and σ_2 to be equal in magnitude, the shape of the ellipsoid changes from prolate to oblate. The presented colour code for different values of R is used throughout the present study.

1.1 Paleostress analysis

The reconstruction of a state of stress from an observed pattern of strain requires a direct cause-and-effect relationship between stress and strain. Stress inversion based on kinematic analysis of faults has become a widely used tool in structural geology since the 1950s; comprehensive reviews on various stress inversion techniques are provided by Angelier (1994) and Ramsay & Lisle (2000). The underlying assumptions of fault-slip analysis, however, give good reasons for a critical handling of data, software tools and results. For discussions on the limitations of fault-slip analysis it shall be referred to Pollard et al. (1993), Dupin et al. (1993), Twiss & Unruh (1998), and Marrett & Peacock (1999).

One of the first to formulate basic conceptions on fault kinematics and related stress states was Anderson (1942) whose hypothesis connects two main aspects: Firstly, as a result of

gravity and the absence of shear stresses parallel to the Earth's surface, one principal stress axis is constrained to be vertical, while the other two axes are horizontal. Secondly, both the orientation and the shear sense of a newly-fractured fault plane depend on the orientations of the principal stress axes with respect to the Earth's surface (Fig. 4).

Figure 4: Stress regimes and associated fault-slip modes according to Anderson (1942): A newly-formed fault plane is oriented parallel to the σ_2 . The sense of shear along the faults is normal, strikeslip, or reverse, depending on which of the principal stress axes, σ_1 , σ_2 , or σ_3 , respectively, is vertical. The dip angle between the fault plane and the σ_1 -axis depends on material properties.

Of course, the Andersonian concept on fault mechanics is only valid for certain situations in the Earth's crust, as it considers only newly-fractured faults with pure dip-slip or pure strikeslip movements. Slip, however, may also take place along pre-existing discontinuities, of which the orientations do not depend on the acting stress state. Considering both newlyformed and reactivated faults, the majority of techniques on fault-slip analysis is based on the assumption that slip direction, inferred from features such as slickenside lineations, is indicative of the shear stress component resolved along the respective fault plane (Wallace, 1951; Bott, 1959). Assuming, in addition, the shear stresses on many faults (i) to be induced by a homogeneous stress field within the volume of rock, (ii) to be resolved independently from movements along other faults, and (iii) to be resolved coevally in response to the same deviatoric stress, a "bulk" stress tensor can be estimated explaining the activation of all faults considered. The last aspect regarding synchronous activation of faults corresponds to one of the greatest challenges of fault-slip analysis: the separation and inversion of heterogeneous fault-slip data which originate from a succession of different paleostress states (Etchecopar et al., 1981; Huang, 1988; Nemcok & Lisle, 1995; Nemcok et el., 1999; Yamaji, 2000; Shan et al., 2003, 2004; Liesa & Lisle, 2004; Žalohar & Vrabec, 2007). The new concept presented in Chapter 2 has especially been developed to solve the problem of mixed data sets.

1.2 Geological setting of the CEBS

Figure 1 compiles the most important structural elements of North Central Europe together with the different areas investigated in the course of this study. As one of the basement structures below the Late Carboniferous to Cenozoic basin fill, the Caledonian Deformation Front spaciously pervades the area. This basement structure corresponds to the western and southern borders of the Baltic Craton which in turn constitutes the Precambrian fraction of Europe from where the continent episodically grew to its recent configuration (Ziegler, 1990; Bertelsen, 1992). The NE-SW-striking part of this suture, the so-called Scandinavian Caledonian Deformation Front, has been initiated during Silurian and Devonian times when it marked the collision zone between 'Baltica' and the North American-Greenland continent 'Laurentia'. At almost the same time, a terrane commonly referred to as 'Avalonia' (Meissner et al., 1994, Pharaoh, 1999) is supposed to have collided with Baltica from the South, thus forming the English-North-German-Polish segment of the Caledonian Deformation Front. The southern limit of Avalonia, on the other hand, is formed by the Variscan Deformation

Front which developed during Devonian to Late Carboniferous times when other Gondwanarelated terranes were docked on Variscan Europe. The evolution of the CEBS as an entity was initiated at the end of this orogenic phase, at times when the compressional stresses induced by collision-related tectonics were fading and the break-up of supercontinent Pangea was thenceforward controlled by extensional tectonics.

Post-Variscan evolution of the CEBS

The Early Mesozoic tectonic evolution of Central Europe was controlled by its position between the stable Baltic-East European Craton in the north and northeast, the Arctic-North Atlantic rift systems in the northwest and west, and the Tethyan and Central Atlantic rifts in the south. The interrelation of the respective geodynamic processes led to stress changes in the Central European lithosphere which caused, in turn, a complex post-Variscan geodynamic history for which seven main phases can be distinguished (Scheck-Wenderoth et al., 2008a; Scheck-Wenderoth & Lamarche, 2005; Chapter 3):

(1) *Initial rift phase*: During Latest Carboniferous to Early Permian times, the area of the CEBS was tectonically controlled by the latest pulses of the Variscan Orogeny. It is assumed that during this period a dextral mega-shear system developed in Central Europe. This transtrensional system was located between the ongoing subduction in the Urals and the onset of orogenic collapse in both the Appalachians and the European Variscides (Arthaud & Matte, 1977). The dominant products of this initial rift period are large amounts of igneous rocks. These rocks are the expression of a regional thermal destabilization and crustal thinning which are suggested to be related to back-arc extension as a consequence of continued subduction of the Paleotethys (Ziegler, 1990; Stampfli & Borel, 2002; Golonka, 2004). Subsequent to this magmatic stage, a thick succession of Lower Permian continental clastics, the *Rotliegend* sediments, have been deposited within the oldest basins of the CEBS.

(2) Post-rift phase of thermal subsidence: From the latest Early Permian until the Mid-Triassic, north Central Europe was mainly affected by a phase of thermal subsidence. The initial N-S trending graben-like depocentres began to join and form two large NW-SE- to WNW-ESE-oriented basins (Ziegler, 1990): the 'Northern Permian Basin' which coincides with the Norwegian-Danish Basin and the 'Southern Permian Basin' which comprises the southern North Sea, the North German Basin and the Polish Basin (Fig. 2). Between the Northern and Southern Permian Basin, the Mid-North Sea-Ringkøbing-Fyn chain of highs evolved. The phase of thermal subsidence was a period of reduced tectonic activity in the CEBS, while the area of the collapsing Variscan orogen to the south was affected by localised graben formation and active faulting. The tectonic quiescence in the CEBS is remarkable, since Central Europe was surrounded by active plate boundaries and affected coevally by subduction of the Paleotethys, opening of the Neotethys (Ziegler at al., 1988; Decourt et al., 2000; Stampfli et al., 2001; Stampfli & Borel, 2002, 2004) and rifting in the future Central Atlantic domain (Steiner et al., 1998; Zühlke et al., 2004) and in the Norwegian-Greenland Sea (Torsvik et al., 2002). The phase of thermal subsidence was accompanied by the successive deposition of the latest Rotliegend clastic sediments, followed by the Upper Permian Zechstein evaporites, the Lower Triassic continental clastics of the Buntsandstein, and the marine carbonates of the Muschelkalk. Due to special rheological properties, the Zechstein salt layers have thenceforward recurrently been activated thus modifying later deformation patterns.

(3) *Mid-Triassic – Jurassic phase of E-W extension*: During this period, the tectonic activity in the CEBS was controlled by ongoing rifting processes in the Tethyan and the Arctic-North

Atlantic areas (Scheck-Wenderoth et al., 2008a). A north-directed subduction of the Paleotethys led to the collision of 'Cimmerian' terranes with the southern margin of Eurasia (Stampfli & Borel, 2002). In the CEBS, however, roughly E-W oriented extension prevailed. This is indicated by N-S-trending axes of depocentres that partly dissect the Mid-North Sea-Ringkøbing-Fyn High (Scheck-Wenderoth & Lamarche, 2005). For many of these basins, such as the Central Graben, the Horn Graben, and the Glücksstadt Graben, it was recorded that syndepositional normal faulting was accompanied by a mobilization of the underlying *Zechstein* salt layers. Considering the locally increased thickness of lacustrine *Keuper* sediments within the Glücksstadt Graben, maximum extension can be dated back to Mid-Late Triassic times (Maystrenko et al., 2005).

(4) *Mid-Jurassic phase of uplift*: During the Mid-Jurassic, the structural framework of Central Europe was constituted by the start of oceanic spreading in the Alpine Tethys and in the central Atlantic (Stampfli & Borel, 2002) as well as by the development of the central North Sea rift system. The latter is believed to have been initiated by a deep-seated thermal anomaly beneath the Mid-North Sea High and related up-doming of the central North Sea (Underhill & Partington, 1993). The uplift of the central North Sea was strongest at the triple-junction between the Viking Graben, the Moray Firth Basin, and the Central Graben where rift-related processes generated basaltic lavas. Considering that also large parts of north Central Europe successively have been elevated during this period, the whole range of interacting processes which could be regarded responsible for the regional uplift is still enigmatic (Scheck-Wenderoth et al., 2008a). As a result of this uplift, the Jurassic formations in the CEBS widely reflect a development from deep to shallower water conditions.

(5) Late Jurassic – Early Cretaceous phase of basin differentiation: During this period, Central Europe was mainly influenced by far-field stresses produced by the northward propagation of the central Atlantic spreading centre (Stampfli & Borel, 2002) and extensive rifting in the Norwegian Sea (Pascal et al., 2002; Torsvik et al., 2002). In the CEBS, Late Jurassic to Early Cretaceous subsidence was restricted to NW-SE trending depocentres along the margins of the basin system, i.e. along the Sorgenfrei-Tornquist Zone (Surlyk, 2003), in the Polish Basin along the Teisseyre-Tornquist Zone (Dadlez et al., 1995, 1998), and in numerous NW-SE-oriented basins along the southern margin where localized subsidence was accompanied by the mobilisation of *Zechstein* salt (Scheck et al., 2002a; Scheck-Wenderoth & Lamarche, 2005). In contrast, areas in the central parts of the CEBS such as the Ringkøbing-Fyn High or the northern parts of the North German Basin experienced uplift (Walter et al., 1995; Kossow & Krawczyk, 2002).

(6) *Late Cretaceous – Early Tertiary phase of inversion*: Though the large-scale plate-tectonic framework of Central Europe was still controlled by earlier commencing processes such as rifting within the Norwegian-Greenland Sea, successive northward propagation of the North Atlantic spreading, and closure of the Tethys, the Late Cretaceous was marked by a grave change in the style of intra-plate deformation from an extensional and transtensional towards a compressional and transpressional mode. Areas which once had subsided during the Late Jurassic to Early Cretaceous now experienced uplift and inversion (Voigt, 1962). This CEBS-wide inversion mainly affected WNW- and NW-striking blocks (Scheck-Wenderoth & Lamarche, 2005), whereas former N-S-striking depocentres as the Glücksstadt Graben generally do not show inversion-related signs of compression or uplift (Maystrenko et al., 2005).

(7) *Cenozoic subsidence*: From the Eocene on, when seafloor spreading reached the North Atlantic, the CEBS experienced continuous sag-like subsidence with little faulting and

renewed salt rise (Scheck-Wenderoth & Lamarche, 2005). It is assumed that either thermal relaxation (Ziegler, 1990) or flexural bending of the North Sea lithosphere (Hansen & Nielsen, 2003; Van Wees & Beekman, 2000) is responsible for this subsidence. Whatever the reason, mainly N-S striking subsidence axes with a major depocentre in the Central North Sea have been created during this stage. This preferred orientation of subsidence centres indicates an interrelation of the Cenozoic subsidence and the build-up of the present-day stress field in Central Europe which is characterised by a predominantly NW-SE-directed maximum horizontal stress, S_{Hmax} (Heidbach et al., 2008).

1.3 Study areas

Since this study is based on field investigations, the distribution of analysed subareas is highly dependent on the availability and suitability of outcrops. The central parts of the CEBS are widely covered by unconsolidated sediments and water so that field studies are generally restricted to the marginal parts of the basin system. Along the southern margin of the CEBS, where Late Paleozoic to Mesozoic rocks are exposed as a consequence of inversion-related uplift and erosion, main focus was laid upon the eastern parts of the Elbe Fault System between western Germany and southwestern Poland (Fig. 5, 6). Thus, a spatial gap is closed between two subareas along the southern margin of the CEBS for which paleostress states already have been reconstructed, i.e. between an area covering parts of southern England, northern France, and Belgium (Vandycke, 2002) and an area in southeastern Poland (Lamarche et al., 1999, 2002). To obtain comparable insights into the development of the northern margin of the CEBS, the study reaches even beyond the Tornquist Zone into the Oslo Graben area, where excellent outcrops of Precambrian to Permian rocks are available (Fig. 7). To potentially detect differently-aged paleostress states and, if possible, infer a paleostress stratigraphy (Kleinspehn et al, 1989), the investigated sites of each subarea were selected so as to cover a broad range of differently-aged rocks (Tab. 1, 2).

1.3.1 The southern margin of the CEBS

The southern margin of the CEBS is structured by the Elbe Fault System (EFS), a NW- to WNW-striking, *en echelon* fault zone extending from the southeastern North Sea to southwestern Poland along the present southern margin of the North German Basin and the northern margin of the Sudetes Mountains (Fig. 2). As a result of a weak, stress-sensitive zone in the lower crust which repeatedly supported strain localisation, this fault zone has been recurrently activated in response to variations in the tectonic regime since Late Carboniferous times (Scheck et al., 2002a). In general, the kinematic interpretation of the EFS still remains a matter of debate; some authors favour pure compressional, respective pure extensional, regimes for different periods and places (Kockel, 2003; Franzke et al., 2007), whereas others postulate recurring phases of wrench tectonics (Betz et al., 1987; Wrede, 1988; Drozdzewski, 1988).

During the Late Carboniferous to Early Permian *initial rift phase*, the EFS is suggested to have acted as the southern boundary fault of a great wrench fault system in north Central Europe, in the centre of which the Northern and the Southern Permian Basin, respectively, developed (Bachmann & Hoffmann, 1997; Mattern, 1996; Ziegler, 1990; Scheck-Wenderoth & Lamarche, 2005). Accordingly, during the Permian to Triassic, the EFS formed the southern margin of the thermally subsiding areas of the North German Basin and the Polish Basin. The phase of *Mid-Triassic – Jurassic E-W extension* which initiated the large N-S-trending grabens of the CEBS had only minor influence on the EFS except for a partial

dissection of the NW-SE-trending structures into smaller segments (Betz et a., 1987). For the *Late Jurassic – Early Cretaceous phase of basin differentiation*, dextral translation along the EFS caused localized subsidence in numerous NW-SE-trending basins including the Lower Saxony Basin and the Subhercynian Basin (Ziegler, 1990; Betz et al., 1987; Scheck & Bayer, 1999) as well as the Cretaceous Münsterland Basin which developed directly above Variscan basement faults (Baldschuhn et al., 2001). Due to their orientation, the numerous NW- and WNW-striking faults of the EFS appear to have been very prone to the phase of *Late Cretaceous – Early Tertiary inversion* which is indicated by thrust and transpressional movements as well as uplift of adjacent sub-basins during this period.

As a consequence of inversion-related uplift and erosion of the southern margin of the CEBS, some of the major structural elements of the EFS are exposed and accessible where Late Paleozoic and Mesozoic rocks crop out. Along the southern margin of the Lower Saxony Basin, the Osning Lineament is exposed as a zone of intensely deformed Upper Cretaceous rocks (Fig. 5). The Northern Harz Boundary Fault, on the other hand, separates the Variscan deformed blocks of the Harz Mountains from the Mesozoic to Cenozoic rocks of the Subhercynian Basin. The Osning Lineament and the Northern Harz Boundary Fault, in turn, are separated by the N-S-trending Hessian Depression providing several outcrops of Triassic rocks. The Subhercynian Basin is bordered to the north by the Allertal Fault Zone which marks the transition towards the mainly Paleozoic rocks of the Flechtingen structural high. The major faults structuring southeastern Poland are the Main Intra-Sudetic Fault and the Sudetic Marginal Fault which differentiate the Sudetic Block into parts with different tectonic histories (Fig. 6).

Whereas the present-day stress configurations in the southern parts of the CEBS are well known (Roth and Fleckenstein, 2001; Kaiser et al., 2005; Heidbach et al., 2008), there are only few studies on the evolution of paleostress fields (Lamarche et al., 1999, 2002; Vandycke, 2002; Franzke et al., 2007). For the reconstruction of paleostress states in the German and Polish parts of the EFS, a total number of 65 outcrops have been investigated (Tab. 1). These outcrops cover rocks of Late Carboniferous, Late Permian, Middle Triassic, Late Jurassic, and Late Cretaceous ages. Most of the investigated sites correspond to active or abandoned quarries, while the area otherwise is widely covered by Cenozoic sediments. At most of the studied locations (#1-37, #55-57), the number and the quality of measured fault-slip data are adequate for applying the stress inversion method introduced in Chapter 2.

Figure 6: Polish parts of the EFS presented as a geological subcrop map of the base of Cenozoic units (modified after Dadlez et al., 2000). Major faults structuring the Sudetic Block in southeastern Poland strike WNW- to NW such as the Odra Fault Zone (OFZ), the Sudetic Marginal fault (SMF), and the Main Intra-Sudetic Fault (MIF). Dots with numbers indicate investigated outcrops. Larger numbers represent sites where the fault-slip data have been adequate for a stress inversion (Tab. 1).

Table 1: List of outcrops investigated along the southern margin of the CEBS. Shaded numbers indicate sites where the fault-slip data have been adequate for estimating paleostress states.

No.	Name	Latitude [°N]	Longitude [°E]	Lithology	Rock age / Period	Rock age (stratigraphy)
1	Wettringen	52.218	7.321	limestone	Late Cretaceous	Cenomanian-Turonian
2	Rheine	52.262	7.402	limestone	Late Cretaceous	Cenomanian-Turonian
3	Middel	52.256	7.438	limestone	Late Cretaceous	Cenomanian-Turonian
4	Dörenthe	52.227	7.673	limestone	Late Cretaceous	Cenomanian
5	Lengerich	52.182	7.896	limestone	Late Cretaceous	Cenomanian-Turonian
6	Höste	52.167	7.938	limestone	Late Cretaceous	Cenomanian
7	Lienen	52.164	7.942	limestone	Late Cretaceous	Cenomanian
8	Holsten	52.228	8.128	limestone	Middle Triassic	Anisian-Ladinian (Muschelkalk)
9	Hilter	52.161	8.149	limestone	Late Cretaceous	Cenomanian
10	Bissendorf	52.231	8.150	limestone	Middle Triassic	Anisian-Ladinian (Muschelkalk)
11	Halle	52.074	8.345	limestone	Late Cretaceous	Turonian-Coniacian
12	Künsebeck	52.040	8.404	limestone	Late Cretaceous	Cenomanian-Turonian
13	Steinbergen	52.217	9.137	limestone	Late Jurassic	Oxfordian (Malm)
14	Barntrup	51.996	9.154	limestone	Middle Triassic	Anisian-Ladinian (Muschelkalk)
15	Rohden	52.206	9.234	limestone	Late Jurassic	Oxfordian (Malm)
16	Hamelspringe	52.194	9.537	limestone	Late Jurassic	Oxfordian (Malm)
17	Lauenstein	52.068	9.543	limestone	Late Jurassic	Oxfordian (Malm)
18	Marienhagen	52.021	9.704	limestone	Late Jurassic	Oxfordian (Malm)
19	Avendshausen	51.851	9.791	limestone	Middle Triassic	Anisian (Muschelkalk)
20	Emmenhausen	51.576	9.835	limestone	Middle Triassic	Anisian (Muschelkalk)
21	Hardegsen	51.660	9.836	limestone	Middle Triassic	Anisian (Muschelkalk)
22	Misburg	52.384	9.884	limestone	Late Cretaceous	Cenomanian-Turonian
23	Elvese	51.674	9.938	limestone	Middle Triassic	Anisian (Muschelkalk)
24	Vogelbeck	51,775	9.950	limestone	Middle Triassic	Anisian (Muschelkalk)
25	Papenberg	51.643	9.961	limestone	Middle Triassic	Anisian (Muschelkalk)
26	Upstedt	52.042	10.059	limestone	Middle Triassic	Anisian-Ladinian (Muschelkalk)
27	Baddeckenstedt	52.092	10.230	limestone	Late Cretaceous	Cenomanian-Turonian
28	Söhlde	52 182	10 245	limestone	Late Cretaceous	Cenomanian-Turonian
29	Langelsheim	51,939	10.352	limestone	Late Cretaceous	Cenomanian-Turonian
30	Scharzfeld	51.619	10.391	dolomite	Late Permian	Zechstein (Z2)
31	Wendessen	52.161	10.568	limestone	Late Cretaceous	Cenomanian-Turonian
32	Bodendorf	52,279	11,210	andesite	Late Carboniferous	Stephanian
33	Flechtingen	52 315	11 210	rhvolite	Late Carboniferous	Stephanian
34	Kroppenstedt	51 915	11 290	limestone	Middle Triassic	Anisian (Muschelkalk)
35	Dönstedt	52 259	11.333	andesite	Late Carboniferous	Stephanian
36	Mammendorf	52.178	11,435	andesite	Late Carboniferous	Stephanian
37	Förderstedt	51.875	11.629	limestone	Middle Triassic	Anisian (Muschelkalk)
38	Silberberg	52 211	7.945	dolomite	Late Permian	Zechstein
39	Heidberg	52 217	7 949	sandstone	Early Cretaceous	Valanginian-Aptian
40	Nathergen	52 253	8 126	limestone	Middle Triassic	Anisian-Ladinian (Muschelkalk)
41	Detmold-Bentrun	51 988	8 891	limestone	Middle Triassic	Anisian-Ladinian (Muschelkalk)
42	Alverdissen	52 020	9 139	limestone	Middle Triassic	Anisian-Ladinian (Muschelkalk)
43	Bernsen	52 214	9 159	limestone	Late Jurassic	Oxfordian (Malm)
44	Vahlbruch	51 924	9.362	limestone	Middle Triassic	Anisian-Ladinian (Muschelkalk)
45	Straße Forst-Polle	51.887	9 453	limestone	Middle Triassic	Anisian-Ladinian (Muschelkalk)
46	Straße Rühle-Dölme	51.930	9.457	limestone	Middle Triassic	Anisian-Ladinian (Muschelkalk)
47	Hehlen	51 982	9.458	limestone	Middle Triassic	Anisian-Ladinian (Muschelkalk)
48	Springe	52 216	9 527	limestone	Late Jurassic	Oxfordian (Malm)
49	Salzhemmendorf	52.056	9.608	dolomitic limestone	Late Jurassic	Oxfordian (Malm)
50	Thüete	52.000	9.653	limestone	Late Jurassic	Oxfordian (Malm)
51	Wülfinghausen	52.022	9.655	limestone	Late Jurassic	Oxfordian (Malm)
52	Salder	52.137	10 330	limestone	Late Cretaceous	Turonian Conjacian
53	Walbeck	52 295	11.068	limestone	Middle Triaseio	
54	Schwanebeck	51 055	11.000	limestone	Middle Triassic	
55	Groß Börnecke	51.866	11.467	limestone	Middle Triassic	
56	Raciborovice	51 192	15 709	limestone	Middle Triaseic	
57	Folwark	50.612	17 909	limestone	Linner Cretaceous	
58	Gorazdze	50.572	18.029	limestone	Middle Triassic	
50	Forrest	51 121	15.969	sandetone		Skuthian (Runteandetain)
60	Opolo	50,696	17 021	marl	Lower Triassic	Canomanian Turchian
00	Ohole	0000	17.951	mall	opper cretaceous	Cenomanian-ruionian

1.3.2 The Oslo Graben area

The Oslo Graben in southern Norway is a N-S-trending, 200 km long and 35-65 km wide, down-faulted crustal block that exposes Palaeozoic rocks in contrast to the surrounding Precambrian high-grade metamorphic rocks of Fennoscandia (Fig. 7). The graben is the highly volcanic onshore segment of the Oslo paleorift system, while the Skagerrak Graben to the south forms its offshore counterpart which terminates in the Sorgenfrei-Tornquist Zone (Fig. 1).

The Precambrian basement surrounding the Oslo Graben area formed between 1800 Ma and 1550 Ma and was metamorphosed during the Sveconorwegian orogeny between 1100 Ma and 950 Ma (Berthelsen, 1980, 1992; Skjernaa & Pedersen, 1982). During early Paleozoic times the area was part of an extensive shelf where Cambro-Silurian marine sediments and Silurian to Devonian red bed successions have been deposited (Neumann et al., 1992). During the Silurian and Devonian the entire succession was folded in the course of the Caledonian orogeny and afterwards eroded to a peneplane. A hiatus spanning Devonian (Ludlowian) to early-Middle Carboniferous (Moscovian) rock ages suggests that the Oslo Graben area probably was exposed above sea-level during these times. In Late Carboniferous times, the Variscan Orogeny caused a reorganisation of Pangea involving the transformation of the Variscan fold belt under N-S-directed compression into a wrench system and probably also the development of the intracontinental Oslo Rift system (Ziegler, 1990; Olaussen et al., 1994). According to Larsen et al. (2008), the evolution of the Oslo Rift can be subdivided into 6 progression phases commencing in Late Carboniferous times and spanning about 65 million years (Chapter 5). It is suggested that this period of extensive rifting was followed by a longlasting period of tectonic quiescence with no major tectonic or magmatic activity (Sundvoll & Larsen, 1994). However, two phases of rapid uplift during Triassic-Jurassic and Neogene times, respectively, caused high rates of erosion (Rohrman et al., 1995) so that presently, there is a great lack in the stratigraphic record encompassing the whole Mesozoic and Cenozoic. Hence, any field-based study in the area relies on the preserved sedimentary and magmatic rocks comprising Precambrian, Cambro-Silurian and Permian rock ages (Fig. 7).

Considering the post-Permo-Carboniferous evolution of the CEBS, even the youngest of exposed rocks in the Oslo Graben area do not provide close constraints on the maximum age of faults and associated stress states therein. However, several authors have suggested that the initiation of the Oslo Rift has been closely tied to concurrent tectonics within the STZ (Glennie, 1984; Ziegler, 1990; Veevers et al., 1994) which, in turn, played a decisive role in the Mesozoic-Cenozoic evolution of the CEBS (Vejbaek, 1990; Scheck-Wenderoth et al., 2008a). In light of these interrelations, fault-slip data from the Oslo Graben area sampled and published by Heeremans et al. (1996) are re-evaluated in this study (Chapter 5) by subjecting them to the new stress inversion procedure introduced in Chapter 2. Beside these data, a second set of unpublished fault-slip data from the graben area is interpreted (sampled and provided by Aline Saintot, Geological Survey of Norway, NGU). Taken together, the total number of 101 investigated locations covers large parts of the graben area and a wide range of exposed rock ages (Tab. 2). Existing studies on the evolution of paleostress fields within the STZ (Bergerat et al., 2007) and on the present-day stress field in Norway (Gregersen, 1992; Lindholm et al., 2000; Heidbach et al., 2008) widen the framework within which the locally inferred paleostress states finally can be discussed.

^{9°E} 11°E **Figure 7:** The Oslo Graben area presented as a tectonomagmatic map (modified after Ramberg & Larsen, 1978). The investigated sites are numbered as in Table 2. Note the numerous roughly N-S-striking faults as well as the ring faults that flank caldera structures.

Table 2: List of outcrops investigated in the Oslo Graben area.

No.	Name	Latitude [°N]	Longitude [°E]	Lithology	Rock age	Source
1	Torunstad Mælum	60.9473	10.9899	Shale, Sandstone	Silurian	M. Heeremans
2	Brummunddal	60.9332	10.9984	Sandstone	Permian	M. Heeremans
3	Hellerud	60.8179	10.8027	Gneisse	Precambrian	M. Heeremans
4	Gorum	60.7992	10.8595	Limestone	Lower Ordovician	M. Heeremans
5	Bøverbu	60.664	10.6541	Limestone	Cambro-Silurian	M. Heeremans
6	Korslia	60.5747	10.7171	Limestone, marl	Ordovician-Silurian	M. Heeremans
7	Skari	60.456	10.4708	Gneiss	Precambrian	M. Heeremans
8	Moen	60.4186	10.5599	Gneiss	Precambrian	M. Heeremans
9	Brandbu	60 413	10 5015	Limestone	Ordovician-Silurian	M Heeremans
10	Tingelstad	60.394	10 4725	Limestone	Ordovician-Silurian	M Heeremans
11	Engnes	60 3844	10.3596	Gneiss	Precambrian	M Heeremans
12	Jaren	60.375	10.5651	Maenaite	Permian	M. Heeremans
13	Råbolt	60 2793	11 1456	Gneiss	Precambrian	M Heeremans
14	Roa	60.2771	10.6011	Limestone	Ordovician-Silurian	M. Heeremans
15	Grymyr	60 2725	10 4173	Limestone	Ordovician-Silurian	M Heeremans
16	levnaker	60 2627	10.3787	Gneiss	Precambrian	M Heeremans
17	Åsa	60 1315	10.3098	Carbonate	Linner Silurian	M. Heeremans
18	Stubdalskampen	60 1148	10.3836	Sandstone Quartzite (Ringerike Group)	Ordovician-Silurian	M Heeremans
19	Åsaveien	60.0977	10.3466	Sandstone	Silurian	A Saintot
20	Kroksund	60.0689	10.2999	Sandstone Limestone Marl	Silurian	M Heeremans
20	Sundvollen 3	60.0556	10.2948	Sandstone (Ringerike)	Silurian	M. Heeremans
21	Sundvollen 3	60.0552	10.2340	Sandstone (RT1)	Combro Silurion	A Sointot
22	Sundvollen 1	60.0528	10.3275	Bhomh pombyny with sedimentary layers	Cambio-Silunan Permian	A. Saintot
23	Sarkodol	60.0101	10.5221	Veleonics, eruptive and codimentary layers	Permian	A. Saintot
24	Holmenkollen	59 9785	10.6152	Granite	Permian	A. Saintot
20	Frognerseteren	59.9783	10.6741	Svenite	Permian	A. Saintot
20	Bogstad	59.9762	10.6348	Svenite Granite	Permian	A. Saintot
20	Bugstad	59.9714	10.0340	Bacalt	Permian	A. Saintot
20	Cripibru	59.9596	10.4907	Dasali	Fermian Forly Silurion	A. Saintot
29	Skelleruducion	59.9510	10.6309	Emesione, shale, Sandstone	Early Silurian	A. Saintot
30	Skolleruuvelen	59.9430	10.5007	Bhamh pamhuru lava	Permian	A. Saintot
22	Comlo Dingorikovoj	59.9409	10.5155	Rhollib polphyry lava	Permian	A. Saintot
22		59.9309	10.0020	Bhamh pamhuru basalt	Permian	A. Samo
34	Rykkinn	59.9303	10.4254	Sandstone (Pingerike group)	Lipper Silurian	A Spintot
25	Sincon	59.9320	10.4040	Mart Limestano	Combro Silurion	A. Samo
30	Victoria	59.917	10.0110	limestone	Cambro-Silurian	M. Heeremans
30	Vækelø Ekohorg	59.9000	10.0504	Cropite, Choice	Cambro-Silunan Procombrian	M. Heeremans
28	Hovedaya	59.8990	10.7097	mart Limestone Sandstone	Combro Silurion	M Heeremans
30	Kongebaya	59.8932	10.7205	Gneice	Precambrian	M. Heeremans
40	Sandvika	50 8882	10.7307	Black shale	Combro Silurian	M. Heeremans
40	Sanuvika	59.0005	10.5210		Cambro-Silurian	M. Heeremans
41	Fornebru	59.8875	10.6261	Limestone, Man	Cambro-Silunan	M. Heeremans
42	Molmawa	59.0000	10.5052	Limestone Marl	Combra Silurian	M. Heeremans
45	Nannøya	59.8799	10.7642	Choice	Cambro-Silunan Procombrian	A Sointet
44	Ostava	59.0099	10.6564	Limestone	Ordevision Silurian	A. Samo
40	Usibya	59.0017	10.3077	Black shale. Limestone	Combra Silurian	M. Heeremans
40	Rivalstad	59.8364	10.4808	Diack shale, Limestone	Cambro-Silunan	M. Heeremans
47	Bjørnemyr	59.8319	10.6367	Gheliss	Precambrian	A. Saintot
48	Alværn Brygge 2	59.8208	10.6233	Shaly, mariy slate, Limestone	Ordovician	A. Saintot
49	Alværn Brygge 1	59.8189	10.6193	Shaly, mariy slate, Limestone	Ordovician	A. Saintot
50	Blakstad	59.8157	10.4713	Limestone, Shale (PZT)	Draovician	A. Saintot
51	Hauger	59.8061	10.4123	Granite	Permian	A. Saintot
52	Fjellstrand	59.8029	10.6187	Gneiss	Precambrian	A. Saintot
53	Stokke	59.7903	10.2/5/	Granite	Permian	A. Saintot
54	Slokke	59.788	10.2/00	Granite	Permian	A. Saintot
55	Reistad	59.7832	10.2/9/	Granite	Permian	A. Saintot
57	Døvelen	59.7722	10.439	Limestone, Shale (PZ1)	Droovician	A. Saintot
57	Malleveier	59.771	10.091	Nica-rich gheiss	Combrier	A. Samot
50	Møllevelen	59.7651	10.4377	States, Sandstone, Conglomerate	Camprian	A. Saintot
59	Spro	59.7638	10.5853	Gneiss	Precambrian	A. Saintot
60	iværsnes	59.7632	10.4964	Gneiss	Precambrian	A. Saintot
61	Slemmestadveien	59.7573	10.4557	Snaly, Marly slates and Limestone	Ordovician	A. Saintot
62	Brevik	59.7522	10.7147	Gneiss	Precambrian	A. Saintot

Table 2: (continued).

63Brynsholmen59.75110.4408GneissPrecambrianA. Sain64Dalbanen59.750410.7102GneissPrecambrianA. Sain65Røyken59.748810.4023GranitePermianA. Sain66Nordre Dal59.747810.6968GneissPrecambrianA. Sain67Alværn Brygge 359.747210.6144Granodiorite, TonalitePrecambrianA. Sain68Gunnerud59.745310.4552GranitePrecambrianA. Sain69Mjøndalen59.744110.0221LimestoneOrdovician-SilurianM. Hee	
64Dalbanen59.750410.7102GneissPrecambrianA. Sain65Røyken59.748810.4023GranitePermianA. Sain66Nordre Dal59.747810.6968GneissPrecambrianA. Sain67Alværn Brygge 359.747210.6144Granodiorite, TonalitePrecambrianA. Sain68Gunnerud59.745310.4552GranitePrecambrianA. Sain69Mjøndalen59.744110.0221LimestoneOrdovician-SilurianM. Hee	ot
65Røyken59.748810.4023GranitePermianA. Sain66Nordre Dal59.747810.6968GneissPrecambrianA. Sain67Alværn Brygge 359.747210.6144Granodiorite, TonalitePrecambrianA. Sain68Gunnerud59.745310.4552GranitePrecambrianA. Sain69Mjøndalen59.744110.0221LimestoneOrdovician-SilurianM. Hee	ot
66Nordre Dal59.747810.6968GneissPrecambrianA. Sain67Alværn Brygge 359.747210.6144Granodiorite, TonalitePrecambrianA. Sain68Gunnerud59.745310.4552GranitePrecambrianA. Sain69Mjøndalen59.744110.0221LimestoneOrdovician-SilurianM. Hee	ot
67Alværn Brygge 359.747210.6144Granodiorite, TonalitePrecambrianA. Sain68Gunnerud59.745310.4552GranitePrecambrianA. Sain69Mjøndalen59.744110.0221LimestoneOrdovician-SilurianM. Hee	ot
68Gunnerud59.745310.4552GranitePrecambrianA. Sain69Mjøndalen59.744110.0221LimestoneOrdovician-SilurianM. Hee	ot
69 Mjøndalen 59.7441 10.0221 Limestone Ordovician-Silurian M. Hee	ot
	emans
70 Gullaugfjellet 59.7412 10.304 Granite Permian A. Sain	ot
71 Søndre Dal 59.7397 10.6927 Gneiss Precambrian A. Sain	ot
72 Ovnerudveien 59.7378 10.3345 Granite Permian A. Sain	ot
73 Tusse 59.7269 10.6898 Gneiss Precambrian A. Sain	ot
74 Krokodden 59.7264 10.4486 Granite Permian A. Sain	ot
75 Fagerstrandveien 59.7224 10.6759 Gneiss Precambrian A. Sain	ot
76 Konnerud 59.721 10.1468 Limestone Cambro-Silurian M. Hee	emans
77 Holtbråten 3 59.7204 10.6642 Gneiss, Pegmatite Precambrian M. Hee	emans
78 Holtbråten 1 59.7196 10.6662 Gneiss Precambrian A. Sain	ot
79 Holtbråten 2 59.719 10.6627 Syenites Permian A. Sain	ot
80 Hallangshagen 59.716 10.645 Granitic to Tonalitic gneiss Precambrian A. Sain	ot
81 Hyggen 59.7156 10.3704 Granite (Drammen) Permian M. Hee	emans
82 Hallangen 59.6991 10.6134 Gneiss Precambrian M. Hee	emans
83 Selvik 59.6403 10.4491 Granite (Drammen) Permian M. Hee	emans
84 Heistadmoen 59.6004 9.66287 Amphibolite, Gneiss Precambrian M. Hee	emans
85 Tofte Tronstad 59.5508 10.4971 Granite (Drammen) Permian M. Hee	emans
86 Jeløya 2 59.4886 10.6417 Sandstone (Ringerike Group) Cambro-Silurian A. Sain	ot
87 Jeløya 3 59.4872 10.6564 Basalt (Basalt 1and 2) Permian A. Sain	ot
88 Jeløya 1 59.4831 10.6367 Sandstone (Ringerike Group) Cambro-Silurian A. Sain	ot
89 Jeløya 4 59.4475 10.6225 Basalt (Basalt 1and 2) Permian M. Hee	emans
90 Horten 59.4328 10.4535 Basalt (Basalt 1and 2) Permian M. Hee	emans
91 Steinholt 59.4091 10.4075 Larvikite Permian M. Hee	emans
92 Himberg 59.3254 10.296 Larvikite Permian M. Hee	emans
93 Lakstjen 59.3252 10.0675 Porphyritic lava Permian M. Hee	emans
94 Skoppum 59.2381 9.65564 Rhomb porphyry lava Permian M. Hee	emans
95 Eidanger 59.118 9.70649 Limestone Ordovician-Silurian M. Hee	emans
96 North of Brevik 59.0557 9.70287 Slates and Limestone Ordovician A. Sain	ot
97 Tveidalen 59.0309 9.84897 Larvikite Permian A. Sain	ot
98 NW-Nevlunghavn 58.996 9.85471 Larvikite Permian A. Sain	ot
99 Nevlunghavn 1 58.9677 9.8693 Larvikite Permian A. Sain	ot
100Nevlunghavn 258.96689.86734LarvikitePermianA. Sain	ot
101Nevlunghavn 358.96579.86893LarvikitePermianA. Sain	ot

2 Fault-slip analysis and paleostress reconstruction

The present study on the evolution of paleostress fields in the Central European Basin System is primarily based on signs of brittle deformation observable in the field. The basic assumption of fault-slip analysis is that the pattern of striated faults in a portion of rock can be correlated with a state of stress responsible for the observed faulting (Carey & Brunier, 1974; Angelier, 1979). In the following, a summary is given on the basics of fault-slip analysis before a new strategy is introduced for estimating stress states even from heterogeneous data. Finally, some concepts are demonstrated regarding a correlation of locally estimated paleostress states to deduce the evolution of regional stress fields in an area.

2.1 Basics

According to Wallace (1951) and Bott (1959), it is possible to predict the slip direction along a plane of known orientation (with unit normal \vec{n}) under a given stress tensor σ , assuming that slip takes place parallel to the direction of maximum resolved shear stress $\bar{\tau}_{max}$ (Fig. 8a):

$$\vec{\tau}_{\max} = \boldsymbol{\sigma} \cdot \vec{\boldsymbol{n}} - \left[\vec{\boldsymbol{n}}^{\mathrm{T}} \cdot \boldsymbol{\sigma} \cdot \vec{\boldsymbol{n}} \right] \cdot \vec{\boldsymbol{n}}$$
(Eq. 1)

where the superscript T means the transpose of the matrix. On the other hand, a fracture plane will be created with a stress state dependent orientation that allows the relative magnitudes of the shear stress τ and the normal stress σ_n in this plane to meet with the Mohr-Coulomb yield criterion,

$$\tau = C + \mu \sigma_n \tag{Eq. 2}$$

where C and μ are the material-specific cohesion and coefficient of friction, respectively (Fig. 8b; Coulomb, 1776; Mohr, 1900).

Whereas Equation 1 considers any (re)activation of a fault plane, Equation 2 is valid only for newly-formed faults, i.e. fractures which are opened and sheared under the same stress state. These two principles allow predictions about fault kinematics given a known stress field that acts on an elastic material of known properties. To solve the inverse problem, which is to derive a stress state from observed fault kinematics, two types of techniques have been established through the last decades, some based on slip criteria, others on frictional criteria (Angelier, 1994; Ramsay & Lisle, 2000). To allow for solutions as realistic as possible, some techniques even combine both concepts (Reches, 1987; Célérier, 1988; Angelier, 1990; Žalohar & Vrabec, 2007).

Figure 8: Fault kinematics. a) For a known reduced stress tensor, the directions of the maximum shear stress, τ_{max} , along fault planes of known orientation can be calculated (Wallace-Bott hypothesis). Theoretical fault-slip data are presented in a *tangent-lineation plot* (Hoeppener, 1955; Twiss & Gefell, 1990): each arrow in this lower-hemisphere, equal-area projection represents one fault-slip datum; the centre of each arrow indicates the pole to the respective fault plane while the arrowhead indicates the slip direction of the footwall block. Hence, the plot displays the directions in which material would move past the outside of a fixed lower hemisphere under the given stress. b) *Left*: Relative magnitudes of the shear stress, τ , and the normal stress, σ_n , on a plane as a function of the fracture angle θ (modified after van der Pluijm & Marshak, 2004). At $\theta=30^\circ$, the ratio of shear stress to normal stress σ_n/τ is at a maximum (Mohr-Coulomb fracture criterion), so that shear fracturing is facilitated. *Right*: A rock sample cracked in laboratory (biaxial conditions; σ_2 equals σ_3): the angle between σ_1 and the fracture plane is measured as $\theta=30^\circ$.

Striae on a fault plane, such as slickenside lineations, may unambiguously document the sense of relative movement between the footwall block and the hanging-wall block of a fault (Fig. 9; Fleuty, 1974; Doblas, 1998), thus providing the essential part for stress tensor calculations based on the "Wallace-Bott hypothesis" (Fig. 8a). Beside the sense of slip (reverse, normal, dextral, or sinistral), a complete fault-slip datum comprises the orientation of the fault plane (dip direction and dip) and the orientation of the striae (azimuth and plunge). Knowing the fault-slip attitudes of at least four independent faults, it is possible to directly calculate the corresponding 'reduced stress tensor' which comprises (i) the orientations of the three mutually perpendicular principal stress axes σ_1 , σ_2 , and σ_3 with $\sigma_1 \ge \sigma_2 \ge \sigma_3$ and (ii) the ratio of principal stress differences, shortly "stress ratio", $R=(\sigma_2-\sigma_3)/(\sigma_1-\sigma_3)$ (Fig. 3; Carey & Brunier, 1974; Angelier, 1979). The procedure for estimating the best-fitting reduced stress tensor for a group of faults varies among different researchers (Angelier, 1994, Michael, 1984, Gephart & Forsyth, 1984, Gephart, 1990, Yin & Ranalli, 1992). One potential measure for the fit between a certain stress state and observed fault kinematics is provided by the misfit angle, β , which is defined as the angular difference between the calculated maximum shear stress, τ_{max} , and the observed slip direction along a fault plane (Fig. 10a). The reduced stress tensor may then be estimated as the one that is associated with the least sum of all misfit angles (Angelier, 1979).

In the following, a new computer-aided strategy towards stress inversion of heterogeneous fault populations is presented (Chapter 2.2). Since this new approach combines the concepts of the "Multiple Inverse Method" (Yamaji, 2000) and the "PBT-axes-method" (Turner, 1953; Sperner et al., 1993), both methods are shortly introduced.

Figure 9: Slickensides and striae. a) Calcite fibres and slickolites indicate the same oblique-normal sense of movement (*Langelsheim* quarry, #29). The fibres result from precipitation of calcite which was formerly dissolved by pressure solution of the host rock (limestone). Pressure solution, in turn, created the slickolites. b) Slickenside with calcite fibres indicating dextral slip (andesites, *Mammendorf* quarry, #36); c) Steeply SSW-dipping fault surface (198/77) covered by two superimposed sets of striae (*Bodendorf* quarry, #32). Note the configuration of striae framed by the circle: assuming that late-stage coatings usually conceal earlier striae, i.e. that younger slickensides lie above older slickensides (Meschede, 1994; Doblas, 1998), it can be concluded that sinistral displacement (x: subhorizontal frictional grooves covered with hematite) took place before the fault plane was reactivated with a normal sense (y: subvertical calcite fibres). The difference in type of mineralisation confirms that the two fault/striae pairs belong to different subsets (*bod1* and *bod3*, below), each related to a specific paleostress state.

2.1.1 Multiple Inverse Method (MIM; Yamaji, 2000)

MIM is a modification of the Direct Inverse Method (Angelier, 1984). The latter assumes slip to be parallel to the maximum resolved shear stress and calculates iteratively the best-fitting stress tensor for a group of faults by minimizing the sum of associated misfit angles (Fig. 10a). Being developed particularly for the separation of heterogeneous data sets, MIM comprises the following steps which are implemented in the respective software package (Yamaji et al., 2005; Yamaji & Sato, 2005): Firstly, all possible subsets of *k*-elements are created from a complete data set (Fig. 10b). For k=4, any possible group of 4 faults is created so that each fault is related to any possible combination of three other faults. Secondly, Angelier's (1984) inverse technique is applied to each of these artificial *k*-fault-subsets to estimate the respective best-fitting stress tensors. Finally, all calculated reduced stress tensors (i.e. one for each artificial subset) are plotted in a pair of lower-hemisphere plots (Fig. 11c). With this technique, all significant stress states inherent in a heterogeneous data set can be detected as they are indicated by clusters of symbols that agree in terms of the directions of principal axes as well as the stress ratio, R.

For the calculation of best-fitting stress tensors, MIM uses a computational grid of 60,000 points evenly distributed in the parameter space of σ_1 , σ_2 , σ_3 , and R. The ideal stress for a single *k*-fault-subset is approximated by the nearest grid point. Thus, the stress states derived from several *k*-fault-subsets may be tied to the same grid point. Grid points with a large number of stress states automatically correspond to solutions that are more significant for the entire fault population. The enhance factor *e* (freely selectable by the user with $0 \le e \le 99$) controls the minimum number of solutions at a grid point which is required for this stress state to appear in the MIM stereograms. By selecting *e*=0, all solutions for a data set are plotted. Larger values of *e*, on the other hand, correspond to a reduced number of plotted solutions and are chosen to thin out less significant stress states. In this way, the most relevant clusters indicating the best-fitting solutions can be detected. To further test the significance of a single stress state, the MIM software provides a tool for a simulation of stresses (Chapter 2.2.1).

Figure 10: The Multiple Inverse Method (MIM) exemplarily introduced using faults-slip data from *Bodendorf* (#32). a) A misfit angle is defined as the angular difference between the observed striae and the direction of maximum shear stress, τ_{max} , calculated for a given stress state; b) All fault-slip data from *Bodendorf* plotted in a tangent-lineation plot: each arrow in the lower-hemisphere, equal-area projection represents one fault-slip datum; the centre of an arrow indicates the pole to the respective fault plane while the arrowhead indicates the slip direction of the footwall block. One potential 4-fault-subset is exemplarily accentuated; c) Stress states calculated by MIM for the number of n=45 striated faults presented in (b). A number of n fault-slip data produces a number of X=n!/(k!·(n-k)!) k-fault-subsets. Thus, for n=45 and k=4, a number of 148,985 solutions is obtained. Each stress state is plotted with its σ_1 -axis in the left stereonet and the associated σ_3 -axis in the right stereonet (enhance factor e=0; lower hemisphere, equal-area projections). The diamonds represent the directions (azimuth and plunge) of stress axes. The tail of a σ_1 (σ_3) symbol indicates the direction and plunge angle of the corresponding σ_3 - (σ_1 -) axis. The stress ratio, R, is colour-coded.

2.1.2 PBT-axes Method (PBT; Sperner et al., 1993)

PBT is a kinematic approach that graphically constructs a triple of theoretical strain axes for a single fault-slip datum (Turner, 1953, after a solution of Sperner et al., 1993): a P-axis in the direction of contraction, a neutral B-axis lying in the fault plane, and a T-axis in the direction of extension (Fig. 11). By assuming a coincidence of σ_1 with P and of σ_3 with T as well as an arbitrary shear stress magnitude of $\tau=1$ on each fault plane, the Numeric Dynamic Analysis (NDA) calculates a reduced stress tensor for a set of fault-slip data (Spang 1972, after a solution of Sperner et al., 1993). By regarding all faults as neoformed, i.e. as fractured and moved by the same stress state, the concepts of PBT and NDA assume the orientation of a fault plane to depend on the acting stress field. For this reason, P is constructed with a defined angular distance from the respective fault plane: the fracture angle θ (measured in the plane containing the fault plane normal and the slip line). A fracture angle of $\theta=30^{\circ}$ is adequate for many data sets, as this value (i) corresponds to laboratory studies on brittle deformation (Hubbert, 1951; Byerlee, 1968; Jaeger & Cook, 1979), (ii) is associated with high shear-tonormal stress ratios on the fault planes (Mohr-Coulomb fracture criterion; Fig. 8b) and (iii) already has proved to be appropriate for natural fault-slip data (Sperner, 1996; Reicherter & Peters, 2005).

TectonicsFP 1.6.5 by Reiter & Acs (1996-2008) is the software package which is used throughout this study for the realisation and further interpretation of PBT results. Despite potentially heterogeneous material properties, PBT applies a uniform angle θ to a group of fault-slip data (30° throughout the present study). The coeval consideration of various fault-slip data results in a comprehensive pattern of kinematic axes (Fig. 11b) which facilitates kinematic consistencies to be detected as clusters of P-, B-, and T-axes. In this way, kinematically consistent subsets of faults can be separated from a heterogeneous fault population (Chapter 2.2.1). Another tool incorporated in *TectonicsFP 1.6.5* calculates the mean vector for any type of directional data sets as well as the associated cone of confidence (a small circle within which the true mean of the sampled population of structures is expected to lie; "R% and Centre Method", Wallbrecher, 1986). Thus, a further analysis of the P-, B-, and T-clusters is possible.

Figure 11: PBT-axes Method (PBT). a) Construction of the kinematic axes P, B, and T for a normal fault by applying a fracture angle of θ =30° (lower-hemisphere, equal-area projection). The neutral axis B lies in the fault plane (090/60=dip direction/dip). The contraction axis P and the extension axis T lie in a plane constituted by the shear plane normal and the slip line. The centre of the slip line arrow indicates the attitudes of the striae (090/60=azimuth/plunge) and the arrow points the slip direction of the hanging wall block (normal sense of movement). P is constructed with an angular distance of θ =30° from the slip line in a direction opposite to the one indicated by the slip line arrow. P, B, and T are mutually perpendicular. b) Results of PBT for the entire population of fault-slip data from *Bodendorf* quarry (Fig. 10b). A fracture angle of θ =30° is used for each fault-slip datum. The wide scattering of P-, B-, and T-axes, respectively, reflects heterogeneity of the data set.

2.2 A new strategy for stress inversion from (heterogeneous) fault-slip data

To demonstrate the strategy developed in this study, the data set from *Bodendorf* quarry is exemplarily used. These fault-slip data are heterogeneous as indicated by both clusters of differently oriented stress axes (Fig. 10c) and a wide scattering of kinematic axes (Fig. 11b). To find the most relevant stress states that explain the kinematics of this fault population as complete as possible, a stepwise procedure is used (Sippel et al., in press).

2.2.1 Stress Inversion Via Simulation (SVS)

Step 1: Preliminary separation by clusters of P-, B-, and T-axes.

The clusters of kinematic axes in the PBT plot (Fig. 11b) indicate groups of faults with the same kinematic trend. Based on such consistencies, three kinematically homogeneous subsets can be separated for the *Bodendorf* data: *bod1*, *bod2*, and *bod3* (Fig. 12a). For each of the obtained subsets, the mean vectors of P-, B-, and T-axes, respectively, are calculated and the clusters of stress axes accentuated by plotting the associated cones of confidence (with a significance of 99%). Part of the data cannot be assigned to any consistent subset ("remnants" in Fig. 12a). Moreover, the kinematic axes associated to these remaining faults are non-horizontal and/or non-vertical, a configuration which identifies them as non-Andersonian (Anderson, 1942) or oblique-slip faults.

Since PBT processes each fault-slip datum separately, the separation is very rapid and straightforward. We conclude that the subsets *bod1* and *bod2* represent strike-slip regimes with a vertical B-axis each and horizontal contraction and extension axes. In the case of subset *bod1*, the sub-horizontal contraction axes strike approximately NE-SW and the extension axes NW-SE, whereas for *bod2* it is vice versa. Subset *bod3*, on the other hand, corresponds to an extensional regime with a vertical contraction axis and an extension axis striking horizontally NNE-SSW.

Step 2: Application of MIM to the PBT-derived subsets.

Since PBT regards all faults as neoformed and uncertainties concerning the value of θ are accepted by the method, we complementary apply MIM which considers also slip along preexisting planes. MIM yields the complete number of stress states for a data set, i.e. all solutions that fulfil the low-misfit-angle criterion for at least part of the data. This approach results in a large number of diffuse clusters of corresponding σ_1 - and σ_3 -axes in the MIM plot, including but also concealing the best-fitting stress states for a fault population (Fig. 10c).

When applying MIM to each of the separated homogeneous subsets *bod1*, *bod2*, and *bod3*, respectively, the patterns of solutions are much clearer. By transferring the mean vectors and cones of confidence from the PBT plots (Fig. 12a) to the MIM plots (Fig. 12b), considerable consistencies between the results of PBT and MIM become obvious. The cones of confidence enclose clusters of stress axes in the MIM plots, thus obviously exposing these clusters as significant solutions. Even when adopting slightly different fracture angles for PBT, such as $\theta=20^{\circ}$ or $\theta=40^{\circ}$ as exemplarily shown for the subset *bod1*, the same trends of stress axes are indicated as significant (Fig. 12b, left plot).

Figure 12: Stress inversion for the fault-slip data from *Bodendorf* (#32): a) PBT separation. The separation by clusters of P-, B-, and T-axes yields three homogeneous subsets (*bod1*, *bod2*, and *bod3*) of kinematically consistent faults. The PBT plots (*left*) are complemented by the mean vectors calculated for P-, B-, and T-clusters (larger PBT symbols) and their associated cones of confidence for 99% significance (Wallbrecher, 1986). A fault-slip datum is regarded as belonging to a cluster if none of its three axes deviates by more than 40° from the respective mean vectors. Subsets are additionally shown by tangent-lineation plots (*right*) presenting each striated fault as an arrow that points the slip direction of the footwall-block. Data with non-uniform kinematics ('Remnants', *rightmost column*) mainly comprise oblique-slip faults.

b) Complete number of reduced stress tensors calculated by MIM for *bod1*, *bod2*, and *bod3* (plot properties as in Fig. 10c with e=1). σ_1 - and σ_3 -plots are complemented by the mean vectors and the cones of confidence derived from the respective P- and T-clusters in (a). For subset *bod1*, also the cones of confidence and mean vectors for P- and T-clusters constructed with $\theta=20^\circ$ and $\theta=40^\circ$ are plotted.

c) Results of the first stress simulation: Stress axes are derived from corresponding PBT axes. As the mean vectors for P-, B-, and T-axes are calculated separately, they are not necessarily mutually perpendicular. Thus, the directions selected for σ_1 , σ_2 and σ_3 are slightly deviating from those of P, B, and T to achieve the required perpendicularity. Stress states BOD1', BOD2', and BOD3' are 'preliminary' solutions for the subsets *bod1*, *bod2*, and *bod3*, respectively. *Tangent-lineation plots*, *left*: The theoretical slip patterns (light grey arrows) of the stress states BOD1-3' coincide very well with the measured slip patterns of *bod1*, *bod2*, *bod3* (coloured arrows). *Fluctuation histograms*, *right*: The low degree of misfits of BOD1', BOD2', and BOD3' are expressed by a large number of faults with low misfit angles (mainly $\beta \leq 30^\circ$). *Mohr-circles diagrams*: Each striated fault is indicated by its shear-to-normal-stress ratio (τ/σ_n) calculated for the associated stress state. The values of τ/σ_n are remarkably high.

d) Results of the second stress simulation: Each of the stress states BOD1, BOD2, and BOD3, is set in relation to the complete fault population from *Bodendorf. Tangent-lineation plots*: Given the theoretical slip pattern of BOD1, BOD2, and BOD3 (thin grey arrows), faults with misfit angles $\beta \leq 30^{\circ}$ (coloured arrows) can be separated from faults of low slip potentials indicated by $\beta > 30^{\circ}$ (dark grey arrows). *Mohr-circles diagrams*: Black dots indicate faults with misfit angles $\beta \leq 30^{\circ}$, grey dots represent faults with $\beta > 30^{\circ}$. Most faults with a low misfit angle show a high τ/σ_n , thus reflecting a high slip tendency.

e) Symbols for the reduced stress tensors: Sub-horizontal principal stress axes are projected to the horizontal and plotted as arrows (in black, grey, and white for σ_1 , σ_2 , and σ_3 , respectively). Sub-vertical principal stress axes are projected to the vertical and plotted as solid circles (also black, grey, and white for σ_1 , σ_2 , and σ_3). To illustrate the value of R, the σ_2 -symbol is plotted by variable sizes (e.g. equally sized to σ_1 , if $\sigma_1=\sigma_2$, and equally sized to σ_3 , if $\sigma_2=\sigma_3$). Furthermore, the background colour is plotted according to the value of R.

Step 3: Find preliminary stress states (first simulation)

To find the best-fitting stress state for a kinematically homogeneous subset, different stress states are simulated and compared (*step 3* and *step 4*). In this context, a simulation run implies, first, to define directions for the principal stress axes and a value for R, and second, to check the associated misfit angle distribution. To obtain the latter, the programme *MI Viewer 4.10* calculates the direction of maximum shear stress, τ_{max} , for each fault plane (Yamaji & Sato, 2005). At the same time, the angular distance between the theoretical and the observed slip is estimated. The resulting misfit angles (β) are visualized collectively by a lower-hemisphere, equal-area projection (*tangent-lineation plot* as in Fig. 8a) and by a fluctuation histogram (Fig. 12c). The β -distribution finally serves as a measure for the consistency between a stress state and a set of fault-slip data, thus providing the base for a comparison of the fit of different stress states.

In a first series of simulations, stress states are tested only against the particular fault-slip data of a separated PBT-subset (Fig. 12c). The first stress state tested is characterised by (i)

directions of σ_1 , σ_2 and σ_3 derived from the mean vectors of the associated P-, B-, and T-axes, respectively, and (ii) an R value derived from the corresponding MIM clusters. Interestingly, the misfit angles calculated for *bod1*, *bod2*, and *bod3*, respectively, already tend to low values (mostly β <30°). By testing different R values indicated by the different colours of the respective MIM clusters, the solutions can be improved. Finally, the stress states BOD1', BOD2', and BOD3' correspond to low degrees of misfit, which is indicated by the fluctuation histograms as well as the tangent-lineation plots where the measured data are subparallel to the theoretical slip directions (Fig. 12c). Furthermore, these stress configurations would induce relatively high shear-to-normal-stress ratios (τ/σ_n) on the respective faults as indicated by the presence of many τ/σ_n -values near the external envelopes of the Mohr-circles diagrams (τ/σ_n calculated by the software *FLUMO*, Sperner, 1993). Such values of τ/σ_n plotting close to the Mohr-Coulomb fracture criterion (tangential to the σ_1 - σ_3 circle) confirm a high potential of slip along the faults. Hence, both criteria for faulting are fulfilled and the stress states BOD1', BOD2', and BOD3' can be regarded as realistic solutions for the subsets *bod1*, *bod2*, and *bod3*, respectively.

For estimating the slip potential of a single fault-slip datum under a certain stress field, the upper limit for misfit angles has been proposed to be either $\beta=20^{\circ}$ (Etchecopar et al., 1981, Sperner et al., 1993) or $\beta=30^{\circ}$ (Nemcok & Lisle, 1995). In the case of the preliminary stress states BOD1', BOD2', and BOD3', the majority of respective fault-slip data are related to misfit angles of $\beta\leq20^{\circ}$. As none of the few faults with $20^{\circ}<\beta\leq30^{\circ}$ would fit better to any alternative solution (neither in terms of misfit angles, nor of shear-to-normal-stress ratios), the PBT separation can be regarded as reasonable. However, the solutions BOD2' and BOD3' are not ideal, since the peaks of the respective cumulative curves are shifted away from the origin. Such distributions indicate potentials for better solutions.

Step 4: Complete separation and improve solutions (second simulation)

By performing a second simulation series, the relevancies of BOD1', BOD2', and BOD3' are assessed and the solutions further improved. Each preliminary stress state is tested against the entire fault population to estimate its potential to be responsible also for the activation of other fault-slip data from the outcrop, in particular, those of the group of 'Remnants' (*Step 1*). A single fault-slip datum is regarded as fitting to a certain stress state if the associated misfit angle is less than 30°.

After having identified all fault-slip data that are consistent with a stress state, the degree of misfit can further be minimised. The minimisation is done by interactively following any changes of misfit angles when slightly changing the parameters of stress. For our example, this means, we start with BOD1', BOD2', and BOD3', modify successively their parameters by selecting alternative values for σ_1 , σ_3 , and R, to finally find the most appropriate solution for *bod1*, *bod2*, and *bod3*. The analysis of numerous data sets has shown that this interactive search can be restricted to a space which is indicated by consistent solutions of MIM and PBT, i.e. MIM-clusters which overlap with PBT-derived cones of confidence. Thus, within only a few simulation runs, the stress states BOD1, BOD2, and BOD3 are determined as optimal solutions for the subsets *bod1*, *bod2*, and *bod3*, respectively (Fig. 12d).

As expected from the PBT results, the stress states BOD1 and BOD2 correspond to strike-slip regimes with a sub-vertical σ_2 -axis each. For stress state BOD1, the maximum principal stress axis strikes sub-horizontally NE-SW, whereas for BOD2 it strikes NW-SE. These stress states differ also in the derived stress ratios: in the case of BOD1 the ratio tends towards an axially compressive state of stress (R=0.2) and for BOD2 it represents a plane deviatoric stress state (R=0.6). Finally, stress state BOD3 corresponds to an extensional regime (sub-vertical σ_1) with a sub-horizontal, NE-SW-directed σ_3 -axis. The various dip and slip directions of the associated normal faults in subset *bod3* require a relatively low R value for BOD3 (R=0.2).

Step 5: Presentation of stress states

With the four steps of separation and stress inversion introduced above, it is possible to estimate the reduced stress tensor for a group of striated faults. Given large data sets from a large number of closely-spaced sites, it is necessary to find a simple way of presenting numerous stress states in maps. The stress symbols used in this study have been conceived to integrate all parameters of the reduced stress tensor (Fig. 12e). Typically, most of the estimated stress states reveal sub-vertical and sub-horizontal principal stress axes. Thus, the axes can be projected to the vertical and horizontal, respectively. Accordingly, vertical axes are plotted as dots and horizontal axes as arrows. The stress ratio R is expressed by the relative size of the σ_2 -symbol and, for the sake of a faster recognition, also by a specific colour code for the background of the stress symbol. If none of the principal stress axes is sub-vertical, i.e. plunging by more than 70°, the stress state is regarded as "oblique" and presented by a lower hemisphere, equal-area projection revealing the precise orientations of stress axes and a colour-coded background for R.

2.2.2 Stress inversion by MIM and simulation - a comparative test

MIM has been invented as an independent approach (Yamaji, 2000). According to its original concept, significant stress state(s) inherent in a fault population are indicated by clusters in the associated σ_1 -/ σ_3 -pair of stereograms. Consequently, the most significant stress state should be indicated by the grid point that combines the largest number of solutions. This implies, in turn, that isolating the most relevant stress state should be possible by enlarging the enhance factor *e* of the corresponding MIM plot. In the following, the validity of thusly identified solutions shall be checked: First, the results of MIM for *bod1*, *bod2*, and *bod3* are plotted (Fig. 13b). In contrast to Figure 12b, however, solutions are plotted with an enhance factor that large that only one stress states BODx, BODy, and BODz are different from the solutions BOD1, BOD2, and BOD3 (Fig. 12d): For subset *bod1*, the grid point with the maximum number of solutions indicates a compressional regime (BODx) instead of a strike-slip system (BOD1). BODy corresponds to a tensional regime, whereas BOD2 is strike-slip in character. For *bod3*, finally, the solutions BODz and BOD3 differ in terms of directions of minimum horizontal stress (σ_3).

Considering only the misfit angle distributions, BODx, BODy, and BODz correspond well with most of the observed fault-slip data of *bod1*, *bod2*, and *bod3*, respectively. However, as the data mainly plot to the lower right in the corresponding Mohr-circles diagrams, they are associated with very low shear-to-normal-stress ratios (Fig. 13c). Since the slip tendency of a fault plane is larger for high values of τ/σ_n , this comparative test suggests BODx, BODy, and BODz not to be as relevant for the *Bodendorf* fault population as the stress states BOD1, BOD2, and BOD3.

Since it is one of the most frequently used methods, also the results of the Direct Inverse Method (DIM; Angelier and Goguel, 1979, after a solution of Sperner et al., 1993) shall be considered here. Alike MIM, the Direct Inverse Method is based on the 'low misfit-angle criterion': it calculates the best-fitting stress tensor for fault-slip data directly by minimising the sum of all misfit angles. Unlike MIM, this calculation is performed only once, i.e. for a whole set of fault-slip data. Considering the orientations and misfit angle distributions, the solutions produced by DIM and MIM are similar. Accordingly, the solutions generated by DIM for the subsets *bod1* and *bod2* are also related to very low shear-to-normal-stress ratios which implies that these stress states similarly must be challenged (Fig. 13d).

Figure 13: Comparative test. The stress states BODx, BODy, and BODz are tested against the faultslip data from *Bodendorf* as they are the most relevant solutions according to MIM. a) PBT separation (as in Fig. 12a). b) Stress tensors calculated by MIM for the subsets *bod1*, *bod2*, and *bod3*. Note the large enhance factors which were selected to filter out all stress states but the ones with the largest number of solutions. c) The stress states BODx, BODy, and BODz which are indicated by the MIM solutions in (b), are set in relation to the subsets *bod1*, *bod2*, and *bod3*, respectively. Note the difference of these stress states compared to BOD1, BOD2, and BOD3, respectively (Fig. 12d). *Tangent-lineation plots*: The measured fault-slip data (black arrows) fit well with the theoretical slip patterns of BODx, BODy, and BODz (grey arrows). *Fluctuation histograms*: A maximum number of fault-slip data is related to the simulated stress states by misfit angles of $\beta \leq 30^{\circ}$. *Mohr-circles diagrams*: The fault-slip data reveal relatively low shear-to-normal-stress ratios reflecting minor slip tendencies of the faults under the given stress states. d) Results of the Direct Inverse Method applied to the subsets *bod1*, *bod2*, and *bod3*, respectively (*TectonicsFP* by Reiter & Acs, 1996-2008). Note the large number of faults with low shear-to-normal-stress ratios in the Mohr-circles diagrams.

2.2.3 Discussion

For the exemplarity selected fault population from *Bodendorf*, the Stress Inversion Via Simulation (SVS) integrating the concepts of PBT and MIM yields three stress states which together almost completely explain the observed fault-slip pattern. Each solution is related to the associated fault-slip data by a maximum number of misfit angles of $\beta \leq 20^{\circ}$ which in general is regarded as the primary criterion for a reasonable solution. The main aspects of the introduced stepwise procedure are the following:

(1) *PBT allows a fast and straightforward separation of heterogeneous fault-slip data.* Unlike other separation methods which merge fault-slip data, then calculate a stress state with associated misfit angles in order to finally separate data again (e.g. Etchecopar et al., 1981), PBT processes each fault-slip datum separately.

(2) The results of PBT are used to identify the most relevant stress states for a set of fault-slip data among the numerous solutions provided by MIM. As PBT is only used for a preseparation of data sets (later verified by various simulation runs), the selected value of the fracture angle of θ =30° does not directly influence the results of the subsequent stress inversion. By separating heterogeneous data sets before applying MIM, a major problem of MIM is solved, which concerns minor subsets that may not be indicated adequately when appearing together with much larger subsets (Liesa & Lisle, 2004). Moreover, in the case of girdle distributions of σ_1 - and σ_3 -axes, PBT results help designating the most realistic direction of the unknown σ_2 -axis in terms of shear-to-normal-stress ratios. As demonstrated (Fig. 13), the most relevant solutions produced by MIM might represent stress states associated with unrealistically low shear stresses on the respective faults. Though pre-existing discontinuities may require relatively low shear-to-normal-stress ratios for slip to occur (Twiss & Moores, 1992), solutions with higher ratios are regarded as more realistic.

(3) The interactive stress simulation provides direct control on the relation of a single faultslip datum to a given stress state. Thus, all data from an outcrop can either be assigned to a specific stress state or isolated as outliers – which thus do not further influence the stress inversion. With this simulation procedure, also the data that formerly had to be separated as 'Remnants' due to their PBT-axes can be set in relation to potential stress states. To consider these data is essential because (i) as mostly being oblique and generally not containing a principal stress axis, they more closely constrain the stress ratio, R (Angelier, 1989) and (ii) as mainly being reactivated, they may document age relations to other fault-slip data, thus providing constraints on the chronology of stress states. Furthermore, the simulation allows checking the separation of fault-slip data in terms of potential relationships to the qualities of kinematic indicators. Finally, since the simulation tool interactively provides a tangent-lineation plot showing the theoretical slip patterns for a stress state (Fig. 12c,d), also incomplete data with unknown senses of slip might be correlated with any of the estimated stress configurations.

(4) The estimated stress states fulfil both the criterion of low misfit-angles and that of high shear-to-normal-stress ratios. The distribution of misfit angles correlating a set of fault-slip data with a specific reduced stress tensor as illustrated by a histogram serves as the primary measure for the quality of a stress state. An ideal solution for a homogeneous data set is characterised by a unimodal distribution of misfit angles with a maximum close to the axis of frequency. By performing the fourth step of the introduced inversion procedure, i.e. the second simulation, such an ideal solution can be found.

The distribution of shear-to-normal-stress ratios of a data set illustrated by a dimensionless Mohr-circles diagram serves as the second, even though more qualitative, measure for the fit of a stress state. For each fault-slip datum, PBT constructs a triple of kinematic axes. If these kinematic axes are interpreted as stress axes – with a parallelism between σ_1 and P, between σ_2 and B, and between σ_3 and T – the respective stress state would induce the largest possible shear stress (a maximum of τ/σ_n) on the respective fault given that $\theta=30^{\circ}$. By restricting the search of a best-fitting stress state to the space indicated by consistent results of PBT and MIM, the solution found to be best for a group of fault-slip data in terms of misfit angles is guaranteed to be related also to relatively high shear-to-normal-stress ratios. If there are no consistencies observable between PBT and MIM (in the case of a pure set of reactivated faults, for instance), the simulation runs still should aim at improving the fit of stress states in terms of both misfit angles and shear-to-normal-stress ratios.

2.2.4 Summary

The Stress Inversion Via Simulation (SVS) is a stepwise technique combining a graphical method which is based on the Mohr-Coulomb fracture criterion (PBT-Method) with a numerical method based on the Wallace-Bott criterion (Multiple Inverse Method, MIM). The final steps of SVS correspond to a simulation of different stress states – a forward modelling that provides direct control on the relationships of a set of fault-slip data to any potential reduced stress tensor. In this way, SVS allows detecting the stress tensor(s) that best fit(s) a fault population in terms of slip and frictional criteria.

SVS integrates two techniques (PBT, MIM) each of which has been developed as a selfcontained approach on fault-slip analysis. However, there are some critical aspects related to both these methods which are overcome by a combination as involved in SVS. The main differences between SVS on the one side and PBT, MIM, the Numeric Dynamic Analysis (NDA; Sperner et al., 1993), and the Direct Inverse Method (DIM; Angelier & Goguel, 1979) on the other, are compiled by Figure 15.

The main critical aspect of both PBT and NDA originates from the basic assumption that the orientation of a fault plane (expressed by the fracture angle θ) depends on the state of stress that causes faulting which is, however, only valid for neoformed faults. The uncertainty inherent in the choice of a uniform fracture angle, in turn, directly involves an ambiguity in the resulting orientations of kinematic axes. In averaging across all PBT-axes of a set of fault-slip data, NDA interprets these axes as stress axes while, however, not considering any potential heterogeneity among them. For the latter reason, performing a separation according to clusters of PBT-axes before applying NDA is reasonable. In the case of the presence of

reactivated faults, this might result in rejecting a number of inconsistent data (remnants). Neoformed faults alone, however, would not perfectly constrain the stress ratio R (Angelier, 1989). Likewise problematic is the NDA approach of calculating the stress ratio: NDA derives the value of R from the eigenvectors and eigenvalues of the cumulative pattern of PBT-axes instead of deriving R directly from the fault-slip pattern. Finally, the reduced stress tensor as deduced from the orientations of PBT-axes might not be perfectly consistent with a set of fault-slip data in terms of misfit angles.

Alike NDA, DIM calculates a reduced stress tensor for a set of fault-slip data directly. Potential heterogeneities of a data set thus are not considered and each datum deviating from the general trend may significantly falsify the solution of the iterative search. This problem is overcome by MIM by calculating reduced stress tensors for any possible subsets of a fault population. Since DIM and MIM are based on the Wallace-Bott hypothesis, the solutions are generally related to misfit angles that tend towards low values. Due to a consideration of oblique-slip (reactivated) faults, the stress ratio may also be well constrained (provided, of course, that the data show a sufficiently great diversity of orientations). However, the stress tensors found by DIM and MIM might still be far from being the best-fitting ones as indicated by unrealistically low shear-to-normal-stress ratios.

The intention of SVS is to explain a measured population of (heterogeneous) fault-slip data as complete as possible in terms of causative stress states. Each of the estimated stress states is guaranteed to fulfil the criterion of low misfit angles and that of high shear-to-normal-stress ratios (first simulation). Furthermore, each of the tensors is representative for as many fault-slip data as possible (second simulation).

SVS Sippel et al. (2008)	Slip <u>and</u> frictional criteria considered	PBT + MIM	Simulation	β 6 4 2 30 30 150 β []	b b b b b b b b b b b b b b b b b b b	R constrained by oblique-slip (reactivated) faults
MIM Yamaji (2000)	Based on Wallace-Bott slip criterion				L C L L L L L L L L L L L L L L L L L L	R constrained by oblique-slip (reactivated) faults
DIM Angelier & Goguel (1979)	Based on Wallace-Bott slip criterion	No separation.			L O MO	R constrained by oblique-slip (reactivated) faults
PBT + NDA Sperner et al. (1993)	Based on Mohr-Coulomb fracture criterion (θ=30°), for neoformed faults only	PBT N Martines A	Z E E		AD VAL	B-axis (σ₂-axis) in fault plane, → R not constrained
NDA Sperner et al. (1993)	Based on Mohr-Coulomb fracture criterion (θ=30°), for neoformed faults only	No separation.			AD ^C	R derived from the pattern of P-, B-, and T-axes
Z	Fault-slip data (assigned to BOD1)	Detection of heterogeneity	Stress inversion $\circ \sigma_1$ $\Box \sigma_2 \sigma_1 \ge \sigma_2 \ge \sigma_3$ $\Delta \sigma_3$	Fit in terms of slip direction	Slip tendency in terms of frictional sliding	Stress ratio R = $(\sigma_2 - \sigma_3) / (\sigma_1 - \sigma_3)$

Figure 14: Different techniques of fault-slip analysis. The different approaches are exemplarily applied to the subset of fault-slip data that formerly has been related to the stress state BOD1 (Fig. 12). Critical aspects related to the different techniques are highlighted in red.

DIM – Direct Inverse Method, MIM – Multiple Inverse Method, NDA – Numeric Dynamic Analysis, PBT – PBT-axes Method, SVS – Stress Inversion Via Simulation

2.3 From local fault-slip data to regional stress fields

SVS provides a strategy for estimating a stress state from a number of striated faults. However, SVS is only one step on the way from sampling fault-slip data in an outcrop of limited extension to correlating reconstructed regional stress fields with the geodynamic history of an entire sedimentary basin.

2.3.1 Data acquisition

A complete fault-slip datum integrates the orientation of a fault plane, the orientation of the shear-related striations, the sense of shear movement along the plane (sense of slip) and the quality and type of shear sense indicators (Fig. 15). The most widespread type of indicators found in the study area is provided by accretionary mineral steps or crystal fibres mostly made of calcite (e.g. ~65% of indicators at the southern margin of the CEBS; Fig. 9). Such fibres develop due to directed growth of minerals in shadow zones of a sheared fault plane while the direction of growth is parallel to the movement direction of the opposite block (congruous growth; Petit et al., 1983). Another type of kinematic indicators in the study area is provided by slickolites which are oblique stylolized peaks resulting from pressure solution (Hancock, 1985). Slickolites form incongruous steps, in other words, they point in opposite direction of movement of the missing fault block and they are very frequently found in limestones (Fig. 9a). Crystal fibres and slickolites are among the most reliable indicators for the sense of slip along fault planes (Doblas, 1998) which is expressed accordingly by mostly 'excellent' or 'good' qualities in the data records for the study area. Where bedding planes, veins or other structural elements are offset along a fault plane, the sense of movement is similarly well constrained. Other types of indicators are less frequent and summarized as 'non-specified' steps respectively 'non-specified' striations.

Site	Site #	Data #	DipDir	Dip	Azimuth	Plunge	Sense	Quality	Indicators + mineral coatings
Wettringen	1	1	170	57	122	50	2	3	3, 4
Wettringen	1	2	206	89	116	5	3	2	1(cc)
Wettringen	1	3	210	65	210	65	2	3	5
Höste	6	1	333	89	244	23	4	1	2
Bodendorf	32	6	358	80	270	5	3	1	1(cc), hem

Figure 15: Raw data as sampled for a fault-slip analysis (total data sets are presented in Appendices A and B). The orientation of a fault plane is indicated by its dip direction (DipDir; 0-360° in the horizontal) and its dip (Dip; 0-90° in the vertical). The orientation of striations is indicated by their azimuth (0-360°) and their plunge (0-90°). The sense of shear along a fault is reverse (1), normal (2), dextral (3), or sinistral (4). The quality of the interpreted shear sense indicators is excellent (1), good (2), or poor (3; after a classification of Sperner et al., 1993). The type of kinematic indicators corresponds to crystal fibres (1), slickolites (2), non-specified steps (3), non-specified striations (4), or offsets of structures (5). Mineral coatings which occasionally form crystal fibres include calcite (cc), chlorite (chl), hematite (hem), and quartz (qz) in the here studied areas.

2.3.2 Data presentation

Throughout the present study, fault-slip data are presented by arrows in *tangent-lineation plots* (Fig. 8a; Hoeppener, 1955; Twiss & Gefell, 1990): Each arrow in such a lower-hemisphere, equal-area projection represents one fault-slip datum. The centre of an arrow indicates the pole to the fault plane while the arrowhead indicates the slip direction of the footwall block. Hence, this type of plot displays the directions in which material would move past the outside of a fixed lower hemisphere.

2.3.3 Data correction

One factor determining data quality is related to measurement inaccuracies: Due to, for instance, the unevenness or the bad accessibility of a fault plane, the associated striae may not be precisely parallel to the plane – at least according to the measured orientations. For this reason, fault-slip data are checked and if necessary corrected before applying SVS ('Correct Fault Data'-tool; Reiter & Acs, 1996-2008). This correction corresponds to rotating the striae along a great circle (defined by the pole to the plane and the striae) to finally align on the fault plane. Usually, these corrections are minor: For example, less than 4% of the data from the southern margin of the CEBS are corrected by more than 10°.

2.3.4 Stress inversion

SVS is performed for each investigated outcrop separately. For a whole fault population, this procedure potentially results in a number of reduced stress tensors as well as some "outliers" that cannot be explained by a common stress state. All fault-slip data are treated equally in the present study which means independently of the size of the faults and the quality of kinematic indicators. Firstly, data are not weighted because the sizes of measured faults in the study area are relatively uniform (mainly between several and several tens of metres) while fault mechanisms can be assumed to be consistent on various scales (Angelier, 1994). Secondly, the classification according to qualities of indicators has turned out not to correlate with the separation of stress states: Fault-slip data of different qualities are rather uniformly distributed among the differentiated stress states and the groups of outliers.

According to the Direct Inverse Method (Angelier & Goguel, 1979) which requires at least four fault-slip data for constraining the reduced stress tensor, also the stress states estimated by simulation are based on at least four different fault-slip data. Of course, the quality of a stress tensor increases as the number of related fault-slip data increases. According to statistical studies, stress estimates based on eight or less faults should even be treated with great suspicion (Orife & Lisle, 2006). For this reason, stress symbols used in the present study are marked if the respective stress tensor is based on less than nine fault-slip data.

Since faults can be classified according to their kinematics as reverse, normal, dextral, and sinistral, stress states can be classified according to the relative magnitude of the vertical principal axis: stress states with a vertical σ_1 are referred to as tensional, stress states with a vertical σ_2 as strike-slip or wrench, and stress states with a vertical σ_3 are called compressional (Marrett & Peacock, 1999).

Finally, the comparison of stress states estimated at different sites provides perceptions on regionally acting paleostress fields. Such a correlation takes into account consistencies in the parameters of reduced stress tensors and consistencies in the ages of stress states. Though fault-slip data are difficult to date absolutely, field observations may provide constraints on

the relative timing of stress states – relative to the age of the rock that has preserved the associated fault-slip data or relative to other deformation structures.

2.3.5 Constraints on the chronology of stress states

SVS provides an effective way for separating heterogeneous fault-slip data and for deriving the full variety of causative paleostress states. The computer-aided separation of data, of course, should not conflict with, but confirm any previously gathered field observations. Exposed kinematic inconsistencies, such as superimposed striae on a single fault plane or cross-cutting relations between different fault planes, render it possible to separate data and also to determine their chronological order. A relative timing of stress states can also be derived from the relationships of fault-slip data to other deformed structures such as tilted bedding planes.

Superimposed striae

For the fault population from *Bodendorf* quarry (#32), it is shown how most of the fault-slip data have been assigned to one of three specific stress states (Fig. 12). According to overprinting relationships between individual striae on the same fault plane (such as in Fig. 9c), it can be concluded that both the stress states BOD1 and BOD2 have been active before BOD3 (Fig. 12e). According to such overprinting criteria, the two differently oriented strike-slip stress states were postdated by a tensional stress state with a NNE-SSW-directed σ_3 . The interpretation of superimposed striae is based on the assumption that late-stage coatings usually develop above initial striae which, in turn, are (partly) concealed (Meschede, 1994; Doblas, 1998). This wide-spread concept becomes doubtful when considering that the question which fibres are placed on top and which there under is dependent on the fault block which was accidentally removed by erosion (Sperner and Zweigel, unpublished manuscript). For this reason, superimposed striae are critical where used as chronological indicators. However, different types of mineralisation may confirm that two fault/striae pairs belong to different subsets related to different paleostress states (Fig. 10c).

Cross-cutting relationships - Case study 1: Barntrup quarry (#14)

At *Barntrup* located in the Lower Saxony Basin, Mid Triassic (*Muschelkalk*) limestones are exposed. The sampled fault-slip data comprise two kinematically homogeneous subsets, *bar1* and *bar2* (Fig. 16a), which document the activity of the two strike-slip stress states, BAR1 and BAR2, respectively. According to field observations, a WNW-dipping dextral fault belonging to subset *bar1* (Fig. 16c) is offset by a SSW-dipping oblique-reverse fault which has been assigned to *bar2* (Fig. 16b). This situation indicates that the strike-slip stress state with NE-SW-directed maximum compression (BAR1) has been active prior to the strike-slip stress state with NW-SE-directed σ_1 (BAR2).

Figure 16: Cross-cutting relationships and stress states at *Barntrup* quarry (#14). The arrangement of fault-slip data constrains the chronology of related stress states. a) Fault-slip data in a tangent-lineation plot (*left*) and results of PBT after separation according to kinematic axes (*right*). b) An older WNW-dipping dextral fault (fault plane A) is offset by a younger SSW-dipping oblique-reverse fault (fault plane B). Note the dextral component offsetting fault plane A. Fault plane B belongs to the homogeneous subset *bar2* which documents the stress state BAR2. c) Fault plane A is part of the subset *bar1* which corresponds to the stress state BAR1. Both faults illustrated are marked by red circles in the respective tangent-lineation plots.

Relations to other structures - Case study 2: Halle quarry (#11)

A frequently encountered situation concerns the chronological relationship between faulting on the one side and folding/tilting on the other (Lamarche et al., 1999, 2002; Homberg et al., 2002; Lacombe et al., 2006). To diagnose if a volume of rock is presently in a tilted position, a reference frame is required. In the case of sedimentary rocks, such a frame is often provided by the attitudes of bedding planes which generally are assumed to form in a horizontal position. To determine if a set of fault-slip data within a tilted volume of rock once has been affected by the process of tilting or if faulting postdated tilting, mostly is a more delicate issue. The following example shall illustrate the integrated use of sedimentary structures and fault-slip data to unravel a local deformation history.

At *Halle* (#11) an overturned sequence of Cenomanian to Turonian limestones reveals a heterogeneous fault population (Fig. 17). A preliminary separation of the data results in three homogeneous subsets (*hal1*, *hal2*, *hal3*) and a group of inconsistent fault-slip data (Fig. 17e). Assuming the clusters of kinematic axes to indicate potential directions of stress axes, it is obvious that two of the homogeneous subsets, *hal1* and *hal2*, respectively, would reflect "non-Andersonian" stress states (as none of the respective stress axes would be vertical; Anderson, 1942). These subsets reveal oblique P- and T-axes of which the orientations provide strong evidence for a tilting of the whole strata that postdated the respective phases of faulting. Thus, before any stress inversion can be performed, a back-tilting of part of the fault-slip data is required to estimate the original stress configurations that caused faulting (Fig. 17f).

An adequate rotation axis for the back-tilting procedure is inferred from the mean strike of bedding planes (111/00) which is sub-parallel to the mean strike of B-axes associated to *hal1* and *hal2*. Considering the overturned bearing of rocks (Fiedler, 1984), the sense of rotation must be carried out anticlockwise looking down-plunge the rotation axis. By coevally tilting back fault-slip data and bedding planes until the latter achieve their original horizontal position (i.e. through 138°), the P- and T-clusters of subset *hal1* are transferred to subhorizontal and subvertical positions, respectively. For subset *hal2*, on the other hand, such an "Andersonian" orientation of kinematic axes is achieved by applying a rotation angle which is derived from the mean plunge of P-axes (i.e. 64°). Subsequent to the back-tilting process, each subset is subjected to the stress inversion procedure described above (SVS). This analysis results in three stress states which resemble remarkably in terms of both the directions of maximum compression (σ_1) and the stress ratios (Fig. 17g). However, whereas the subsets *hal1* and *hal2* correspond to compressional stress states, subset *hal3* reflects a strike-slip system.

The illustrated relation between bedding planes and fault-slip data in conjunction with the "Andersonian" concept of stress states, argues for the following deformation model (Fig. 17h): The Cenomanian and Turonian limestones at *Halle* quarry firstly were disrupted by reverse faults (subset *hal1*), when a stress state with a NNE-SSW-directed maximum compression and a vertical σ_3 -axis was active (HAL1). This stress configuration probably kept constant for a certain time during which the strata successively were (i) tilted around an ESE-WNW-directed rotation axis, (ii) disrupted by another set of reverse faults (subset *hal2*; stress state HAL2) and (iii) tilted again. After the pile of rocks had achieved its recent orientation (taking the orientation of bedding planes as a reference frame), a permutation of the minimum and intermediate stress axes resulted in a vertical σ_2 (HAL3) and the activation of strike-slip faults (subset *hal3*).

Figure 17: Separation and stress inversion for the fault-slip data from *Halle* quarry (#11). a) The Upper Cretaceous strata is overturned presently dipping towards NNE; b) Pseudo-normal faults which show reverse senses of movement when tilted back to their original position; c) Tangent-lineation plot of the heterogeneous fault-slip data; d) Result of PBT: cumulative plot of P-, B-, and T-axes for the whole data set; e) Results of separation according to clusters of P-, B-, and T-axes; f) Back-tilting procedure for the subsets *hal1* and *hal2* (see text for details); g) Results of the stress inversion via simulation. The stress states HAL1, HAL2, and HAL3 have been found to excellently fit with the previously separated subsets *hal1*, *hal2*, and *hal3*, respectively. Fault-slip data that fit a respective stress state (misfit $\beta \leq 30^\circ$) are distinguished from data that do not fit ($\beta > 30^\circ$). Moreover, half of the previously out-sorted data (oblique) can be explained by these stress states, so that finally only 4 faults remain as a "rest". Stress states based on less than 9 fault-slip data are marked by an asterisk. h) Derived chronology of deformation phases after consolidation of rocks in the Turonian (time is not to scale). Symbols for phases of tilting indicate the directions of maximum horizontal compression (black arrows) inferred from the present orientation of tilted bedding planes.

3 Structural evolution of the CEBS – state of the art

As a result of its post-Variscan tectonic evolution, the CEBS contains the thickest Permian-Cenozoic sedimentary succession in Central Europe (>10 km; Scheck-Wenderoth & Lamarche, 2005). The present geometries and thickness distributions of preserved sedimentary layers in the CEBS are the expression of a succession of different phases of localized sedimentation, erosion and inversion (Fig. 18). They provide first perceptions on the deformation of the basin system and qualitative ideas about the stress fields that controlled the different stages. Since the geological record of the CEBS is the base for any reconstruction of its tectonic history, the main stages of basin evolution are described in the following together with the main rock units produced by each stage.

Figure 18: Regional geological profile across southwestern parts of the North German Basin (modified after Mazur et al., 2005). Note the uplifted position of the southern basin margin including the Lower Saxony Basin with respect to the North German Basin. The fault-slip data for the present study are derived from rocks cropping out along such uplifted parts of the south-western inverted margin of the CEBS. Vertical scale (seconds, two-way travel time) is twofold depth exaggerated. AFZ – Aller Fault Zone.

3.1 Initial rift phase

The Latest Carboniferous / Early Permian *initial rift phase* is supposed to be a late pulse of the Variscan Orogeny: The northern foreland of the collapsing Variscan mountain chain, including the area of the future CEBS, shows signs of deformation under roughly N-S-oriented compression and E-W-oriented extension (Heeremans et al., 1996; Lamarche et al., 1999, 2002; Vandycke, 2002). The extensional component is supposed to be responsible for the development of the intracontinental Oslo Rift system (Ziegler, 1990; Olaussen et al., 1994). Furthermore, the generation of a large variety of igneous products has been related to the development of several magmatic provinces within the collage of basement terranes in North Central Europe (Neumann et al., 2004). Accordingly, the dominant products of the Permo-Carboniferous *initial rift phase* comprise large amounts of igneous rocks. The most intensive magmatism took place in the Oslo Graben (c. 120000 km³; Neumann et al., 1992). The preserved thicknesses of volcanic rocks in the CEBS (Fig. 19) indicate further centres of volcanism to have developed in the Skagerrak Graben (with c. 1000 m-thick lavas; Heeremans et al., 2004) and in the Northeast German Basin (more than 2500 m-thick volcanics; Benek et al., 1996).

Geochemical and geophysical data from different places of eruption argue for the Permo-Carboniferous volcanics in northern Europe to represent a common tectono-magmatic event (Neumann et al., 2004). Today, remnants of this early period in the history of the CEBS are exposed at the surface in the areas of the Flechtingen High (Fig. 5) and of the Oslo Graben (Fig. 7). The period of magmatic activity in the Oslo Graben was estimated to have lasted between 308 Ma (syenitic sill intrusions, Sundvoll et al., 1992; Sundvoll & Larsen, 1994) and 245 Ma (granitic intrusions, Sundvoll et al., 1990). The main stage of magmatism started with the eruption of basaltic lavas (B₁ basalts, <300 Ma; Corfu & Dahlgren, 2007) which are followed by numerous lava flows of intermediate composition termed rhomb-porphyry (RP) lavas (Sundvoll et al., 1990). The youngest products of the volcanic phase are ring dykes and explosion breccias which are related to a stage of caldera formation (Ramberg & Larsen, 1978). In the Northeast German Basin, the main period of volcanic activity was estimated to be shorter and to have occurred between 307-294 Ma (\pm 3 Ma, respectively; Breitkreuz & Kennedy, 1999). The volcanics exposed in the Flechtingen High area are regarded as part of the calc-alkaline, SiO₂-rich Altmark-Flechtingen-Block-Subhercyn volcanic suite which consists mainly of rhyolites and andesites (Benek et al., 1996).

Figure 19: Preserved thickness of Permo-Carboniferous volcanics in the CEBS (isolines in 200m steps; modified after Scheck-Wenderoth et al., 2008a). Main centres of volcanism were located in the Skagerrak Graben (SG) and its northern prolongation, the Oslo Graben, as well as in the Northeast German Basin (NEGB). Reduced thicknesses of volcanics can be found from the southern North Sea through northern Germany into central Poland.

3.2 Post-rift phase of thermal subsidence

From latest Early Permian until Mid-Triassic, north Central Europe was mainly affected by a phase of thermal subsidence in the course of which former N-S trending graben-like depocentres joined to form the large NW-SE- to WNW-ESE-trending Northern and Southern Permian basins (Ziegler, 1990). Whereas the Norwegian-Danish Basin and the North German

Basin experienced later structural differentiation, the dominant NW-SE-direction of structures in the Polish Basin persisted throughout the entire basin history, which is supposed to be a result of its position above the Tornquist Zone which thenceforward controlled its development (Scheck-Wenderoth et al., 2008a).

In the Southern Permian Basin, an at least 2300 m-thick succession of continental *Rotliegend* clastics was deposited comprising sandstones and siltstones with intercalated evaporites (Fig. 20; Dadlez et al., 1995, 1998; Kiersnowski et al., 1995; Plein, 1995; Benek et al., 1996; Bachmann & Hoffmann, 1997; Lokhorst, 1998; Baldschuhn et al., 2001). Paleostress studies in the Lower Saxony Basin and its northwestern prolongation (Groningen Block) have shown that these clastics have been affected by ENE-WSW-directed extension still during the Permian (Lohr, 2007; van Gent et al., in press).

Figure 20: Preserved thickness of Lower Permian *Rotliegend* sediments (isolines in 200 m steps; modified after Scheck-Wenderoth et al., 2008a). TTZ – Teisseyre-Tornquist Zone.

During the Late Permian, a paleo-surface lowering was accompanied by a global glacioeustatic sea-level rise, enabling a marine transgression from the Arctic Ocean into the southern North Sea and across much of Central Europe (Ziegler, 1988, 1990; Coward et al., 2003). The respective Upper Permian sedimentary formations are known as the *Zechstein* (Fig. 21). The formations of the *Zechstein* Sea comprise the products of several evaporation cycles ranging from limestones and dolomites to the economically important units of rock salt in northern Germany. Within the investigated areas, rocks of the *Zechstein* period (mainly carbonates) are exposed where the inversion-related uplift of the Paleozoic block of the Harz Mountains involved the ascent of adjacent sediments along the Northern-Harz-Boundary Fault and along fault arrays structuring the western and southern borders of the Harz block (Fig. 5). The recurrent post-depositional mobilisation of *Zechstein* evaporites played a decisive role for the later structural evolution of much of the CEBS.

Continental basins Zechstein evaporite basins \sim Faults \sim -Suspected basement faults \sim Variscan Deformation Front Figure 21: Areas of Late Permian deposition of Zechstein salt (modified after Scheck-Wenderoth et al., 2008a). The outlines of evaporite deposition indicate that two individual sub-basins, the so-called Northern and Southern Permian Basins (Ziegler, 1990), were separated by the Mid-North Sea-Ringkøbing –Fyn chain of structural highs.

Until the Mid-Triassic, ongoing thermal subsidence with minor tectonic activity led to a continuous broadening of the depositional area of Central Europe where - after the ultimate evaporation of the Zechstein Sea - the continental red-bed clastics of the Buntsandstein were deposited. In the central parts of the North German Basin, the average thickness of the Buntsandstein sediments attains a few thousand metres. Maximum thicknesses, however, are located where the earliest influence of E-W-directed extension has been recorded, such as in the N-S-trending Glückstadt Graben which shows up to 5000 m of Buntsandstein (Baldschuhn et al., 2001; Maystrenko et al., 2005). As a result of two main phases of eustatic sea-level rise between 248 Ma and 221 Ma, much of Central Europe developed towards a marine depositional environment with mainly carbonate deposition, the Muschelkalk sequences (Rüffer & Zühlke, 1995). Aside from the large N-S-oriented grabens, the CEBS reveals a rather uniform thickness distribution varying in the range of hundreds of metres of Muschelkalk (Scheck-Wenderoth et al., 2008a). At present, Muschelkalk limestones are among the most prevalent rocks outcropping along the southern inverted margin of the CEBS. They are exposed in southwestern Poland (Fig. 6), as well as in the Subhercynian Basin, in the Lower Saxony Basin, and in the northern parts of the N-S trending Hessian Depression between the Egge Lineament and the Leine Graben (Fig. 5).

3.3 Mid-Triassic – Jurassic phase of E-W extension

A period of roughly E-W-oriented extension commencing in the Mid Triassic is indicated by mainly N-S-trending axes of depocentres that partly dissect the Mid-North Sea-Ringkøbing-Fyn High (Fig. 22; Scheck-Wenderoth & Lamarche, 2005). The E-W-directed extension induced accelerated tectonic subsidence of N-S-trending basins like the Central Graben, the Horn Graben, and the Glücksstadt Graben. In general, the depositional area of the CEBS

became shallower from Mid to Late-Triassic while the depositional setting changed from marine to continental again (fluvial to lacustrine *Keuper* sediments). Considering the locally increased thickness of *Keuper* sediments within the Glücksstadt Graben where it attains up to 5800 m, maximum extension can be dated back to Mid-Late Triassic times (Maystrenko et al., 2005). Localized subsidence in the N-S grabens was strongly enhanced by salt tectonics, as the salt withdraw from the axial parts of the grabens to rise along graben-parallel faults (Scheck et al., 2003a,b; Maystrenko et al., 2006).

Figure 22: Thickness distribution of preserved Triassic deposits (modified after Maystrenko et al., 2006). N-S-oriented grabens and troughs show increased thicknesses. A further main depocentre is provided by the Polish Basin which strikes NW-SE. EFS – Elbe Fault System, STZ – Sorgenfrei-Tornquist Zone; TTZ – Teisseyre-Tornquist Zone.

3.4 Mid-Jurassic phase of uplift

The Mid-Jurassic period is mainly controlled by uplift of the central North Sea in the course of which large parts of North Central Europe successively have been elevated (Fig. 23; Scheck-Wenderoth et al., 2008). Accordingly, the northern parts of the CEBS around the Mid-North Sea-Ringkøbing Fyn chain of highs became the main erosional area and the Jurassic formations in the CEBS widely reflect a transition from deep to shallower water conditions. While this successively southward moving uplift affected the northern parts of the North German Basin (Pompeckj Block) – thus restricting Jurassic strata mainly to salt-rim synclines in the area (Maystrenko et al., 2005) – the southern parts of the North German Basin provided the frontal space for an accommodation of locally up to 1000 m of mainly clastic sediments (Walter et al., 1995).

Figure 23: The CEBS in Mid Jurassic times (modified after Scheck-Wenderoth et al., 2008a). Large parts of the CEBS represent structural highs.

BFB – Broad Fourteens Basin; CG – Central Graben; EHT – East-Holstein Trough; HG – Horn Graben; ISB – Intra-Sudetic Basin; LBM – London Brabant Massif; LSB – Lower Saxony Basin; NDB – Norwegian-Danish Basin; PB – Pompeckj Block; RM – Rhenish Massif; RT – Rheinsberg Trough; SHB – Subhercynian Basin; STZ – Sorgenfrei Tornquist Zone; TTZ – Teisseyre Tornquist Zone; WHT – West-Holstein Trough.

3.5 Late Jurassic – Early Cretaceous phase of localized subsidence

Until the beginning of the Late Jurassic, regional uplift had turned much of the CEBS into an erosional area while deposition was restricted to WNW- to NW-trending subsidence centres located at the margins of the CEBS. While the central parts of the CEBS experienced uplift affecting the Ringkøbing-Fyn High as well as Pompeckj Block, localized subsidence was found, for instance, along the Sorgenfrei-Tornquist Zone (Surlyk, 2003), along the Teisseyre-Tornquist Zone (i.e. in the Polish Basin; Dadlez et al., 1995, 1998), and in numerous basins along the southern margin, such as the Lower Saxony Basin (Betz et al., 1987). In the western parts of the Elbe Fault System, localized subsidence was accompanied by another phase of mobilisation of *Zechstein* salt (Scheck et al., 2002a; Scheck-Wenderoth & Lamarche, 2005). This generated space for the accumulation of shallow marine and lacustrine sediments, such as marine sandstones, clay stones, marls, and limestones including calcareous ooliths (Walter et al., 1995; Kossow & Krawczyk, 2002). Due to their weathering resistance, these limestones presently constitute the stabilising elements of some mountain ridges in the German parts of the Elbe Fault System where they widely are economically produced.

At the beginning of the Early Cretaceous (Berriasian), the connection of the Lower Saxony Basin to open marine water was interrupted (Fig. 24) leading to desalinisation, deposition of the limnic-brackish *Wealden* facies, and locally to an erosional hiatus (the base Lower Cretaceous unconformity; Kossow et al., 2000; Kossow & Krawczyk, 2002). During the

following transgressive phase (Valanginian to Aptian), the marine flooding gradually transcended beyond the boundaries of the localised Upper Jurassic depocentres so that much of the North German Basin (including the Pompeckj Block) and the Polish Basin were included in a common marine depositional environment. While tectonic activity was strongly reduced during this phase, some 800-1000 m of *Wealden* sequences and 1500-1650 m of post-Berriassian sediments have been deposited in the Lower Saxony Basin (Klassen, 1984; Betz et al., 1987; Mutterlose & Böckel, 1998).

Figure 24: The CEBS in Early Cretaceous times (modified after Scheck-Wenderoth et al., 2008a). Subsidence was restricted to NW-SE trending depocentres as the Polish Basin and the northern Norwegian-Danish Basin, and to basins along the southern margin of the North German Basin. AB – Altmark Basin; BFB – Broad Fourteens Basin; CG – Central Graben; EHT – East-Holstein Trough; HG – Horn Graben; LBM – London Brabant Massif; LSB – Lower Saxony Basin; NBB – North Bohemian Basin; NDB – Norwegian-Danish Basin; PB – Pompeckj Block; RFH – Ringkøbing-Fyn High; RM – Rhenish Massif; SHB – Subhercynian Basin; STZ – Sorgenfrei Tornquist Zone; TTZ – Teisseyre Tornquist Zone; WHT – West-Holstein Trough.

3.6 Late Cretaceous – Early Tertiary phase of inversion

At the beginning of the Late Cretaceous, a globally elevated sea level (Torsvik et al., 2002) and probably minor extensional stresses induced by divergent plate movements in the North Atlantic (Stampfli & Borel, 2002; Torsvik et al., 2002) resulted in flooding of much of Central Europe. The sediments related to this marine transgression are predominantly carbonates which are developed as chalk in the northern parts of the CEBS and as limestones with clastic intercalations along the southern margin of the basin system (Scheck-Wenderoth et al., 2008a).

Subsequently, the style of intra-plate deformation changed drastically from an extensional (and transtensional) to a compressional (and transpressional) mode. As a result, WNW- and NW-striking blocks that previously had experienced subsidence were inverted and exposed to

erosion whereas adjacent blocks were taking up large amounts of Upper Cretaceous sediments (Fig. 25; Scheck-Wenderoth & Lamarche, 2005). Stratigraphic and thermochronologic data indicate that one main phase of shortening covers the Latest Turonian and Campanian time (Ziegler et al., 1995; Hejl et al., 1997; Thomson & Zeh, 2000; Vejbaek & Andersen, 2002; Kockel, 2003; Voigt et al., 2004, 2006; Senglaub et al., 2006).

The Lower Saxony Basin, for instance, experienced strong uplift which culminated in the Coniacian and Santonian. The amount of related erosion is debated but proposed values range up to several thousand metres of sediments (Senglaub et al., 2006). At the same time, areas to the north (Pompeckj Block) and to the south (Münsterland Basin) experienced subsidence, thus providing space for the deposition of up to 2000 m of Upper Cretaceous sediments (Walter et al., 1995). Along the southern flank of the Lower Saxony Basin, uplift-related movements were strongly localized along the Osning Lineament. This structure roots in the pre-Permian basement of the Lower Saxony Basin separating the Rhenish Massif below the Münsterland Basin in the south from the Lower Saxony block in the north (Fiedler, 1984; Drozdzewski, 1988). The outcropping prolongation of this lineament is a zone of inversion-related thrust faults along which Mesozoic to Lower Cretaceous sediments of the Lower Saxony Basin have been thrust southwards over the stable Münsterland platform and its thick cover of Upper Cretaceous rocks.

Similar inversion-related phenomena as described for the Lower Saxony Basin have also been reported for other sub-basins of the Elbe Fault System: the Sole Pit Basin (Badley et al., 1993; Nalpas et al., 1995; Buchanan et al., 1996), the Broad Fourteens Basin (De Lugt et al., 2003; Nalpas et al., 1995), and the Subhercynian Basin (Kossow et al., 2001; Otto, 2003; Franzke et al., 2004; Voigt et al., 2004). The uplift of these basins was accompanied by a new phase of salt movement during which salt diapirs with NW-SE-trending axes formed parallel to the uplifted blocks (Scheck-Wenderoth et al., 2008a). The western parts of the Allertal Fault Zone (Fig. 5), for instance, show locally increased thicknesses of Upper Cretaceous in salt rim synclines and reduced thicknesses where diapirs have developed (Lohr et al., 2007). The Northern Harz Boundary Fault which is another major fault zone exposed in the study area separates the Hartz block in the south - comprising Variscan-deformed Devonian to Lower Carboniferous sediments - from the Mesozoic sediments of the Subhercynian Basin in the north. During the phase of inversion, the basin fill of the Subhercynian Basin was tilted and partly overthrust by the Variscan basement due to the relative uplift of the Harz block along the Northern Harz Boundary Fault (Thomson et al., 1997; Voigt et al., 2004). Thereby, the Subhercynian Basin was progressively filled with locally more than 1500 m of Upper Cretaceous rocks consisting of marginal sandstones of the Upper Cretaceous chalk sea. At the same time (mainly during the Coniacian and Santonian), also the block of the Flechtingen High experienced uplift, its transition to the north, however, evolving as a flexure rather than a fault (Scheck et al., 2002a).

Alike the Elbe Fault System, also the Sorgenfrei-Tornquist Zone acquired its principal inversion structures with an uplifted central zone limited by reverse faults during Late Cretaceous and Early Tertiary phases of inversion (Berthelsen, 1992). The related uplift of the Norwegian-Danish Basin occurred synchronous with the inversion of the NW-trending branch of the Danish Central Graben (Vejbaek & Andersen, 2002). Finally, a Late Cretaceous reverse reactivation of basement-cutting normal faults has also been observed along the Teisseyre-Tornquist Zone in the axial part of the Polish Basin (Erlström et al., 1997; Krzywiec, 2002; Krzywiec et al., 2003). In all of these sub-basins, the location of inversion is spatially linked to NW-SE-trending Upper Jurassic-Lower Cretaceous depocentres. This preferred orientation of inverted basins, the weak intensity of observed contraction within N-S-trending basins (Maystrenko et al., 2005), and the results of fault-slip analysis performed in some parts of Central Europe (Lamarche et al., 2002; Vandycke et al., 2002; Franzke et al., 2007; Bergerat

et al., 2007) consistently argue for a NNE-SSW- to NE-SW-direction of maximum compression that was responsible for the basin-wide inversion.

In many sub-basins, signs of inversion have not only been recorded for the Late Cretaceous but also for the Cenozoic, while the structural style was established to have changed between the Late Cretaceous and the Early Tertiary phase (Nielsen et al., 2005). Existing models characterising the phase of inversion (e.g. Ziegler et al., 1995) have recently been put up for a new discussion (Nielsen et al., 2005; Scheck-Wenderoth et al., 2008a; Kley & Voigt, 2008). These new perceptions have been developed especially in the light of the latest results concerning the causal interrelations between intraplate compressional stresses in Central Europe and Late Cretaceous orogenic processes in southern Europe where the early orogeny of the Alps coincided with the onset of Africa-Iberia-Europe convergence.

Figure 25: Distribution of preserved thickness of Upper Cretaceous rocks (isolines in 200 m steps; modified after Scheck-Wenderoth et al., 2008a). The axes of inverted blocks strike around WNW (double arrows) indicating a roughly NNE-directed maximum compression that induced inversion of Upper Jurassic to Lower Cretaceous basins.

AB – Altmark Basin; BFB – Broad Fourteens Basin; CNB – Central Netherlands Basin; LSB – Lower Saxony Basin; NBB – North Bohemian Basin; SHB – Subhercynian Basin; SPB – Sole Pit Basin; STZ – Sorgenfrei Tornquist Zone; WNB – West Netherlands Basin

3.7 Cenozoic subsidence and transition to present-day stress conditions

The Cenozoic represents a period when Africa and Europe were converging, when a major hotspot developed in the Faeroe-Greenland area, when seafloor spreading commenced in the North Atlantic between Greenland and Europe, and when NW Europe became part of a thermally subsiding passive continental margin from Eocene times onwards (Rasser et al., 2008). During this phase of thermal subsidence, the CEBS experienced little faulting but

renewed salt mobilisation while mainly N-S- and NW-SE-trending subsidence axes have been created (Scheck-Wenderoth & Lamarche, 2005). The major depocentre of this period with up to 3500 m of Cenozoic sediments is located in the Central North Sea.

Much of the Cenozoic evolution of North Central Europe was and still is controlled by farfield stresses resulting from continent collision farther to the south such as in the Pyrenees or the Alps (Reicherter et al., 2008). The earliest pulses of collision resulted in the formerly addressed phase of Late Cretaceous – Early Palaeogene inversion. During the Eocene to Miocene, in contrast, Central Europe has been governed by extensional tectonics that created the European Cenozoic Rift System including, for instance, the Upper Rhine Graben. Finally, there are indications that between the Eocene and the Miocene the direction of maximum horizontal stress (S_{Hmax}) rotated from a NE-SW- to a NW-SE-direction (Bergerat, 1987; Schreiber & Rotsch, 1998; Hinzen, 2003). The 'neotectonic period' of Central Europe thus began in the Late Miocene with the initiation of the present-day stress field which is predominantly characterised by NW-SE compression and NE-SW extension (Heidbach et al., 2008).

The super-regional present-day stress field in Central Europe is generated by Atlantic ridge push forces and forces related to collision/convergence of the Eurasian and African plates (Gölke & Coblentz, 1996; Goes et al., 2000). The general trend of NW-SE-directed maximum horizontal compression (S_{Hmax}) is complicated by varying plate boundary conditions, salt movements, and the coexistence of rheologically different domains (Grünthal & Stromeyer, 1992; Cacace et al., 2008). Such local disturbances of stresses are reported, for instance, for the North German Basin where S_{Hmax} swings from a NW direction in the west to a NNE direction in the east (Roth & Fleckenstein, 2001; Heidbach et al., 2008). Further local perturbations of the present (and Pleistocene) stress field are related to the post-glacial isostatic rebound of the Baltic Shield (Scherneck et al., 1998; Kaiser et al., 2005; Reicherter et al., 2005).

3.8 Salt tectonics

From the Mid Triassic onward, the tectonic activity of the CEBS was recurrently accompanied by a mobilisation of Zechstein salt layers (Scheck et al., 2003a; Scheck-Wenderoth et al., 2008b) which formerly had been deposited in the areas of the Northern and Southern Permian Basins during the Late Permian (Fig. 21). The present distribution and geometries of salt structures in the CEBS reflect different phases of salt (re)mobilisation resulting in diverse maturities of the structures in terms of pillow stage versus diapiric stage. The first major phase of salt movement was related to the Mid-Triassic – Jurassic phase of E-W extension which initiated N-S striking salt walls and diapirs mainly in the large N-S trending grabens of the Southern North Sea and in parts of the North German Basin. The Late Jurassic – Early Cretaceous phase of basin differentiation affected mainly the northern and southern marginal parts of the CEBS where local subsidence was accompanied by normal faulting and the formation of NW-SE oriented salt structures and pillows. The Late Cretaceous - Early Tertiary phase of inversion which mainly affected WNW- and NWstriking blocks enhanced the growth of NW-SE salt structures, whereas N-S-oriented salt structures experienced a phase of stability during this phase. This configuration changed again, when during the phase of Cenozoic subsidence N-S-oriented salt walls experienced a new phase of growth parallel to the mainly N-S-trending depositional axes of this time.

As described, the post-depositional mobilisation of salt temporally correlates well with the main regional tectonic phases in the CEBS. There are, however, differences between the central and the marginal parts of the basin system concerning their evolution and resulting salt structures (Scheck-Wenderoth et al., 2008b). According to the outlines of the Northern and

Southern Permian Basins, the reconstructed initial thicknesses of Zechstein salt layers generally increases from the marginal to the central parts of the basin system. As a result of its mechanical properties (Hudec & Jackson, 2007; Kukla et al., 2008), the salt locally acted as a decoupling horizon during post-depositional deformation phases. This applies mainly to the central parts of the CEBS, where the salt cover was mechanically decoupled from the deformation of the salt basement (thin-skinned deformation; Hecht et al., 2003; Scheck et al., 2003b). Accordingly, the patterns of the present-day direction of maximum horizontal stress, S_{Hmax}, in subsaline and in suprasaline formations of the North German Basin show differences that argue for a decoupling also of the regional stress field due to Zechstein salt layers (Roth & Fleckenstein, 2001). On the contrary, along the marginal parts of the Norwegian-Danish Basin, the North German Basin, and the Polish Basin, deformation of the salt cover and diapir location are directly linked to basement faults (thick-skinned deformation) and the recorded intensity of deformation is generally higher. As a result of the lateral variations in deformation history - controlled to a large extent by pre-existing of zones of crustal weakness as the Sorgenfrei-Tornquist Zone, the Teisseyre-Tornquist Zone, and the Elbe Fault System - salt structures at the margins of the CEBS predominantly strike NW-SE, whereas in the central parts they trend N-S (Fig. 26).

Figure 26: Present distribution of salt structures in the CEBS (Maystrenko et al., 2006; Baldschuhn et al., 2001; Dadlez et al., 1998; Evans et al., 2003; Jaritz, 1987; Lockhorst et al., 1998; Nalpas and Brun, 1993; Remmelts, 1995; Scheck et al., 2003b).

In the Southern North Sea and the North German Basin, the mobilisation of the Zechstein salt resulted in two main types of structures: (1) in the northern half of this province, NNW- to NNE-striking salt walls were initiated during the Mid-Triassic phase of E-W extension and (2) in the southern half, NW-SE-striking salt structures developed in the Cretaceous coevally with the subsidence and inversion of NW-SE-trending sub-basins. In the Polish Basin, the salt structures follow the trend of the Teisseyre-Tornquist-Zone while documenting different mobilisation ages.

AFZ - Allertal Fault Zone, BDF - Bornholm-Darlowo Fault Zone, CG - Central Graben, EFS - Elbe Fault System, GE - Gardelegen Escarpment, GG - Glückstadt Graben, HCM - Holy Cross Mountains, HG – Horn Graben, KCF - Koszalin-Chojnice Fault Zone, KS - Kuiavian Segment, PS - Pomeranian Segment of Mid-Polish Trough, RT - Rheinsberg Trough, STZ - Sorgenfrei-Tornquist Zone, TTZ - Teisseyre-Tornquist Zone.

4 The southern margin of the CEBS

The presented thickness distributions of specific sedimentary layers in the CEBS reflect shifts in the depositional and erosional areas over time and thus provide first perceptions on the structural evolution of the basin system. This evolution is strongly controlled by major WNW-ESE- and N-S-trending structures, respectively, which document remarkably consistent developments and recurrent activation since Permian times. However, such interpretations are based on seismic-scale present-day geometries of the basin fill. To constrain more closely the modes and causes of deformation in the CEBS, an outcrop-scale study focusing on the kinematic interpretation of brittle faults has been performed. Such a fault-slip analysis yields states of paleostress which can be discussed in the framework of the evolution of the CEBS known so far.

To potentially distinguish between different phases of faulting, a broad range of differentlyaged rocks has been investigated. However, the CEBS is widely covered by unconsolidated Cenozoic units so that field-based studies on the pre-Cenozoic evolution are limited to areas where increased uplift and erosion (especially during the *Late Cretaceous-Early Tertiary phase of inversion*) have exposed pre-Cenozoic rocks.

Along the Elbe Fault System, Upper Carboniferous to Upper Cretaceous rocks are exposed, thus potentially attesting to the tectonic evolution of the southern margin of the CEBS from the time of rock formation until present (Fig. 5, 6). A total number of 906 fault-slip data have been sampled from 40 sites revealing Upper Carboniferous, Upper Permian, Mid Triassic, Upper Jurassic, and Upper Cretaceous rocks (Tab. 1). Sampling of the data was restricted to limestones and volcanics because these lithologies offer the most favourable conservation conditions for kinematic indicators on fault planes in the area. Where possible, the fault-slip data are complemented by information on their spatial and chronological relationships to other structures, such as faults, bedding planes, folds, or veins.

After data acquisition, the stepwise fault-slip analysis introduced in Chapter 2 ("Stress Inversion via Simulation", SVS) has been performed separately for each investigated site. For every site, the complete population of fault-striae pairs is subjected to this procedure. Where possible, the chronology of paleostress states has been estimated directly based on relationships of different fault-slip data observable in the field.

4.1 Estimated paleostress tensors

A number of 77 reduced stress tensors have been determined for the area of the Elbe Fault System (EFS; Fig. 27). Many of the investigated sites show heterogeneous fault populations indicated by several different paleostress tensors. According to the principles of SVS, each separated homogeneous subset is related to the associated reduced stress tensor by relatively low misfit angles and high shear-to-normal-stress ratios. In some cases, the stress ratio R covers a certain range instead of being a discrete number which is due to a limited number or restricted orientations of the fault-slip data that thus imprecisely constrain the value of R. Most of the investigated outcrops reveal fault-slip data that correspond to "Andersonian" stress states, i.e. stress states with sub-vertical and sub-horizontal principal axes. In some cases, such a typical orientation of stress axes is already the result of a back-tilting of the associated fault-slip data performed before the inversion of the related stress state.

Figure 27: (continued next page)

Figure 27: Reduced stress tensors estimated for fault-slip data from the EFS area. Sites are indicated by number, name, and total number of fault-slip data (in brackets). Each row shows the complete number of sampled fault-slip data from a specific site. The data are plotted as assigned to a specific reduced stress tensor or rejected as outliers ("Rest"). Each reduced stress tensor is presented by a lower-hemisphere equal-area projection which includes the corresponding measured fault-slip data (thick arrows) and the calculated theoretical slip directions (thin grey arrows). The measured fault-slip data are colour-coded according to the associated misfit angles (β) which are the primary criterion for the fit between a group of faults and a stress tensor. The respective Mohr-circles diagram illustrates the shear-to-normal-stress ratios for a group of fault-slip data under the specific stress tensor. Datasets marked by an asterisk indicate that the fault-slip data have been tilted back prior to the stress inversion.

4.2 Analysis of chronological indicators

Before the reconstructed stress states can be correlated with any temporal stages in the evolution of the CEBS, some case studies are presented documenting phenomena that appear locally but help deciphering the regional chronology of stress states. These examples illustrate, for instance, relations between folding and faulting, relations of stress states to large-scale deformation structures or the occurrence of oblique stress states.

In the following, estimated paleostress states are presented according to *Step 5* in chapter 2.2.1: For Andersonian stress states, sub-vertical principal stress axes are projected to the vertical and sub-horizontal axes to the horizontal (Fig. 12e). Oblique stress states with none of the principal axes being sub-vertical, on the other hand, are presented by lower hemisphere, equal-area projections.

4.2.1 Faulting vs. folding

At many sites, the signs of brittle deformation do not only include striated faults but also indications for a folding or tilting of the rock mass. For the sedimentary rocks of the Lower Saxony Basin, the Hessian Depression and the Subhercynian Basin, a general trend is observable from gentle and open folds below outcrop scale in the central parts of the basins to a large-scale tilting of the strata close to the Osning Lineament and the Northern-Harz-Boundary Fault (bedding planes listed in Appendix A).

As illustrated for *Halle* quarry (#11), the geometrical relations between bedding planes and fault-slip data may help unravelling a local deformation history (*Case study 2*; Fig. 17). In the following, several other case studies are presented: A direct constraint on the timing of folding is provided at *Künsebeck* quarry (#12), where synsedimentary structures document a Cenomanian to Turonian age of the monoclinal tilting (*Case study 3*, below). For this site, the direction of maximum compression inferred from the tilted bedding planes is shown to correlate with the direction of σ_1 derived from a subset of fault-slip data. At *Lengerich* quarry (#5), two stress states are shown to predate a final phase of tilting, while two other stress states demonstrably postdate the tilting (*Case study 4*). The bedding planes measured at Papenberg (#25) indicate two phases of folding and tilting with different rotation axes, respectively (*Case study 5*). Finally, *Case study 6* shall document that in the case of the volcanic rocks from *Flechtingen* (#33), the lack of bedding planes is compensated by mineral veins that alternatively serve as a suitable indicator and reference for the rotation of the rock mass.

Case study 3: Künsebeck quarry (#12)

At *Künsebeck* quarry, which is located close to the Osning Lineament, an angular unconformity cuts the Cenomanian to Turonian limestones and separates them into a lower, more steeply inclined part from an upper, almost flat-lying part (Fig. 28). The shape of this unconformity, in turn, can be interpreted as a result of gravitational slumping which has been induced by tilting during times when the strata had been incompletely consolidated. Both facts argue for a tilting of the strata that had already begun during deposition of the sedimentary sequence. On the contrary, the faults observed at this place clearly have formed as discrete planes within an already consolidated pile of rocks (Fig. 28c). Obviously, faulting postdated folding at *Künsebeck* quarry.

From the attitudes of bedding planes, it is possible to infer an approximate direction of maximum horizontal compression that potentially caused the observed tilting of strata (Fig. 28b). The inferred NE–SW-directed compression corresponds well with the NE–SW-directed σ_1 -axis derived from the strike-slip faults that have been separated as *kün1* and related to the paleostress state KÜN1 (Fig. 28e). This correlation in terms of directions of maximum horizontal compression argues for a close relationship between the phase of tilting and the derived stress state KÜN1. Assuming a reverse stress state with a NE–SW-directed σ_1 -axis to be responsible for the tilting, the transition towards KÜN1 would only require a permutation between the σ_2 - and the σ_3 -axis. Consequently, it is probable that the time of activity of KÜN1 directly followed the process of folding while the other stress states estimated at *Künsebeck* (KÜN2, KÜN3, KÜN4) postdated KÜN1.

Figure 28: Analysis of structures within Cenomanian limestones exposed at *Künsebeck* (#12). a) Angular unconformity. The mean attitudes of bedding planes are plotted as great circles and poles to planes separately for parts above and parts below the unconformity, respectively. The difference in the mean dip angles and the shape of the unconformity, both indicate synsedimentary tilting of the strata; b) The variously dipping bedding planes show a common trend of dips which is represented by the azimuth of their calculated mean vector. The mean dip direction, in turn, is interpreted as the tilting-related direction of maximum horizontal compression; c) Large strike-slip fault that cuts the strata; d) Grooves and calcite fibres indicate a sinistral sense of movement along the fault plane; e) Strike-slip stress state KÜN1 with a NE-SW-directed σ_1 is derived from the subset of fault-slip data *kün1*. The fault-slip datum presented in (c) and (d) is indicated by the red circle. The direction of maximum compression corresponds with the one derived from the tilted bedding planes in (b) implying a close relationship between tilting and this particular phase of strike-slip faulting.

Case study 4: Lengerich quarry (#5)

Lengerich is located close to the Osning Lineament. Like at *Halle* quarry (Chapter 2.3.3), the Cenomanian-Turonian strata show strong deviations from their original horizontal bearings (Fig. 29). The mean strike of bedding planes is estimated as 114/00 (dip direction/dip) indicating a direction of maximum compression trending around 024/00 (assuming a horizontal maximum compression). The plunges of bedding planes, however, vary remarkably (between 35° and 81°) which reflects the presence of folds with amplitudes of several metres superimposing the large-scale tilting of the whole exposed sequence (Fig. 29).

Given the present orientation of fault-slip data, the kinematic PBT-axes of the separated subsets *len1* and *len2* suggest non-Andersonian stress states as indicated by P- and T- axes, respectively, that deviate far from a vertical or horizontal orientation (Fig. 30c). By rotating these subsets (i) around an axis inferred from the mean strike of bedding planes (114/00) and (ii) through 46° respectively 37° as indicated by the plunges of P-axes of *len1* and *len2*, respectively, Andersonian configurations are realised (Fig. 30d). This proceeding demonstrates that the orientation of PBT-axes can complement bedding planes in serving as a reference frame for the back-tilting of fault-slip data.

By performing a stress inversion via simulation for the back-tilted and non-rotated subsets, the stress states LEN1, LEN2, LEN3, and LEN4 are estimated (Fig. 30e). The different angles used for the back-tilting of *len1* respectively *len2* suggest that LEN1 has been active before LEN2. As the subsets *len3* and *len4* do not show evidence for having been affected by tilting after faulting (due to sub-vertical and sub-horizontal P-, B-, and T-axes; Fig. 30c), the associated stress states LEN3 and LEN4 are assumed to postdate the phase of tilting of the strata (Fig. 30f). Furthermore, two superimposed generations of striae on the same fault plane document that LEN3 predated LEN4 (Fig. 30a).

Figure 29: Upper Cretaceous limestones exposed in the Osning Lineament area (*Lengerich*, #5). As indicated by the great circles and poles to planes in the stereographic projection, the bedding planes show different dip angles varying between 35° and 81° while the very consistent strike directions indicate a common direction for tilting and folding.

Figure 30: Separation and stress inversion for the fault-slip data from *Lengerich* (#5; Upper Cretaceous limestone). a) Slickenside with an older generation of calcite fibres indicating dextral slip (1) and a younger generation of calcite fibres documenting normal slip (2); b) Various attitudes of bedding planes and the heterogeneity of fault-slip data reflect a complex deformation history; applied fracture angle for PBT: θ =30°; c) Results of separation according to clusters of P-, B-, and T-axes; d) Back-tilting procedure for the subsets *len1* and *len2*; e) The stress states LEN1, LEN2, LEN3, and LEN4 excellently fit the previously separated subsets *len1*, *len2 len3*, and *len4*, respectively. Stress states that are based on less than 9 fault-slip data are marked by an asterisk. f) Derived chronology of stress states and tilting events.

Case study 5: Papenberg quarry (#25)

Papenberg (#25) is located at the eastern flank of the Leine Graben where rocks of the Mid Triassic *Muschelkalk* sequence crop out (Fig. 5). According to dip directions, two subsets of bedding planes can be distinguished. On the outcrop scale, the exposed strata dip uniformly towards the east indicating a N-S-trending axis of tilting (Subset A; Fig. 31a). On the other hand, parts of the outcrop reveal folds with amplitudes of only a few metres and a common strike of bedding which indicates a fold axis striking around east (Subset B; Fig. 31b).

A fault-slip analysis is enabled by the presence of reverse faults with calcite slickenfibres in all parts of the quarry. Most of the fault-slip data constitute a kinematically homogeneous set with N-trending P-axes and sub-vertical T-axes (Fig. 31c). However, considering the precise plunges of B- and T-axes, it is obvious that they deviate from the horizontal and vertical, respectively, by about 20°. This fits well with the general dip of bedding planes which are inclined to the east by about 20° (Fig. 31a). In addition, both measured and constructed fold axes associated to subset B of bedding planes show similarly directed inclinations of c. 20°. These observations argue for a late tilting process that obviously had affected all the described structural elements.

According to the described findings, all elements are back-tilted using a rotation axis and a respective rotation angle both derived from subset A of bedding planes (i.e. a rotation axis oriented 185/00 and an angle of 20° ; Fig. 31d). After the back-tilting procedure, the average dip of bedding planes of subset A as well as the fold axes associated to subset B are horizontal. Furthermore, the B- and T-axes of subset *pap* are sub-horizontal and sub-vertical, respectively, thus reflecting a typical Andersonian configuration.

These findings support the following succession of events: After sedimentation and consolidation of the *Muschelkalk* sequence in Mid Triassic times, the strata have been folded under a N-S directed compressional stress regime as indicated by the roughly E-W-trending fold axes. At probably the same time, reverse faults were activated which document the presence of a compressional stress state (vertical σ_3) characterised by a NNE-SSW-directed maximum compression (σ_1) and a low stress ratio (R=0.3). The youngest signs of deformation documented by the structural inventory at *Papenberg* correspond to a tilting of the strata around a N-S-trending axis.

Some rather speculative considerations regard the large N-S trending discontinuities found at Papenberg ('fractures'; Fig. 31a). Since these fractures are offset along bedding-parallel slip surfaces probably activated by the proposed tilting, it can be assumed that they had been included in the tilting process. There are no direct kinematic indicators that would identify these surfaces as faults. However, contrary to their present, strongly inclined bearings, their back-tilted sub-vertical orientations may indicate that these planes originally had been formed as strike-slip faults. This interpretation is remarkable, as these faults strike N-S which is parallel to the presumed master faults flanking the Leine Graben – a "graben" system of which the main kinematics is not well constrained up to date.

Figure 31: Analysis of structural data from *Papenberg* (#25; Mid Triassic limestone). a) The *Muschelkalk* strata show a general dip towards the east (subset A of bedding planes). Large fractures with unknown mode of deformation are offset by bedding-parallel slips. b) In parts of the outcrop, the strata are more closely folded around ESE-trending fold axes (subset B of bedding planes; hammer for scale). c) *Left*: Tangent-lineation plot of the sampled fault-slip data; *middle*: cumulative plot of P-, B-, and T-axes for the whole data set (applied fracture angle $\theta=30^{\circ}$); *right*: Results of separation according to clusters of P-, B-, and T-axes. d) Results of the back-tilting procedure applied to the subsets A and B of bedding planes, to the subset *pap* of fault-slip data, and to the large fractures. f) Deformation model including the compressional paleostress state PAP derived from the subset *pap*.

Case study 6: Flechtingen quarry (#33)

At *Flechtingen* (#33), the kinematic (PBT-) axes of the separated subsets *fle1* and *fle3* deviate from Andersonian configurations which typically would comprise horizontal and vertical clusters of axes (Fig. 32d). The given configurations argue for a tilting of the structural inventory which occurred subsequent to faulting. However, an unambiguous indicator for tilting such as elsewhere provided by tilted bedding planes is missing in the volcanics at *Flechtingen*.

According to Case study 4 which has demonstrated that PBT-axes may provide suitable parameters for a back-tilting of fault-slip data, the subsets from Flechtingen are analysed regarding orientations of PBT-axes. *fle1* shows a sub-horizontal mean P-axis, while B and T seem to be affected by rotation. *fle2* shows a sub-horizontal mean T-axis, while B and P seem to be rotated. Comparing *fle1* and *fle3*, it becomes obvious that the mean vectors of subhorizontal axes are almost parallel, thus indicating a uniform rotation axis oriented 208/00 (Fig. 32e). The angular range for the supposed back-tilting (29°), in turn, can be derived from the plunge of the mean P-axis of the larger subset which is *fle3*. A back-tilting performed with these parameters (around 208/00, through 29°) results in sub-horizontal respective subvertical mean vectors for the kinematic axes of *fle3*. Interestingly, the same procedure applied to *fle1* and *fle2* also produces sub-horizontal respectively sub-vertical kinematic axes, thus confirming the parameters of the supposed rotation. Another positive argument for the selected procedure is provided by the bearings of calcite-filled veins sampled in the outcrop (Fig. 32c): Assuming the veins to have formed in a vertical position (as pure tensile structures), the back-tilting of the presently inclined veins reproduces their presumed original orientations.

After having reconstructed the original settings, the analysis of each subset of fault-slip data results in the stress states FLE1, FLE2, and FLE3, respectively (Fig. 32f). As there are no further chronological indicators observed in the outcrop, the relative timing of these stress states is derived from the findings at other locations (see below). The present orientations of fault-slip data and veins must be regarded as the result of a phase of block rotation around a NNE-striking axis that postdated the activity of the three estimated strike-slip stress states (Fig. 32g).

Figure 32: Interpretation of brittle structures from *Flechtingen* (#33; Upper Carboniferous rhyolite); a) Slickenside with calcite fibres indicating oblique-normal slip (arrow points the slip direction of the missing hanging-wall block). b) Sampled fault-slip data in a tangent-lineation plot (*left*) and results of PBT (*right*; applied fracture angle θ =30°). c) Orientations of calcite-filled veins plotted as great circles and corresponding poles in the lower hemisphere. d) Result of separation according to clusters of P-, B-, and T-axes. e) Back-tilting of the whole structural inventory according to rotation parameters derived from the present-day orientation of PBT-axes of subset *fle3*. f) Best-fitting stress states estimated for the back-tilted subsets in (e) and remnant fault-slip data (Rest). Stress states based on less than 9 fault-slip data are marked by an asterisk. g) Derived chronology of stress states and deformation.

4.2.2 Stress states vs. large-scale structures - the Osning Lineament area

Nine of the investigated outcrops are scattered around the Osning Lineament for which an array of WNW-ESE-striking, Upper Cretaceous thrust faults has been mapped mainly based on seismic data (Baldschuhn et al., 1996; Fig. 33). At each of these sites, at least one compressional or strike-slip stress state shows a roughly NNE-SSW-striking σ_1 -axis which is almost perpendicular to the large-scale thrust faults of the area. However, at some of the sites, normal faults document extensional tectonics to have also affected the area. The extension-related directions of minimum compression show two opposing horizontal trends: N-S- and WNW-ESE-oriented σ_3 -axes, respectively. As inferred from chronological indicators observed in the field, the tensional stress state with a N-S-directed σ_3 -axis found at *Lengerich* quarry (#5) has postdated the compressional and strike-slip stress states with a NE-SW-directed σ_1 (Fig. 30).

Figure 33: Correlation of large-scale structures and stress states inferred from fault-slip data. The simplified geological subcrop map of the base of Cenozoic units reveals the largest recorded reverse and normal faults of Late Cretaceous ages (modified after Baldschuhn & Kockel, 1996). Normal faults locally offset reverse faults, thus documenting that normal faulting postdated reverse faulting. Nine outcrops are located close to the Osning Lineament. Estimated compressional and strike-slip stress states are simplified to the directions of maximum compression (σ_1 ; grey arrows), whereas tensional stress states are shown by the directions of minimum compression (σ_3 ; black arrows). σ_1 -directions related to compressional and strike-slip stress states strike almost perpendicular to the large reverse faults that mark the Osning Lineament. Some of the normal stress states show σ_3 -directions which are perpendicular to large normal faults that locally offset large reverse faults.

Unfortunately, at other sites considered here, information on the relative timing of tensional stress states is not available. However, the strike directions of several large-scale normal faults (NNE to NNW; Fig. 33) locally correlate with the roughly WNW-ESE-directed σ_3 indicated by some tensional stress states obtained from measured fault-slip data. Since it is known that the normal faults based on seismic data locally offset WNW-striking reverse

faults, it can be concluded that the normal faulting observed in outcrops also postdated reverse and strike-slip faulting. Hence, the tensional stress states estimated for *Rheine* (#2), *Middel* (#3), and *Höste* (#6), are supposed to be younger than the compressional and strike-slip stress states found at these sites.

4.2.3 Oblique stress states

At two sites along the southern margin of the CEBS, the measured fault-slip data document the activity of oblique paleostress states (#23, #29). These stress states are unique in the sense that they do not show a vertical stress axis as would typically be expected for the shallowest parts of the Earth's crust (Anderson, 1942).

Case study 8: Elvese quarry (#23)

The Mid Triassic (*Muschelkalk*) sequence exposed at *Elvese* (#23) is intensively deformed as indicated by both folds and a number of 120 sampled fault-slip data (Fig. 34).

Figure 34: Mid Triassic (*Muschelkalk*) sequence of limestones exposed at *Elvese* (#23). The largest normal faults strike roughly N-S (*left stereogram*). The eastward dipping fault plane A documents various signs of (re)activation (numbered arrows, left). Corrugation lines on this plane (dashed) indicate that the plane has been formed as a dip-slip fault. The strata are folded as shown by the great circles and poles to planes (*right stereogram*). Given the geometry of faults and folds, the profile in the background might be interpreted as a "flower structure". Despite the apparently prevailing normal offsets within this structure ("phaeno-normal faults"), the sampled fault-slip data argue for a phase of transpression which postdated normal faulting.

Based on the results of PBT, four kinematically homogeneous subsets have been separated from the heterogeneous fault population (Fig. 35c). Accordingly, the Stress Inversion Via Simulation (Fig. 35d) yields four stress states the modes of which are tensional (ELV1), oblique (ELV2), and strike-slip (ELV3, ELV4), respectively (Fig. 35e). The tensional stress state ELV1 corresponds to radial extension as the stress ratio is R=0.0. The oblique stress

state ELV2 is characterised by a horizontal, ENE-WSW-striking σ_1 -axis, whereas ELV3 and ELV4 show σ_1 -directions striking NE-SW and NNE-SSW, respectively. The directions of σ_2 and σ_3 of the oblique stress state ELV2 deviate by c. 35° from a vertical respectively a horizontal orientation. In this case, the obliquity of stress axes does not correspond with the attitudes of measured bedding planes since any back-tilting of the respective fault-slip data (*elv2*) around the mean strike of bedding planes would not transfer this subset into an Andersonian one. Thus, in this case, the obliquity of principal axes actually seems to attest to the action of an untypical stress state.

One key for understanding the role of different stress states at *Elvese* is provided by an array of large N-S-striking fault planes (mean strike: 005/00; Fig. 34). Normal movements along these faults are documented by offset and dragged bedding planes, calcite-filled pinnate fractures and calcite fibres on slickensides. Together with a number of smaller variably striking normal faults, these large faults correspond to the normal stress state ELV1. This stress state fits also with the mean NW-SE-directed strike of extensional veins which indicate a NE-SW-directed σ_3 . One of the large N-S-striking faults is exposed over a distance of more than 250 m revealing generations of kinematically different superimposed striations that document a multiple reactivation of this surface ('Fault plane A'; Fig. 35a,b; Fig. 34). The morphology of this fault plane argues for the plane to have newly formed under extension (Fig. 34): Assuming the dip slip-oriented corrugations along its surface (i) to result from the linkage of smaller fault segments (Walsh et al., 1999; McLeod et al., 2000; Mansfield & Cartwright, 2001; Marchal et al., 2003) and (ii) to indicate a respective dip slip movement (Hancock & Barka, 1987; Needham et al., 1996; Lohr, 2007), this plane has originally been formed as a normal fault, whereas other shear movements have obviously occurred later. This observation is verified by superimposed striations along several other faults which indicate that oblique and strike-slip faulting postdated normal faulting at *Elvese*.

Figure 35: Stress inversion for fault-slip data from *Elvese* (#23, Mid Triassic limestone). a) Slickenside with calcite fibres indicating oblique-reverse slip. The fault-slip datum is part of subset *elv2*. b) Calcite fibres document that normal slip (*elv1*) predated sinistral slip (*elv3*) along fault plane A. c) The separation according to PBT axes results in four homogeneous subsets and a group of inconsistent fault-slip data (applied fracture angle θ =30°). d) Results of Stress Inversion Via Simulation for each PBT subset. e) Estimated stress tensors. f) Chronology of deformation phases with conceptual block models illustrating the kinematic style of each phase.

The abundance of N-S-striking fault planes recorded at *Elvese* guarry provides a possible explanation for the obliquity of ELV2. This stress state is related to oblique-reverse movements along many faults that have previously been formed as N-S-striking normal faults (Fig. 35d). According to the prevailing reverse components relative to strike-slip components of slip along these faults, the σ_3 -axis of ELV2 plunges more steeply (65°) than the σ_2 -axis (34°). The low stress ratio of R=0.1 indicates that σ_2 and σ_3 are almost equal in magnitude. Given, in addition, the direction of maximum compression indicated by ELV2 ($\sigma_1=065/00$) in relation to the preferred orientation of planes of weakness, the whole configuration associated to the oblique stress state can best be described as transpression along a N-S-striking array of pre-existing faults (Fig. 35f). Slip along such pre-existing discontinuities requires less energy than stresses released exclusively by the formation of new faults. Since in the case of ELV2, stresses are released predominantly by oblique slip, the estimated stress state is accordingly oblique. A transpressional regime is also indicated by the structural relations between faults and folds in the outcrop ("flower structure"; Fig. 34). In fact, some of the fault-slip data assigned to ELV2 correspond to bedding-parallel movements which, in general, are often observed in connection with a folding of strata. These observations fit well with the fact that the direction of maximum compression derived from folded bedding planes (062/00) is parallel to the σ_1 -axis of ELV2. Hence, folding occurred coevally with transpression at *Elvese* quarry.

The deformation model developed for *Elvese* includes four main stages that postdated the Mid Triassic formation of limestones: Signs of extension reflect the early activity of a tensional stress state, ELV1, which corresponds to a regime of vertical flattening. Despite the various dip directions of normal faults, the largest faults among them strike roughly N-S, thus further constraining the derived E-W-direction of σ_3 . The N-S-striking normal faults have widely been reactivated during a phase of transpression related to stress state ELV2 which coevally led to a folding of the strata. The obliquity of ELV2 probably corresponds to a local expression of a regional compressional stress state with an ENE-WSW-directed σ_1 that induced transpression and associated oblique slip along a N-S-oriented array of pre-existing faults. For many planes, the reverse component of movement did not induce a displacement as large as to compensate fully the previously obtained normal offset (Fig. 34). The strike-slip stress states ELV3 and ELV4 differ slightly in terms of σ_1 of which the directions are NE-SW and NNE-SSW, respectively. These stress states are supposed to be younger than ELV2, as this chronology would conform to the transition from reverse to strike-slip stress states observed at other locations where the directions of maximum compression also range between N-S and NE-SW (below).

Case study 9: Langelsheim quarry (#29)

Langelsheim is located close to the northwestern parts of the Northern-Harz-Boundary Fault along which the sedimentary fill of the Subhercynian Basin is widely tilted due to the inversion-related uplift of the structural block of the Harz Mountains (Fig. 36a). The preseparation of the sampled fault population results in three homogeneous subsets (*lan1*, *lan2*, *lan3*; Fig. 36d).

Figure 36: Separation and stress inversion for fault-slip data from *Langelsheim* (#29, Upper Cretaceous limestone). a) The Cenomanian-Turonian strata are dipping towards NNE; b) Tangent-lineation plot of the heterogeneous set of fault-slip data; c) Result of PBT: cumulative plot of P-, B-, and T-axes for the whole data set (applied fracture angle $\theta=30^{\circ}$); d) Results of separation according to clusters of P-, B-, and T-axes; e) Back-tilting procedure for the subset *lan1*; f) Results of the Stress Inversion Via Simulation. The stress states LAN1, LAN2, and LAN3 have been found to excellently fit the previously separated subsets *lan1*, *lan2*, and *lan3*, respectively. Stress state LAN1 is oblique as none of the principal stress axes dips by more than 70°. For this reason, LAN1 is plotted as a stereographic projection with the background colour representing the stress ratio, R. Stress states based on less than 9 fault-slip data are marked by an asterisk. g) Derived chronology of deformation stress states.

Subset *lan1* reveals kinematic axes that deviate far from vertical respectively horizontal orientations indicating that the fault-slip data have been rotated after faulting. To check the supposed rotation of *lan1*, this subset and the strata have been back-tilted adopting a rotation axis derived from the mean strike of bedding planes (120/00). After tilting back the strata into

their original horizontal position (through 22°), the P-axes of *lan1* are sub-horizontal which confirms this subset to have been involved in the tilting process (Fig. 36e). However, the B-and T-axes still do not show typical vertical or horizontal orientations after back-tilting. Accordingly, none of the inferred principal stress axes is vertical (i.e. plunging by $>70^\circ$; Fig. 17f). A potential explanation for this obliquity of stress axes might be provided by the position of the related fault-slip data relative to large-scale structures in close vicinity of *Langelsheim* quarry (chapter 4.4.5).

Subsequent to the activity of LAN1, the whole rock mass has been tilted under a presumably NE-SW-directed maximum horizontal compression (Fig. 36g). The stress states LAN2 and LAN3 which have been derived from the subsets *lan2* and *lan3*, respectively, document processes of faulting that occurred subsequent to the tilting of strata. Finally, LAN2 is interpreted as having predated LAN3 since such a succession would reflect a development from folding and reverse faulting to a later strike-slip stress regime as observed in other parts of the study area (below).

4.3 Cross-outcrop correlation of paleostress states

After having estimated paleostress states and their relative timing separately for all investigated sites, cross-outcrop correlations of results shall provide the next step towards a comprehensive model for the evolution of regional paleostress fields that affected the entire southern margin of the CEBS. Such correlations of local stress states in the Elbe Fault System area are based on the widespread relation between folding and faulting, the locally derived chronologies of stress states and on consistencies in the directions of principal stress axes.

4.3.1 Consistencies between folding and faulting

A widespread phenomenon observed regards corresponding kinematics of folds and fault patterns. At many sites, the direction of maximum compression inferred from folded or tilted bedding planes corresponds with the direction of σ_1 derived from fault-slip data (Fig. 37). Comparing the results from different locations, the respective axes consistently strike around NNE-SSW. This phenomenon is observed in Mid Triassic, Upper Jurassic (Fig. 38), as well as Upper Cretaceous rocks. In some cases, the fold-related direction of maximum compression is consistent with a compressional stress state, in others it corresponds with a strike-slip stress state. At any of these sites, however, the twofold obtained direction of maximum compression argues for a close mechanical and temporal relationship between folding of the rocks and faulting under a N-S- to NE-SW-directed σ_1 .

Figure 37: Folding and faulting in the German parts of the Elbe Fault System. A remarkable subparallelism between directions of maximum horizontal compression derived from folded bedding planes (black arrows on white grounds) and σ_1 -directions inferred from fault-slip data (coloured stress symbols) can widely be observed. At each site, the relative ages of stress states and stages of folding decrease from left to right. Stress states based on less than 9 fault-slip data are marked by an asterisk.

Figure 38: Gently folded Upper Jurassic limestones exposed in the Lower Saxony Basin (*Steinbergen*, #13). The bedding planes are offset by thrust faults which are related to a compressional stress state (NNE-SSW-directed σ_1).

4.3.2 Locally estimated chronologies of paleostress states

As illustrated by the previously presented case studies, the chronology of stress states is locally constrained by indicators such as superimposed striations or the relation of fault-slip data and bedding planes. The total number of chronological indicators observed in the study area and their implications on the relative timing of associated stress states are summarized in Figure 39. For most of these indicators, detailed descriptions are provided by the paragraphs on single case studies. Other observations on the relative timing of structures include, for instance, a north dipping reverse fault exposed at *Lienen* (#7) which shows indications for a later reactivation as a dextral fault. Thus, the two generations of striations reveal that the compressional stress state LIE1 has been active before the strike-slip stress state LIE2. At Upstedt (#26), a NW-dipping fault plane shows an older generation of slickolites that indicate normal faulting, while a younger generation of striations indicates strike-slip movements. This argues for the normal stress state UPS1 to have been active before the strike-slip stress state UPS2. At Baddeckenstedt (#27), an older generation of normal faults has been affected by tilting of the whole rock mass, while a younger generation of normal faults is interpreted to have postdated the tilting event. Consequently, a normal stress state related to N-S directed extension (BAD1) has obviously predated a normal stress state related to WNW-ESE-directed extension (BAD2). A corresponding development of normal stress states has been developed for the fault pattern exposed at Folwark (#57): a south dipping normal fault crosscuts a west dipping normal fault indicating that N-S-directed extension (FOL1) had taken place after E-W-directed extension (FOL2).

Considering the locally derived chronologies of stress states and consistencies in the orientations of principal stress axes, a cross-outcrop correlation of paleostress states can be performed (Fig. 39). A classification according to directions and modes (i.e. compressional, strike-slip, tensional, or oblique) of stress states is based on two assumptions: first, regional stress regimes of different modes and directions are unlikely to control the same area at the same time and, secondly, stress states of consistent modes and directions derived from different sites potentially have been active coevally, thus representing a common regional stress field.

Interestingly, the chronological constraints derived from single outcrops are very consistent in the sense that they would not much complicate a classification of stress states which is merely based on the directions of principal axes (Fig. 39). Compressional stress states, for example, are older than strike-slip stress states regardless of the site at which the relationship between compression and strike-slip stress has been recorded. Furthermore, two groups of strike-slip stress states with different directions of maximum horizontal compression (σ_1) can be classified following the observation that at site #14 a stress state with NE-SW-directed σ_1 had been active before a stress state with NNW-SSE-directed σ_1 . The role of tensional stress states, in turn, is twofold: Tensional states derived from Upper Cretaceous and Upper Carboniferous rocks are younger, whereas tensional states from two sites of Mid Triassic rocks are older than the respective compressional or strike-slip stress states. Finally, the oblique stress state found at site #29 is correlated with compressional stress states since they reveal agreeing directions of maximum compression and agreeing relations to folding.

Altogether, consistent stress states can be combined to five categories each representing a separate temporal status: a group of "older" tensional stress states, a group of compressional stress states, a group of strike-slip stress states with N-S- to NE-SW-directed σ_1 , a group of strike-slip stress states with E-W- to NW-SE-directed σ_1 , and a group of "younger" tensional stress states. Interestingly, these groups partly integrate stress states derived from different rock ages. Strike-slip stress states with a N-S- to NE-SW-directed σ_1 , for instance, have been documented by fault-slip data preserved within Upper Carboniferous, Mid Triassic, as well as Upper Cretaceous rocks.

Strati- graphy, Site		older	Stress states				→ younger	
Ctu	2				RHE2			
Ctu	3				MID1			
Ctu	5		.LEN1 -3→	-3+ N2				
Ctu	6				HÖS1			
Ctu	7		8	• • • •				
Ctu	11							
Ctu	12			·····				
Ctu	27							
Ctu	29		-3>	-(3)-)				
Ctu	57							FOL1 FOL2
Trm	14				BAR1		R2	
Trm	23	ELV1						
Trm	26	UPS1						
Cbu	32				BOD1	BO	D2	
		Tens.	Compressional		$\begin{array}{l} \text{Strike-slip,} \\ \sigma_1 & \text{N-S- to NE-SW} \end{array}$	Strike σ ₁ : E-W-	e-slip, to NW-SE	Tensional
StratigraphyAndersonian stress statesOblique stress statesCtuUpper Cretaceous $\sigma_1 \sigma_2 \sigma_3$ $\sigma_2 \sigma_3$ JruUpper Jurassic $\Theta \Theta \Theta \Theta$ $\Theta \Theta \Theta \Theta$ Mid Triassic $\Theta \Theta \Theta \Theta \Theta \Theta \Theta$ $\Theta \Theta \Theta \Theta \Theta \Theta$ PruUpper Permian $\Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta$ Folding event: direction of maximum $\Theta \Theta \Theta \Theta \Theta \Theta \Theta$								
Cbu Upper Carboniferous compression derived from folded strata (3)- Bedding (4)- Large-scale structures								

Figure 39: Correlation of stress states with known relative chronologies. Sites are stratigraphically ordered. Relative timing of stress states is constrained by locally observed relationships between different fault-slip data or between fault-slip data and other structural elements (indicated by numbers). Stress states with consistent directions of principal axes and a consistent temporal rank are assumed to represent a common stress regime (same column). Stress states based on less than 9 fault-slip data are marked by an asterisk.

4.3.3 Consistencies in the directions of principal axes

The previously described correlation only integrates those paleostress states that show detected temporal relations to other stress states. These stress states, however, correspond to less than half of the total number of 77 paleostress states found at the southern margin of the CEBS. To reconstruct regional stress fields that affected the whole study area, it is indispensable to consider as many estimated stress states as possible. However, for a large number of stress states, information is restricted to the determined parameters of the reduced stress tensor and the ages of host rocks providing a maximum age for the associated faulting. For this reason, the previous correlation (Fig. 39) is taken as a base for a synthesis of all estimated stress states (Fig. 40).

It is obvious that stress states found in older rocks generally do not differ much from stress states detected in younger rocks. As a consequence, the complete number of paleostress states can be correlated according to the same five categories of stress states distinguished before (Fig. 39). This consistency of results derived from rocks of different ages widely excludes the possibility of applying the principles of paleostress stratigraphy. The agreeing stress states derived from differently aged rocks rather indicate that the respective stratigraphic units have been affected by stress states of the same ages and causal mechanisms. The maximum age of consistent stress states would then be constrained by the youngest rocks documenting associated fault-slip data. Following this line of argument, the groups of compressional, strike-slip, and "younger" tensional stress states are related to (post-) Late Cretaceous deformation events since the youngest rocks affected by these stress states are of Late Cretaceous ages. On the contrary, the two tensional stress states that have been shown to be older than strike-slip stress states (sites #23 and #26) must be assigned to earlier stages of deformation with a maximum age of Mid Triassic.

St	ati-	older		Stress states						
graphy, Site		Tens.	Compressional	Strike-slip, σ₁: N-S- to NE-SW	Strike-slip, σ_1 : E-W to NNW-SSE	Tensional				
Ctu	1		WET1	WET2						
Ctu	2			RHE1 RHE2						
Ctu	3			MID1						
Ctu	4									
Ctu	5			-3-3-3						
Ctu	6		l t	HÖS1	HÖS2					
Ctu	7		LIE1							
Ctu	9									
Ctu	11									
Ctu	12		*		KÜN3	KÜN4				
Ctu	22			MIS1		MIS2				
Ctu	27					BAD1				
Ctu	28					₽ ₽ \$ŎH				
Ctu	29			LAN3						
Ctu	31		WEN							
Ctu	57									
Jru	13		STE							
Jru	15		ts ₽ ■ S ROH							
Jru	16				HAM					
Jru	17				s C LAU1	LAU2				
Jru	18					★S Ø S MAR				
Trm	8			HOL1	HOL2					
Trm	10			BIS1	BIS2					
Trm	14			BAR1						
continued next page										

Figure 40: Cross-outcrop correlation of stress states derived from the Elbe Fault System area. Sites are stratigraphically ordered to control the variation of stress states in different rock ages. The stress states, in turn, are horizontally arranged according to consistent directions of principal stress axes and locally derived chronologies. According to this synthesis of results, most stress states must be assigned to (post-) Late Cretaceous times. Stress states based on less than 9 fault-slip data are marked by an asterisk.

4.4 Regional vs. local phenomena

Considering the range of investigated rock ages, the estimated paleostress states show remarkable consistencies (Fig. 40): Most of the compressional stress states are characterised by a N-S- to NE-SW-directed maximum compression (σ_1). The estimated strike-slip stress states have been demonstrated to consistently be younger than compressional stress states and/or the locally observed folding of rocks. The directions of σ_1 are various among the strike-slip stress states but two directions prevail: strikes around NE-SW and around NW-SE, respectively. At many sites, the youngest signs of deformation are related to tensional stress states states, even in Upper Carboniferous rocks. The various directions of extension (σ_3) revealed by the different tensional stress states, in turn, are relativised by the fact that most of the associated stress ratios are low indicating almost equal magnitudes of σ_2 and σ_3 .

The degree of consistency of locally estimated paleostress states is of relevance for distinguishing regional from local phenomena in the study area. Another aspect, of course, is the spatial distribution of consistent stress states.

4.4.1 Compressional stress states

Stress states with a vertical σ_3 have been derived from sites in the Lower Saxony Basin, the Hessian Depression, and the Subhercynian Basin (Fig. 41) as well as in the Sudetic Mountains (#56; Fig. 42). These stress states mainly show consistent directions of maximum compression (σ_1) trending around NNE and consistently low to intermediate stress ratios ($0.0 \le R \le 0.5$) that indicate regimes between uniaxial deviatoric compression and triaxial stress. Only at *Wendessen* quarry (#31), σ_1 is striking NNW, thus showing a slight deviation from the general trend, while at *Raciborovice* (#56) the stress ratio is much larger than the average. The youngest rocks which have preserved corresponding reverse faults are the Turonian-Coniacian limestones exposed at *Halle* quarry (#11). However, also Upper Jurassic and Mid Triassic rocks show signs of a N-S to NE-SW-directed compression.

Figure 41: Compressional stress states estimated for the German parts of the Elbe Fault System. Beside a sub-vertical σ_3 , these stress states are consistent in terms of a N-S- to NE-SW-directed maximum compression (σ_1) and low to intermediate stress ratios ($0.0 \le R \le 0.5$). At sites with several inferred stress states, older ones are shown to the left and younger ones to the right. Stress states that are based on less than 9 fault-slip data are marked by an asterisk.

Main structures: AFZ – Allertal Fault Zone, FH – Flechtingen High, GE – Gardelegen Escarpment, HF – Haldensleben Fault, WHBF – Western Harz Boundary Fault.

Figure 42: Paleostress states reconstructed for three sites in southwestern Poland. Geological subcrop map of the base of Cenozoic units modified after Dadlez et al. (2000). Stress states that are based on less than 9 fault-slip data are marked by an asterisk.

The high consistency and the wide distribution of compressional stress states indicate that these local stress configurations are related to a common regional stress field. To characterise this potential stress regime, the parameters of the 12 compressional stress states have been analysed comprehensively (Fig. 43a). The mean vector of σ_1 -axes has been calculated to be oriented 204/00 and the mean stress ratio has been estimated as R=0.26. In the following, this deduced regional stress field is referred to as "Stress field A", while illustrating it by a comprehensive stress symbol (Fig. 43b). According to the youngest rocks that have been affected, Stress field A must be assigned to post-Coniacian times.

Figure 43: Potential regional "Stress field A" inferred from compressional stress states. a) Rose diagram with σ_1 -azimuths of all compressional stress tensors. The σ_1 -axes strike consistently around NNE. None of the σ_1 -plunges deviates by more than 14° from the horizontal. To infer an overall stress field for these local stress states, the mean vector of σ_1 -axes is calculated after Wallbrecher (1986; " $R_{\%}$ -and-center-method"). The concentration parameter, $C_{R\%}$, is a measure for the alignment of stress axes with $C_{R\%}$ =100% indicating parallel fabrics and $C_{R\%}$ =0% indicating a uniform distribution. Here, $C_{R\%}$ =88.6% designates a pronounced maximum for the σ_1 -axes with a mean oriented 204/00. b) Comprehensive symbol for the deduced regional Stress field A. It integrates the mean directions of principal stress axes projected to the vertical respectively horizontal. The range of background colours reflects the low to intermediate stress ratios of the associated compressional stress states ($0.0 \le R \le 0.7$).

4.4.2 Strike-slip stress states with a N- to NE-directed maximum compression

The largest number of paleostress states detected along the southern margin of the CEBS corresponds to strike-slip stress states with a N-S- to NE-SW-directed maximum compression (σ_1) which are distributed all across the German parts of the Elbe Fault System (Fig. 44). The respective stress ratios cover a wide range between R=0.0 and R=0.7. The rocks documenting associated signs of faulting range in age from the Upper Carboniferous volcanics of the Flechtingen High area (Fig. 45) to the Turonian-Coniacian limestones at *Halle* quarry (#11). This group of stress states provides good arguments for being related to a common regional stress field: a high consistency and a wide spatial distribution. The deduced regional "Stress field B" is characterised by a σ_1 -axis which is oriented 209/01 and a mean stress ratio of R=0.25 (Fig. 46). From the local constraints on the chronology of single stress states (Fig. 39) it can be concluded that Stress field B is younger than the previously introduced Stress field A.

Figure 44: Strike-slip paleostress states with a N-S- to NE-SW-directed σ_1 (German parts of the Elbe Fault System). The stress ratios range between R=0.0 and R=0.7. At sites where several stress states are inferred, ages of stress states decrease from left to right. Stress states that are based on less than 9 fault-slip data are marked by an asterisk. Abbreviations as in Fig. 41.

Figure 45: Strike-slip fault within Upper Carboniferous andesites. At *Dönstedt* quarry (#35) in the Flechtingen High area, calcite fibres (white coating) indicate a dextral sense of movement along the fault.

Figure 46: Potential regional "Stress field B" inferred from strike-slip stress states with N-S- to NE-SW-directed σ_1 -axes. a) Rose diagram with σ_1 -axes that strike consistently around NNE. None of the σ_1 -plunges deviates by more than 12° from the horizontal. To infer an overall stress field for these stress states, the mean vector of σ_1 -axes is calculated after Wallbrecher (1986; " $R_{\%}$ -and-centermethod"). The concentration parameter, $C_{R\%}$, is a measure for the alignment of stress axes ($C_{R\%}=100\%$: parallel fabrics; $C_{R\%}=0\%$: uniform distribution). Here, $C_{R\%}=86.4\%$ designates a pronounced maximum for σ_1 -axes with a mean oriented 209/01. b) Comprehensive symbol for the deduced regional Stress field B. It integrates the mean directions of principal stress axes projected to the vertical respectively horizontal. The predominance of blue background colours reflects a predominance of low stress ratios of the associated strike-slip stress states. In total, the stress ratios vary between R=0.0 and R=0.7.

4.4.3 Strike-slip stress states with a W- to NNW-directed maximum compression

Another group of strike-slip stress states is shown in a separate paleostress map due to a common E-W- to NW-SE-direction of maximum compression (σ_1 ; Fig. 47). These stress states are obtained from sites scattered all across the German parts of the Elbe Fault System. Most of the respective stress ratios are medium scale, though in total the values range between R=0.1 and R=0.8. The youngest rocks that have preserved respective fault-slip data are the Cenomanian-Turonian limestones exposed at *Künsebeck* (#12). However, such stress states are also documented by fault-slip data sampled from the Upper Carboniferous volcanics of the Flechtingen High area.

Though this group is restricted to 14 local strike-slip stress states, their consistency and regional distribution indicate that they represent local expressions of a common regional stress field. The deduced regional "Stress field C" reveals a σ_1 -axis which is oriented NW-SE (127/02) and a mean stress ratio of R=0.51 (Fig. 48). According to local chronological indicators, Stress field C is younger than Stress field B.

Figure 47: Strike-slip stress states with an E-W- to NNW-SSE-directed σ_1 in the German parts of the Elbe Fault System. The stress states are mainly characterised by intermediate stress ratios ($0.2 \le R \le 0.8$). Stress states that are based on less than 9 fault-slip data are marked by an asterisk. Abbreviations as in Fig. 41.

Figure 48: Potential regional "Stress field C" inferred from strike-slip stress states with E-W- to NNW-SSE-directed σ_1 -axes. a) Rose diagram of strike-slip stress states with σ_1 -directions striking around NW. None of the σ_1 -plunges deviates by more than 8° from the horizontal. To infer an overall stress field, the mean vector of σ_1 -axes is calculated after Wallbrecher (1986; " $R_{\%}$ -and-center-method"). The concentration parameter, $C_{R\%}$, is a measure for the alignment of stress axes ($C_{R\%}=100\%$: parallel fabrics; $C_{R\%}=0\%$: uniform distribution). Here, $C_{R\%}=85.5\%$ designates a pronounced maximum for σ_1 -axes with a mean oriented 127/02. b) Comprehensive symbol for the deduced regional Stress field C. It integrates the mean directions of principal stress axes projected to the vertical respectively horizontal. The background colours reflect predominantly intermediate stress ratios of the associated strike-slip stress states ($0.1 \le R \le 0.8$).

4.4.4 Tensional stress states postdating compressional or strike-slip stress states

The group of "younger" tensional stress states covers sites that are spread from the western parts of the Lower Saxony Basin to the eastern parts of the Subhercynian Basin (Fig. 49) and farther to the study area east of the Sudetic Mountains (Fig. 42). These stress states show a great diversity in the directions of minimum compression (σ_3) and are mostly associated with low stress ratios. Considering the presence of *Zechstein* salt structures in the subsurface, these tensional stress states can be separated into two groups: In subareas presently containing salt structures like the Hessian Depression and the Subhercynian Basin, the stress ratios are remarkably low ($0.0 \le R \le 0.3$). The tensional stress states in areas without salt in the subsurface, on the contrary, are characterised by a much greater range of stress ratios. Concerning the horizontal orientations of σ_3 , however, both domains show a similarly large diversity.

Figure 49: Group of "younger" tensional stress states derived from the German parts of the Elbe Fault System. At sites where several stress states are inferred, ages of stress states decrease from left to right. Stress states that are based on less than 9 fault-slip data are marked by an asterisk. The stress ratios are low in the subarea with Zechstein salt in the subsurface, whereas stress ratios in the area without subsurface salt structures are diverse. For the detailed distribution of Zechstein salt see Fig. 26. Abbreviations as in Fig. 41.

The inconsistency of tensional stress states in terms of directions of extension (σ_3) and the variation of stress ratios with respect to the presence of salt structures argue against a common regional stress field that might be representative for the local tensional stress states. However, the underlying extensional strain has consistently been identified as the youngest imprint of deformation at several sites. Consequently, there is evidence for a vertical σ_1 that controlled deformation along the whole southern margin of the CEBS subsequent to the regional Stress

fields A, B, and C. Accordingly, "Stress field D" is introduced which is characterised by a vertical σ_1 and a low average of stress ratios (Fig. 50). To allow for the diversity in σ_3 -directions, Stress field D does not include any information about the directions of horizontal principal axes.

Figure 50: Potential regional "Stress field D" inferred from tensional stress states. a) Rose diagram with σ_3 -axes of tensional stress states that are interpreted to be younger than compressional and strikeslip stress states. None of the σ_1 -plunges deviates by more than 8° from the horizontal. The azimuths of σ_3 -axes show a great diversity. The mean vector of σ_3 -axes is calculated after Wallbrecher (1986; " $R_{\%}$ -and-center-method"). The concentration parameter, $C_{R_{\%}}$, is a measure for the alignment of stress axes ($C_{R_{\%}}=100\%$: parallel fabrics; $C_{R_{\%}}=0\%$: uniform distribution). Here, $C_{R_{\%}}=45.9\%$ designates an insignificant maximum for σ_3 -axes. b) Comprehensive symbol for the deduced regional Stress field D. It shows a vertical σ_1 -axis. The directions of σ_2 and σ_3 are insufficiently constrained. The background colours reflect predominantly low stress ratios. In total the stress ratios vary between R=0.0 and R=0.9.

4.4.5 Local phenomena

Tensional stress states that are older than compressional or strike-slip stress states

Two tensional stress states are regarded as a local phenomenon as they are unique in predating strike-slip respectively compressional stress states at the specific sites and as they are restricted to the area of the Hessian Depression and its northern prolongation (#23, #26; Fig. 51). For both these tensional stress states (ELV1, UPS1), the directions of extension are not well constrained, as the respective stress ratios are R=0.0 reflecting a deformation mode of vertical flattening.

Figure 51: Stress states that are inconsistent with other stress states from the area in terms of directions of principal stress axes or temporal status. The symbolism distinguishes Andersonian stress states with a vertical principal axis from oblique stress states with none of the axes plunging by $>70^{\circ}$. NWMF – Neuwallmoden Fault; further abbreviations as in Fig. 41.

Oblique stress states

Most of the stress states derived from sites across the Elbe Fault System are characterised by vertical respectively horizontal principal stress axes indicating typical stress conditions for the shallowest parts of the Earth's crust according to Anderson (1942). However, two of the estimated stress states are oblique in the sense that none of the associated stress axes plunges vertically (i.e. by >70°). These special stress configurations are derived from fault-slip data sampled at *Elvese* (#23; ELV2) which is located within the N-S-trending Leine Graben area and at *Langelsheim* (#29; LAN1) which is situated close to the Northern-Harz-Boundary Fault and the Neuwallmoden Fault (Fig. 51).

The obliquity of stress state ELV2 has been causally related to transpression and associated oblique movements along a pre-existing array of preferentially oriented faults (*Case study 8*). The almost vertical σ_3 -axis and the NE-SW-directed σ_1 of ELV2 give reasons for a correlation with the group of compressional stress states (Fig. 40). Consequently, the oblique stress state ELV2 is supposed to correspond to a local expression of the regional Stress field A.

An explanation for the obliquity of LAN1, on the other hand, might be provided by the position of the related fault-slip data relative to large-scale structures in close vicinity of *Langelsheim* quarry. The NE-SW-directed maximum compression (σ_1) of LAN1 is consistent

with the directions of σ_1 indicated by the regional Stress fields A and B as well as by other sites along the Northern Harz Boundary Fault (Franzke et al., 2007). The oblique bearings of σ_2 and σ_3 , on the other hand, might be related to the position of *Langelsheim* between the WNW-ESE-striking Northern Harz Boundary Fault and the N-S-striking Neuwallmoden Fault (Fig. 51). Both faults are assumed to have been activated as reverse faults during a Late Cretaceous phase of inversion when the Lutter Anticline extending to the west of the Neuwallmoden Fault and the Harz Mountains both experienced uplift relative to the Subhercynian Basin (Mohr, 1982). The formation of the Lutter Anticline is supposed to have been strongly controlled by salt movements (Carlé, 1938). Assuming the reverse movements along the Northern Harz Boundary Fault and the Neuwallmoden Fault to have taken place coevally and considering the perpendicularity of their strike directions, stress states between these closely located faults would have had to balance divergent kinematics. At Langelsheim, the regional Stress field A might have been superposed by a more local stress state related to the movements along the Neuwallmoden Fault, thereby leading to a deviation of σ_2 and σ_3 as indicated by LAN1. A superposition of differently-directed stress states east of the Neuwallmoden Fault is also postulated as an explanation for differently-oriented horizontal stylolites (Hosseinidust, 1980).

4.5 Discussion

By applying the Stress Inversion Via Simulation, fault-slip patterns recorded along the Elbe Fault System have reliably been related to specific paleostress states. The correlation of these local stress states and the integration of chronological constraints have allowed a differentiation of four regional paleostress fields and the reconstruction of their relative timing. Finally, focus shall be laid on the role of these regional stress fields with respect to the history of the entire CEBS and concerning the mechanisms that characterise the interim rearrangements of stress configurations.

4.5.1 Chronology

Given the well-established evolution of the CEBS which implies several stages of intense tectonic activity – especially related to the *Initial rift phase*, the *Mid Triassic-Jurassic phase of E-W extension*, and the *Late Cretaceous-Early Tertiary phase of inversion* – it should be expected that the pattern of deformation structures presently observable within the basin reflects a wide variety of deformation events. The analysed fault-slip data, however, provide a less complex picture. Though the investigated units cover a wide stratigraphic scope from Upper Carboniferous to Upper Cretaceous rocks, the diversity of stress states indicated by the youngest rocks is not much expanded when considering also the results from stratigraphically older units. Accordingly, each of the deduced regional stress fields A, B, C, and D is documented by fault-slip data preserved within Upper Cretaceous rocks. Thus, these regional stress fields have verifiably been active during and/or after Late Cretaceous times which is during or after the basin-wide *Late Cretaceous – Early Tertiary phase of inversion*. Any pre-Late Cretaceous signs of deformation, on the other hand, are scarce.

Pre-Late Cretaceous signs of deformation

At two sites across the Hessian Depression, tensional stress states are interpreted to have predated stress states that are (post-) Late Cretaceous in age. The two tensional stress states show remarkably low stress ratios indicating regimes of vertical flattening. According to the stratigraphic position of the faulted rocks (*Muschelkalk*), the maximum age of these stress

states dates back to Mid Triassic. According to their E-W- respectively NE-SW-directed σ_3 axes, the stress states might be related to the *Mid Triassic – Jurassic phase of E-W extension* which initiated the large N-S-striking grabens in the CEBS (e.g. Central Graben, Horn Graben, Glückstadt Graben). However, since the directions of extension are poorly constrained (due to low stress ratios), they might reflect any phase of extension between the Triassic and the Late Cretaceous.

Stress fields A and B: the phase of basin inversion

Stress field A corresponds to a (post-) Late Cretaceous compressional stress regime with a roughly NNE-SSW-directed σ_1 and a low stress ratio. This configuration complies with compressional strain indicated by folded or tilted structures across the whole study area. Furthermore, Stress field A has been identified as the oldest regionally detectable imprint which corresponds with the fact that the mentioned folding or tilting locally affected Upper Cretaceous strata already during sedimentation (during the Cenomanian). Stress field B, on the other hand, is strike-slip in character and corresponds to the most prominent imprint in the study area as indicated by the largest number of related local stress states. Stress fields A and B agree well in terms of a NNE-SSW-trending maximum compression and a low stress ratio, while there is clear evidence that B postdated A.

Considering the large-scale deformation pattern proposed for the *Late Cretaceous - Early Tertiary phase of inversion* in the CEBS – for example, the roughly WNW-ESE-trending inversion axes reconstructed from the distribution of preserved thicknesses of Upper Cretaceous rocks (Scheck-Wenderoth & Lamarche, 2005; Fig. 25) – the movements of individual blocks indicate a roughly NNE-SSW-directed contraction. This direction corresponds with the NNE-SSW-directed maximum compression indicated by the reconstructed stress fields A and B. Hence, during times of ongoing closure of the Tethys and rifting in the North Atlantic, the southern margin of the CEBS first experienced folding and reverse faulting under stress field A before the mode changed to strike-slip faulting controlled by stress field B.

A number of paleostress studies using fault-slip data from different areas across North Central Europe confirm the occurrence of Late Cretaceous - Early Tertiary stress states with a N-S- to NE-SW-directed σ_1 . The respective compressional and strike-slip stress fields are consistently related to the phase of CEBS-wide inversion, irrespective if the fault-slip data have been sampled in southern Wales (Lisle & Vandycke, 1996), England, Northern France and Belgium (Vandycke, 2002), Germany (Franzke et al., 2007), or southern Poland (Lamarche et al., 1999, 2002).

The well-established NNE-SSW-direction of intraplate shortening can be correlated with geodynamic processes that originated far to the south of the CEBS: From ~85 Ma on, Africa was converging against Europe in a NE direction (Rosenbaum et al., 2002) while respective compression was controlling deformation in the Pyrenees (Capote et al., 2002). Based on fission track data, a similar timing has been determined for the initiation of inversion-related uplift in parts of the CEBS such as the Lower Saxony Basin (c. 89-72 Ma; Senglaub et al. 2005, 2006) and the Subhercynian Basin (85 Ma; Thomson et al.; 1997).

A correlation of Late Cretaceous intraplate stresses in the CEBS with the Africa-Iberia-Europe convergence agrees with a recently published concept on causal mechanisms for the CEBS-wide inversion (Kley & Voigt, 2008). On the other hand, N- to NNE-directed contraction is also supposed to have been induced by early (e.g. Eocene) stages in the evolution of Alpine convergence indicated, for instance, by movements of the Austroalpine and Penninic thrust complex over the Helvetic units of the European shelf (Schmid et al., 1996; Pfiffner et al., 2002). Accordingly, an Eocene N-S-directed compression has been derived from fault-slip data in southern Germany and eastern France (Bergerat, 1987; Homberg et al., 2002).

In the studied area of the Elbe Fault System, any closer constraints on the timing of the regional Stress fields A and B are missing due to mainly unconsolidated Cenozoic rocks that do not provide adequate data for a fault-slip analysis. For this reason, both stress fields might be causally related to the Late Cretaceous Africa-Iberia-Europe convergence and/or a Tertiary phase of Alpine orogeny. Despite of some sites in the study area that indicate a shift from a NE-directed σ_1 to a NNE- or N-directed σ_1 , it has been desisted from a more detailed temporal differentiation of stress states, since the spatial variations of σ_1 are as large as any temporal ones would be (Fig. 44).

Better conditions for a fault-slip analysis on the post-Late Cretaceous evolution of stress states are given in parts of southern Poland where a Maastrichtian–Paleocene strike-slip regime with NE-SW-oriented σ_1 has been distinguished from a late Mid Miocene N-S-directed compression (Lamarche et al., 2002). The reconstructed Maastrichtian–Paleocene regime caused tectonic inversion of the Mid-Polish Trough accompanied by strike-slip faulting as well as localized folding. The respective deformation patterns observable in the Holy Cross Mountains are interpreted as being related to a shallow reactivation of the pre-existing Teisseyre-Tornquist Zone. After a Mid Miocene interim phase of N-S-directed extension, a phase of late Mid Miocene N-S-directed compression has been induced by the Carpathian orogeny and affected predominantly the Carpathian Front while the Holy Cross Mountains remained mainly unaffected.

Stress fields C and D: the transition to present-day stress conditions

Stress field C integrates strike-slip stress states with a horizontal, roughly NW-SE-directed maximum compression and mainly intermediate stress ratios. Though a number of 12 outcrops reveal fault-slip data attesting to both B-related and C-related stress states, the posteriority of Stress field C relative to B is only poorly constrained by field observations. However, palinspastic reconstructions implementing paleomagnetic measurements and Cenozoic kinematics of major structures in Central Europe argue for an Eocene to Miocene aged rotation of the direction of maximum horizontal stress (S_{Hmax}) from a NNE- to a NW-direction (Schreiber & Rotsch, 1998). This rearrangement of stress states would confirm Stress field C to have postdated Stress field B. Furthermore, the direction of maximum compression indicated by Stress field C coincides with the NW–SE-directed S_{Hmax} of the present-day stress field within the subsalt layers of large parts of the study area (Roth & Fleckenstein, 2001; Heidbach et al., 2008). Since the present-day stress conditions in the study area are supposed to have been initiated in the Miocene, Stress field C would be related to post-Miocene times.

According to the present paleostress analysis, the latest signs of preserved faulting correspond to the tensional stress field D which widely corresponds to radial extension as indicated by a low mean of stress ratios and a large diversity of locally estimated σ_3 -axes. Extensional tectonics are supposed to have governed areas north of the Alps during most of the Palaeogene (Reicherter et al., 2008), but also recent stresses are partly released by normal kinematics in the study area (Heidbach et al., 2008). Moreover, wide parts of North Central Europe provide evidence for extensional regimes of Neogene ages such as a N–S-directed extension detected in SE Poland (Lamarche et al., 2002), a NE–SW-directed extension in prominent N–S-striking structures of Central Europe (Reicherter et al., 2008) or differently oriented extensional regimes found in southern Wales and NE-Belgium (Vandycke, 2002). A succession of differently oriented tensional stress states is also indicated by subsurface faultslip patterns in the Groningen Block northwest of the Lower Saxony Basin: a first E-Wdirected extension is dated to the latest Cretaceous, a later E-W-directed extension is dated to 52-19 Ma, and a phase of NE-SW-directed extension is supposed to have started after 19 Ma and to have persisted until the present (van Gent et al., in press). Hence, also stress field D might potentially have led over to present-day stress configurations. A more precise dating of this stress field would require a correlation with fault-slip data and stresses derived from differently aged Cenozoic rocks which, however, are not available in the study area.

4.5.2 Mechanisms

The described evolution of regional stress fields has been developed based on the assumption that any fundamental difference in the directions of principal stress axes corresponds to a change of the overall tectonic stress field. However, observations on present-day stress states inferred from earthquake focal mechanisms, for instance, show that the mode of a local stress state might change during a single earthquake while the deformation-controlling plate tectonic setting remains the same (Giner-Robles et al., 2003). A very frequent type of stress change recorded during a seismic cycle corresponds to a permutation of principal stress (or strain) axes while the relative orientation of the stress ellipsoid remains constant. Most permutations concern σ_2 and σ_3 , or σ_1 and σ_2 , but switches between σ_1 and σ_3 have also been described (Angelier et al., 2008). The authors relate the widespread phenomenon of permutations to an elastic response of the shallow crust to deformation, including elastic rebound and stress drop. Furthermore, Hu & Angelier (2004) showed on the base of numerical modelling that major causes for stress permutations include the heterogeneity of brittle deformation and the resulting anisotropy of rock mechanical properties due to fracturing and faulting.

Considering the reconstructed regional stress fields, it is obvious that the difference between A and B corresponds to a permutation of σ_2 and σ_3 , whereas the difference between B and C roughly matches a permutation of σ_1 and σ_3 . In light of this, the mechanical relationships between different stress states are discussed including arguments for posteriority or simultaneity of stress states.

Stress fields A and B

The temporal relation between the compressional Stress field A and the strike-slip Stress field B is unambiguously constrained at sites along the Osning Lineament where phases of reverse faulting and folding clearly have predated strike-slip faulting (Case studies 2, 3, 4). A general simultaneity of A and B thus can be excluded. The observation that folding in the Lower Saxony Basin already began during deposition of Upper Cretaceous rocks, on the other hand, corresponds with a synsedimentary tilting of Upper Cretaceous strata in the Subhercynian Basin as indicated by several angular unconformities which are regarded as being partly related to the activation of the Northern Harz Boundary Fault (Voigt et al., 2004). In general, the effects of Stress field A are more restricted to areas close to large fault zones (such as the Osning Lineament), whereas the effects of Stress field B can be traced also farther to the north, i.e. into the Flechtingen High area (Fig. 41, 44). The large number and the wide distribution of local stress states related to Stress fields A and B document a strong intensity of deformation during the Late Cretaceous - Early Tertiary phase of inversion. This effectiveness might explain why the traces of older phases of brittle deformation are scarcely observable: Signs of the inversion phase are preserved by the whole range of differently-aged rocks arguing for a high degree of reactivation of potentially pre-existing faults and fractures. Furthermore, the observed intensity of faulting complies with strong vertical movements documented by individual blocks: According to fission track analysis, the Paleozoic block of the Harz Mountains is supposed to have been uplifted along the Northern Harz Boundary Fault by at least 5 km (at c. 85 Ma; Thomson et al., 1997), while the sediments of the Lower Saxony Basin experienced uplift along the Osning Lineament by at least 4 km (c. 89-72 Ma; Senglaub et al. 2005, 2006).

There is an ongoing discussion on the general mode of deformation along the faults of the Elbe Fault System. For example, Voigt et al. (2004) regard the Northern Harz Boundary Fault as a frontal thrust above a steep basement thrust, while others consider both the Osning Lineament and the Northern Harz Boundary Fault to have been activated as large wrench fault systems during the phase of inversion (Drozdzewski, 1988; Wrede; 1988). The contribution of the present study to this discussion is limited as it is not known at what depth the recorded faults have been activated. If having been activated at greater depth, the reverse faults of Stress field A may identify the basement faults as flat thrusts. Any activation at shallower depth, on the other hand, might reflect either a thrust environment or a deeply-rooted strike-slip fault under transpression. Interestingly, there are no steeply inclined reverse faults observable, neither along the Osning Lineament nor along the Northern Harz Boundary Fault. In any case, the great number of strike-slip stress states which exceeds the number of reverse stress states in the study area, argues for a considerable intensity of wrench tectonics along the Elbe Fault System.

Stress field C

As mentioned, the difference between the strike-slip Stress fields B and C could be explained by a permutation of σ_1 and σ_3 corresponding to a change in the direction of maximum horizontal compression from NE-SW to NW-SE. This regional permutation can also be found on the outcrop scale: At *Mammendorf* (#36), for instance, a B-related stress state shows a N-S-striking σ_1 , while a C-related stress state reveals an E-W-striking σ_1 . For comparison, at *Bodendorf* (#32), σ_1 "changes" from NE-SW to NW-SE. Thus, at both sites – like at several others – the axial orientation of the respective stress ellipsoid remains constant while its shape changes. The assumption that the regional Stress field C corresponds to a discrete event that has postdated B is rather based on consistencies between C and the present-day stress conditions in the area than on unambiguous chronological indicators derived from the field which are remarkably scarce.

Summarising the facts, for stress field C and its relation to B the concept of axes permutations under a constant overall stress provides a solution at least as reasonable as the concept of superposed tectonic phases. Consequently, the stress states related to C might not be indicative for a separate tectonic phase, but for local variations of stress during the strike-slip phase of inversion.

Stress field D

The posteriority of the tensional stress field D relative to compression and wrench in the study area is well constrained due to related large-scale structures as well as several superimposed striations. This temporal consistency between locally derived tensional stress states is in contrast to the great diversity in related directions of minimum compression that might imply a diversity of related mechanisms.

Along the Osning Lineament, basically two different directions of extension have been observed, one roughly parallel and one perpendicular to the strike of the lineament (Fig. 33). Extension perpendicular to the Osning Lineament corresponds to movements which are parallel to but opposing the former inversion-related direction of maximum compression. Such a σ_1/σ_3 -permutation might be related to a drop of the tectonic (inversion-related) stress component and a sudden predominance of the vertical component of stress. Accordingly, Kockel (2003) describes such a relaxation of stresses as a major cause for normal faulting affecting many of the formerly inverted structures in northern Europe.

In principle, the observed extension parallel to the WNW-striking Osning Lineament could likewise be related to stress relaxation and associated permutations. On the other hand, such a roughly E-W-directed extension fits with the predominantly N-S-trending Cenozoic depocentres in the CEBS the formation of which is supposed to have been controlled by

thermal relaxation or flexural bending of the North Sea lithosphere (Ziegler, 1990; van Wees & Beekman, 2000; Hansen & Nielsen, 2003; Scheck-Wenderoth & Lamarche, 2005). Furthermore, Central Europe has been governed by extensional tectonics that created the roughly N-S-trending European Cenozoic Rift System during the Eocene to Miocene (Reicherter et al., 2008).

In contrast to the Osning Lineament area, the Hessian Depression and the Subhercynian Basin show tensional stress states with mainly low stress ratios. Such stress conditions correspond to radial extension and might be associated to the rise of salt structures. It is known, that since Mid Triassic times, Zechstein salt layers have recurrently been mobilised, in particular during late Tertiary regional extension (Scheck et al. 2002a,b; 2003a,b; Kockel, 2003; Maystrenko et al., 2006). It should be noted, however, that tensional stress states with low stress ratios have also been obtained from rocks without any salt structures underneath, as the Upper Carboniferous volcanics at of the Flechtingen High area (#32). This observation accounts for the fact that salt movements in general do not trigger but result from differential stresses. In the study area, tectonically induced extension might thus have initiated the ascent of salt structures which, in turn, might have altered the local stress states and promoted radial extension. Such a process is comparable to stress modifications in the vicinity of uprising magmatic material (Suppe, 1985): the ascent of material may exert an additional component to the vertical stress axis while indirectly decreasing the relative magnitudes of horizontal axes. Local variations of stress states caused by salt tectonics are also expressed by the recent stress field in northern Germany which shows differences in the orientations of S_{Hmax} between subsaline and suprasaline formations (Roth & Fleckenstein, 2001).

Comprehensive deformation model

The reconstructed succession of a compressional stress field (A) followed by a strike-slip stress field (B) and finally by a tensional stress field (D) is comparable to the Cenozoic evolution of paleostresses in the Alpine foreland as described by Letouzy (1986; Fig. 52). For both areas, the development of stress fields occurred under a constant orientation of the principal axes while implying two stages of stress permutation. The causative mechanisms for such a development as provided by Letouzy's (1996) model comprise (i) gradual decrease of the tectonic components of stress and (ii) uplift to shallower depth where non-isotropic stress conditions are supposed to be related to an increasing relative magnitude of the vertical stress component. Accordingly, this model implements a main phase of intense compression which is followed by weaker phases of strike-slip and normal faulting. This development corresponds with the findings from the Elbe Fault System area where the inversion-related stress fields A and B are the dominant imprints and supposed to have acted coevally with the strongest recorded uplift, whereas the weaker tensional stress field D has postdated A and B.

Figure 52: Correlation of the reconstructed regional paleostress fields (A, B, D) with a stress and strain model derived from structural data in the Alpine foreland (Letouzy, 1986). According to Letouzy's model, a gradual decrease of the magnitudes of compressive tectonic stresses and a continuous increase of the relative magnitude of the vertical stress component due to uplift to shallower depths are supposed to result in a regional development from a compressional stress regime (a) to a strike-slip stress regime (b) and finally to a tensional stress regime (c).

4.6 Summary and conclusions

The fault-slip analysis performed for the area of the Elbe Fault System argues for the following evolution of regional paleostress fields:

- A compressional Stress field A with a N-S- to NE-SW-directed maximum compression induced reverse faulting and folding in large parts of the area. This stress field is at most as old as Cenomanian/Turonian and related to the *Late Cretaceous Early Tertiary phase of inversion* that affected much of the CEBS.
- Postdating Stress field A, a strike-slip Stress field B with a N-S- to NE-SW-directed maximum compression produced the strongest imprint of brittle deformation detectable in the area. Stress field B can likewise be correlated with the *Late Cretaceous Early Tertiary phase of inversion*.
- A number of local strike-slip stress states with E-W- to NW-SE-directed maximum compression might be interpreted as indicating a regional stress field C that postdated B. This stress field corresponds well with the present-day stress field of the area in terms of the direction of maximum horizontal compression. On the other hand, the local stress states associated to C might be related to permutations of principal axes induced by stress relaxation due to faulting under Stress field B.
- The youngest reconstructed stress regime is tensional in character with no pronounced direction of horizontal extension. It can temporally be correlated with the *Cenozoic phase of subsidence* which induced strongest vertical movements in the North Sea while kinematically it corresponds with Palaeogene to recent extensional tectonics recorded for large parts of Central Europe. The predominantly low stress ratios of tensional stress states (radial extension) might locally have been induced by uprising salt structures.

Despite a wide stratigraphic scope of investigated rocks covering Upper Carboniferous to Upper Cretaceous units, the brittle signs of deformation regionally traceable in the rocks are exclusively (post-) Late Cretaceous in age. The scarcity of pre-Late Cretaceous signs of faulting indicates that inversion-related deformation widely overprinted potential traces of earlier deformation corresponding to an extensive "reprogramming" of the observable signs of deformation. This reprogramming might be related to the role of the Elbe Fault System during the phase of inversion: Being characterised by a weak and stress-sensitive zone in the lower crust, strain localisation may have turned the Elbe Fault System into one of the most intensely deformed areas. This is in contrast to more central parts of the CEBS where fault structures also document stress states of pre-inversion phases (Lohr, 2007; van Gent et al., in press). Finally, the high consistency of local paleostress states characterises the investigated area as a relatively homogeneous unit without any major kinematic differences between single domains.

5 The Oslo Graben area

To shed light on the evolution of paleostress fields in the northern parts of the CEBS, the present study has laid one of its foci on the Oslo Graben area which is located north of the Tornquist Zone (TZ). The on-land Oslo Graben and the offshore Skagerrak Graben constitute together the roughly N-S-trending Oslo Paleorift System which was one of the areas of pronounced magmatic activity during the Permo-Carboniferous *initial rift phase* that affected almost the entire CEBS. During this phase, areas like the Oslo Graben in the north and the North German Basin in the south were belonging to an extensive volcanic province (Neumann et al., 2004). During later times, the Oslo Rift area is supposed to have acted as the prolonged northern arm of the Northern Permian Basin (Larsen et al., 2008). These connections indicate that the developments of the Oslo Rift and the CEBS have been related – at least during early stages in the evolution of the CEBS. Due to the abundance of Permo-Carboniferous magmatic rocks in the Oslo Graben area (Fig. 7), its rift-related history is well known. A reconstruction of the post-rift development, in contrast, is complicated by the lack of any outcropping post-Permian units.

5.1 The Oslo Graben as part of the Oslo Rift System

The Oslo paleorift system terminates to the south in the Sorgenfrei-Tornquist Zone (STZ) which is the northwestern prolongation of the Teisseyre-Tornquist Zone (TTZ; Fig. 1). The TTZ forms the boundary between the Precambrian East European Platform and the accreted parts of Phanerozoic Western Europe. On the contrary, there is still an ongoing discussion on the structural role of the STZ with respect to the Baltic Shield. Some authors regard the STZ to lie within the Precambrian Baltic shield (EUGENO-S Working Group, 1988), whereas more recent studies postulate the STZ to represent the border of Baltica (Lie & Anderson, 1998; Babuska & Plomerova, 2004). Several authors have suggested that the Permo-Carboniferous initiation of the Oslo Rift has been closely tied to concurrent tectonics along the TZ (Glennie, 1984; Sundvoll et al., 1990; Ziegler, 1990; Veevers et al., 1994). During Variscan times, for example, the TZ is supposed to have experienced wrench deformation and dextral movements controlled by collision-related stresses in the south which, in turn, have induced approximately E-W directed extension north of the TZ, i.e. in the Oslo Rift (Sundvoll et al., 1992). Moreover, the main phase of extension affecting the Oslo region went along with a deepening of pull-apart basins within the TZ (Erlström et al., 1997).

5.1.1 Geometry and structure of the Oslo Rift System

The Oslo Rift is constituted by an en-echelon array of graben segments (Ramberg, 1976; Ramberg & Larsen, 1978; Larsen et al., 2008): the Rendalen, Akershus and Vestfold Graben Segments form the northern and central on-land parts, whereas the Skagerrak Graben is the southern off-shore segment of the rift system (Fig. 53). These segments reveal sigmoidal plan view and form an overall rift axis trending roughly NNE-SSW as confirmed by fault patterns and geophysical features. In cross-section, the on-land segments represent asymmetrically shaped half-grabens with different subsidence polarities: The Rendalen Graben segment is bordered to the east by a west-verging master fault system (Skjeseth, 1963; Larsen et al., 2006). The Akershus Graben segment reveals an east-verging master fault to the west, while the Vestfold Graben segment shows a west-verging master fault to the east (Ramberg & Larsen, 1978). The latter two segments are linked by an accommodation zone with a joining
fault to the west of the city of Oslo, the Kjaglidalen-Krokkleiva Tranfer Fault (KKTF; Heeremans et al., 1996). Finally, the Skagerrak Graben which abuts against the STZ is composed of several more or less overlapping graben segments (Heeremans et al., 2004).

Figure 53: Sketch map of the Oslo Rift System (modified after Larsen et al., 2008 and Ranberg & Larsen, 1978). This paleorift is structured by an array of graben segments with different graben polarities. Master faults (black), accommodation structures (green and blue) and transfer fault zones (red) are labelled by abbreviations: ETF - Ekeberg Transfer Fault, KKTF - Kjaglidalen-Krokkleiva-Transfer Fault, LAZ - Langesund Accommodation Zone, OF - Oslofjord Fault, RG - Rendalen Graben, RHF - Randsfjorden-Hunnselv Fault, SG - Skagerrak Graben, SH – Solberg Horst.

5.1.2 Permo-Carboniferous rift evolution

After a first tectonomagmatic model for the evolution of the Oslo Rift has been provided by Ramberg and Larsen (1978), an ever growing pool of seismic, structural, geochemical, and paleomagnetic data has allowed refining the respective models (Russell, 1983; Sundvoll et al., 1990; Neumann et al., 1992; Neumann, 1994; Ro and Faleide, 1992; Sundvoll et al., 1992; Sundvoll and Larsen, 1994; Olaussen et al., 1994; Heeremans et al., 1996; Torsvik et al., 1998; Larsen et al., 2008). According to Larsen et al. (2008), the evolution of the Oslo Rift can be subdivided into 6 progression phases commencing in Late Carboniferous times and spanning about 65 million years:

During the proto-rift stage (*rift stage 1*), a thin sequence of clastic and evaporitic sediments ("Asker Group") has been deposited into a shallow depression unconformably on top of a deformed Cambro-Silurian sedimentary succession. Coevally, magmatic activity started with the emplacement of sill intrusions (ca. 305-300 Ma old syenites and basic camptonites; Sundvoll et al., 1992; Sundvoll & Larsen, 1994). The initial rifting phase (*rift stage 2*) mainly exhibits basaltic lava flows ("B1"), the oldest of which are found in the southern parts of the Oslo Graben area where they exhibit a radiometric age of 300±1 Ma (Corfu & Dahlgren,

2007). The climax stage of rifting (*rift stage 3*) is marked by intensive eruptions of trachyandesitic rhomb porphyry lavas (Larsen et al., 2008). In the southern parts of the graben, the rhomb porphyry lavas were dated to 294-283 Ma, whereas for the northern parts ages of 290-276 Ma were estimated (Sundvoll et al., 1990). Postdating this main volcanic phase, but still occurring during the main phase of rifting, extensive vertical movements along graben-flanking master faults have been discovered (Heeremans & Faleide, 2004). During *rift stage 4*, central volcanoes first produced mainly alkaline olivine basalts, and then matured petrologically to leave residual felsic melt products that finally erupted explosively by caldera formation. Some of the caldera-related ignimbrites have been dated to 288 Ma and 285 Ma (Sundvoll & Larsen, 1990), thus marking the end of the main extrusive period in the Oslo Graben. The magmatic aftermath stage (*rift stage 5*) is supposed to have lasted from ca. 265 to 255 Ma and has been characterised by the emplacement of mostly alkali syenitic to alkali granitic batholiths (Larsen et al. 2008). Finally, during the last stage of magmatic activity (*rift stage 6*), granitic intrusions with ages between 250 and 245 Ma have been emplaced (Sundvoll et al., 1990).

5.1.3 Post-rift evolution

As a result of 65 Ma of intense tectonomagmatic activity, the present total volume of magmatic rocks in the Oslo Graben amounts to about 28,000 km³ (Ramberg, 1976). However, the lavas presently exposed in fault-bounded blocks along the graben are only remnants of a formerly much larger lava cover; they are estimated in total to about half the originally generated volume, whereas large amounts already have been eroded. The causes for erosion are provided by two phases of uplift reflected by apatite fission track data (Rohrman et al., 1995): during Triassic-Jurassic times (~220-160Ma) a total of 1.3-3.5 km of overburden is supposed to have been removed as a result of rift margin erosion. On the other hand, a Neogene (~30 Ma) phase of domal uplift caused erosion of 1.5-2.5 km of overburden. This younger phase of denudation is supposed to be related to a combination of mantle convection and the operation of intraplate stresses which are slightly overprinted by Plio-Pleistocene glacial erosion effects. Postglacial unloading is documented to have had its dominant impact right after the end of the latest ice age (ca. 9 ka) as indicated by signs of large earthquakes (Gregersen, 1992). Beside the described mostly vertical movements, no major tectonic or magmatic activity has been denoted for post-rift times (Sundvoll & Larsen, 1994). This longlasting tectonic quiescence is supported by the outcomes of an earlier paleostress study based on fault-slip data from the Oslo Graben area (Heeremans et al., 1996).

As inferred from earthquake focal mechanisms in the area of the Oslo Graben and surroundings, the present-day regional stress field is characterised by a NW-SE-direction of maximum horizontal compression (S_{Hmax} ; Gregersen, 1992; Lindholm et al., 2000) which correlates with large parts of Northern Europe (Heidbach et al., 2008) and is mainly regarded a result of ridge push forces induced by spreading in the Atlantic domains.

5.2 Estimated paleostress states

A total number of 2191 fault-slip data are used for the present paleostress analysis in the Oslo Graben area (Appendix B; Fig. 54). These fault-slip data are complemented by 157 dykes and 232 veins, all having been assembled from 101 locations spread all across the graben area with exposed rocks of Precambrian, Cambro-Silurian and Permian ages (Fig. 7; Tab. 2).

In analogy to the processing of fault-slip data from the southern margin of the CEBS (Chapter 4), the Stress Inversion Via Simulation is applied separately to fault populations

from different sites in the Oslo Graben area. This procedure results in a total number of 194 reduced stress tensors (Fig. 55). At many sites, the preserved fault populations are heterogeneous resulting in several estimated stress tensors. In total, these locally derived stress states comprise 7 compressional stress states (sub-vertical σ_3), 70 tensional stress states (sub-vertical σ_1), 37 strike-slip stress states (sub-vertical σ_2), and 80 oblique stress states (no vertical principal axis). Such a kinematic pre-classification follows the assumption that regional stress regimes of a different mode (i.e. compressional, wrench, tensional, or oblique) are unlikely to control the same area at the same time. Hence, this arrangement is a first step in unravelling the evolution of paleostress fields in the area – a preliminary step that will have to be verified though.

Figure 54: Slickenside with calcite fibres indicating oblique-normal slip along a fault-plane within Upper Silurian limestones exposed at Åsa (site #17; photo by M. Heeremans).

Strati- graphy, Site		Stress states				
		Compressional	Tensional	Oblique	Strike-slip	
Pr-P	25		HOLM			
Pr-P	26		FROG			
Pr-P	27		BOGS1		BOGS2	
Pr-P	42		GRYS1	GRYS2		
Pr-P	51		t a triangle triangl		HAUG2	
Pr-P	53			UTSI		
Pr-P	55				REIS	
Pr-P	65			ROYK		
Pr-P	70				GULL	
Pr-P	72		OVNE			
Pr-P	79		HOL21	HOL21		
Pr-P	81		B C C C C C C C C C C C C C C C C C C C	HYGG2	HYGG3	
Pr-P	83		SELV			
Pr-P	85		TOFT1	TOFT2		
Pr-P	91		STEI			
Pr-P	92		HIMB1	HIMB2	німвз	
Pr-P	97				TVEI	
Pr-P	99- 101		NEVL			
Pr-V	2		BRUM1	BRUM2		
Pr-V	12		JARE1		JARE3	
Pr-V	23		SUN11		SUN12	
Pr-V	24			SORK2 SORK3		
Pr-V	28					
Pr-V	30		SKOL1		o p skol2	

Figure 55: (continued next page)

Strati- graphy, Site		Stress states				
		Compressional	Tensional	Oblique	Strike-slip	
Pr-V	31		BAER			
Pr-V	32		GAML1		GAML2	
Pr-V	33		HVIL1		v v HVIL5	
Pr-V	87					
Pr-V	89			JEL4		
Pr-V	90			HORT2 HORT3		
Pr-V	93		LAKS1	LAKS2		
Pr-V	94		SKOP			
cs	1		TORU1	TORU2		
cs	4		GORU			
cs	5			BOVR1 BOVR2 BOVR3	BOVR4	
cs	6		KORS1	KORS2	KORS3	
cs	9	BRAN1	BRAN2	1 BRAN3 BRAN4 BRAN5		
cs	10			TING2	TING3	
cs	14		ROAX1	ROAX2		
cs	15	GRYM1	GRYM2	GRYM3		
CS	17			ASAX1 ASAX2	ASAX3	
cs	18		STUB			
cs	20					
cs	21		SUN31			
cs	22			SUN2		
cs	29		GRIN1	GRIN2		
cs	34		RYKK1	RYKK2		
cs	35			SINS1	SINS2	

Figure 55: (continued next page)

Strati- graphy, Site		Stress states				
		Compressional	Tensional	Oblique	Strike-slip	
cs	36	VAEK1	VAEK2		VAEK3	
cs	38		HOVE			
cs	40		SAND1	SAND2 SAND3		
cs	41	FORN1	FORN2	FORN3 FORN4	FORN5	
cs	43			MALM		
cs	45		OSTO1	OSTO2 OSTO3 OSTO4		
cs	46	HVAL1	HVAL2			
cs	48 49		ALVA1		ALVA2	
cs	50		BLAK1	BLAK2		
cs	56		BOVE1	BOVE2	Strike-slip faults	
cs	58		MOLL1 MOLL2 Veins			
cs	61			SLEM		
cs	69			MJON2 MJON3 MJON4	MJON5	
cs	76		KONNI		KONN2	
cs	86- 88		JEL12		JEL11	
cs	95		EIDA1	EIDA2 EIDA4 EIDA3		
cs	96			NBRE	*	
Pb	3		HELL1	HELL2	HELL3	
Pb	7		SKAR1 SKAR2 SKAR3			
Pb	8		MOEN1	MOEN2 MOEN3		
Pb	11		B B ENGN	<u> </u>		
Pb	13			RAHO		
Pb	16			JEVN		
Pb	37		EKEB1			

Figure 55: (continued next page)

Figure 55: Paleostress tensors estimated for the Oslo Graben area. Sites are stratigraphically ordered. Stress states that are based on less than 9 fault-slip data are marked by an asterisk. Locally observed chronologies are indicated by arrows connecting the respective stress states.

5.2.1 Direct constraints on the relative timing of stress states

The ages of investigated rocks and the relative arrangement of individual fault-slip data observed in the field are the two first-order criteria for the relative timing of stress states. In the Oslo Graben area, the occurrence of compressional stress states is restricted to Precambrian and Cambro-Silurian rocks while tensional, strike-slip, and oblique stress states are documented by fault-slip data preserved by all exposed rock ages (Fig. 55). The lack of any compressional stress states in Permian rocks thus may identify this group of stresses as pre-Permian aged.

Other indicators for a temporal classification of stress states in the Oslo Graben area are provided by superimposed striations and relations of fault-slip data to other preserved structural elements (Fig. 55). At Hasle (#57), for example, several N-S-striking fault planes show two generations of striations: an older group of striae related to the tensional stress state HASL1 (E-W extension) and a younger group of oblique-normal senses related to the oblique stress state HASL2. Superimposed striations that locally prove a tensional stress state to have been active before an oblique stress state are also found at Brandbu (#9), at Jaren (#12) and at Sundvollen3 (#21). An agreeing relative timing of tensional and oblique stress states is found at Mølleveien (#58) where some sub-vertical surfaces striking N-S are interpreted as having initially been formed as calcite-filled veins which were later reactivated as oblique-normal (sinistral) faults. The pure tensile component of these structures (the veins) may correspond to the tensional stress state MOLL1 with an E-W-directed σ_3 , whereas the oblique-normal slip direction clearly is related to the oblique stress state MOLL3.

At other places, superimposed striations argue for strike-slip stress states to be younger than tensional stress states (Boveien, #56) or strike-slip stress states to be younger than oblique stress states (Eidanger, #95). A more indirect indication for the relative timing of an oblique stress state and a strike-slip stress state is given at Nesoddtangen (#44): a N-S-striking calcite-filled vein indicates approximately E-W-directed extension corresponding with the σ_3 -axis of the oblique stress state NESO1. This calcite vein is offset by a WNW-ESE-striking sinistral fault which is related to the strike-slip stress state NESO2. Assuming the vein to have formed under NESO1, the strike-slip stress state is younger than the oblique stress state.

The local chronologies presented in Figure 55 show consistencies that are a first approval of a cross-outcrop correlation of locally estimated stress states. Considering all available chronological indicators, tensional stress states tend to be older than oblique stress states, while the latter in turn tend to be older than strike-slip stress states. As these tendencies are based on only 8 single observations, a generalisation for the total diversity of inferred stress states in the Oslo graben area must remain tentative. However, the previously proposed separation of a group of oblique stress states are non-uniform in terms of directions of principal stress axes, their consistent relative timing clearly distinguishes them as a group of a separate and maybe common temporal status.

5.2.2 Regional implications

Compressional stress states

The occurrence of compressional stress tensors in the Oslo Graben area is not only restricted stratigraphically to pre-Permian rocks but also spatially to only seven locations (Fig. 56). The seven compressional stress tensors are very consistent with regard to the directions of σ_1 which strike roughly NW-SE (Fig. 57a). This kinematic consistency, in turn, argues for a common causal source – a common regional stress field – that these stress states have been related to.

Figure 56: Compressional stress states derived from fault-slip data in the Oslo Graben area. Stress states that are based on less than 9 fault-slip data are marked by an asterisk.

To characterise this particular stress regime ("Stress field X"), the mean vector of σ_1 -axes has been calculated to be oriented 324/07. Interestingly, the mean direction of σ_1 corresponds well with the direction of maximum compression derived from folded bedding planes within Cambro-Silurian sediments (324/00; Fig. 58). These rocks are supposed to have been folded in the course of the Caledonian Orogeny (Worsley et al., 1982; Bjørlykke, 1983; Bockelie & Nystuen, 1985). Regarding the compressional stress states and the folding as being related to the same tectonic stage, the deduced regional stress field consequently reflects a Caledonian phase of compression controlled by a NW-SE-directed σ_1 and an intermediate stress ratio (R=0.2 to R=0.8; Fig. 57b).

Figure 57: Potential regional Stress field X inferred from compressional stress states. a) Rose diagram with σ_1 -directions of all compressional stress tensors. The azimuths of σ_1 -axes strike consistently around NW. None of the σ_1 -plunges deviates by more than 13° from the horizontal. To infer an overall stress field for these consistent stress states, the mean vector of σ_1 -axes is calculated after Wallbrecher (1986; " $R_{\%}$ -and-center-method"). The concentration parameter, $C_{R\%}$, is a measure for the alignment of stress axes with $C_{R\%}$ =100% indicating parallel fabrics and $C_{R\%}$ =0% indicating a uniform distribution. Here, $C_{R\%}$ =89.2% designates a pronounced maximum for the σ_1 -axes oriented 324/07. b) Comprehensive symbol for the deduced regional Stress field X. It integrates the mean directions of principal stress axes projected to the vertical respectively horizontal. The range of background colours reflects the large variety of stress ratios ($0.2 \le R \le 0.8$) indicated by the associated compressional stress states.

Figure 58: Tilted bedding planes in Cambro-Silurian sediments; a) Tectonomagmatic map of the Oslo Graben area (modified after Ramberg & Larsen, 1978) with measured bedding planes as great circles in lower-hemisphere, equal-area projections; b) Cumulative plot of all bedding planes shown as great circles and poles to planes. The eigenvectors and eigenvalues for the poles to all bedding planes are calculated according to Bingham (1964). The great circle spanned by the eigenvectors of maximum and intermediate eigenvalues (thick line), respectively, cuts the horizontal at 324/00. This direction is interpreted as the direction of maximum compression (black arrows) which caused folding of the initially horizontal bedding planes. Note the similarity to the direction of σ_1 of Stress field X (Fig. 57).

Tensional stress states

Tensional stress states have been derived from sites spread all across the Oslo Graben area (Fig. 59) and from fault-slip data preserved by rocks of all ages including the youngest exposed rocks, i.e. Permian magmatic rocks (Fig. 55). The associated directions of sub-horizontal σ_3 -axes vary strongly among all of the estimated stress tensors (Fig. 60a). Even when comparing the distributions of σ_3 -directions for stress states derived from differently aged rocks, the variety of horizontal extension directions is similarly large (Fig. 61). Only the stress ratios (R) show a certain rock age dependent trend with values increasing from Precambrian to Cambro-Silurian and to Permian rocks. Altogether, most of the tensional stress tensors are characterised by low stress ratios reflecting configurations of radial extension, or "vertical flattening".

Figure 59: Tensional stress states derived from fault-slip data from the Oslo Graben area. Stress states that are based on less than 9 fault-slip data are marked by an asterisk.

Considering the lack of any field-derived indicators that may argue for a succession of different phases of normal faulting, and given the uniform variation of tensional stress states between different parts of the graben system as well as differently-aged rocks, any separation into different groups of tensional stress states would not be justified. This conclusion includes the possibility that all tensional stress states are related to the same tectonic phase in the evolution of the Oslo Graben. Following this, the mean vector for σ_3 -axes of all tensional stress tensors is calculated (Fig. 60a). The potential regional stress field thus deduced ("Stress field Y") shows a maximum of σ_3 that strikes horizontally WNW-ESE (293/00), though this maximum is only weakly pronounced ($C_{R\%}=38.4\%$). This weakly constrained σ_3 , in turn, corresponds well with the predominance of low stress ratios which indicate σ_2 and σ_3 to be almost equal in magnitude.

Figure 60: Potential regional Stress field Y deduced from tensional stress states. a) Rose diagram with σ_3 -directions of all tensional stress tensors. The azimuths of σ_3 -axes show various strike directions. None of the σ_3 -plunges deviates by more than 19° from the horizontal. To infer an overall stress field for these stress states, the mean vector of σ_3 -axes is calculated after Wallbrecher (1986; " $R_{\%}$ -and-center-method"). The concentration parameter, $C_{R_{\%}}$, is a measure for the alignment of stress axes ($C_{R_{\%}}=100\%$: parallel fabrics; $C_{R_{\%}}=0\%$: uniform distribution). $C_{R_{\%}}=38.4\%$ designates a weakly pronounced maximum for σ_3 . b) Comprehensive symbol for the deduced regional Stress field Y. It integrates the mean directions of principal stress axes projected to the vertical respectively horizontal. The background colours illustrate the predominance of low stress ratios.

Since the youngest rocks documenting tensional stress states are of Permian ages, the supposed tensional stress field must have been active during Permian or post-Permian times. Despite the weak intensity of the calculated mean of σ_3 , this direction of extension fits very well with the supposed kinematics of the master faults that flank the different graben segments of the Oslo Rift system (Fig. 53): These major planes are suggested to have been active as normal faults during the Permo-Carboniferous phase of rifting (Swensson, 1990; Olaussen et al, 1994; Heeremans & Faleide, 2004). Striking roughly N-S, these faults indicate a roughly E-W-oriented extension. Likewise, tensile structures such as dykes and veins indicate pronounced directions of extension around WNW-ESE and E-W (Fig. 62). Dyke emplacement is supposed to have taken place over the entire time-span of Permo-Carboniferous rifting (Heeremans, 2005). Consequently, as the regional direction of σ_3 derived from fault-slip data corresponds with the extensional directions deduced from other rift-related structures, the tensional stress field is interpreted to be related to the phase of Permo-Carboniferous rifting.

Figure 61: Orientations of σ_3 -axes for the 70 tensional stress states plotted in a stereographic projection (lower hemisphere, equal area). The stress states have been derived from fault-slip data preserved by rocks of Precambrian, Cambro-Silurian, and Permian ages. Irrespective of the age of the rocks, the σ_3 -axes show a great variation of sub-horizontal directions. However, the younger the rocks are, the smaller is the mean of stress ratios, R_{mean}. n_{stress states} – number of locally derived stress states; R=(σ_2 - σ_3)/(σ_1 - σ_3).

Figure 62: Orientations of dykes and veins. According to Anderson's (1942) principles, the direction of extension during the formation of pure tensile structures is perpendicular to these planes. Thus, the mean vectors calculated for the poles to dykes respectively veins (Wallbrecher, 1986) are interpreted to indicate the most probable directions of extension, being E-W for the dykes and ENE-WSW for the veins.

Oblique stress states

The greatest number of stress tensors derived from fault-slip data preserved in the Oslo Graben area corresponds to oblique stress states that are characterised by a lack of any sub-vertical principal stress axis, since neither σ_1 nor σ_2 or σ_3 plunges by more than 70° (Fig. 63). These non-Andersonian stress states have been derived from fault-slip data spread all across the Oslo Graben area and preserved by units of all investigated rock ages (Fig. 55). As obvious from this paleostress map, these stress states do not show any prominent consistencies in terms of directions of principal axes. Similarly, the stress ratios vary almost over the complete possible range ($0.0 \le R \le 0.9$).

Following the principles of paleostress stratigraphy, the directions of principal stress axes are plotted according to the different investigated rock ages (Fig. 64). It is obvious that the principal axes show a similarly wide variety of directions whatever the age of the host rock. Likewise, the mean value of R is independent of rock ages. Moreover, a spatial correlation of consistent stress states is impossible: firstly, as agreeing directions of principal stress axes can be found all across the graben area and, secondly, as various oblique stress states locally occur at the same place.

Figure 63: Oblique stress states in the Oslo Graben area. None of these stress tensors comprises a subvertical principal stress axis, i.e. a stress axis that plunges by $\geq 70^{\circ}$. Stress states that are based on less than 9 fault-slip data are marked by an asterisk.

Given the described variation of local stress states as well as the scarcity of evidence concerning the relative timing of different oblique stress states (Fig. 55), the group of non-Andersonian stress states is further analysed as a whole. When plotting the different types of principal stress axes separately, they reveal some remarkable trends (Fig. 64): the plunges of σ_1 -axes tend to be steeper than those of σ_2 -axes, while the majority of σ_3 -axes are almost horizontal. Despite the low consistency of oblique stress states arguing against a common regional stress field, the mean vectors have been calculated for all three types of principal stress axes. According to these mean directions, a respective overall stress field would be characterised by a sub-vertical σ_1 , a sub-horizontal N-S-striking σ_2 , and a sub-horizontal E-W-striking σ_3 . Interestingly, this configuration resembles the deduced Permo-Carboniferous tensional Stress field Y.

Figure 64: Variations of orientations of σ_1 -axes (a), σ_2 -axes (b), and σ_3 -axes (c) for all oblique stress states shown by stereographic projections (lower hemisphere, equal area; *left*), by rose diagrams (*centre*), and by plunge scaling (*right*). The mean vectors are calculated after Wallbrecher (1986; "*R*%-and-center-method"). d) Number of stress states (n_{stress states}) and mean values of the stress ratio (R_{mean}) derived from the different investigated rock ages [with R=(σ_2 - σ_3)/(σ_1 - σ_3)].

The supposed relationship between oblique and tensional stress states is more clearly illustrated by a triangle diagram (Fig. 65). This type of diagrams has originally been developed for the presentation of earthquake focal mechanisms according to the associated P-, B-, and T-axes (Apperson & Frohlich, 1988; Frohlich, 1992). In the same way, stress states can be plotted in triangle diagrams according to the plunges of principal stress axes based on the following relationship:

$$\sin^2 \delta_{\sigma 1} + \sin^2 \delta_{\sigma 2} + \sin^2 \delta_{\sigma 3} = 1$$
 (Eq. 3)

where δ_{σ_1} , δ_{σ_2} , and δ_{σ_3} are the plunges of σ_1 , σ_2 , and σ_3 , respectively. The upper vertex of the triangle diagram represents a stress state for which σ_2 is vertical, while σ_1 and σ_3 are horizontal. Accordingly, the lower left vertex represents a stress state with a vertical σ_3 and the lower right vertex corresponds to a vertical σ_1 . The exact centre of the diagram, on the other hand, represents a stress state for which σ_1 , σ_2 , and σ_3 show the same plunge of 35.26°. By using the triangle diagram, stress states can be characterised as compressional (subvertical σ_3), strike-slip (sub-vertical σ_2), and tensional (sub-vertical σ_1). For the Oslo Graben area, compressional and strike-slip stress states can straightforwardly be distinguished as they form relatively isolated clusters located close to the vertices of vertical σ_3 and σ_2 , respectively (Fig. 65). The areas of tensional and oblique stress states, on the other hand, are not clearly outlined against each other. This smooth transition argues for a potential causal relationship between tensional and oblique stress states designated in the present study to be 70° is not indisputable.

Figure 65: Triangle diagram with total number of 194 stress states detected in the Oslo Graben area. The different types of stress states are colour-coded: Compressional stress states are characterised by a sub-vertical σ_3 , strike-slip stress states by a sub-vertical σ_2 , and tensional stress states by a sub-vertical σ_1 . In this regard, "sub-vertical" is assumed to mean plunging by $\geq 70^{\circ}$. Thus, oblique stress states are located in the central parts of the diagram (grey dots). However, the densest clusters of oblique stress states plot very close to the area of tensional stress state. This might imply a causal relationship between oblique and tensional stress states.

The great number of oblique stress states poses the problem why the principles of Andersonian faulting should have been invalid at least temporarily for large parts of the Oslo Graben area. As presented by selected examples from the southern margin of the basin system (Chapters 2 and 4), the formation of striated fault planes may be postdated by folding or

tilting of the corresponding rock mass resulting in distorted orientations of fault-slip data and associated paleostress axes.

Since six of the oblique stress states found in the Oslo Graben area have been derived from folded Cambro-Silurian rocks with known bedding attitudes, a test has been performed regarding a potential relationship between folding of these rocks and the obliquity of fault-related stress axes (Fig. 66). Assuming bedding planes to generally form horizontally, their present attitudes serve as a reference frame for each back-tilting test. If the present orientations of fault-slip data and associated stress axes are a secondary result of folding, the tests should restore the original horizontal respectively vertical orientations of principal stress axes. Thus, the back-tilting should reproduce Andersonian stress states. However, in the case of the six examples from the Oslo Graben, only the oblique stress state at site #22 (SUN2) shows Andersonian principal axes after the back-tilting procedure (Fig. 66). For this stress state, the σ_1 -axis plunges by 72° after back-tilting. Thus, apart from this particular example, the whole series of back-tilting tests argues against any causal relationship between the folding of Cambro-Silurian sediments and the occurrence of oblique stress states.

Figure 66: Back-tilting tests for oblique stress states that have been derived from fault-slip data exposed within folded Cambro-Silurian rocks. The parameters used for the back-tilting of principal stress axes (rotation axis, angle and sense of rotation) are derived from the present-day attitudes of folded bedding planes at the respective sites. It is assumed that bedding planes initially formed horizontally. After back-tilting, most of the stress axes are still oblique, thus excluding the folding of rocks as a cause for the obliquity of stress axes. Bedding planes are shown as great circles in stereographic projections (lower hemisphere, equal area). Stress states marked by an asterisk are based on less than 9 fault-slip data.

Strike-slip stress states

All across the Oslo Graben area, in rocks of all exposed ages, fault-slip data are preserved that are indicative for strike-slip paleostress states (Fig. 67). The estimated stress ratios are predominantly low to intermediate with a total range between R=0.0 and R=0.8. Considering the complete number of strike-slip stress states, a great variety of associated directions of maximum compression (σ_1) becomes evident (Fig. 68). However, the largest number of strike-slip stress states is characterised by a σ_1 -axis that strikes around NNW-SSE. This predominant direction of maximum compression is consistently indicated by stress states derived from rocks of Precambrian, Cambro-Silurian, and Permian ages (Fig. 68b).

Interestingly, any stress states that deviate extremely from this predominant trend are spatially restricted to the central parts of the area, i.e. mainly to the accommodation zone that links the Akershus and the Vestfold graben segments. Furthermore, most of these extraordinary stress states are not perfectly constrained as they are based on a number of less than nine fault-slip data (Fig. 67). This restricted spatial occurrence of strike-slip stress states with a roughly E-W-directed σ_1 shows that these stresses correspond to a local phenomenon rather than properly indicating any graben-wide stress field.

Consequently, for the estimation of a regional strike-slip stress field only stress states which consistently show the graben-wide trend of a N-S- to NW-SE-directed maximum compression are considered (Fig. 69). The deduced regional "Stress field Z" thus is characterised by a NNW-SSE-striking σ_1 -axis (173/01) and a low stress ratio ($R_{mean}\approx0.3$). The youngest units that document fault-slip data related to this strike-slip regime are the Permian volcanic and plutonic rocks which thus provide a maximum age for Stress field Z. Furthermore, there are agreeing indications that strike-slip faulting at least locally postdated tensional stress states that are supposed to be related to the Permo-Carboniferous phase of rifting (Fig. 55). However, a more precise temporal assignment of the strike-slip stress field is complicated by the lack of any rocks being younger than Permian.

Figure 67: Strike-slip stress states in the Oslo Graben area. Stress states based on less than 9 fault-slip data are marked by an asterisk. The shaded area indicates roughly the extension of the accomodation zone between the Akerhus and the Vestfold graben segments.

Figure 68: Directions of σ_1 -axes for all strike-slip paleostress states. a) Most strike-slip stress states reveal a σ_1 with azimuths striking N-S to NW-SE. Sites with σ_1 striking around NNW-SSE (black) are differentiated from sites with σ_1 striking around E-W (blue). The latter are mainly restricted to the central parts of the Oslo Graben where an accommodation zone links the segments of the Akershus and the Vestfold half grabens. None of the σ_1 -plunges deviates by more than 19° from the horizontal. b) σ_1 -orientations coloured according the different ages of investigated rocks (lower hemisphere, equal area projection). σ_1 -axes derived from rocks of different ages show similarly wide ranges of preferred orientation. $n_{stresses}$ – Number of locally derived stress states; $R=(\sigma_2-\sigma_3)/(\sigma_1-\sigma_3)$.

Figure 69: Potential regional Stress field Z inferred from strike-slip stress states with σ_1 striking around NNW-SSE (Fig. 68). a) The rose diagram shows the preferred NNW-SSE-orientation of σ_1 -axes. None of the σ_1 -plunges deviates by more than 19° from the horizontal. To infer an overall stress field from these stress states, the mean vector of σ_1 -axes is calculated after Wallbrecher (1986; " $R_{\%}$ -and-center-method"). The concentration parameter, $C_{R_{\%}}$, is a measure for the alignment of stress axes ($C_{R_{\%}}=100\%$: parallel fabrics; $C_{R_{\%}}=0\%$: uniform distribution). $C_{R_{\%}}=75.8\%$ designates a clear maximum for σ_1 -axes oriented 173/01. b) Comprehensive symbol for the deduced regional Stress field Z. It integrates the mean directions of principal stress axes projected to the vertical respectively horizontal. The background colours reflect the predominance of stress ratios between R=0.2 and R=0.6.

5.3 Discussion

The large number and wide distribution of fault-slip data available for the area of the Oslo Graben provides an excellent base for a graben-wide study of the associated evolution of paleostress fields. A great portion of the locally derived stress states is remarkably consistent across the entire study area. These consistencies between individual stress states give notice of three regionally acting stress fields: a compressional, a tensional, and a strike-slip stress field. These stress configurations differ remarkably from the paleostress fields reconstructed for the southern margin of the CEBS (Chapter 4), concerning both associated kinematics and supposed timing. The use of the principles of paleostress stratigraphy to constrain the timing of stress fields is largely inhibited in the Oslo Graben area by the occurrence of consistent stress states in rocks of different ages and by the lack of any rocks younger than Permian. The few chronological indicators preserved in the field argue for tensional stress states to be older than oblique stress states which, in turn, seem to be older than strike-slip stress states. Another extraordinary aspect characterising the Oslo Graben area is the abundance of oblique paleostress states.

5.3.1 Chronology

Caledonian compressional stress field

The signs of the compressional regional Stress field X with a NW-SE-directed maximum compression are rare and restricted to rocks of Pre-Permian ages. As illustrated, the related kinematics complies with the folding of Cambro-Silurian sediments possibly identifying the respective regional strain as a Caledonian imprint. This correlation corresponds well with the results of Heeremans et al. (1996) who interpret a compressional stress field to have governed the respective Ordovician-Late Silurian phase of deformation. In any case, a minimum age for this stress field seems to be provided by the lack of associated fault-slip data within the Permo-Carboniferous volcanic and plutonic rocks (\geq 300±1 Ma).

Permo-Carboniferous stress fields

The tensional Stress field Y deduced from the numerous tensional stress states is characterised by a weakly pronounced horizontal WNW-ESE-directed minimum compression (σ_3) and a low stress ratio. A correlation with the supposed kinematics of the rift-flanking master faults of the Oslo Graben facilitates assigning this regional stress field to the Permo-Carboniferous phase of rifting. The estimated direction of σ_3 fits also with other rift-related NNW-SSE- to N-S-trending tensile structures such as open fractures and dykes (Ramberg et al., 1977). Normal movements along roughly N-S-trending faults are supposed to have started in the area during the initial phase of rifting (*rift stage 2*; ~300Ma; Neumann et al., 1992). The associated stress conditions are likely to have prevailed throughout the climax stage of rifting (*rift stage 3*) as indicated by the timing of the most extensive vertical movements along the graben-flanking master faults (Heeremans & Faleide, 2004) as well as by rhomb porphyry lavas and alkaline basalts that are described to have erupted mainly along NNW-SSE-trending fissures (Ramberg & Larsen, 1978).

The tensional character of paleostress fields that controlled the CEBS during Permo-Carboniferous times is confirmed by other paleostress studies: two different Permo-Carboniferous tensional stress fields with a NW-SE-directed σ_3 and a NE-SW-directed σ_3 , respectively, are deduced from fault-slip data exposed in Scania (southern Sweden) which is part of the Sorgenfrei-Tornquist Zone (Bergerat et al., 2007). Furthermore, a group of normal faults offsetting Permian *Rotliegend* sediments in the Northwest German Basin have been reconstructed from seismic data and related to a Permian tensional stress state with an ENE-WSW-directed σ_3 (Lohr, 2007).

More than one third of the fault-slip data from the Oslo Graben area documents the occurrence of oblique paleostress states which tend to be younger than tensional stress states. It has successfully been proved for specific sites that there is no relationship between the obliquity of principal axes and the Caledonian folding of Cambro-Silurian sediments. The occurrence of oblique stress related fault-slip data in Permian rocks provides a maximum age for at least part of these atypical stress configurations. Moreover, the mean directions of principal axes with σ_1 being sub-vertical, σ_2 striking N-S, and σ_3 striking E-W resemble those of the tensional stress field. This opens the possibility that the oblique stress states have also been related to the Permo-Carboniferous phase of rifting.

Post-rift stress fields

The regional strike-slip Stress field Z detected in the Oslo Graben area is characterised by a horizontal NNW-SSE-trending maximum compression (σ_1) and a low mean of stress ratios. The maximum age for this regional stress field is provided by the youngest Permian magmatites that have preserved respective fault-slip data, such as the Drammen granite (267±4; Sundvoll & Larsen, 1990). The sparse direct information on the relative timing of strike-slip stress states indicates that strike-slip faulting has taken place after the tensional and oblique stress states had been active. Consequently, the strike-slip stress field might be representative for a late stage of rifting or a post-rift phase. Interestingly, the present-day stress pattern in the Oslo Graben area is characterised by similar directions of maximum compression ranging between NNW-SSE and WNW-ESE while the associated modes of deformation are various (reverse, strike-slip, and normal; Heidbach et al., 2008).

The occurrence of strike-slip stress states in Permian rocks, however, does not exclude the possibility that earlier strike-slip faulting had taken place, for instance, in Late Variscan times as proposed by Heeremans et al. (1996). Indeed, other paleostress studies based on fault-slip data have provided agreeing directions of roughly NNW-directed maximum compression for Variscan times, such as reported for areas in southern England, northern France and Belgium (Vandycke, 1997) or southeastern Poland (Lamarche et al., 2002). The ages of investigated rocks in the Oslo Graben area, however, only support the interpretation that at least the latest phase of strike-slip faulting has taken place after the emplacement of rocks like the Drammen granite which has been dated to the climax stage of rifting.

5.3.2 Mechanisms

Permo-Carboniferous phase of (active?) rifting

The estimated Permo-Carboniferous tensional Stress field Y is based on tensional stress states that show a large variety of horizontal σ_3 -directions and predominantly low stress ratios. Interestingly, the mean stress ratios are R=0.34 for Precambrian rocks, R=0.20 for Cambro-Silurian rocks and R=0.15 for Permian rocks. These differences might reflect a development from a pure tensional type of stress before the emplacement of the Permian magmatites to radial extension thereafter as proposed by Heeremans et al. (1996). However, it is not evident from field observations that the diversity of extensional directions or the slight differences in stress ratios reflect a succession of different tensional stress fields. Moreover, the preponderance of low stress ratios indicates that the magnitudes of σ_2 and σ_3 are almost equal and perhaps mutually exchangeable from site to site. For these reasons, only one regional stress field has been inferred from the total number of locally derived tensional stress states. The estimated direction of extension (σ_3) is confirmed by the proposed graben-wide kinematics during the phase of rifting. The associated low stress ratio might, in turn, be related to the intensive magmatic activity during the Permo-Carboniferous phase of rifting. The emplacement and eruption of large volumes of magmatic material is suggested to have been accompanied by regional uplift (Heeremans et al., 1996). Such a thermally driven doming could have added a significant component of differential stress to the regional vertical stress axis (σ_1) while reducing indirectly the relative difference between the magnitudes of σ_2 and σ_3 which, in turn, would reduce the stress ratio ("radial extension"). Consequently, the low stress ratio that characterises the rift-related regional stress field might be an indicator for active rifting. However, there is strong evidence against plume activity including the lack of an age-progressive volcanic track, pre-magmatic subsidence instead of uplift (deposition of Asker Group sediments), low to moderate ³He/⁴He values, the absence of a large igneous province, and normal or only slightly elevated mantle temperatures (Heeremans, 2005). Furthermore, the clear predominance of N-S-trending extensional structures in the area argues for a far field tensional stress field which would correspond to passive rifting. A possible scenario might comprise early passive rifting that later triggered active asthenospheric upwelling (Heeremans et al., 1996).

Oblique stress states

A very special outcome of the fault-slip analysis in the Oslo Graben area concerns the large number of oblique stress states. Integrating all available information on these atypical stress configurations which obviously postdated the tensional stress field, the question arises concerning the mechanism(s) that could be regarded responsible for the apparent failure of Andersonian principles.

Similar to folding or tilting of rock masses, the rotation of individual fault-bounded blocks can retroactively change the orientations of fault-slip data. This rotation, of course, would result in altered orientations of associated principal axes. In fact, there is evidence for intensive fault block rotations in the Oslo Graben area which are supposed to have occurred during the climax stage of rifting (Neumann et al., 1992). In this context, lavas are described to locally show 10-30° dips (Oftedahl, 1952). Furthermore, the syn-rift deposits of the Brumund Formation which correspond to the *Rotliegend* deposits in the Northern Permian Basin are recorded to dip even up to 60° (Lothe et al., 1999). However, many sites in the Oslo Graben area reveal both fault-slip data related to oblique stress states and fault-slip data related to pure compressional or tensional stress states, any fault block rotation causing oblique stress axes should have equally affected the compression- and tension-related fault-slip data. However, the latter do not give evidence for a greater shift of principal axes away from the vertical or horizontal.

Excluding thus a retroactive rotation of fault-slip data as the main cause for the abundance of oblique stress states in the Oslo Graben, while assuming Andersonian stress states to be an ever holding requisite of the crust close to the Earth's surface, the applicability of fault-slip analysis to the concerning portion of oblique data must be reconsidered. There are certain situations in the crust known to suspend simple (Andersonian or Wallace-Bott-) relationships between observed brittle fault kinematics and the associated tectonic stress field. In zones of transpression or transtension, for instance, the deformation pattern is not only controlled by tectonic stress, but to a large degree imposed by the boundary conditions (Dewey et al., 1998). Such boundary conditions may be provided by large pre-existing planes of weakness within a rock mass along which transpression or transtension may occur (e.g. *Case study 8*, Chapter 4). In the Oslo Graben area, the early rift stages produced numerous roughly N-S-striking fractures and faults (e.g. Ramberg et al., 1977). Slip along pre-existing planes of weakness usually requires less energy than stress release by the formation of new faults. Assuming a tensional stress field with a σ_3 not striking perpendicular to the main trend of the N-S-striking

planes, these pre-existing discontinuities would respond by movement with a component of strike slip supplemented to the dip slip component. The abundance of the resulting obliqueslip faults thus could potentially result in the estimation of oblique (transtensional) stress states though the overall controlling stress field might have been an Andersonian one.

While non-coaxial strain patterns induced by transpression or transtension might reflect a special manifestation (and potential misinterpretation) of actual Andersonian stress states, other mechanisms are plausible candidates for indeed inducing oblique stress states. As already mentioned in the context of extension, the intensive magmatic activity in the Oslo Graben area is likely to have affected the regional stress field. A magma chamber, for example, may function as a pressurised hole surrounded by a somehow-shaped fluid-solid interface that can support no shear stresses (Suppe, 1985). A near-surface magma chamber would thus add a radial stress component to the regional stress field. By implication, the resulting directions of principal stress axes may deviate from the vertical respectively the horizontal. Furthermore, the cumulative stress states detectable would be strongly dependent on the position relative to the magma chamber. This might explain the inconsistency of oblique paleostress states in the Oslo Graben area. On the other hand, the numerous calderas described for the area (Ramber & Larsen, 1978) are indicative of rapid pressure changes within the magma sources - changes that might have further complicated the associated stress and strain patterns. Shallow magmatism, volcanism and caldera development are supposed to have generated local transient stresses that strongly altered the regional (tensional) stress fields also in other regions such as the Yucca Flat (Nevada; Minor, 1995) or the Canary Islands (Fernández et al., 2002).

Finally, oblique stress states may locally be related to stress perturbations in the vicinity of large discontinuities within a rock mass. Such perturbations have been characterised by 2D distinct-element models (Homberg et al., 1997) as well as 3D finite-element models (Maniatis, 2008), which consistently have shown that the strongest perturbations occur at the tips of such discontinuities. At these particular positions, deviations in the directions of principal axes as well as changes of the relative magnitudes of stresses are strongest. These deviations depend on the far-field stress tensor, the strike of the discontinuity relative to the far-field stress, and the coefficient of friction on the discontinuity. Accordingly, though being complexly regulated, these stress perturbations respond to definable rules. On the contrary, the reconstructed oblique stress states in the Oslo Graben area do not show any evident regularity which could be related to the pattern of faults; oblique stress states have been derived from fault-slip data far from as well as close to large discontinuities such as faults or caldera structures. However, a systematic investigation would be required to certainly exclude any relationship between the characteristics of oblique stress states and the geometry and orientation of pre-existing faults in the area.

A definite explanation for the abundance of oblique paleostress states in the Oslo Graben area thus will not be provided by the present study. These atypical stress states are a graben-wide phenomenon with various local specifications. In light of this, the diverse effects of intensive magmatism in the area seem to be the most probable solution for the occurrence of oblique stress states. While the tensional stress field can be correlated with the eruption of rhombporphyry lavas from mainly N-S-striking fissures (*rift stage 3*), the oblique stress states might be associated to the formation of central volcanoes and calderas (*rift stage 4*) or the emplacement of batholiths and granitic intrusions (*rift stages 5* and 6). However, the different suggested causes for non-Andersonian stresses might have also interacted to produce the complex fault-slip patterns that are presently observable.

Strike-slip faulting

The regional strike-slip Stress field Z with a roughly N-S-striking σ_1 is associated with the weakest constraints on any absolute timing. Most probably it postdated the Permo-Carboniferous phase of rifting.

The configuration of the strike-slip stress field is representative only for part of the whole number of estimated strike-slip stress states. The smaller part of strike-slip stress states reveals completely different σ_1 -axes trending around E-W. Since the latter are only a local phenomenon restricted mainly to the accommodation zone between the Akershus and Vestfold Graben segments, it has been desisted from deducing a regional paleostress field from these stress states. This restricted occurrence of particular stress states might reflect the frequent observation that strain within accommodation zones between rift-related graben segments may not be representative for the overall tectonic stress controlling the formation of the respective rift system (Maler, 1990; Younes & McClay, 2002). Thus, the smaller group of strike-slip stress states might be related to a compensation of movements within the opposing half grabens north and south of the accommodation zone during the Permo-Carboniferous phase of rifting.

5.4 Conclusions

The fault-slip analysis performed for the Oslo Graben area yields three regional stress fields that affected the area in the following chronological order:

- A compressional stress field with a vertical σ_3 and a NW-SE-directed maximum compression (σ_1) characterises the Caledonian imprint. The temporal status of this stress field is based on the absence of corresponding fault-slip data in rocks younger than Silurian and the consistency in kinematics between fault-slip patterns and the folding of Cambro-Silurian sediments.
- The most prominent regional stress field detected in the area is tensional in character (vertical σ_1) and characterised by a WNW-ESE-directed minimum compression (σ_3). This stress field best corresponds with the climax stage of Permo-Carboniferous rifting in the course of which main extension along the graben segmenting master faults has taken place.
- A large number of reconstructed oblique stress states cannot be integrated into a common regional stress field due to a large degree of inconsistency in terms of reduced stress tensors. Altogether, these non-Andersonian stress states reveal mean directions of principal stress axes that roughly comply with the Permo-Carboniferous tensional stress field. Most probably oblique stress states are related to the intense magmatic activity during the phase of rifting.
- The youngest stress states detected correspond to a wrench regime (vertical σ_2) with a roughly N-S-directed σ_1 and a maximum age of Permian. The absolute timing of this stress field is poorly constrained because of the lack of any exposed rocks younger than Permian. Part of the locally derived strike-slip stress states might be related to a pre-rift (Variscan) stress field that initiated rifting in the area.

Further conclusions regard the mechanisms of deformation:

- The Permo-Carboniferous tensional stress field is characterised by a low stress ratio (radial extension) which indicates that rifting might at least partly have been thermally controlled (active rifting).
- Stress states inferred from the accommodation zone between the Akerhus and Vestfold Graben segments partly deviate from the general trends of paleostress states in the rest of the area.

- Finally, in contrast to the findings from the southern margin of the CEBS, no complete Mesozoic or Cenozoic reprogramming of observable fault-slip patterns has occurred in the Oslo Graben area.

6 Synthesis

The Central European Basin System (CEBS) is known as a complex intracontinental basin system that has developed through different geodynamic phases since latest Carboniferous times. Considering the configuration and development of individual sub-basins, questions arise concerning the mechanisms that controlled their changeful history. The present study has provided some new perceptions on the evolution and effects of paleostress fields in different parts of the basin system.

Evolution of paleostress fields

After having performed a fault-slip analysis separately for the Elbe Fault System (EFS) area and the Oslo Graben area, the deduced paleostress fields can now be set in relation to the evolution of stress states in other parts of the CEBS (Fig. 70, Fig. 71). This synthesis integrates results from the southern margin of the CEBS, from more central parts of the basin system (Lohr, 2007; van Gent et al., in press), from the Sorgenfrei-Tornquist Zone (Bergerat et al., 2007), from the Teisseyre-Tornquist Zone (Lamarche et al., 2002), and from parts north of the Tornquist Zone (Oslo Graben area).

The NW-SE compressional stress field detected in the Oslo Graben area has been demonstrated to correlate with Caledonian signs of deformation. Thus, this stress field is insignificant for the development of the CEBS which was initiated not until the latest Carboniferous. The tensional stress field, however, does correlate with the *initial rift phase* that has governed the CEBS during Permo-Carboniferous times. Along with the large number of oblique stress states, this tensional stress field documents that the phase of rifting exerted the most dominant imprint in the Oslo Graben area. Tensional stress fields of corresponding ages are found along the Sorgenfrei-Tornquist Zone (Bergerat et al., 2007) and also north of the Elbe Fault System (Lohr, 2007; van Gent et al., in press). Within the Elbe Fault System area, however, there are no signs of Permo-Carboniferous tensional stress fields documented by fault-slip data, despite the presence of Permo-Carboniferous rocks.

Due to a lack of Mesozoic and Cenozoic rocks in the Oslo Graben area, the temporal role of the strike-slip stress field (with NNW-SSE-directed σ_1) is not well constrained. Considering the directions of principal axes, however, it corresponds well with a transtensional stress field that affected parts of the Sorgenfrei-Tornquist Zone during the Permian (Fig. 70; Bergerat, et al., 2007). Thus, it is possible that the Oslo Graben area has remained widely unaffected by any major tectonic activity for much of the Mesozoic and Cenozoic. Such a tectonic quiescence agrees with findings from the Skagerrak Graben of which the Mesozoic and Cenozoic cover sediments do not show any significant signs of deformation (Ro et al., 1990; Lie & Anderson, 1998). In any case, post Paleozoic deformation events have not been intense enough to overprint much of the older signs of deformation in the Oslo Graben area.

A completely different story is archived by the rocks exposed along the Elbe Fault System: the oldest signs of faulting preserved by the Permo-Carboniferous volcanics of the Flechtingen High area, for instance, are related to the *Late Cretaceous–Early Tertiary phase of inversion*. The inversion-related compressional and strike-slip stress fields with N-S- to NE-SW-directed σ_1 are the most significant imprints along the southern margin of the CEBS while other regional stress fields have been demonstrated to postdate the phase of inversion. These observations argue for an extensive "reprogramming" of observable signs of deformation along the Elbe Fault System since Late Cretaceous times. This is in contrast to the more central parts of the basin such as the Groningen Block (van Gent et al., in press) or the Allertal Fault Zone area (AFZ; Lohr, 2007) where Late Cretaceous and Tertiary deformation patterns have successfully been distinguished from Permian tensional stress fields. Likewise, at the Sorgenfrei-Tornquist Zone signs of compressional and strike-slip stress states related to the phase of inversion are found as well as signs of a Permian tensional

stress field (Bergerat et al., 2007). And finally, inversion-related strike-slip stress states have not completely overprinted the signs of Variscan compressional tectonics at the Teisseyre-Tornquist Zone (Holy Cross Mountains; Lamarche, 2002).

Figure 70: Compilation of paleostress and recent stress from different areas of the CEBS. Paleostress fields derived from fault-slip data are shown in chronological order (for locations see Fig. 71). Black parts of the symbols for recent stresses indicate the range of azimuths of directions of maximum compression (S_{Hmax}) taken from the World Stress Map (Fig. 71; Heidbach et al., 2008).

AFZ – Allertal Fault Zone; HCM – Holy Cross Mountains; STZ – Sorgenfrei-Tornquist Zone; TTZ – Teisseyre-Tornquist Zone

Figure 71: Present-day directions of maximum horizontal stress (S_{Hmax}) in North Central Europe (modified after Heidbach et al., 2008). Areas for which a fault-slip analysis has been performed are indicated (AFZ – Allertal Fault Zone area; EFS – Elbe Fault System area; HCM – Holy Cross Mountains).

The role of zones of crustal weakness

Though it is possible to trace large-scale deformation patterns and related regional stress fields across much of the CEBS, the results of this paleostress study argue for a recurrence of localised deformation. The *Late Cretaceous - Early Tertiary phase of inversion* has most strongly affected the area of the Elbe Fault System. The localised reprogramming of observable strain along this pre-existing fault system correlates with a stress-sensitive zone in the lower crust which has been described to have repeatedly supported strain localisation since Late Carboniferous times (Scheck et al., 2002a).

Likewise, the different segments of the Tornquist Zone show signs of intense inversion (Berthelsen, 1992). Both the Tornquist Zone and the Elbe Fault System reveal a prominent

WNW-ESE-trend. On the contrary, the sedimentary fill of the N-S-trending Glücksstadt Graben does not document any inversion-related signs of deformation (Maystrenko et al., 2005). Similarly, the Groningen Block - also bounded by roughly N-S striking faults – reveals fault patterns that document Late Cretaceous extension while the inversion is only manifest as uplift of this rigid block as a whole (van Gent et al., in press). Accordingly, the lack of any signs of inversion which is certain for the Skagerrak Graben and probable also for the Oslo Graben might be a result of the NNE-orientation of these structural domains which is parallel to the NNE-direction of maximum compression during the CEBS-wide inversion.

An alternative explanation for the inversion not to have affected the Oslo Graben area could be given by the Tornquist Zone which is supposed to largely correspond with the boundary between the stable Baltic Shield and the rheologically weaker accreted parts of Phanerozoic Europe. This rheological contrast is primarily explained by a deeper lithosphereasthenosphere boundary and a deeper Moho beneath the Baltic Shield with respect to domains to the southwest (Gregersen et al., 2002; Ziegler & Dèzes, 2006). Accordingly, the Sorgenfrei-Tornquist Zone has been described as a weak crustal lineament which has been acting as a "buffer zone" whenever changes in the regional stress field have occurred (Mogensen, 1994, 1995). During the Mid Jurassic, for example, strain localisation along this zone has led to a decoupling of the Skagerrak Graben from extensional tectonics occurring along the Sorgenfrei-Tornquist Zone (Ro et al., 1990). In a similar way, stresses related to the Late Cretaceous - Early Tertiary inversion might have been released along the Tornquist Zone which thus protected areas to the north as the Skagerrak Graben and the Oslo Graben. Respective indications for the Tornquist Zone to act as a great stress barrier also come from 3D numeric modelling: These models predict the Tornquist Zone to form a region of localised deformation separating domains which are different in the style of horizontal deformation (Cacace et al., 2008). Accordingly, the special role of the Tornquist Zone emanates from the uneven distribution of sediments, crustal thickness variations, lateral depth variations in the lithosphere-asthenosphere isothermal boundary, and lateral rheological heterogeneities observed along this zone.

Paleostress and recent stress patterns

The present-day stress pattern in North Central Europe is characterised by a predominant NNW-SSE-direction of maximum horizontal stress (S_{Hmax} ; Fig. 71). Though the predominance of this trend reflects some homogeneity of stresses in the area, there is a great variation in the local directions of S_{Hmax} when considering the total number of available data for a single subarea (upper row in Fig. 70). These local perturbations of stresses are supposed to be related, for instance, to rheological contrasts, salt movements, or the ongoing isostatic response to deglaciation (Roth & Fleckenstein, 2001; Kaiser et al., 2005; Cacace et al., 2008). Furthermore, differences in the patterns of S_{Hmax} between subsaline and suprasaline formations of the North German Basin argue for a decoupling of the regional stress field due to the *Zechstein* salt layer while only the stress states in the subsaline formations have been shown to represent the regional stress field (Roth & Fleckenstein, 2001).

Given all these complexities characterising the present-day stress pattern in North Central Europe, it is surprising how consistent the reconstructed paleostress states from different locations in the CEBS are. These consistencies are all the more remarkable as the signs of deformation underlying paleostress states are supposed to partly date back to hundreds of millions of years, while data bases for present-day stresses span not more than about the last hundred years. Moreover, many of the paleostress states from the southern margin of the CEBS have been derived from suprasaline formations and still could well be correlated with stress states elsewhere.

An explanation for the relatively small variations among reconstructed paleostresses might be given by the type of interpreted stress indicators. Crystal fibres are the most frequently used

paleostress indicators. Their growth requires a certain duration and continuity of movement along a fault plane which is best given under a constant stress field. In contrast, earthquakes, borehole breakouts, or artificially induced fractures which are widely used as indicators for recent stresses might occasionally represent short-lived responses to more locally restricted changes or modifications of the regional stress field.

Paleostress inversion – potentials and limitations

For reconstructing paleostress states, the present study makes use of an approach the principles of which can be traced back to the studies of Anderson (1942) and Wallace (1951) while its practical applicability has been improved gradually with the ever-growing capacities of computers since the 1970s: the technique of fault-slip analysis.

After having performed first field campaigns in the CEBS, it soon became obvious that a technique would be required which allows extracting paleostress states from heterogeneous or mixed sets of fault-slip data. To analyse this kind of data sets which mostly result from polyphase deformation the Stress Inversion Via Simulation (SVS) has been developed.

SVS is a stepwise technique that integrates different approaches towards fault-slip analysis and stress inversion. The PBT-Method (PBT; Sperner et al., 1993) incorporated in SVS corresponds to a graphical construction of strain axes for a single fault-slip datum according to Mohr-Coulomb principles of fracturing. PBT allows a fast and straightforward separation of fault-slip data according to consistencies in fault kinematics. It has been demonstrated that for sets of fault-slip data prominent trends of kinematic PBT-axes are preliminary indicators for the potential trends of associated stress axes. Thus, the orientation of clusters of PBT-axes might directly identify sets of fault-slip data as being related to non-Andersonian stress states. Such data sets, in turn, might document that folding or tilting of the respective rock mass has postdated faulting and back-tilting is required before stress inversion.

While PBT essentially constructs strain axes, the Multiple Inverse Method (MIM; Yamaji, 2000) relates fault kinematics to states of stress by following the Wallace-Bott hypothesis. Despite fundamental differences in the approaches of PBT and MIM, the orientations of kinematic and stress axes frequently reveal consistencies that provide significant constraints for determining the best-fitting stress tensor for a set of fault-slip data. Starting from these consistent results, a forward modelling procedure – the simulation – is performed which finally allows estimating the parameters of the best-fitting reduced stress tensor. Such an interactive stress simulation provides direct visual control on the misfit angle distribution of a set of fault-slip data while testing different stress states. Thus, one main advantage of SVS is that it does not work as a "black-box". Another benefit concerns the quality of results: Stress states estimated according to SVS best fit the associated fault-slip data in terms of both misfit angles and shear-to-normal-stress ratios.

SVS has successfully been applied to fault-slip data from different subareas of the CEBS. The reliability of estimated stress states is confirmed by the fact that irrespective of (i) the number of fault-slip data from an outcrop, (ii) the number of subsets they represent and (iii) the proportion of newly formed and reactivated faults, very consistent reduced stress tensors are obtained from different outcrops within variously aged rocks. Such significant consistencies in the results have been demonstrated to allow regional correlations of locally estimated paleostress states.

The principles of paleostress stratigraphy are among the most reliable tools for estimating the relative timing of regional stress fields. Accordingly, a group of consistent paleostress states reconstructed exclusively from pre-Permian rocks in the Oslo Graben area has been demonstrated to date back to pre-Permian times due to correlations with Caledonian signs of deformation. Conclusions on the timing of other paleostress fields in this area, on the contrary, are impeded by the fact that all of these stress fields are indicated by faults in

Permian rocks while rocks younger than Permian are not exposed. In the area of the Elbe Fault System temporal constraints are similarly limited: Despite a great variety of investigated rock ages (from Late Carboniferous to Late Cretaceous), the regional stress fields are consistently derived from fault patterns in rocks of all ages. Thus, stratigraphic ages in the Elbe Fault System only argue for the regional stress fields to consistently be (post-) Late Cretaceous in age.

Alternative constraints on the relative timing of stress states are locally derived directly from field observations. Despite the diversity of stress states reconstructed at many sites, the number of chronological indicators on the relative timing of fault-slip data is remarkably low. Complementary constraints have been found at sites where phases of faulting have alternated with phases of folding and a reconstruction of the horizontality of bedding planes provides a deformation-time model.

After all, the relative and absolute dating of estimated paleostress states is one of the greatest problems in the CEBS. Available chronological constraints such as those derived from field observations have been considered, but most of the temporal arrangements of stress fields are based on correlations with the developments of large-scale deformation patterns which are well-established in both the Elbe Fault System and the Oslo Graben area.

Outlook

Up to the present, fault-slip analysis according to the strategy of SVS requires operating with several different software packages and tools. These programmes, in turn, operate based on different data formats. Moreover, the simulation tool allows interactively checking only the misfit angle distribution of fault-slip data, but not the shear-to-normal-stress ratios which have to be calculated separately. For these reasons, continuative work should aim on integrating all aspects of SVS into one software package.

Some potential solutions for the problem of absolute dating of paleostress states might be provided by the techniques of isotope geochemistry. The geochemical properties of minerals grown along a fault plane during movement of the fault (such as crystal fibres) may reflect the absolute date of mineral growth or indicate pressure and temperature conditions during precipitation. For calcite which is the most frequently observed fault-related mineral in the study areas, the scarcity of radiogenic elements impedes radiometric dating, but the abundance of the stable isotopes $^{\delta 13}$ C and $^{\delta 18}$ O may provide the possibility to find out more about p-T conditions during faulting. Theoretically, these conditions could then be related to stages in the subsidence and uplift history of the rocks.

Final conclusion

The Stress Inversion Via Simulation provides an adequate strategy for fault-slip analysis and paleostress inversion in a complex system of sedimentary basins. However, the strategy should be complemented by techniques that aim on determining the absolute age of faulting events to better constrain the ages of related paleostress states. The present study provides insight into the evolution of paleostress fields for the areas of the Elbe Fault System in the south and the Oslo Graben in the north. As a major zone of crustal weakness, the Elbe Fault System has experienced an almost complete reprogramming of observable strain since Late Cretaceous times. The Oslo Graben area, on the contrary, has widely been unaffected by major tectonic activity since Permian times, which is possibly due to localised deformation along the Tornquist Zone that acted as a stress barrier. Consequently, a temporal correlation of paleostresses fields affecting the entire Central European Basin System are very limited.

7 References

Anderson, E.M., 1942. The Dynamics of Faulting, Olivier and Boyd, Edinburgh, 266 pp.

- Angelier, J., 1979. Determination of the mean principal directions of stresses for a given fault population. Tectonophysics, 56(3-4): T17-T26.
- Angelier, J. and Goguel, J., 1979. Sur une méthode simple de détermination des axes principaux des contraintes pour une population de failles. Les Comptes Rendus de l'Académie des Sciences, Paris, 288: 307-310.
- Angelier, J., 1984. Tectonic analysis of fault slip data sets, Special section; Fault behavior and the earthquake generation process. American Geophysical Union, Washington, DC, United States, pp. 5835-5848.
- Angelier, J., 1989. From orientation to magnitudes in paleostress determinations using fault slip data. Journal of structural geology, 11(1/2): 37-50.
- Angelier, J., 1990. Inversion of field data in fault tectonics to obtain the regional stress; Part 3, A new rapid direct inversion method by analytical means. Geophysical Journal International, 103(2): 363-376.
- Angelier, J., 1994. Fault slip analysis and palaeostress reconstruction. In: P.L. Hancock (Editor), Continental deformation. Pergamon Press, Oxford, pp. 53-101.
- Angelier, J., Bergerat, F., Stefansson, R. and Bellou, M., 2008. Seismotectonics of a newly formed transform zone near a hotspot: Earthquake mechanisms and regional stress in the South Iceland Seismic Zone. Tectonophysics, 447: 95-116.
- Apperson, K.D. and Frohlich, C., 1988. Sums of moment tensors for earthquakes near subduction zones. EOS, Transactions of the American Geophysical Union, 69: 1438.
- Arthaud, F. and Matte, P., 1977. Late Paleozoic strike-slip faulting in southern Europe and northern Africa: Result of a right-lateral shear zone between the Appalachians and the Urals. Geological Society of America Bulletin, 88: 1305-1320.
- Babuska, V. and Plomerova, J., 2004. The Sorgenfrei-Tornquist Zone as the mantle edge of Baltica lithosphere: new evidence from three-dimensional seismic anisotropy. Terra Nova, 16: 243-249.
- Bachmann, G.H. and Hoffmann, N., 1997. Development of the Rotliegend Basin in Northern Germany. Geologisches Jahrbuch, D103: 9-31.
- Badley, M.E., Price, J.D. and Backshall, L.C., 1993. Inversion, reactivated faults and related structures: seismic examples from the southern North Sea. In: M.A. Cooper and G.D. Williams (Editors), Inversion Tectonics. Geological Society of London, Special Publications, London, pp. 201-217.
- Baldschuhn, R. et al., 1996. Subcrop Map of Formations beneath Tertiary or Quarternary. In:R. Baldschuhn and F. Kockel (Editors), Tectonic Atlas of NW-Germany part 2. Federal Institute for Geosciences and Natural Resources, Hannover.
- Baldschuhn, R., Binot, F., Fleig, S. and Kockel, F., 2001. Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor. Geologisches Jahrbuch, 153(A): 3-95.
- Benek, R. et al., 1996. Permo-Carboniferous magmatism of the Northeast German Basin. Tectonophysics, 266: 379-404.
- Bergerat, F., 1987. Stress fields in the European Platform at the time of Africa-Eurasia collision. Tectonics, 6(2): 99-132.
- Bergerat, F., Angelier, J. and Andreasson, P.-G., 2007. Evolution of paleostress fields and brittle deformation of the Tornquist Zone in Scania (Sweden) during Permo-Mesozoic and Cenozoic times. Tectonophysics, 444: 93-110.

- Berthelsen, A., 1980. Towards a palinspastic tectonic analysis of the Baltic Shield. In: J. Cogné and M. Slansky (Editors), Geology of Europe from Precambrian to the post-Hercynian sedimentary basins (Proceedings of the 26th International Geological Congress). Memoirs of the Bureau de Recherches Géologique et Miniéres, Paris, pp. 5-21.
- Berthelsen, A., 1992. From Precambrian to Variscan Europe. In: D. Blundell, R. Freeman and S. Mueller (Editors), A continent revealed. The European Geotraverse. Cambridge University Press, Cambridge, pp. 153-163.
- Betz, D., Fuehrer, F., Greiner, G. and Plein, E., 1987. Evolution of the Lower Saxony Basin, Compressional intra-plate deformations in the Alpine Foreland. Elsevier, Amsterdam, Netherlands, pp. 127-170.
- Bingham, C., 1964. Distributions on a sphere and the projective plane. Dissertation Thesis, Yale University, New Haven, 93 pp.
- Bishop, A., 1966. The strength of solids as engineering materials. Geotechnique, 16: 91-130.
- Bjørlykke, K., 1983. Subsidence and tectonics in Late Precambrian and Paleozoic sedimentary basins of southern Norway. Norges Geologisk Undersökelse, 380: 159-172.
- Bockelie, J.F. and Nystuen, J.P., 1985. The southeastern part of the Scandinavian Caledonides. In: D.G. Gee and B.A. Sturt (Editors), The Caledonide Orogen Scandinavia and Related Areas. John Wiley, New York, pp. 69-88.
- Bott, M.H.P., 1959. The mechanics of oblique slip faulting. Geological Magazine, 96(2): 109-117.
- Breitkreuz, C. and Kennedy, A., 1999. Magmatic flare-up at the Carboniferous-Permian boundary in the NE German Basin revealed by SHRIMP zircon ages. Tectonophysics, 302: 307-326.
- Buchanan, P.G., Bishop, D.J. and Hood, D.N., 1996. Development of salt related structures in the Central North Sea: results from section balancing. In: G.I. Alsop and I. Davison (Editors), Salt tectonics. Geological Society of London, Special Publications, London, pp. 111-128.
- Byerlee, J.D., 1968. Brittle-ductile transition in rocks. Journal of Geophysical Research, 73(B14): 4741-4750.
- Cacace, M., Bayer, U. and Marotta, A.M., 2008. Strain localization due to structural inhomogeneities in the Central European Basin System. International Journal of Earth Sciences, 97: 899-913.
- Capote, R., Munoz, J.A., Simón, J.L., Liesa, C.-L. and Arlegui, L.E., 2002. Alpine tectonics I: the Alpine system north of the Betic Cordillera. In: W. Gibbons and T. Moreno (Editors), Geology of Spain. The Geological Society of London, London, pp. 319-338.
- Carey, E. and Brunier, B., 1974. Analyse theorique et numerique d'un modele mecanique elementaire applique a l'etude d'une population de failles. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, Serie D: Sciences Naturelles, 279(11): 891-894.
- Carlé, W., 1938. Die saxonische Tektonik westlich und nordwestlich des Harzes (Gittelder Graben und Lutterer Sattel). Geotektonische Forschungen, 3: 33-72.
- Célérier, B., 1988. How much does slip on a reactivated fault plane constrain the stress tensor? Tectonics, 7(6): 1257-1278.
- Clausen, O.R. and Pedersen, P.K., 1999. Late Triassic structural evolution of the southern margin of the Ringkobing-Fyn High, Denmark. Marine and Petroleum Geology, 16(7): 653-665.
- Corfu, F. and Dahlgren, S., 2007. Pervoskite U-Pb ages and the Pb isotopic composition of alkaline volcanism initiating the Permo-Carboniferous Oslo Rift. Earth and Planetary Science Letters, 265: 256-269.

- Coulomb, C.A., 1776. Essai sur une application des règles des maximis et minimis à quelques problemes de statique relatifs à l'architecture. Mémoires Academie Royale Présentes Par Divers Savants, 7: 343-382.
- Coward, M.P., Dewey, J., Hempton, M. and Holroyd, J., 2003. Tectonic evolution. In: D. Evans, C. Graham, A. Armour and P. Brathust (Editors), The Millenium Atlas: Petroleum Geology of the Central and Northern North Sea. Geological Society of London, London, pp. 2.1-2.17.
- Dadlez, R., Narkiewicz, M., Stephenson, R.A., Visser, M.T.M. and Wees, J.-D.v., 1995. Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. Tectonophysics, 252: 179-195.
- Dadlez, R., Marek, S. and Pokorski, J., 1998. Palaeogeographic Atlas of Epicontinental Permian and Mesozoic in Poland (1:2 500 000). Polish Geological Institute, Warszawa.
- Dadlez, R., Marek, S. and Pokorski, J., 2000. Geological Map of Poland without Cainozoic deposits 1:1 000 000. Polish Geological Institute, Warsaw.
- Decourt, J. et al., 2000. Atlas Peri-Tethys. Commission de la Carte Géologique du Monde, Paris.
- DeLugt, I.R., VanWees, J.D. and Wong, T.E., 2003. The tectonic evolution of the southern Dutch North Sea during the Paleogene: basin inversion in distinct pulses. Tectonophysics, 373(1-4): 141-159.
- Dewey, J.F., Holdsworth, R.E. and Strachan, R.A., 1998. Transpression and transtension zones. In: R.E. Holdsworth, R.A. Strachan and J.F. Dewey (Editors), Continental Transpressional and Trantensional Tectonics. Geological Society, London, Special Publications, London, pp. 1-14.
- Doblas, M., 1998. Slickenside kinematic indicators, Rock deformation; the Logan volume. Elsevier, Amsterdam, Netherlands, pp. 187-197.
- Drozdzewski, G., 1988. Die Wurzel der Osning-Überschiebung und der Mechanismus herzynischer Inversionsstörungen in Mitteleuropa. Geologische Rundschau, 77(1): 127-141.
- Dupin, J.-M., Sassi, W. and Angelier, J., 1993. Homogeneous stress hypothesis and actual fault slip: a distinct element analysis. Journal of Structural Geology, 15(8): 1033-1043.
- Erlström, M., Thomas, S.A., Deeks, N. and Sivheda, U., 1997. Structure and tectonic evolution of the Tornquist Zone and adjacent sedimentary basins in Scania and the southern Baltic Sea area. Tectonophysics, 271(3-4): 191-251.
- Etchecopar, A., Vasseur, G. and Daignieres, M., 1981. An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis. Journal of Structural Geology, 3(1): 51-65.
- EUGENO-SWorkingGroup, 1988. Crustal structure and tectonic evolution of the transition between the Baltic Shield and the North German Caledonides. Tectonophysics, 150: 253-348.
- Evans, D., Graham, C., Armour, A., Bathurst, P. and compilers), e.a., 2003. The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea. Geological Society of London, London, Bath, 389 pp.
- Fernández, C., de la Nuez, J., Casillas, R. and García Navarro, E., 2002. Stress fields associated with the growth of a large shield volcano (La Palma, Canary Islands). Tectonics, 21(4): pp.18.
- Fiedler, K., 1984. Tektonik (Baugeschichte). In: H. Klassen (Editor), Geologie des Osnabrücker Berglandes. Naturwissenschaftliches Museum Osnabrück, Osnabrück, pp. 519-565.
- Fleuty, M.J., 1974. Slickensides and slickenlines. Geological Magazine, 112(3): 319-322.
- Franzke, H.J., Voigt, T., Eynatten, H.v., Brix, M.R. and Burmeister, G., 2004. Geometrie und Kinematik der Harznordrandstörung, erläutert an Profilen aus dem Gebiet von Blankenburg. Geologische Mitteilungen von Thüringen, 11: 39-63.
- Franzke, H.J., Müller, R., Voigt, T. and Eynatten, H.v., 2007. Paleo-Stress Paths in the Harz Mountains and surrounding areas (Germany) between the Triassic and the Upper Cretaceous. Zeitschrift für geologische Wissenschaften, Berlin, 35(3): 141-156.
- Frohlich, C., 1992. Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms. Physics of the Earth and Planetary Interiors, 75: 193-198.
- Gephart, J.W. and Forsyth, D.W., 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data; application to the San Fernando earthquake sequence. Journal of Geophysical Research. B 89(11): 9305-9320.
- Gephart, J.W., 1990. Stress and the direction of slip on fault planes. Tectonics, 9(4): 845-858.
- Giner-Robles, J.L., Gonzáles-Casado, J.M., Gumiel, P. and García-Cuevas, C., 2003. Changes in stress trajectories in three different types of plate tectonic boundary deduced from earthquake focal mechanisms. Tectonophysics, 372: 179-191.
- Glennie, K.W., 1984. The structural framework and the Pre-Permian history of the North Sea. In: K.W. Glennie (Editor), Introduction to the Petroleum Geology of the North Sea. Blackwell Scientific Publication, pp. 17-60.
- Goes, S., Loohuis, J.J.P., Wortel, M.J.R. and Govers, R., 2000. The effect of plate stresses and shallow mantle temperature on tectonics of northwestern Europe. Global and Planetary Change, 27: 23-38.
- Golonka, J., 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 381: 235-273.
- Gölke, M. and Coblentz, D., 1996. Origins of the European regional stress field. Tectonophysics, 266: 11-24.
- Gregersen, S., 1992. Crustal stress regime in Fennoscandia from focal mechanisms. Journal of Geophysical Research, 97(B8): 11821-11827.
- Gregersen, S., Voss, P., Shomali, Z.H. and Group, T.W., 2002. Summary of Project T: delineation of a stepwise, sharp, deep lithosphere transition across Germany-Denmark-Sweden. Tectonophysics, 360: 61-73.
- Grünthal, G. and Stromeyer, D., 1992. The recent crustal stress field in Central Europe: trajectories and finite element modeling. Journal of Geophysical Research Solid Earth, 97(B8): 11805-11820.
- Hancock, P.L., 1985. Brittle microtectonics: principles and practice. Journal of Structural Geology, 7(3/4): 437-457.
- Hancock, P.L. and Barka, A.A., 1987. Kinematic indicators on active normal faults in western Turkey. Journal of Structural Geology, 9(5-6): 573-584.
- Hansen, D.L., Nielsen, S.B. and Lykke, A.H., 2000. The post-Triassic evolution of the Sorgenfrei-Tornquist Zone; results from thermo-mechanical modelling. Tectonophysics, 328(3-4): 245-267.
- Hansen, D.L., Blundell, D.J. and Nielsen, S.B., 2002. A model for the evolution of the Weald Basin. Bulletin of the Geological Soceity of Denmark, 49: 109-118.
- Hansen, D.L. and Nielsen, S.B., 2003. Why rifts invert in compression. Tectonophysics, 373(1-4): 5-24.
- Hecht, C.A., Lempp, C. and Scheck, M., 2003. Geomechanical model for the post-Variscan evolution of the Permocarboniferous-Mesozoic basins in Northeast Germany. Tectonophysics, 373(1-4): 125-139.
- Heeremans, M., Larsen, B.T. and Stel, H., 1996. Paleostress reconstruction from kinematic indicators in the Oslo Graben, southern Norway: new constraints on the mode of rifting. Tectonophysics, 266(1-4): 55-79.

- Heeremans, M. and Faleide, J.I., 2004. Late Carboniferous-Permian tectonics and magmatic activity in the Skagerrak, Kattegat and the North Sea. In: M. Wilson et al. (Editors), Permo-Carboniferous Magmatism and Rifting in Europe. Geological Society Special Publication, London, pp. 157-176.
- Heeremans, M., 2005. A plume beneath the Oslo Graben?
- Heidbach, O. et al., 2008. The 2008 release of the World Stress Map (available online at www.world-stress-map.org).
- Hejl, E., Coyle, D., Lal, N., Haute, P.v.d. and Wagner, G.A., 1997. Fission-track dating of the western border of the Bohemian massif: thermochronology and tectonic implications. International Journal of Earth Sciences (Geologische Rundschau), 86: 210-219.
- Hinzen, K.-G., 2003. Stress field in the Northern Rhine area, Central Europe, from earthquake fault plane solutions. Tectonophysics, 377: 325-356.
- Hoeppener, R., 1955. Tektonik im Schiefergebirge; Eine Einführung. Geologische Rundschau.
- Homberg, C., Hu, J.C., Angelier, J., Bergerat, F. and Lacombe, O., 1997. Characterization of stress perturbations near major fault zones: insights from 2-D distinct-element numerical modelling and field studies (Jura mountains). Journal of Structural Geology, 19(5): 703-718.
- Homberg, C., Bergerat, F., Philippe, Y., Lacombe, O. and Angelier, J., 2002. Structural inheritance and Cenozoic stress fields in the Jura fold-and-thrust belt (France). Tectonophysics, 357: 137-158.
- Hosseinidust, S.D., 1980. Klüfte und Stylolithen am nordwestlichen Harzrand und im Lutterer Sattel in ihrer Bedeutung für die tektonische Auflösung dieses Gebietes. Clausthaler Geologische Abhandlungen, 36, Clausthal-Zellerfeld, 61 pp.
- Hu, J.-C. and Angelier, J., 2004. Stress permutations: Three-dimensional distinct element analysis accounts for a common phenomenon in brittle tectonics. Journal of Geophysical Research, 109(B09403): 1-20.
- Huang, Q., 1988. Computer-based method to separate heterogeneous sets of fault-slip data into sub-sets. Journal of Structural Geology, 10(3): 297-299.
- Hubbert, M.K., 1951. Mechanical basis for certain familiar geological structures. Geological Society American Bulletin, 62(4): 355-372.
- Hudec, M.R. and Jackson, M.P.A., 2007. Terra infirma: Understanding salt tectonics. Earth-Science Reviews, 82: 1-28.
- Jaeger, J.C. and Cook, N.G.W., 1979. Fundamentals of rock mechanics. Chapman & Hall, London, 593 pp.
- Jaritz, W., 1987. The origin and development of salt structures in Northwest Germany. In: I. Lerche and J.J. O'Brien (Editors), Dynamical geology of salt and related structures. Academic Press, Orlando, pp. 479-493.
- Kaiser, A., Reicherter, K., Hubscher, C. and Gajewski, D., 2005. Variation of the present-day stress field within the North German Basin Insights from thin shell FE modeling based on residual GPS velocities. Tectonophysics, 397(1-2 SPEC. ISS.): 55-72.
- Kiersnowski, H., Paul, J., Peryt, T.M. and Smith, D.B., 1995. Facies paleogeography and sedimetary history of the Southern Permian Basin in Europe. In: P. Scholle, T.M. Peryt and D. Ulmer-Scholle (Editors), The Permian of Northern Pangea. Springer, Berlin, Heidelberg, New York, pp. 119-136.
- Klassen, H., 1984. Geologie des Osnabrücker Berglandes. Naturwissenschaftliches Museum Osnabrück, 672 pp.
- Kleinspehn, K.L., Pershing, J. and Teyssier, C., 1989. Paleostress stratigraphy: A new technique for analyzing tectonic control on sediementary-basin subsidence. Geology, 17: 253-256.

- Kley, J. and Voigt, T., 2008. Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology, 36(11): 839-842.
- Kockel, F., 2003. Inversion structures in Central Europe Expressions and reasons, an open discussion. Netherlands Journal of Geosciences / Geologie en Mijnbouw, 82(4): 367-382.
- Kossow, D., Krawczyk, C.M., McCann, T., Strecker, M. and Negendank, J.F.W., 2000. Style and evolution of salt pillows and related structures in the northern part of the Northeast German Basin. International Journal of Earth Sciences, 89(3): 652-664.
- Kossow, D., Krawczyk, C.M., McCann, T., Negendank, J. and Strecker, M., 2001. Structural development of the inverted Northeast German Basin, EUG XI, 8-12 April 2001. Journal of Conference Abstracts, Strasbourg, France, pp. LS05:SUp005:PO.
- Kossow, D. and Krawczyk, C.M., 2002. Strcture and quantification of processes controlling the evolution of the inverted NE German Basin. Marine and Petroleum Geology, 19: 601-618.
- Krzywiec, P., 2002. Mid-Polish Trough inversion seismic examples, main mechanisms and the relationship to the Alpine-Carpathian collision. EGU Stephan Mueller Special Publication Series, 1: 151-165.
- Krzywiec, P., Kramarska, R. and Zientara, P., 2003. Strike-slip tectonics within the SW Baltic Sea and its relationship to the inversion of the Mid-Polish Trough evidence from high-resolution seismic data. Tectonophysics, 373(1-4): 93-105.
- Kukla, P.A., Urai, J.L. and Mohr, M., 2008. Dynamics of salt structures. In: R. Littke, U. Bayer, D. Gajewski and S. Nelskamp (Editors), Dynamics of Complex Intracontinental Basins. The Central European Basin System. Springer.
- Lacombe, O., Mouthereau, F., Kargar, S. and Meyer, B., 2006. Late Cenozoic and modern stress field in the western Fars (Iran) : implications for the tectonic and kinematic evolution of Central Zagros. Tectonics, 25(1): TC1003, pp. 27.
- Lamarche, J. et al., 1999. Variscan tectonics in the Holy Cross Mountains (Poland) and the role of structural inheritance during Alpine tectonics., EUROPROBE GeoRift; Volume 2, Intraplate tectonics and basin dynamics of the Eastern European Craton and its margins. Elsevier, Amsterdam, Netherlands, pp. 171-186.
- Lamarche, J. et al., 2002. Variscan to Alpine heterogeneous palaeo-stress field above a major Palaeozoic suture in the Carpathian foreland (southeastern Poland). Tectonophysics, 357(1-4): 55-80.
- Lamarche, J., Scheck, M. and Lewerenz, B., 2003. Heterogeneous tectonic inversion of the Mid-Polish Trough related to crustal architecture, sedimentary patterns and structural inheritance. Tectonophysics, 373(1-4): 75-92.
- Larsen, B.T., Olaussen, S., Sundvoll, B. and Heeremans, M., 2006 (English edition 2008). Vulkaner, forkastninger, og orkenklima. In: I.B. Ramberg, I. Bryhni and A. Nottvedt (Editors), Landet blir til. Norsk Geologisk Forening, pp. 284-32.
- Larsen, B.T., Olaussen, S., Sundvoll, B. and Heeremans, M., 2008. The Permo-Carboniferous Oslo Rift through six stages and 65 million years. Episodes, 31(1): 52-58.
- Letouzy, J., 1986. Cenozoic paleo-stress pattern in the Alpine Foreland and structural interpretation in a platform basin. Tectonophysics, 132: 215-231.
- Lie, J.E. and Andersson, M., 1998. The deep-seismic image of the crustal structure of the Tornquist Zone beneath the Skagerrak Sea, northwestern Europe. Tectonophysics, 287: 139-155.
- Liesa, C.L. and Lisle, R.J., 2004. Reliability of methods to separate stress tensors from heterogeneous fault-slip data. Journal of Structural Geology, 26(3): 559-572.
- Lindholm, C.D., Bungum, H., Hicks, E. and Villagran, M., 2000. Crustal stress and tectonics in Norwegian regions determined from earthquake focal mechanisms. In: A. Nøttvedt (Editor), Dynamics of the Norwegian Margin. Geological Society of London, Special Publications, London, pp. 429-439.

- Lisle, R.J. and Vandycke, S., 1996. Separation of multiple stress events by fault striation analysis: an example from Variscan and younger structures at Ogmore, South Wales. Journal of the Geological Society, 153(6): 945-953.
- Lohr, T. et al., 2007. Strain partitioning due to salt: insights from interpretation of a 3D seismic data set in the NW German Basin. Basin Research, 19: 579-597.
- Lohr, T., 2007. Seismic and sub-seismic deformation on different scales in the NW German Basin. Dissertation Thesis, Free University, Berlin, 89 pp.
- Lokhorst, A., 1998. NW European Gas Atlas Composition and Isotope Ratios of Natural Gases. GIS application on CD by the British Geological Survey, Bundesanstalt für Geowissenschaften und Rohstoffe, Danmarks og Gronlands Geologiske Undersogelse, Nederlands Instituut voor Toegepaste Geowetenschappen, Panstwowwy Instytut Geologiczny, European Union.
- Lokhorst, A., 1998. NW European Gas Atlas Composition and Isotope Ratios of Natural Gases. GIS application on CD by the British Geological Survey, Bundesanstalt für Geowissenschaften und Rohstoffe, Danmarks og Gronlands Geologiske Undersogelse, Nederlands Instituut voor Toegepaste Geowetenschappen, Panstwowwy Instytut Geologiczny, European Union.
- Lothe, A.E. et al., 1999. Struktural and sedimentological aspects of the Early Permian Brumunddal Sandstone, northern Oslo Graben. Geonytt: 68.
- Maler, M.O., 1990. Dead Horse Graben: A West Texas accomodation zone. Tectonics, 9(6): 1357-1368.
- Maniatis, G. and Hampel, A., 2008. Along-strike variations of the slip direction on normal faults: Insights from three-dimensional finite-element models. Journal of Structural Geology, 30: 21-28.
- Mansfield, C. and Cartwright, J., 2001. Fault growth by linkage; observations and implications from analogue models. Journal of Structural Geology, 23(5): 745-763.
- Marchal, D., Guiraud, M. and Rivers, T., 2003. Geometric and morphologic evolution of normal fault planes and traces from 2D to 4D data. Journal of Structural Geology, 25(1): 135-158.
- Marrett, R. and Peacock, D.C.P., 1999. Strain and stress. Journal of Structural Geology, 21: 1057-1063.
- Mattern, F., 1996. The Elbe Zone at Dresden a Late Paleozoic pull-apart intruded shear zone. Zeitschrift der deutschen geologischen Gesellschaft, 147(1): 57-80.
- Maystrenko, Y., Bayer, U. and Scheck Wenderoth, M., 2005. The Glueckstadt Graben, a sedimentary record between the North and Baltic Sea in north Central Europe. Tectonophysics, 397(1-2 SPEC. ISS.): 113-126.
- Maystrenko, Y., Bayer, U. and Scheck-Wenderoth, M., 2006. 3D reconstruction of salt movements within the deepest post-Permian structure of the Central European Basin System the Glückstadt Graben. Netherlands Journal of Geosciences / Geologie en Mijnbouw, 85(3): 183-198.
- McLeod, A.E., Dawers, N.H. and Underhill, J.R., 2000. The propagation and linkage of normal faults; insights from the Strathspey-Brent-Stratfjord fault array, northern North Sea. Basin Research, 12(3-4): 263-284.
- Meissner, R., Sadowiakl, P. and Thomas, S.A., 1994. East Avalonia, the third partner in the Caledonian collisions: evidence from deep seismic reflection data. International Journal of Earth Sciences, 83(1): 186-196.
- Meschede, M., 1994. Methoden der Strukturgeologie. Enke, Stuttgart, 169 pp.
- Michael, A.J., 1984. Determination of Stress from Slip Data: Faults and Folds. Journal of Geophysical Research, 89: 11517-11526.

- Minor, S.A., 1995. Superposed local and regional paleostress: Fault-slip analysis of Neogene extensional faulting near coeval caldera complexes, Yucca Flat, Nevada. Journal of Geophysical Research, 100(B6): 10507-10528.
- Mogensen, T.E., 1994. Palaeozoic structural development along the Tornquist Zone, Kattegat area, Denmark. Tectonophysics, 240: 191-214.
- Mogensen, T.E., 1995. Triassic and Jurassic structural development along the Tornquist Zone, Denmark. Tectonophysics, 252: 197-220.
- Mohr, O., 1900. Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials? Zeitschrift des Vereins Deutscher Ingenieure, 44: 1524-1530, 1572-1577.
- Mohr, K., 1982. Harzvorland. Westlicher Teil. Sammlung geologischer Führer. Gebrüder Borntraeger, Berlin, Stuttgart, 142 pp.
- Mutterlose, J. and Böckel, B., 1998. The Barrêmian-Aptian interval in NW Germany: a review. Cretaceous Research, 19: 539-568.
- Nalpas, T. and Brun, J.-P., 1993. Salt flow and diapirism related to extension at crustal scale. Tectonophysics, 228: 349-362.
- Nalpas, T., Le, D.S., Brun, J.P., Unternehr, P. and Richert, J.P., 1995. Inversion of the Broad Fourteens Basin (offshore Netherlands), a small-scale model investigation. Sedimentary Geology, 95(3-4): 237-250.
- Needham, T., Yielding, G. and Freeman, R., 1996. Analysis of fault geometry and displacement patterns. In: P.G. Buchanan and D.A. Nieuwland (Editors), Modern Developments in Structural Interpretation, Validation and Modelling. Geological Society of London, Special Publications, London, pp. 189-199.
- Nemcok, M. and Lisle, R.J., 1995. A stress inversion procedure for polyphase fault/ slip data sets. Journal of Structural Geology, 17(10): 1445-1453.
- Nemcok, M., Kovac, D. and Lisle, R.J., 1999. A stress inversion procedure for polyphase calcite twin and fault/slip data sets. Journal of Structural Geology, 21: 597-611.
- Neumann, E.-R., Olsen, K.H., Baldridge, W.S. and Sundvoll, B., 1992. The Oslo Rift: a review. Tectonophysics, 208: 1-18.
- Neumann, E.-R., 1994. The Oslo Rift: P-T relations and lithospheric structure. Tectonophysics, 240: 159-172.
- Neumann, E.-R. et al., 2004. Carboniferous-Permian rifting and magmatism in southern Scandinavia, the North Sea and northern Germany. In: M. Wilson et al. (Editors), Permo-Carboniferous Magmatism and Rifting in Europe. Geological Society, Special Publications, London, pp. 11-40.
- Nielsen, S.B., Thomsen, E., Hansen, D.L. and Clausen, O.R., 2005. Plate-wide stress relaxation explains European Palaeocene basin inversions. Nature, 435: 195-198.
- Oftedahl, C., 1952. The lavas, Studies on the igneous rock complex of the Oslo Region, 12. Skrifter utgitt av Det Norske Videnskaps-Akademi 1, Oslo, pp. 64.
- Olaussen, S., Larsen, B.T. and Steel, R., 1994. The Upper Carboniferous-Permian Oslo rift; Basin fill in relation to tectonic development. In: A.F. Embry, B. Beauchamp and D.J. Glass (Editors), Pangea, Global environments and resources. Canadian Society of Petroleum Geologists Memoirs, pp. 175-198.
- Orife, T. and Lisle, R.J., 2006. Assessing the statistical significance of paleostress estimates: simulations using random fault-slips. Journal of Structural Geology, 28: 952-956.
- Otto, V., 2003. Inversion-related features along the southeastern margin of the North German Basin (Elbe fault system), Dynamics of sedimentary basin inversion; observations and modelling. Elsevier, Amsterdam, Netherlands, pp. 107-123.
- Pascal, C., Angelier, J., Seland, R.T. and Lepvrier, C., 2002. A simplified model of stress-slip relationship: application to the Frøy Field, northern North Sea. Tectonophysics, 357(1-4): 103-118.

- Petit, J.P., 1987. Criteria for the sense of movement on fault surfaces in brittle rocks. Journal of Structural Geology, 9(5/6): 597-608.
- Pfiffner, O.A., Schlunegger, F. and Buiter, S.H.J., 2002. The Swiss Alps and their peripheral foreland basin: Stratigraphic response to deep crustal processes. Tectonics, 21(2): 1009.
- Pharaoh, T.C., 1999. Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics, 314: 17-41.
- Plein, E., 1995. Norddeutsches Rotliegendbecken, Rotliegend-Monographie Teil II. In: S.K. Deutschlands (Editor), Stratigraphie von Deutschland I. Courier Forschungsinstitut Senckenberg, Frankfurt (Main), pp. 193.
- Pluijm, B.A.v.d. and Marshak, S., 2004. Earth Structure. W. W. Norton & Company, New York, London, 656 pp.
- Pollard, D.D., Saltzer, S.D. and Rubin, A.M., 1993. Stress inversion methods: are they based on faulty assumptions? Journal of Structural Geology, 15(8): 1045-1054.
- Ramberg, I.B., 1976. Gravity interpretation of the Oslo Graben and associated igneous rocks. Norsk Geologisk Tidsskrift, 325: pp. 193.
- Ramberg, I.B., Gabrielsen, R.H., Larsen, B.T. and Solli, A., 1977. Analysis of frature patterns in southern Norway. Geologie en Mijnbouw, 56: 295-310.
- Ramberg, I.B. and Larsen, B.T., 1978. Tectonomagmatic evolution. In: J.A. Dons and B.T. Larsen (Editors), The Oslo Paleorift: a Review and Guide to Excursions. Norges Geologisk Undersökelse, pp. 55-73.
- Ramsay, J.G. and Lisle, R.J., 2000. The Techniques of Modern Structural Geology, Volume 3: Applications of continuum mechanics in structural geology. Academic Press, London, pp. 701-1061.
- Rasser, M.W. et al., 2008. Paleogene and Neogene. In: T. McCann (Editor), The Geology of Central Europe. Volume 2: Mesozoic and Cenozoic. Geological Society, London, pp. 1031-1039.
- Reches, Z.e., 1987. Determination of the tectonic stress tensor from slip along faults that obey the Coulomb yield condition. Tectonics, 6(6): 849-861.
- Reicherter, K.R. and Peters, G., 2005. Neotectonic evolution of the central Betic Cordilleras (southern Spain). Tectonophysics, 405(1-4): 191-212.
- Reicherter, K., Kaiser, A. and Stackebrandt, W., 2005. The post-glacial landscape evolution of the North German Basin: Morphology, neotectonics and crustal deformation. International Journal of Earth Sciences, 94(5-6): 1083-1093.
- Reicherter, K. et al., 2008. Alpine tectonics north of the Alps. In: T. McCann (Editor), The Geology of Central Europe, Volume 2: Mesozoic and Cenozoic. Geological Society of London, London.
- Reiter, F. and Acs, P., 1996-2008. TectonicsFP A computer program for structural geology. http://www.tectonicsfp.com/.
- Remmelts, G., 1995. Fault-related salt tectonics in the southern North Sea, the Netherlands. In: M.P.A. Jackson, D.G. Roberts and S. Snelson (Editors), Salt Tectonics: A Global Perspective. American Association of Petroleum Geologists, Memoirs, pp. 261-272.
- Ro, H.E., Stuevold, L.M., Faleide, J.I. and Myhre, A.M., 1990. Skagerrak Graben the offshore continuation of the Oslo Graben. Tectonophysics, 178: 1-10.
- Ro, H.E. and Faleide, J.I., 1992. A stretching model for the Oslo Rift. Tectonophysics, 208: 19-36.
- Rohrmann, M., Beek, P.v.d., Andriessen, P. and Cloetingh, S., 1995. Meso-Cenozoic morphotectonic evolution of southern Norway: Neogene domal uplift inferred from apatite fission track thermochronology. Tectonics, 14(3): 704-718.
- Rosenbaum, G., Lister, G.S. and Duboz, C., 2002. Relative motions of Africa, Iberia, and Europe during Alpine orogeny. Tectonophysics, 359: 117-129.

- Roth, F. and Fleckenstein, P., 2001. Stress orientations found in North-East Germany differ from the West European trend. Terra Nova, 13(4): 289-296.
- Russell, M.J. and Smythe, D.K., 1983. Origin of the Oslo Graben in relation to the Hercynian-Alleghian orogeny and lithospheric rifting in the North Atlantic. Tectonophysics, 94: 457-472.
- Rüffer, T. and Zühlke, R., 1995. Sequence stratigraphy and sea-level changes in the Early and Middle Triassic of the Alps: a global comparison. In: B.U. Haq (Editor), Sequence Stratigraphy and Depositional Response to Eustatic, Tectonic, and Climatic Forcing. Kluwer, Amsterdam, pp. 161-207.
- Scheck, M. and Bayer, U., 1999. Evolution of the Northeast German Basin inferences from a 3D structural model and subsidence analysis. Tectonophysics, 313(1-2): 145-169.
- Scheck, M. et al., 2002. The Elbe fault system in North Central Europe- a basement controlled zone of crustal weakness. Tectonophysics, 360(1-4): 281-299.
- Scheck, M., Thybo, H., Lassen, A., Abramovitz, T. and Laigle, M., 2002. Basement structure in the southern North Sea, offshore Denmark, based on seismic interpretation. Geological Society Special Publication, -(201): 311-326.
- Scheck, M., Bayer, U. and Lewerenz, B., 2003. Salt movement in the Northeast German Basin and its relation to major post-Permian tectonic phases results from 3D structural modelling, backstripping and reflection seismic data. Tectonophysics, 361(3-4): 277-299.
- Scheck, M., Bayer, U. and Lewerenz, B., 2003. Salt redistribution during extension and inversion inferred from 3D backstripping. Tectonophysics, 373(1-4): 55-73.
- Scheck-Wenderoth, M. and Lamarche, J., 2005. Crustal memory and basin evolution in the Central European Basin System - New insights from a 3D structural model. Tectonophysics, 397(1-2 SPEC. ISS.): 143-165.
- Scheck-Wenderoth, M., Krzywiec, P., Zühlke, R., Maystrenko, Y. and Froitzheim, N., 2008. Permian to Cretaceous Tectonics. In: T. McCann (Editor), The Geology of Central Europe. Volume 2: Mesozoic and Cenozoic. Geological Society of London, London.
- Scheck-Wenderoth, M., Maystrenko, Y., Hübscher, C., Hansen, M. and Mazur, S., 2008. Dynamics of salt basins. In: R. Littke, U. Bayer, D. Gajewski and S. Nelskamp (Editors), Dynamics of Complex Intracontinental Basins. The Central European Basin System. Springer.
- Scherneck, H.G., Johansson, J.M., Mitrovica, J.X. and Davis, J.L., 1998. The BIFROST project: GPS determined 3-D displacement rates in Fennoscandia from 800 days of continuous observations in the SWEPO network. Tectonophysics, 294: 305-321.
- Schmid, S.M., Pfiffner, O.A., Froitzheim, N., Schönborn, G. and Kissling, E., 1996. Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics, 15: 1036-1064.
- Schreiber, U. and Rotsch, S., 1998. Cenozoic block rotation according to a conjugate shear system in central Europe indications from paleomagnetic measurements. Tectonophysics, 299: 111-142.
- Senglaub, Y., Brix, M.R., Adriasola, A.C. and Littke, R., 2005. New information on the thermal history of the southwestern Lower Saxony Basin, northern Germany, based on fission track analysis. International Journal of Earth Sciences, 94: 876-896.
- Senglaub, Y., Littke, R. and Brix, M.R., 2006. Numerical modelling of burial and temperature history as an approach for an alternative interpretation of the Bramsche anomaly, Lower Saxony Basin. International Journal of Earth Sciences (Geologische Rundschau), 95: 204-224.
- Senglaub, Y., Littke, R. and Brix, M.R., 2006. Numerical modelling of burial and temperature history as an approach for an alternative interpretation of the Bramsche anomaly, Lower Saxony Basin. International Journal of Earth Sciences (Geologische Rundschau), 95: 204-224.

- Shan, Y., Suen, H. and Lin, G., 2003. Separation of polyphase fault/slip data: an objective-function algorithm based on hard division. Journal of Structural Geology, 25: 829-840.
- Shan, Y., Lin, G. and Li, Z., 2004. An inverse method to determine the optimal stress from imperfect fault data. Tectonophysics, 387: 205-215.
- Sippel, J., Scheck-Wenderoth, M., Reicherter, K. and Mazur, S., in press. Paleostress states at the south-western margin of the Central European Basin System application of fault-slip analysis to unravel a polyphase deformation pattern. Submitted to Tectonophysics, available online since April 2008., DOI: 10.1016/j.tecto.2008.04.010; Available online 18 April 2008.
- Skjernaa, L. and Pedersen, S., 1982. The effects of penetrative Sveconorwegian deformations on Rb–Sr isotope systems in the Römskog-Aurskog-Höland ara, SE Norway. Precambrian Research, 17: 215-243.
- Skjeseth, S., 1963. Contribution to geology of the Mjosa District and the classical Sparagmite area in southern Norway. Norges Geologisk Undersökelse, 220, 226 pp.
- Spang, J.H., 1972. Numerical Method for dynamic Analysis of Calcite Twin Lamellae. Geological Society American Bulletin, 83(1): 467-472.
- Sperner, B., Ratschbacher, L. and Ott, R., 1993. Fault-striae analysis: a turbo pascal program package for graphical presentation and reduced stress tensor calculation. Computers & Geosciences, 19: 1361-1388.
- Sperner, B., 1993. FLUMO Fluctuation histogram and Mohr circle diagram. Institut für Geologie, Tübingen.
- Sperner, B., 1996. Computer programs for the kinematic analysis of brittle deformation structures and the Tertiary tectonic evolution of the Western Carpathians (Slovakia). Tübinger Geowissenschaftliche Arbeiten (TGA), Institut und Museum für Geologie und Paläontologie der Universität Tübingen., 27: 120.
- Sperner, B., 1996. Computer programs for the kinematic analysis of brittle deformation structures and the Tertiary tectonic evolution of the Western Carpathians (Slovakia). Tübinger Geowissenschaftliche Arbeiten (TGA), Institut und Museum für Geologie und Paläontologie der Universität Tübingen., 27: 120.
- Sperner, B. and Zweigel, P., unpublished manuscript. A plea for more caution in kinematic fault-slip analysis, pp. 32.
- Stampfli, G.M., Mosar, J., Favre, P., Pillevuit, A. and Vannay, J.-C., 2001. Permo-Mesozoic evolution of the western Tethys realm: the Neo-Tethys east Mediterranean basin connection. In: P.A. Ziegler, W. Cavazza, A.H.F. Robertson and S. Crasquin-Soleau (Editors), Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mémoires du Muséum National d'Histoire Naturelle, pp. 51-108.
- Stampfli, G.M. and Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters(196): 17-33.
- Stampfli, G.M. and Borel, G.D., 2004. The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain. In: W. Cavazza, F.M. Roure, W. Spakman, G.M. Stampfli and P.A. Ziegler (Editors), The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle. Springer, Heidelberg, pp. 53-80.
- Steiner, C.W., Hobson, A., Favre, P., Stampfli, G.M. and Hernandez, J., 1998. Mesozoic sequence of Fuerteventura (Canary Islands); witness of Early Jurassic sea-floor spreading in the central Atlantic. The Geological Society of America Bulletin, 110(10): 1304-1317.
- Sundvoll, B., Neumann, E.-R., Larsen, B.T. and Tuen, E., 1990. Age relations among Oslo Rift magmatic rocks: implications for tectonic and magmatic modelling. Tectonophysics, 178: 67-87.
- Sundvoll, B., Larsen, B.T. and Wandaas, B., 1992. Early magmatic phase in the Oslo Rift and its related stress regime. Tectonophysics, 208: 37-54.

- Sundvoll, B. and Larsen, B.T., 1994. Architecture and early evolution of the Oslo Rift. Tectonophysics, 240: 173-189.
- Suppe, J., 1985. Principles of Structural Geology. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 537 pp.
- Surlyk, F., 2003. The Jurassic of East Greenland: a sedimentary record of thermal subsidence, onset and culmination of rifting. In: J.R. Ineson and F. Surlyk (Editors), The Jurassic of Denmark and Greenland. Geological Survey of Denmark and Greenland Ministry of the Environment, Copenhagen, pp. 659-722.
- Swensson, E., 1990. Cataclastic rocks along the Nesodden Fault, Oslo Region, Norway: a reactivated Precambrian shear zone. Tectonophysics, 178: 51-65.
- Thomson, S.N., Brix, M. and Carter, A., 1997. Late Cretaceous denudation of the Harz Massif assessed by apatite fission track analysis, Regionale Geologie von Mitteleuropa; geodynamische Prozesse zwischen Alpen und Nordatlantik; 149 Hauptversammlung der Deutschen Geologischen Gesellschaft und Jahreshauptversammlung der Fachsektion Geoinformatik; Kurzfassung der Vortraege und Poster. Deutsche Geologische Gesellschaft, Hanover, Federal Republic of Germany, pp. 115.
- Thomson, S.N., Brix, M. and Carter, A., 1997. Late Cretaceous denudation of the Harz Massif assessed by apatite fission track analysis, Regionale Geologie von Mitteleuropa; geodynamische Prozesse zwischen Alpen und Nordatlantik; 149 Hauptversammlung der Deutschen Geologischen Gesellschaft und Jahreshauptversammlung der Fachsektion Geoinformatik; Kurzfassung der Vortraege und Poster. Deutsche Geologische Gesellschaft, Hanover, Federal Republic of Germany, pp. 115.
- Thomson, S.N. and Zeh, A., 2000. Fission-track thermochronology of the Ruhla Crystalline Complex: new constraints on the post-Variscan thermal evolution of the NW Saxo-Bohemian Massif. Tectonophysics, 324: 17-35.
- Torsvik, T.H., Eide, E.A., Meert, J.G., Smethurst, M.A. and Walderhaug, H.J., 1998. The Oslo Rift; new paleomagnetic and 40Ar/39Ar age constraints. Geophysical Journal International, 135: 1045-1059.
- Torsvik, T.H., Carlos, D., Mosar, J., Cocks, L.R.M. and Malme, T.N.M., 2002. Global reconstructions and North Atlantic paleogeography 440 Ma to recent. In: E.A. Eide (Editor), Batlas Mid Norway Plate Reconstruction Atlas with Global and Atlantic Perspectives. Geological Survey of Norway, Trondheim, pp. 18-39.
- Turner, F.J., 1953. Nature and dynamic interpretation of deformation lamellae in calcite of three marbles. American Journal of Sciences, 251(4): 276-298.
- Twiss, R.J. and Gefell, M.J., 1990. Curved slickenfibers; a new brittle shear sense indicator with application to a sheared serpentinite. Journal of Structural Geology, 12(4): 471-481.
- Twiss, R.J. and Moores, E.M., 1992. Structural Geology. W.H. Freeman, New York.
- Twiss, R.J. and Unruh, J.R., 1998. Analysis of fault slip inversions; do they constrain stress or strain rate? Journal of Geophysical Research, B, Solid Earth and Planets, 103(6): 12,205-12,222.
- Underhill, J.R. and Partington, M.A., 1993. Jurassic thermal doming and deflation in the North Sea: implications of the sequence stratigraphic evidence. In: J.R. Parker (Editor), Petroloeum Geology of Northwest Europe: Proceedings of the 4th Conference. The Geological Society of London, London, pp. 337-345.
- van Gent, H., Back, S., Urai, J.L., Kukla, P.A. and Reicherter, K., in press. Paleostresses of the Groningen area, the Netherlands results of a seismic based structural reconstruction. Tectonophysics: doi: 10.1016/j.tecto.2008.09.038; Available online 7 October 2008.
- van Wees, J.D. and Beekman, F., 2000. Lithosphere rheology during intraplate basin extension and inversion inferences from automated modeling of four basins in Western Europe. Tectonophysics, 320: 219-242.

- Vandycke, S., 1997. Post-Herzynian brittle tectonics and paleostress analysis in Carboniferous limestones, Belgian Symposium on Structural Geology and Tectonics, Aardk. Mededel., pp. 193-196.
- Vandycke, S., 2002. Palaeostress records in Cretaceous formations in NW Europe: Extensional and strike-slip events in relationships with Cretaceous-Tertiary inversion tectonics. Tectonophysics, 357(1-4): 119-136.
- Veevers, J.J., Clare, A. and Wopfner, H., 1994. Neocratonic magmatic-sedimentary basins of post-Variscan Europe and post-Kanimblan eastern Australia generated by right lateral transtension of Permo-Carboniferous Pangea. Basin Research, 6(2-3): 141-157.
- Vejbaek, O.V., 1990. The Horn Graben, and its relationship to the Oslo Graben and the Danish Basin. Tectonophysics, 178: 29-49.
- Vejbaek, O. and Andersen, C., 2002. Post mid-Cretaceous inversion tectonics in the Danish Central Graben - regionally synchronous tectonic events? Bulletin of the Geological Soceity of Denmark, 49: 129-144.
- Voigt, E., 1962. Über Randtröge vor Schollenrändern und ihre Bedeutung im Gebiet der Mitteleuropäischen Senke und angrenzender Gebiete. Zeitschrift der Deutschen Geologischen Gesellschaft, 114: 378-418.
- Voigt, T., Eynatten, H.v. and Franzke, H.J., 2004. Late Cretaceous unconformities in the Subhercynian Cretaceous Basin (Germany). Acta Geologica Polonica, 54: 673-694.
- Voigt, T., Wiese, F., Eynatten, H.v. and Franzke, H.-J., 2006. Facies evolution of syntectonic Upper Cretaceous Deposits in the Subhercynian Cretaceous Basin and adjoining areas (Germany). Zeitschrift der deutschen Gesellschaft für Geowissenschaften, 15(2): 203-244.
- Wallace, R.E., 1951. Geometry of shearing stress and relation to faulting. Journal of Geology, 59(2): 118-130.
- Wallbrecher, 1986. Tektonische und gefügeanalytische Arbeitsweisen. Enke-Verlag, Stuttgart, 244 pp.
- Walsh, J.J., Watterson, J., Bailey, W.R. and Childs, C., 1999. Fault relays, bends, and branchlines. Journal of Structural Geology, 21(8-9): 1019-1026.
- Walter, R., Giese, P., Walther, H.W. and Dill, F., 1995. Geologie von Mitteleuropa. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele und Obermiller), Stuttgart, 566 pp.
- Worsley, D. et al., 1982. The Silurian succession of the Olso Region. Norges Geologisk Undersökelse, 384: 57pp.
- Wrede, V., 1988. Der nördliche Harzrand flache Abscherbahn oder wrench-fault-system? Geologische Rundschau, 77(1): 101-114.
- Yamaji, A., 2000. The multiple inverse method; a new technique to separate stresses from heterogeneous fault-slip data. Journal of Structural Geology, 22(4): 441-452.
- Yamaji, A., Sato, K. and Otsubo, M., 2005. Multiple Inverse Method Main Processor, Version 5.31. Division of Earth and Planetary Sciences, Kyoto University., Kyoto.
- Yamaji, A. and Sato, K., 2005. MI Viewer, Version 4.10. Division of Earth and Planetary Sciences, Kyoto University., Kyoto.
- Yin, Z.M. and Ranalli, G., 1992. Critical stress difference, fault orientation, and slip direction in anisotropic rocks under non-Andersonian stress system. Journal of Structural Geology, 14: 237-244.
- Younes, A.I. and McClay, K., 2002. Development of accommodation zones in the Gulf of Suez–Red Sea rift, Egypt. AAPG Bulletin, 86(6): 1003-1026.
- Zalohar, J. and Vrabec, M., 2007. Paleostress analysis of heterogeneous fault-slip data: The Gauss method. Journal of Structural Geology, 29: 1798-1810.
- Ziegler, P.A., 1988. Evolution of the Arctic-North Atlantic and the Western Tethys A visual presentation of a series of paleotectonic maps., 43. AAPG Memoirs, Tulsa, 197 pp.
- Ziegler, P.A., 1990. Geological Atlas of Western and Central Europe. Shell Internationale Petroleum Maatschappij B. V., New York, 239 pp.

- Ziegler, P.A., Cloetingh, S. and Wees, J.-D.v., 1995. Dynamics of intra-plate compressionla deformation: the Alpine foreland and other examples. Tectonophysics, 252: 7-59.
- Ziegler, P.A. and Dèzes, P., 2006. Crustal evolution of Western and Central Europe. In: D.G. Gee and R.A. Stephenson (Editors), European lithosphere dynamics. Geological Society of London Memoirs, London, pp. 43-56.
- Zühlke, R., Bouaouda, M.-S., Ouajhain, B., Bechstädt, T. and Leinfelder, R., 2004. Quantitative Meso-/Cenozoic development of the eastern Central Atlantic continental shelf, onshore Agadir Basin, Morocco. Marine and Petroleum Geology, 21(225-276).

8 Acknowledgements

The present study was conducted in sections 4.3 and 4.4 of the Helmholtz Centre Potsdam, GFZ, German Research Centre for Geosciences. Financial support from the German Research Council is acknowledged which has been provided within the DFG-SPP 1135 "Dynamics of sedimentary systems under varying stress conditions by example of the Central European Basin System".

I would like to express gratitude to my supervisors Prof. Onno Oncken and Prof. Klaus Reicherter for rendering an expert opinion on this Ph.D. thesis and for many fruitful discussions. Thank you, Klaus, for inducting me in the world of slickensides and paleostress.

I especially wish to thank Leni Scheck-Wenderoth for valuable guidance throughout my studies on paleostresses and during the final dissertation writing. Thank you, Leni, you have encouraged me to follow new ideas and esteem my own work. Thank you also for giving me the possibility to meet people from all over the (geosciences) world.

Gratitude is extended to Stanislaw Mazur who guided me through the outcrops of southwestern Poland and was one of my first teachers in fault-slip analysis. Thank you, Stachu, for introducing to me the difference between measuring structures in the "German" and the "British" way.

I'm grateful to Aline Saintot (NGU, Norway) and Michel Heeremans (University of Oslo) who provided the great amount of fault-slip data from the Oslo Graben area. Aline has sampled the data within the GEOS (Geology of Oslo Region) academic programme. I want to thank both of you for the markedly uncomplicated collaboration, for many interesting discussions, for your warm hospitality and the fun we have had during the field trips.

This work benefited greatly from free usage of the MIM software package courtesy of Prof. Atsushi Yamaji (Kyoto University) and the software FLUMO courtesy of Blanka Sperner (University of Freiberg). I thank both of you for answering patiently any questions concerning the programmes and for giving some very helpful advices on fault-slip analysis and stress inversion in general.

I'm grateful to Bernard Celerier for interesting discussions on fault-slip analysis and paleostress inversion and for providing his software for plotting triangle diagrams.

The tectonomagmatic map of the Oslo Graben area has been plotted using GMT 4.0 (http://gmt.soest.hawaii.edu/).

The present study is based on field work. - Identifying geological structures often requires someone to open one's eyes while bad weather requires someone to make one keep up. So, thanks to all my companions in the field: Prof. Hans-Joachim Franzke, Rainer Müller, Pierre-Olivier Bruna, Birgit Plessen, and the SPP-group of book chapter 3.3 (Strain and Stress).

Special thanks go to Volker Lüders and the "Mädels" who made field trips and long car rides much more comfortable. But always pay attention to Pepi's lights: fuel may be low!

Thanks go also to Björn Lewerenz who helped greatly in solving some fundamental problems on data transformations – he did it as elegant as a "pitchy-plunge".

My gratitude to GFZ sections 4.3 and 4.4 and the entire floor C4 for the good working atmosphere. I would especially like to thank Denis Gröpler and Alexandra Wille for supporting me in handling the large amounts of data and Yuriy Maystrenko for helping patiently with some computer programmes.

What would I have done without my office mates and companions on the long roads of a Ph.D.? Thank you, Mauro, for taking care of me after lunch and whenever there was too much stress around me. And thank you, my precious "Schatz" Katja, for your understanding and for infusing our office with your great sense of humour and your enormous talent for making music.

Ganz herzlich danken möchte ich schließlich meinen Eltern, meinen Geschwistern, Jörg, Jutta, sowie all denen "zu Hause", die mich in den letzten Jahren liebevoll unterstützt haben. Danke, Jörg, für Deine Geduld und Dein Verständnis während der letzten Monate und dafür, dass Du immer für mich da bist.

Appendix A

Raw data and estimated stress tensors from the area of the Elbe Fault System

Part 1: Fault-slip data.

Lat: Latitude [°N] – Long [°E] - DipDir/Dip: dip direction and dip of fault plane – Azimuth/Plunge: azimuth and plunge of striae – Sense: 1-reverse, 2-normal, 3-dextral, 4-sinistral – Quality of kinematic indicators: 1-excellent, 2-good, 3-poor – Kinematic indicators: 1-crystal fibres, 2-slickolites, 3-non-specified steps, 4-non-specified striations, 5-offsets of structures. Mineral coatings: cc-calcite, chl-chlorite, hem-hematite, qz-quartz.

Part 2: Reduced stress tensors. az/pl: Azimuth and plunge of the principal stress axes σ_1 , σ_2 , σ_3 ($\sigma_1 \ge \sigma_2 \ge \sigma_3$). R: Stress ratio, R=(σ_2 - σ_3)/(σ_1 - σ_3).

Part 3: Bedding planes and veins. DipDir/Dip: dip direction and dip of plane – Rock ages: Ctu-Late Cretaceous, Jru-Late Jurassic, Trm-Mid Triassic, Pru-Late Permian – Minerals: cc-calcite, CaF2-fluorite, CuFeS2-chalcopyrite, qz-quartz.

-	Wettrin	ugen		Lat 52.2	18	Long 7	.321	3	liddel		La	t 52.256	Ľ	ng 7.43	8	5	Lenger	lich		Lat 52.1	82	Long 7.8	96
Data #	DipDir	Dip	Azimuth	Plunge	Sense	Quality	indicators + mineral	Data # 1	JipDir [ZA dic	imuth PI	unge S(ense Q	uality In	aicators + mineral	Data #	DipDir	Dip	Azimuth	Plunge	Sense	Quality	indicators + mineral
	170	57	100	02	c	c	coatings	Ŧ	358	Ca	181	00		,	coatings	Ŧ	000	45	000	45		ç	coatings
- 0	206	68	116	s ro	4 m	0	1(cc)	- 0	356	8 8	356	62	T		1(cc)	- 0	292	80	192	80		م 1	1(cc)
ю	210	65	210	65	0	ю	5	ю	200	82	114	15	ю	2	1(cc)	ю	218	40	258	36	-	-	1(cc)
4 u	134	89	223	15	4 4		1(cc)	4 u	345	87	100	1 05	4 4	~ ~	1, 3, 1(cc)	4 u	11	40	335		00	~ ~	1(cc)
ഗ	254	f 8	350	2 0	4		1(uu),∠ 3.4	о ю	24	88	110	25 25	t 00	1 0	4.3	n u	182 182	46	182	- 46	n 0	- 0	1(cc)
7	146	85	59	14	ę	-	3, 4	7	104	68	16	4	e	-	4, 3	7	176	50	102	18	ю	0	1(cc)
8	254	81	168	-	4	2	1(cc)	8	81	71	145	53	2	-	1(cc)	8	178	40	214	38	2	-	1(cc)
o	352	22	74	6	4	-	1(cc)	o :	91	85	178	7	e	0	4	6	85	52	46	20	-	0	1(cc)
9;	281	99	198	9 0	4 (- c	1(cc)	6 5	71	28	86 276	55	0		1(cc)	6 5	85	28	16	10	, ,	0 7	1(cc)
= 5	240	500	304	5000	2 0	ņ.	3	= 5	100	21	0/7	S +	4 0	- ~	1(cc)	= 5	2104	8/	077	8/ 8/	- c		1(cc)
1 5	229	75	316	18	იო	- ო	1(cc)	13	132	6 09	222	- 4	04	n -	1(cc)	13	210	02	222	69	ب ۷		1(cc)
14	100	87	184	24	e	2	1(cc)	14	356	69	70	28	4	-	1(cc)	14	211	20	282	29	ю	-	1(cc)
15	355	74	84	7	4	e	4	15	114	65	27	7	4	2	1(cc), 3	15	140	79	216	45	0	7	1(cc)
16	156	70	72	15	e	-	1(cc)	16	359	60	91	4	4	e	1(cc)	16	12	10	12	10	-	-	1(cc)
								17	33 18	55	342 305	47 25	0 6	- c	1(cc), 5 4 3	17	356 184	83 70	264 154	26	4 C		1(cc)
2	Rheine	-		Lat 52.2	62	Long 7	.402	6	106	88	106	282	5 0	، ۱	0.00	19	163	83	252	ţın	14	- ന	1(cc)
							Indicators +	2 2	125	54	161	47	10	. –	1(cc)	20	170	84	256	15	4		1(cc), 3
Data #	DipDir	Dip	Azimuth	Plunge	Sense	a Quality	mineral	21	123	56	209	6	4	-	1(cc)	21	162	76	190	74	2	0	1(cc)
		i		ł			coatings	23	178	59	124	31	5	-	1(cc)	23	209	43	212	42	0	0	1(cc)
- (280	78	230	72	0 0	0 0	3, 4	23	165	55	182	53	2	e	4	23	198	65	236	63	-	-	1(cc), 3
0 0	128	53	120	49	~ ~	0 0	4 •	24	168	42	97	30	-	-	1(cc)	24	216	85	156	82	-	-	1(cc)
n •	800	26		- 13	чc	N +	4	25	306	51	31	12	en 1	-	1(cc)	25	213	87	294	56	-	-	1(cc)
4 v	80 112	20	90	10	ч r		1(cc)	26	0	88	274	4	4	е С	1(cc)	26	172	65	262	- 1	4	-	1(cc)
n u	340	5 0	67	5 6	4	- 0	3 4	27	272	89	359	24	т о	ლ ი	4,3	27	198	82	296	5 L	4 (1(cc)
~	105	40	105	40	0	i m	5.0	2000	00	2 6	1/8	17	.	N •	1/201	87 6	B/1	5 52	007	10	ν.		1(0C)
80	70	50	160	-	е	2	4	30	285	20	264	47	5 6		1(cc)	30	200	81	174	79			(20) 1(cc)
6	78	57	42	55	0	2	1(cc)	31	238	59	148	-	ı ო	. 0	5	31	200	81	274	52	-	-	1(cc)
10	88	76	175	7	с п	-	1(cc)	32	226	52	316	9	e	-	1(cc)	32	204	65	204	65	-	-	1(cc)
; ;	81	75	353	23	с (- 5	1(cc)	33	236	57	309	34	е	e	1(cc)	33	214	74	169	58	-	-	1(cc)
2 6	C07	40 V	C07	4 8	2 6		1(cc),Z	34	e 1	22	е .	52	1(cc)	34	212	80	170	75		. .	1(cc)
14	276	09	260	55	2		1(cc)	35 98	200	2 2	313	17	- ~		0 4	ດ ເ	212	8/	736 236	74 56			1(cc)
15	246	69	158	8	e	-	1(cc),2	37	143	22 7	116	42	5 0		1(cc)	37	<u></u>	55	40	55	- 0		1(cc)
16	56	88	328	15	т	-	1(cc)	38	174	65	254	21	4	в	1(cc)	38	240	70	185	48	-	2	1(cc)
17	61	75	326	- 5	<i>с</i> с		1(cc),2	39	160	80	242	9	4	-	1(cc)								
8 0	61 272	000	342	32			1(cc),4	40	169	79	82	2	4	-	1(cc)								
00	707	54	206	2σ	4		1(00)																
512	48	8	321	0	r ന		1(cc)	4 C	örenthe		La	t 52.227	Ľ	79.7 guo	3								
									i		; ; ;		,	드 :	dicators +								
								Data #	DipDir 1	Jip Az	zimuth PI	unge Si	ense Q	uality	mineral								
								-	203	60	151	45	<i>-</i>		1(cc)								
								. 0	213	20	152	48			1(cc)								
								i η	215	55	149	34	-	-	1(cc)								
								4	169	48	93	10	e	2	1(cc)								
								5	236	80	149	6	е	-	1(cc)								
								9	242	88	144	4	e	-	1(cc)								
								7	72	87	338	5	e	-	3								

5	Indicators +	coatings	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)		15	640	Indicators +	coatings	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	e	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(00)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)			
Long 8.1		quality	-	e		n •			. v	-	-	-		1 000 8 2	Long o.J	U	Muality	-	e	-	-	-	-	-	-	-	-	-	. .					-	-						-	-	-	-	-	-			
31		sense	e	e	с (n (0 4	r (*)	, n	e		e			4	Conco	001100	2	0	e	-	0	0	-	0	ო	-	-	с (0,		- ന	, ო	e	ю	. .			- ന	0	0	2	10	0	-	-			
Lat 52.2	ī	Plunge	2	9	6	0	<u></u>	0	16	2	- 5	7		1 -+ 52 0	Lat 32.0	Dingo	afiinia	75	31	ę	78	86	89	80	73	2	81	69	16	80	75	35	16	40	4	77	5	67 V L	5 0	63	80	64	61	99	80	22			
		zimutn	94	278	339	C/7	125	336	119	146	329	154				-imuth		96	40	94	105	38	47	225	42	336	26	44	286	140	522	358	352	150	160	24	40	340	341	350	323	343	31	23	181	110			
orf	2	din A	82	86	88	00	0/ 80	81	88	75	78	85				< ci	۲ 10	79	35	35	80	86	89	83	76	84	81	1	17	86	01 86	53	54	75	75	11	000	57	78	99	82	76	61	67	83	85			
issend	2	India	182	თ	249	182	201	246	195	236	240	242			alle	in Dir	Indu	30	11	11	214	38	47	232	51	270	26	39	359	210	012	65	84	68	68	24		75	6	19	359	36	31	36	220	195			
10 B		Data # L	-	2	ε,	4 u	<u>ہ</u>	~ ~	. 00	6	6	5			5] # ctc[]		-	2	e	4	5	9	7	8	6	10	5	12	13	14 14	16	17	18	19	20	2 5	3 8	74	25	26	27	28	29	30	31			
42	Indicators +	mineral coatings	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	4	4	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	I(cc)	1 6	, J/cc/	1(00)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)		07	+J	mineral	coatings	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)
Long 7.9	_	Quality	-	-	ю ·				- -	-	-	e	-	-	ю	-	7		- •	- •	- •	- •	- c	1 -	-	-	-	-	-	-	-	- (n c	v -	-	1 0 0 0 1		- vilen0	Muality	÷-	-	-	-	-	-	2	0	5	-
_		ense	e	-	4 (ν.			- -	-	-	4	2	4	4	4	4	4 •		t (ч т			- 4	- -	-	e	e	-	-	-	<i>т</i> .	- c	10	4	_	_	oneo		0	10	2	- -	-	-	2	-		2
-at 52.164		runge s	5	4	10	R	n US	20	45	35	42	9	26	10	7	-	2 ·				- 08	2	р и 1	ი ო	20	23	e	5	20	2	10	ۍ ډ	90	07 V0	2	10169404	-41 72.10	Dinna C	o ofinia	78	8	12	6	0	40	35	32	19	40
-		Azimuth	342	240	78	061	nc 90	15	40	22	32	78	60	78	250	264	250	27	07 V	407 810	017	40 40	040	325	12	19	160	173	18	203	80	355	350	0 0	•	-	-	Azimith		32	205	196	30	21	31	85	40	306	340
	i	din	85	10	76	20	2 6	205	45	35	22	52	60	80	99	80	45	69 7	200	8 -	t 5	20	3 5	102	26	23	54	20	39	e	32	22	200	0 0	2			ŝ	2	78	35	20	24	18	40	70	40	6	80
.ienen		uipuir	262	184	346	80.00	1 1	- 5	40	22	357	357	135	166	340	170	340	164	4 1 4	186	34	5	170	21	62	19	71	92	68	186	77	84	ç °	0 0	>		Iallic			32	211	220	332	320	31	359	15	15	50
7		Data #	-	2	<i>с</i> р ·	4 L	n 4	0		6	6	5	12	13	14	15	16	1	₽ €	8- CC	5 6	5 6	3 8	24	25	26	27	28	29	30	31	32	8	ŧ %	8		5	Data #			0	e	4	5	9	7	8	6	10
938	Indicators +	mineral coatings	2	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	5	1(cc)	1(cc)	1(cc), 3	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(00)	1(00)			128	Indicators +	mineral	coatings	1(cc)	1(cc)	4	1(cc)	1(cc)	1(cc)	1(cc)	2	1(cc)	1(cc)	4	1(00) 3 4	1 (00) - 1								
Long 7.		quality	-	-	0	n ,	- 0	10	1 (1	-	-	-	2	2	2	2							-		Long 8.		Quality		e	e	ю ·		- 6	ი ი	-	-	с (n o	° °	2								
22		sense	4	4	<i>с</i> .	4 (7 6	0	14	2	4	4	e	4	e	-	0 0	N •	4 4	4 0	0 5	t 7	t		8		Sense		e	ო	<i>с</i> ,	4 0	o +	- ო	e	4	4 (ю •	4 •	4 0	2								
Lat 52.16	č	Plunge	23	18	6 :	44	<u>θ</u> α	, r	25	27	i –	2	30	2	18	44	45	15	3 6	57 7	<u>1</u>	25	3		Lat 52.23		Plunge		4	5	4	2 6	35	99	4	9	<i></i> о •	4,	<u></u>	C AA	2								
		Azimutn	244	243	250	240	010	132	60	124	56	246	351	242	268	236	300	260	007	187	701	44C	2				Azimuth		348	176	- ;	71 7	206	301	356	210	125	214	318	401 000	040								
	i	din	89	81	85	0/	64 24	50	65	27	55	81	61	30	83	71	46	47	0	00	57	10	5				Dip		85	89	87	00 BE	8 8	71	89	75	89	62	2	7 4 7 0	20								
löste		uipuir	333	153	150	104	157	120	133	124	140	157	276	322	175	178	280	280	010	000	20	76	2		Holsten		DipDir		80	264	268	100	190	218	86	304	216	302	232	420	ř								
- 9		uata #	-	2	ю ·	4 u	n u	~	. 60	6	10	1	12	13	14	15	16	/1	0	8- OC	0, 50	- 6	77		8		Data #		-	2	с ,	4 u	n u	~	8	6	6	= ;	2 5	2 1	t								

13	ndicators + mineral coatings	1(cc)	1(cc)	1(cc)	1(cc)	1(00)	1(00)	1(cc)	4	4	4	4	4		14	ndicators +	mineral	coatings	1(cc)	1(cc)	4	4	2	0	2	1(cc)	1(cc)		5	ndicators +	continue	1(cc)	1(cc)	4	1(cc)	4	1(cc)									
Long 9.54	Quality I	-	2	,		- •				-	-	-	-		Long 9.7(-	Quality	•	-	ю	0	-	-	-	-	ი ·	-	i	Long 9.75		Quality	-	2	e	0	ю ·	-									
88	Sense	z	z	z		ם ב		n v) z	z	z	z	z		1		Sense		4	4	0	2	0	2	2	0.	4		2	00000	acilae	e	2	4	4	ю [.]	4									
Lat 52.06	Plunge	63	49	46	۰ ۱	- •	14	t ic	62 62	59	56	37	62		Lat 52.02		Plunge	,	15	4	50	59	84	86	85	87	Q		Lat 51.85	open la	Pluige	20	57	18	7	6	e									
_	zimuth	17	230	229	236	9 q	24	174	=	343	354	73	258				zimuth		300	293	264	207	338	330	340	336	149			- the second	Inniii	13	186	104	47	152	256									
.ç	Jip A	70	51	47	17	75	74	60	68	74	70	57	63		gen		Dip A:		84	80	80	74	85	86	88	87	64		ausen	, and a	d dic	72	57	87	77	79	84									
uenste	ipDir I	60	222	220	330	0 10		265	52	45	51	134	243		arienha		ipDir [208	206	332	145	320	330	322	336	236		endsh		Indi	288	186	192	314	237	342									
r La	ata#Di	-	2	с С	4 4	n u	0 1-	- 00	ი თ	10	11	12	13		8 Ma		ata # Di		-	0	с С	4	2	9	2	00	5		Ā	10 # ctcl	ala # UI	-	0	e	4	5	9									
Ę															4														1	-	-															
37	ndicators + mineral coatings	4	1(cc)	1(cc)	1(cc)	1(00)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)		54	ndicators +	mineral	coatings	1(cc)	4	1(cc)	4	1(cc)	1(cc)	1(cc)	4	4, 3	1(cc)		34	ndicators +	mineral	coatings	1(cc)	1(cc)	1(cc)		27	21	ndicators +	continue	4	4	1(cc)	1(cc)	1(cc)	1(cc)	4
Long 9.1	Quality	e	2	,		- •		- 0	ı	-	2		Long 9.1		Quality		-	ŝ	5	2	-	-	-	e	2	-		Long 9.2	,	Quality						20200	Long 3.5	- vilenO	Muanuy	ę		, .	-	-	e	2
~	sense	-	-	. -	. .	- +		- 4		-	0		"	,	ense		e	6	<i>с</i> о	т	4	4	4	e	e	e		60		sense							+	oneo	001100	4	4			-	е	е
at 52.217	Plunge S	50	33	16	28		12	14	16	27	24		at 51.99(Plunde S	- D	37	16	4	45	-	12	6	e	12	7		at 52.20(Plunge S		28	40	44		01 E2 10	ar 32.134		nuñe o	10	e e	75	72	55	10	14
_	zimuth	195	192	202	270		196	62	203	198	212			,	zimuth		134	200	204	220	205	26	120	200	292	121		-		zimuth		54	20	37		-	-			340	348	238	123	270	47	221
.den	Dip A	50	34	16	8	- 04	5 Y Y	37	5 22	31	25				Din A	ŀ	59	84	89	47	88	88	81	88	85	84				Dip 4		24	4 4	49			oringe	ei C		70	1	78	68	79	56	75
teinbe	DipDir	195	205	202	274	777	196	356	240	238	225		Barntru		DipDir		198	288	293	209	110	112	31	112	212	202		tohden		DipDir		54	010	ვ ო			lamels	-india		65	76	204	214	198	144	312
13 5	Data #	-	2	ю [.]	4 u	n u	0 1-	. 00	00	10	11		14 F	:	Data #		t	0	((4	5	9	7	8	6	10		15 F		Data #	,	- c	4 67	9 4		-	9	# ctc[]	nata #	t	~	10	4	5	9	7
404	mineral mineral	4, 3	1(cc)	1(cc)	т с	1/00/1	1(00)	1(cc)	4.3	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	3, 4	1(00)	1(cc)	(cc)	, t	1(00)	1(cc)	1(cc)	e e	4	1(cc)	3, 4	1(cc)	1(cc)	4	1(cc) 1(cc)	1(cc). 3	4	1(cc), 3	1(cc), 3	1(cc)	0 4	4 0	1(cc), z 1(cc) 2	3 1/201) m	1(cc). 4	1(cc)	1(cc)	4		
Long 8.4	Quality	e	-	-		- 6	n c	0	0	-	-	2					- •	- 0	י מ	5	1 -	. ო	-	e	-	e	-	-		- ~	· -	ю	-	- (m (00	0 •			10	2	-	ю	2		
	Sense	4	e	e s	4 •	- 0	0 0		• 4	4	e	2	0.	4 (2 17	4 0	чc	4 0	, ,	، ۲	- ~	4	4	0	4	e	4	-		° 0	0	e	4	4	4	4 4	4 (ი ო	, .	- -	4	4	e	0		
at 52.04-	Plunge	19	2	5	51	ţc	v م	14	9	21	9	29	40	19	15 31		20	0, 64	2 5	61	45	23	17	74	9	4	-	59	5	o 68	35	16	25	51	6	o (2 9	10 1	05	65	12	-	4	41		
-	zimuth	42	296	94	190	320	204	207	270	249	306	235	303	200	20 26		25.7	202	202	257	338	275	6	260	29	239	216	172	100	232	155	268	227	227	211	317	2007	108	166	152	204	202	77	220		
к	Dip A:	72	81	88	88 %	8 6	76	83	68	1	85	31	44	<u></u> ,	45 20	5	04 G	00 10	- 88	78	45	76	70	75	69	85	79	61	61	68 68	35	34	83	75	85	87 07	0/	00 80	55	81	89	71	74	59		
ünsebe	ipDir	319	208	353	282	2.	114	116	356	335	220	222	338	321	318	140	202	355	144	326	338	8	280	270	114	322	126	188	188	156	155	152	320	158	117	238		195	198	234	295	113	168	152		
12 Ki	Data # D	-	2	e i	4 4	n u	0 1-	- 00	00	6	1	12	13	4 1	15	₽ ţ	- 9	<u> </u>	e 00	2 5	: 6	23	24	25	26	27	28	29	80	32	33	34	35	36	37	38	200	41	40	43	44	45	46	47		

74	Sense	4	7	с с	<i>"</i> "	101	0	ოო	ი ი	-	0	. .	ч г	ო	-		, .	-	-	~ ~		-	0	ი,		- ന	С	-	en •	4 6	0	0	с с	10	ŝ	00	o +	- m	-	0		იო	0	4	0	с с	× -	. v	ю	ო
Lat 51.6	Plunge	22	40	30	n 95	45	24	15	13	65	49	38	4 10	2	0	в 4	30	20	33	15	40	15	49	20	12	4	9	40	9	Ωg	24	84	11	52 76	26	64	- 08	10	35	19	19	- 28	37	35	35	4 4	37	27	14	20
	Azimuth	10	226	208	197	46	358	215 218	207	192	230	194	59 708	20	40	46 105	29	51	38	212	50	218	78	359	8 500	10	12	206	22	002	104	163	206	114	40	120	01 25	25	132	39	39 30	55	49	50	134	192	42	32	26	34
	Dip	47	63	61	64 60	50	51	89	88	74	62	5 2	16	40	9	14 FR	8 8	31	36	30	48	34	50	88.	21	62	65	65	45	10	8 6	88	52 ee	26	69	69	200	4 4	40	39	39	8 8	34	42	42	45	46	22	86	82
Elvese	DipDir	72	282	282	701 99	50	76	308	117	225	258	258	707	285	114	101	84	78	64	270	88	292	100	92	8	284	286	285	295	2/6	48	266	288 °	114	110	110	6 6	101	104	104	40	201	06	92	92	104	87	110	118	118
23	Data #	-	N	с ,	4 U	9	2	ωσ	, 6	5	12	÷.	15	16	17	8 0	202	512	8	83	25	26	27	58	62 62	31	32	33	34	8 8	37	38	68	4 4	42	\$	44	46	47	48	49	51	52	53	\$	55	00 21 20	28	59	60

884	Indicators + mineral	coatings	40	0 4	4	e	4	4	4 4	1 1	4	4	ю	4	4	4 (იო	0 00	4	4	4	4	4	4 4	1 4	r m	0	ю	ო	4	4 (n e	94	4	4	1(cc)	1 07	1(cc)	4	4	4 (n a	იო	ю	ო	т	4	n •	14
Long 9.	Quality	¢	2 0	0	101	2	ო	0 0	0 0	0 00	ი ი	e	-	-	0 0		0 0	ი ო	е	e	e	e	<i>с</i> го о	n e	n er	ი ო	-	e	e	0 0		- 6	0	ы	-		5	ı ۳	e	с	<i>с</i> о с		იო	-	-	-	е ·		00
84	Sense	¢	NC	10	101	2	0	0 0	~ ~	10	10	0	0	4	с (~ ~	ч с	10	0	2	0	0	0 0	NC	10	10	0	2	0	0	21	2 6	0	2	0	~ ~	4 -	0	2	с	0 0	2	1 (1	4	2	0	4 .	4 (N (1
Lat 52.3	Plunge		84	2 4	38	87	60	46	99	200	3 8	69	59	10	ωi	0/	10	28	62	65	57	49	51	10	49 79	99	40	42	8	65	99	4 6	09	55	52	51 52	202	38	30	5	57	81	26	10	42	76	17	= 5	4, 89
	Azimuth		318	238	310	285	228	150	285	264	246	243	283	156	152	104	250	270	263	226	225	216	280	194	276	252	283	245	280	290	216	1530	296	245	346	148	256	337	330	358	324	231	276	184	347	210	166	007	91
_	Dip	2	5 ¥	2 22	20	87	85	85	0/	8	8 8	20	63	80	22	5	20	2 89	89	68	58	20	25	4 v	5 4	65	41	45	64	65	99	4 1	. 09	55	52	22	1 12	28	81	79	1 8	2 2	63	88	74	83	28	5	89
Misburg	DipDir		348	214	285	285	312	73	280	640	262	260	295	68	64	128	717	270	276	254	230	220	274	0/7	276	292	290	230	280	290	216	230 66	296	245	346	148	206	256	246	267	258	092	246 246	286	64	144	256	007	-07 91
22	Data #	,	- c	4 67	4	5	9	2	ωc	° (5 5	12	13	14	15	16	1 8	6	20	21	8	23	24 0 r	98	8 2	28	59	90	31	33	83	ę f	88	37	38	66	41	42	43	44	42	ę ;	47	49	50	51	22	23	55

9.835	v mineral	coatings	1(cc)	9.836	Indicators +	y mineral	coatings	1(cc), 4	1(cc)	1(cc), 3	1(cc), 3	1(cc)	2	4	4	1(cc)	4	1(cc), 3	1(cc)	2 C \/													
Long	Oualit		-	С	2	0	-	-	e	е	ы	0	-	-	0	-	Long		Qualit		ო	-	-	-	е	0	e	-	-	0	ю	-	¢
76	Sense	2000	4	4	4	4	4	4	-	e	ო	ო	4	4	4	4	9		Sense		4	4	4	e	4	ო	e	-	4	4	4	4	•
Lat 51.5	Plunde	2	2	10	4	32	e	6	64	e	4	1	2	5		4	Lat 51.6		Plunge		e	20	5	e	19	34	26	24	2	÷	10	6	•
ç	Azimuth		95	100	166	158	344	156	307	270	346	346	260	359	14	168			Azimuth		38	114	180	171	50	184	196	18	140	78	55	232	
nause	i	2	85	86	82	85	84	84	99	85	65	75	80	76	80	70	en		Dip		20	85	70	72	68	58	68	24	76	85	09	89	ì
Emmen	DinDir		186	18	259	246	253	240	318	178	252	69	355	268	285	252	Hardegs		DipDir		306	210	272	262	326	265	274	18	214	346	140	142	
	ata #	-	-	0	e	4	5	9	7	8	ი	10	11	12	13	14	-)ata #		-	0	ო	4	5	9	7	8	6	10	5	12	\$

9 Cators +	lineral	4	4	4 1(cc)	4	4	4	4 4	4	4	4	4	4 4	1 4	4	4	4	4.	4 4	1 4	4	4	4	4	4	4	4.	4 4	1(cc)	4	4	4,3	(cc), 2	(cc), 2 (cc), 2	2	0 0	10	101	2	0 0	CN C	10	10	2	4	~ ~	10	ı			
3 10.05	AT S	5		4																									4					÷																	
Long	Quali	-	e d		· r	-	- (00	е	ы	e	т т		19	-	-	с (n e	0 0) (n	С	e	e	-		<i>с</i> о с	<i>"</i> "	· ←	е	е	0,4	- c	- 1	2	0 0	10	101	0	0 0	0 0	ч г	0	2	0	~ ~					
042	Sense	ъ	с (n e	4	ო	0.	4 0		0	e	e	ლ ო	0	10	0	ო	с (n (4	0	e	0	0	0	e	<i>с</i> с	2 1	10	0	0	4 (m (4	0	0 0	10	4	4	ο,	4 (10	0	ო	0	n n	0 0	1			
Lat 52.	Plunge	14	12	5 4	6	9	76	9 €	14	67	21	-	5 23	21	¢	99	23			35	75	ო	46	40	61	25	35	29	22	74	67	с ,	4 [20	80	33	23	9	21	62 2	9 9	38	66	18	88	თ (4 88	ļ			
	timuth	240	51	242 59	242	235	328	23/	227	325	35	220	238	340	48	337	54	230	235	222	282	52	341	5	7	37	219	320	322	286	290	94	46 338	253	335	150	146	69	76	80	130	144	161	237	148	224	324				
	Dip Az	68	78	22 G	87	87	1	60 g	83	20	78	1	75	192	84	72	72	84	10	1 82	80	89	54	58	69	62	88	78	8 8	22	72	89	74	85	80	35	28	86	84	80	81	44	99	80	88	89	88	2			
stedt	pDir C	320	328	940	22	319	337	20	314	940	808	310	27	5 8	38	323	323	4	747	3 0	336	324	4	808	318	318	128	AD NC	222	312	202	80	820	3 94	335	88	299	62	165	145	22	8 8	19	324	148	214	324				
ŋ	a#Di	.,				(7)				-	0	e e	4 4			80	0		- 0	4 63	. 4	5	ŝ	~	80	0	0,	- 0	1 67	4	5	ω r	ς α	, ., 	0	- 0	4 6	4	5	ωı		0 0	0 0	-	0		t 10				
26	Dat	-			. (1)	9		00	, -	-	÷-	÷	÷÷		-	÷	÷	Ñ (γĊ	1 6	10	0	Ñ	9	0	20	ē	ν č	5 00	ę	õ	e 9	ю й	5 00	4	4 4	4 4	4	4	4 -	4 4	1 4	ŝ	5	ŝ	úń u	n in	j			
atore +	neral	(cc)	(cc)	(cc)	(cc)	(0)	20	00 20	(cc), 2	(00)	4	(c)			ators +	neral	sounds	3	00	()	(00)	(cc)	(c)	(c)	00	() ()	3	(22)																							
.95 Indic	Ē	-	-	- 1	-	-			. Ę	-		-		.961	Indic	Ē	3		-	-	÷	-	-	-				-																							
6 Guo	Quality	e	-	m c	0	2	с (N +		0	e	e		e gno.		Quality	Ŧ		. 01	-	-	0	-	ю ·																											
-	nse	-	. .	40	4	3	4.	4 4	4	4	33	5		-		nse				-	-	-	-	. .			- 4																								
1.775	le Se													1.643		le Se																																			
Lat 5	Plung	50	74	34	10	30	- 1	5 6	88	14	63	58		Lat 5	i	Plung	40	2 6	13	12	26	9	13	8	49	36	ßic	>																							
	zimuth	262	13	0°1 0°1	09	64	62	60Z	220	244	170	111				Zimuth	106	178	188	190	216	195	215	206	201	5/1	155	2																							
sck	Dip 4	50	88	89	83	84	62	09	88	68	98	59		erg	;	dio	VC.	5 %	34	27	46	27	1	g: 2	48	35	8 8	8																							
/ogelbe	DipDir	262	66	89 68	330	335	335	29/	136	152	134	128		apenb	i	DipDir	112	104	120	128	145	106	164	188	192	2000	61	5																							
_	ata #	-	0	5 4	5	9	~	ωσ	6	5	12	13		5		ata #		- ^	. ო	4	5	9	7	8	о (2 ₽	- 6	ł																							
5														5	'																																				
+	•	0																																																	
8 dicator	minera	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(0)	1(cc)	1(cc)	1(cc)	1(cc)	1(cc)	1(00)	1(00)	1(cc)	1(cc)	1(cc)	4 .	4 4	1(cc)	1(cc)	1(cc)	1(cc)	4	1(cc)	1(cc)	1(cc)	1(00)	1(00)	1(cc)	1(cc)	1(00)	1(00)	1(00)	1(cc)	1(00)	(cc) [1(00)	1(cc)	1(cc)	1(00)	1(cc)	1(00)	1(cc)	1(cc)	4 4	1(cc)	1(cc)	1(cc)	4 4	1(cc)
9.93	l ` ≩																																																		
Long	Qual	-	с ·	- 0		-			-	-	ю	-	~ ~	- ^	10	0	-		- "	o ←		-	-	2	-	e	00		20	С	0			- m	2	ю •		0	2				0	-	-		- ~	-	e d	0 0	0
74	Sense	-	0	n e		ო	<i>с</i> о (ი ი	-	ო	0	იი ი	o e	0	-	4	0 0	NC	4	. w	со	ო	0	е	0	- (2	r 07	0	-	<i>с</i> о с		ი ო	ო			e n	e	с (~	4 -	e e	e	С	იი ი	2 0	0	с (~ ~	10
at 51.6	lunge	35	74	8 5	; ∶	-	37	65 PC	19	55	-	10	37	4 G	9 00	34	6	20	45	2 c	000	19	18	64	10	80	15	= =	14	47	47	~ 0	N 0	36 36	10	75	58	60	6	4 3	24	205	48	36	45	12	- 08	79	36	52	45
۲	uth	~	4	4 4	. 6	6	6				4	~	0		9.0	0	-		٥.	. *		5	0	0	9	~	4 1	0,0	ۍ د	0	15		NC	<u>م</u>	4	~ ⁽	00	0	5	6.	4 6	,		~	C 1		N		6		5
	Azim	29	13	19.	175	17.	46	35	41	74	35	30	35.03	100	24	25(25	25	07 07	244	19	21;	19(24	20	ЭС ЭС	21.	207	121	101	66	33	33.	33.5	33	32	- 0	19.	19,	32	22	2 8	40	63	82	33	25	42	92	38	9
ę	Dir Dip	2 69	8 8	60 80	09	1 69	2	22	8 6	57	89	20	2 72	89	3 47	35	3 75	2 2	40 %	9 6 8 6	80	80	88	2 70	89	8	8 19		8	60	56	17	81	2 12	2 81	76	878	74	2 70	81	28	222	22	56	09	2 2	808	80	22	0 54	20
Elve	# DipC	102	Ĩ	282	265	264	86	01	124	88	83	86	27.	276	296	29	336	28	102	335	283	290	280	282	118	8	50	202	218	52	47	54	29	46	242	99	99	280	282	62	22	114	102	97	42	24	22	65	ĩ	11(38
23	Data #	61	62	29 29	65	99	67	89	20	7	72	73	75	92	2.12	78	79	80	0 1 0 1 0	83	84	85	86	87	88	68	6	5	93 93	94	95	96 20	97 08	66	100	101	103	104	105	106	107	109	110	11	112	113	15	116	117	118	120

27	Badde	eckenste	edt	Lat 52.09	5	Long 10	.23 Indicators +	29 1	angels	neim	2	at 51.93	6	Long 10	.352 Indicators +	31	Wendes	sen	-	Lat 52.16	2	-ong 10.5	568 ndicators +
Data	# DipDi	ir Dip	Azimuth	Plunge	Sense	Quality	mineral	Data #	DipDir	Dip A:	zimuth F	Iunge	Sense	Quality	mineral	Data #	DipDir	Dip A	zimuth	Plunge	Sense	Quality	mineral
-	296	55	254	49	2	-	4, 2	-	36	76	106	51	4	-	2, 1(cc)	-	61	76	330	-	e	e	6 4
2	310	56	280	51	0	-	4, 2	2	22	76	101	35	4	2	2, 1(cc)	2	61	76	17	71	7	ъ	4
e	291	60	266	54	0	-	4, 2	e	27	78	109	38	4	2	2, 1(cc)	e	157	49	124	43	-	-	4
4 1	280	46	280	46	0 0		4,2	4 1	4	74	88	46	4 .	- (2, 1(cc)	4 1	190	38	149	30		. .	4.
ით	300 286	55	348	31 40	2 0		4,4	с ю	9 232	78	326 326	\$ m	4 m	7 0	2, 1(cc) 1(cc)	c o	291	6 0	2	20	- 4	- 0	4 4 .3
-	314	44	352	34	101	0	6,4	7	17	8	92	51	4	-	1(cc), 2	,		2	ı	i		ı	-
ŝ	316	68	285	09 09	ο,	0 0	4,3	80 (355	68 62	81	45	4 .	÷ •	1(cc), 2	32	Bodend	orf		Lat 52.28	_	-ong 11.2	1
ъ С	126	74	184	9 F	4 C	00	4 4 8 6	ь С	18 268	8, 18	8/ 355	54 -	4 00		1(cc), 2 1(cc) 2							,	ndicators +
2 =	332	85	245	6	10	ი ი	0.01	5 5	260	42	192	17	იო		4	Data #	DipDir	Dip A	zimuth	Plunge	Sense	Quality	mineral
12	195	85	256	202	0	9	4,3	12	340	80	65	34	4	-	1(cc), 2		0	6		61	0		coatings
13	268	55	295	51	0	-	4, 7	13	245	35	194	26	-	2	2, 1(cc)	- c	αç	79	53	70	2 1	- •	1(cc)
14	158	82	242	67	0	e	4	14	245	50	206	20	-	-	5	4 6	R7	2 5	247	PC	4 6		1(cc) hem
15 15	306	43	320	40 87	0 0	~ ~	4, 1(cc)	15 16	164 220	80 89	250 308	19 8	4 4	<i>т</i> с	1(cc), 2	9 4	350	45	52	39	5 01		1(cc), hem
₽ Ç	158	5 6	106	90	ч c		4, 1(cc)	<u></u>	220	8 8	300	o Ç	4 (*	ч г	1/cc)	5	340	53	26	42	2	-	4, hem
9	135	20	84	5 25	10		6,4	18	202	73	119	2 2	0 4		1(cc), 2	9	358	80	270	5	со	-	1(cc), hem
								19	35	65	124	23	4	-	1(cc), 2	2	ωų	85	282	24	с с		1(cc), hem
28	Söhld	e		Lat 52.18	2	Lona 10	2453	20	200	65	118	25	4	-	1(cc), 2	οσ	705	80 L	007	40	ņ.		1(cc), nem 1(cc) hem
ł		2			ı	0	Indicators +	5 5	182	6/	89	თ (4 •	- ,	1(cc), 2	0	18	: [-	318	65		, .	1(cc), hem
Data #	DipDi	ir Dip	Azimuth	Plunge	Sense	Quality	mineral	2 2	- 2	3	89	ь Г	4 +		1(cc), 2	; =	22	76	295	6		- 2	1(cc)
	-	-		•		•	coatings	3 6	47	3 8	00	4/ 58	- •	- •	1(cc), Z	12	17	84	289	10	e	-	1(cc)
-	121	74	100	72	0	e	4, 2	52	336	3 22	56	48			1(cc), 2 1(cc) 2	13	191	82	282	20	ო	-	1(cc), hem
0	42	56	42	56	0	-	2, 1(cc)	58	9	65	9	65	. 0	-	1(cc)	14	191	82	182	74	7	e	4
ر	266	2	216	62	0	0	4	27	15	73	15	73	0	-	1(cc), 2	15	93	80	185	-	e	en 1	4, hem
4 ı	271	6/	209	5	0 0	~ ~	4	28	28	85	108	43	4	-	1(cc), 2	16	107	35	107	35	0.	0,1	4, hem
6	10	4/	5	4/ 27	NC	2 0	5 C	29	10	70	68	47	4	-	1(cc), 2	11/	0/7	50	188	30	4 (1(cc), nem
0 1-	104	09	100	55	10	2 0	4,0	8	9	37	9	37	. .	-	1(cc)	o 6	517	65 65	۰ 41	20	20	- 0	4 1(cc). hem
- 60	115	69	88	65	10	10	0.4	31	348	2 2	265	თ (4 •	- ,	1(cc), 2	20	145	88	236	22	14	10	1(cc)
6	125	72	93	65	0	2	4, 3	3 8	346 346	88	258	л г	4 4		1(cc), 2 1(cc) 2	21	330	89	57	45	5	-	4, hem
10	263	72	306	68	0	ю	4, 3	3 8	350	3 2	12	- 65	- 1		1(cc), 2 1(cc), 2	22	358	60	47	50	-	2	4, hem
7	263	72	176	2	4	С	4, 3	35	344	75	318	71	-	-	1(cc), 2	23	342	84	65	10	4	-	4
4	8 +	45	80	45	~ ~	00	4°3	36	357	20	357	70	-	-	1(cc), 2	24 26	304	69	21	28	4 •	с с	4, hem
2 4	- 25	90	340 25	7C	10	4 6	0 Y									67 67	1010	9C	12 6	30 76	4 0	° °	4 hem
15	122	65	122	65 F	10	იო	0 m	30	charzfe	P	Ľ	at 51.61	6	Long 10	.391	27	325	52	31	29	4	4 m	4. hem
16	328	55	328	55	0	0	4							0	Indicators +	28	338	62	242	23	4	-	4, hem
17	130	72	111	70	0	e	4	Data #	DipDir	Dip A:	zimuth F	Iunge	Sense	Quality	mineral	29	359	75	16	75	7	e	4, hem
9	151	68	178	88	0 0	с ,	4	,		Ę	01			,	coatings	8	20	75	105	15	с с	. .	4, hem
R C	R0	DC ak	010	C/ 8	чc	- •	0 e	- c	84 010	20	1/8	01 4	4 •	- •	1(cc), 3	56	000	5 F	0/	7 ¢	° °		1(cc), nem
5 5	272	46	272	46	10		5 T	n w	110	²⁰	198	0 0	t 00		n w	33 2	331	85	245	2 9	04		4, nem 1(cc), hem
2	150	65	150	65	0	-	2	4	85	81	2	-	e	-	5	34	339	75	249	-	4	-	1(cc), hem
								5	324	68	234	5	4	-	2	35	336	22	68	5	4	-	1(cc), hem
89	Górazi	dze		Lat 50.52	9	Long 18	029									36	336	84	247	4	4.	<i>с</i> о	4
8					2	R IO	Indicators +									37 38	52 205	89	320	15	4 C	ς, τ	1(cc)
Data #	# DipDi	ir Dip	Azimuth	Plunge	Sense	Quality	mineral									300	198	12	287	17	10	- rc	4
		1		;			coatings									40	195	89	264	58	2	2	1(cc)
- 0	305	65	305	65	0 0		4 .									41	198	84	285	28	4	2	1(cc)
2 0	320	00	CR7	000	2 0		4 •									42	228	56	228	56	7	-	1(cc), hem
0 4	310	65	320	8 8	° °	o -	4 4									43	212	78	298 265	18	с с		1(cc), hem
5	320	85	280	75	10	- 0	4									44 AF	Z V	88 88	C97	۲ عد	ب מ		1(cc), hem
9	320	65	300	63	5	0	4									₽ ₽	ŧD	20	ŧ0	00	-	-	(nn) I
7	310	70	0	55	2	-	4																
ø	300	85	300	85	0	e	4																

lechtingen Lat {	jen Lat (Lat (Lat	52.3	15	Long 11.	21 ndicators +	35 D	önstedt		Ľ	at 52.25	Р	ong 11.3	33 Idicators +	36	Mamme	sndorf		Lat 52.1	78	Long 1	1.435 Indicators +
DipDir Dip Azimuth Plunge Sense Quality mineral	Dip Azimuth Plunge Sense Quality mineral	zimuth Plunge Sense Quality mineral	Plunge Sense Quality mineral	Sense Quality mineral	Quality mineral	mineral		Data # [ipDir D	ip Az	cimuth P	Junge \$	Sense	Quality	mineral	Data #	DipDir	Dip	Azimuth	Plunge	Sense	Quality	mineral
AA ON SIE 11 2 2 44200	on 215 11 2 2 4 200	21E 11 2 Coatings	t coatings	coatings	coatings	coatings			5		154	d	c	c	coatings	•	03	20	100	-	c	¢	coatings
44 00 313 11 3 3 3 1(cc) 48 76 320 5 3 1 1(cc)	00 313 11 3 3 3 1(cc) 76 320 55 3 1 1(cc)	313 11 3 3 1 1(cc) 320 5 3 1 1(cc)	5 3 1 1(cc)	3 3 1 1(cc)	3 1(cc)	1(cc)		- 0	200	2 2	147	5	04	10	1 (cc), nem 4 hem	- ~	00	60	160 160	- 0	იო	10	4, nem 4 hem
50 82 138 25 3 3 1(cc)	82 138 25 3 3 1(cc)	138 25 3 3 1(cc)	25 3 3 1(cc)	3 3 1(cc)	3 1(cc)	1(cc)		ო	54	78	142	5	4	-	1(cc), hem	ы	60	70	148	4	e	-	1(cc)
82 78 172 2 3 1 4 88 37 20 31 1 1 1/201	78 172 2 3 1 4 37 28 31 1 1 4	72 2 3 1 4 20 31 1 1 4	2 3 1 4 31 1 1 4	4 1 4	1 4	1(00)		4 u	20	75	140 136	9 6	4 4		1(cc), hem	4 v	43	81 85	134	- «	с , с		1(cc)
94 67 8 1 3 2 1(cc)	67 8 1 3 2 1(cc)	8 1 3 2 1(cc)	1 3 2 1(cc)	3 2 1(cc)	2 1(cc)	1(cc)		9 0	8 6	23	127	21	4		l(cc), hem	9	233	85	144	15	ი ო	- 0	1(cc)
58 47 2 29 3 2 4	47 2 29 3 2 4	2 29 3 2 4	29 3 2 4	3 2 4	2 4	4		7	34	35	120	40	4	-	1(cc)	7	32	84	119	19	4	-	4
40 70 44 69 2 3 1(cc)	70 44 69 2 3 1(cc)	44 69 2 3 1(cc)	69 2 3 1(cc)	2 3 1(cc)	3 1(cc)	1(cc)		ω	188	2 2	66	23	4 (. .	1(cc)	ωú	250	86	156	9 .	<i>с</i> о		1(cc)
1 33 82 14 4 1 1(CC)	33 82 14 4 1 1(cc) 74 200 0 <td< td=""><td>82 14 4 1 1(cc)</td><td>14 4 1 1(cc)</td><td>6 1 1(CC)</td><td>1 1(cc)</td><td>1(cc)</td><td></td><td>D (</td><td>011</td><td>2 2</td><td>25</td><td><u></u></td><td>n (</td><td></td><td>1(cc)</td><td>ה קי קי</td><td>007</td><td>00</td><td>N91</td><td>4 (</td><td>n 0</td><td></td><td>1(cc)</td></td<>	82 14 4 1 1(cc)	14 4 1 1(cc)	6 1 1(CC)	1 1(cc)	1(cc)		D (011	2 2	25	<u></u>	n (1(cc)	ה קי קי	007	00	N91	4 (n 0		1(cc)
50 /4 322 9 2 3 1(cc) 194 59 193 58 1 3 1(cc).4	74 322 9 2 3 1(cc) 59 193 58 1 3 1(cc).4	322 9 2 3 1(cc) 193 58 1 3 1(cc).4	9 ∠ 3 1(cc) 58 1 3 1(cc).4	z 3 1(cc) 1 3 1(cc). 4	3 1(cc) 3 1(cc). 4	1(cc) 4		9 ₽	104 288	1.08	19	20	იო		1(cc) 1(cc)	2 €	246	٥/ 85	160	v o	იო		1(cc), nem 1(cc)
194 59 96 2 3 3 1(cc)	59 96 2 3 3 1(cc)	96 2 3 3 1(cc)	2 3 3 1(cc)	3 3 1(cc)	3 1(cc)	1(cc)		12	354	78	288	23	4	-	1(cc)	12	262	86	175	14	e	2	4
183 60 235 47 1 1 1(cc), 4	60 235 47 1 1 1 1(cc), 4	235 47 1 1 1 1(cc), 4	47 1 1 1 1(cc), 4	1 1 1(cc), 4	1 1(cc), 4	1(cc), 4		13	61	60	338	23	с	5	1(cc)	13	262	75	185	21	е	-	1(cc)
1/2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /	74 255 35 3 1 1(cc)	256 35 3 1 1(cc)	35 3 1 1(cc)	3 1 1(cc)	1 1(cc)	1(cc)		14	66	2 6	340	11		24	1(cc)	14	C 97	18	1/3	5	n e	- c	1(cc)
1/9 /4 20/ 36 3 1 1(cc) 33 75 320 46 4 3 1(cc)	75 320 46 4 3 1(cc)	25/ 38 3 1 1(cc) 320 46 4 3 1(cc)	46 4 3 1(cc)	4 3 1(cc)	1 1(cc) 3 1(cc)	1(cc)		19	154	2.50	01 65	00 %	N 4		1(cc)	0 9	305	55	0 6	71	n m	2 0	4 4 hem
33 77 320 49 2 1 1(cc)	77 320 49 2 1 1(cc)	320 49 2 1 1(cc)	49 2 1 1(cc)	2 1 1(cc)	1 1(cc)	1(cc)		17	160	6	73	2	4	- - -	1(cc)	17	52	85	322	; co	4	, -	4
243 74 325 20 3 2 4	74 325 20 3 2 4	325 20 3 2 4	20 3 2 4	3 2 4	2 4	4		18	175	02	255	-	4	-	1(cc)	18	53	83	323	2	4	-	1(cc)
164 61 230 40 3 1 1(cc)	61 230 40 3 1 1(cc)	230 40 3 1 1(cc)	40 3 1 1(cc)	3 1 1(cc)	1 1(cc)	1(cc)		19	20	36	29	29	ო	e	4, hem	19	116	75	200	27	4	-	1(cc)
55 73 320 6 3 1 1(cc), chl	73 320 6 3 1 1(cc), chl	320 6 3 1 1(cc), chl	6 3 1 1 1(cc), chl	3 1 1(cc), chl	1 1(cc), chl	1(cc), chl		50	51	87	108	28	4		1(cc)	50	116	78	199	32	4		1(cc)
31 81 300 4 3 1 1(cc), chi	81 300 4 3 1 1(cc), chl	300 4 3 1 1(cc), chl	4 3 1 1(cc), chl	3 1 1(cc), chl	1 1(cc), chl	1(cc), chl		21	172		84	16	4 .		1(cc)	21	83	86	160	19	4 (1(cc)
76 74 130 25 3 1 1(cc) AD 87 3AA 73 1 1 1(cc)	74 130 25 3 1 1(cc) 87 344 73 1 1(cc)	130 25 3 1 1(cc) 344 73 1 1 1(cc)	25 3 1 1(cc) 73 1 1 1(cc)	3 1 1(cc)	1 1(cc)	1(cc) 1(cc) chl		3 13	166 160	2 33	11	20	4 4		1(cc)	28	310	73 86	236	C1 6	ю к		4 1/~~\ ham
40 0/ 344 /3 1 1 1(cc), cli	0/ 044 /0 1 1 1(00), 011 75 347 8 4 1 1(00)	347 8 4 1 1 1(cc)	8 4 1 1(cc)	4 1 1(cc), cill	1 1(cc), cm	1(cc)		24	169	52	84	35 4	4 4		1(cc)	74	303	78	215	° 6	4 4		1(cc) hem
57 70 346 39 4 2 1(qz)	70 346 39 4 2 1(qz)	346 39 4 2 1(qz)	39 4 2 1(qz)	4 2 1(qz)	2 1(qz)	1(qz)		52	191	2 92	101	900	4	- -	1(cc), 4	25	35	88	126	20	4	-	1(cc)
64 65 348 28 4 1 1(qz)	65 348 28 4 1 1(qz)	348 28 4 1 1(qz)	28 4 1 1(qz)	4 1 1(qz)	1 1(qz)	1(qz)		26	68	0	20	35	-	2	1(cc)	26	314	80	46	24	ы	-	1(cc)
42 69 2 70 4 1 1(qz)	69 2 70 4 1 1(qz)	2 70 4 1 1(qz)	70 4 1 1(qz)	4 1 1(qz)	1 1(qz)	1(qz)		27	114	9	23	e	e	-	1(cc)	27	70	20	348	25	ю	ю	1(cc)
215 35 177 26 1 1 1(cc)	35 177 26 1 1 1(cc)	177 26 1 1 1 1(cc)	26 1 1 1(cc)	1 1 1(cc)	1 1(cc)	1(cc)		28	20	32	348	20	e	-	1(cc)	28	104	70	16	8	4	-	1(cc)
52 80 322 6 4 2 1(cc)	80 322 6 4 2 1(cc)	322 6 4 2 1(cc)	6 4 2 1(cc)	4 2 1(cc)	2 1(cc)	1(cc)		29	140	92	55	e 4	4 .		1(cc)	29	106	69	185	24	4 •	0,	1(cc), 4
								30	144	90	59	10	4	-	1(cc)	30	121	88	208	24	4 0		1(qz), 1(cc)
(roppenstedt Lat 51.915 Long 11.29	stedt Lat 51.915 Long 11.29	Lat 51.915 Long 11.29	Lat 51.915 Long 11.29	15 Long 11.29	Long 11.29	29										6	228	8	142	21	ი ო		1(00)
Indicators +	Indicators +	Indicators +	Indicators +	Indicators +	Indicators +	Indicators +		57 F	olwark		Ľ	at 50.61	2 7	ong 17.9	60	33	112	80	202	7		. n	1(cc)
DipDir Dip Azimuth Plunge Sense Quality mineral	Dip Azimuth Plunge Sense Quality mineral	zimuth Plunge Sense Quality mineral	Plunge Sense Quality mineral	Sense Quality mineral	Quality mineral	mineral			į					-	idicators +	34	108	85	190	63	-	-	1(cc)
465 06 70 0 1 2 COAUNGS	oc 70 A 20 A	70 20 Coatings	20 1 2 Coatings	coatings	coatings	coatings		Data # L		AZ		unge :	sense	quality	mineral	35	113	86	196	61	-	e	4, hem
165 86 70 5 4 3 4	00 /0 ZU 4 3 4 86 70 5 4 3 4	70 55 4 3 4	20 4 4 20 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 0 00 4 4 4 4 4	0 m	4 4			260 6	55	275	60	0	-	codungs 4	36	115	87	206	4	4	-	1(cc)
10 89 282 73 2 2 4	89 282 73 2 2 4	282 73 2 2 4	73 2 2 4	2 2 4	4	4		- 6	250	2 22	260	53	10		4								
115 80 14 5 4 2 4	80 14 5 4 2 4	14 5 4 2 4	5 4 2 4	4 2 4	2 4	4		<i>с</i> о	250	00	265	55	0	-	4	56	Racibol	rovice		Lat 51.1	92	Long 1	5.709
271 81 1 1 3 2 1(cc)	81 1 1 3 2 1(cc)	1 1 3 2 1(cc)	1 3 2 1(cc)	3 2 1(cc)	2 1(cc)	1(cc)		4	266	0	270	38	0	-	4)	Indicators
284 85 186 5 3 2 4	85 186 5 3 2 4	186 5 3 2 4	5 3 2 4	3 2 4	2 4	4		5	157	6	157	40	2	-	4	Data #	DipDir	Dip	Azimuth	Plunge	Sense	Quality	mineral
86 88 174 1 3 2 4	88 174 1 3 2 4	174 1 3 2 4	1 3 2 4	3 2 4	2 4	4		9	144	45	144	45	0	-	4								coatings
260 87 352 2 3 2 4	87 352 2 3 2 4	352 2 3 2 4	2 3 2 4	3 2 4	2 4	4		7	120	22	112	50	0	-	4	-	42	50	42	50	-	-	1(cc)
								8	160	20	155	45	0	-	4	2	41	49	41	49	-	-	1(cc)
Tradenoised in the OTE in the COD	1 of 64 076 000 44 690	1 at 61 076 and 11 630	1 at 64 976 1 and 44 690	76 202 11 230	000 11 630	6.0		б	178	53	148	50	2	2	4	e	42	53	32	52	-	-	1(cc)
	COL 101010 101010 11.023	רמו מוימו מי רמו מוימד מ	רמו אויסו א ראווא וויסד א	10 FUIS 11.023	LUIS 11.043	670		10	135	42	135	42	0	ю	4	4	156	72	245	4	ю	e	1(cc)
Indicators +	Indicators +	Indicators +	Indicators +	Indicators +	Indicators +	indicators +		1	192	35	193	34	2	-	4	5	128	83	45	38	e	2	4
UIPUIT UIP Azimuth Plunge Sense Quality mineral	UIP Azimuth Plunge Sense Quality mineral	zimuth Plunge Sense Quality mineral	Plunge Sense Quality mineral	sense Quality mineral	quality mineral	mineral		12	144	20	118	56	0	-	4	9	204	61	238	57	-	2	1(cc)
coatings	coatings	coatings	coatings	coatings	coatings	coatings		13	195 6	22	195	62	0	-	4	- 2	51	34	78	27	-		1(cc)
240 40 252 38 2 2 4	40 252 38 2 2 4	252 38 2 2 4	38 2 2 4	2 2 4	4	4		14	184	00	161	58	0	-	4	. 00	42	85	40	80	0	ς Γ	1(cc)
238 42 247 20 2 2 4	42 247 20 2 2 4	247 20 2 2 4	20 2 2 4	2 2 4	4	4 .		15	190	1 12	182	49	0	-	4	,	ļ	:	!	;	I	,	lant.
248 40 1/4 8 4 1 4	00 000 F) 4 1 4	1/4 δ 4 1 4	α 4 - 1 4 7) 0 0 - 4	4	4 •	4 •		16	166	45	150	40	2	-	4								
				4 ·	0 ·	4 •																	
210 34 218 54 2 1 4	D4 Z18 D4 Z 1 4	210 54 2 1 4	24 Z 1 40	2 7 4	1 4	4																	

Site	Rock age	Stress state	Туре	n	σ 1-az	σ ₁ -pl	$\sigma_2\text{-az}$	σ ₂ -pl	σ_3 -az	σ ₃ -pl	R	Rest
1	Cretaceous	WET1	Strike-slip	5	205	10	330	73	113	14	0.1	
1	Cretaceous	WET2	Strike-slip	7	149	1	247	83	59	7	0.6	4
2	Cretaceous	RHE1	Strike-slip	4	34	1	299	78	124	12	0	
2	Cretaceous	RHE2	Strike-slip	7	181	2	80	80	271	10	0.1	
2	Cretaceous	RHE3	Tensional	10	157	89	5	1	275	1	0.3	0
3	Cretaceous	MID1	Strike-slip	15	227	1	119	87	317	3	0.2	
3	Cretaceous	MID2	Strike-slip	13	348	6	222	80	79	8	0.5	
3	Cretaceous	MID3	Tensional	8	211	82	17	8	107	2	0	4
4	Cretaceous	DÖR	Strike-slip	6	14	1	277	82	104	8	0.3	1
5	Cretaceous	LEN1	Compressional	6	230	6	138	13	344	75	0.1	
5	Cretaceous	LEN2	Compressional	15	24	0	294	4	114	86	0.1	
5	Cretaceous	LEN3	Strike-slip	6	236	5	124	77	327	12	0.5	
5	Cretaceous	LEN4	Tensional	7	0	90	130	0	193	0	0.0-0.1	4
6	Cretaceous	HÖS1	Strike-slip	12	201	11	51	77	293	6	0.3	
6	Cretaceous	HÖS2	Strike-slip	5	308	6	83	81	217	6	0.8	
6	Cretaceous	HÖS3	Tensional	5	0	90	200	0	290	0	0.5-0.6	0
7	Cretaceous	LIE1	Compressional	15	21	0	111	4	291	86	0.0-0.1	
7	Cretaceous	LIE2	Strike-slip	14	28	3	208	87	118	0	0.5	6
8	Triassic	HOL1	Strike-slip	9	23	12	235	76	115	7	0.2-0.4	
8	Triassic	HOL2	Strike-slip	5	108	0	0	90	18	0	0.4	0
9	Cretaceous	HIL	Compressional	7	202	14	294	10	58	73	0.3-0.4	3
10	Triassic	BIS1	Strike-slip	5	2	8	219	80	93	6	0.4	
10	Triassic	BIS2	Strike-slip	6	110	0	21	89	200	1	0.0-0.2	0
11	Cretaceous	HAL1	Compressional	5	13	9	282	8	151	78	0.0-0.1	
11	Cretaceous	HAL2	Compressional	16	208	1	298	20	115	70	0.1-0.2	
11	Cretaceous	HAL3	Strike-slip	6	196	4	91	74	287	15	0.1	4
12	Cretaceous	KÜN1	Strike-slip	9	231	8	18	81	140	5	0.3	
12	Cretaceous	KÜN2	Strike-slip	12	359	1	95	80	269	10	0.3-0.4	
12	Cretaceous	KÜN3	Strike-slip	12	318	2	218	79	48	11	0.2-0.3	
12	Cretaceous	KÜN4	Tensional	8	111	75	257	13	349	8	0.9-1.0	6
13	Jurassic	STE	Compressional	9	201	4	291	4	66	84	0.3	2
14	Triassic	BAR1	Strike-slip	4	241	0	331	80	151	10	0.3-0.4	
14	Triassic	BAR2	Strike-slip	5	339	1	244	79	69	11	0.2-0.4	1
15	Jurassic	ROH	Compressional	4	46	0	316	4	137	86	0.5	0
16	Jurassic	HAM	Strike-slip	4	293	6	147	83	24	4	0.6	3
17	Jurassic	LAU1	Strike-slip	4	259	2	79	88	169	0	0.0-0.5	
17	Jurassic	LAU2	Tensional	7	317	85	136	5	46	0	0.2	2
18	Jurassic	MAR	Tensional	6	173	80	58	4	327	9	0.3-0.4	3
19	Triassic	AVE	Strike-slip	5	211	0	0	90	121	0	0.1-0.2	1
20	Triassic	EMM1	Strike-slip	5	220	0	0	90	310	0	0.6	
20	Triassic	EMM2	Strike-slip	9	312	0	0	90	222	0	0.4-0.6	0
21	Triassic	HAR	Strike-slip	10	201	2	301	79	111	11	0	3
22	Cretaceous	MIS1	Strike-slip	6	183	2	318	87	93	2	0.4	
	Cretaceous	MIS2	Tensional	43	308	89	189	0	99	1	0	6
23	Triassic	ELV1	Tensional	22	0	90	167	0	77	0	0	
23	Triassic	ELV2	Oblique	32	65	0	155	34	335	65	0.1	
23	Triassic	ELV3	Strike-slip	30	39	0	0	90	309	0	0.2	
23	Triassic	ELV4	Strike-slip	15	/	10	187	80	97	0	0.2-0.4	21
24	Triassic	VOG	Strike-slip	5	202	12	3	11	111	4	0	8
25	Triassic		Compressional	11	6	4	2/9	1	161	84	0.3	1
26	Triacsic	UPST	I ensional	24	02	8/	242	3	152	0	0.0-0.1	
20	Triagolia	UP52	Strike slip	20	247	0	0/	64	337	0	0.2	
26	Crotoso	UPS3	Strike-slip	4	29	70	153	83	299	6	0.001	1
27	Cretaceous	BADI	Tensional	4	2/0	18	90	12	180	7	0.0-0.1	4
21	Cretaceous	DAUZ	rensional	10	311	03	210	1	120	1	0.1	4

Site	Rock age	Stress state	Туре	n	σ 1-az	σ ₁ -pl	$\sigma_2\text{-az}$	σ ₂-pl	σ_3 -az	σ3 -pl	R	Rest
28	Cretaceous	SÖH	Tensional	20	14	86	182	4	272	1	0.0-0.1	2
29	Cretaceous	LAN1	Oblique	15	58	12	319	35	164	52	0.4	
29	Cretaceous	LAN2	Compressional	8	28	9	295	15	147	72	0.4	
29	Cretaceous	LAN3	Strike-slip	8	226	2	328	81	136	9	0.4	5
30	Permian	SAR	Strike-slip	4	207	7	73	80	298	7	0.0-0.1	1
31	Cretaceous	WEN	Compressional	5	160	5	251	7	35	82	0.0-0.1	1
32	Carboniferous	BOD1	Strike-slip	11	227	2	128	78	317	12	0.2	
32	Carboniferous	BOD2	Strike-slip	16	319	1	184	89	49	1	0.6	
32	Carboniferous	BOD3	Tensional	13	83	83	298	6	208	4	0.2	5
33	Carboniferous	FLE1	Strike-slip	8	212	4	32	86	302	0	0.0-0.1	
33	Carboniferous	FLE2	Strike-slip	6	177	4	283	75	86	14	0.4-0.5	
33	Carboniferous	FLE3	Strike-slip	10	292	8	92	81	202	3	0.7-0.9	5
34	Triassic	KRO	Strike-slip	7	16	8	262	71	109	17	0.1	1
35	Carboniferous	DŐN1	Strike-slip	20	44	6	154	73	312	16	0.2	
35	Carboniferous	DÖN2	Strike-slip	6	109	2	13	71	200	19	0.3-0.9	4
36	Carboniferous	MAM1	Strike-slip	24	185	10	348	80	94	3	0	
36	Carboniferous	MAM2	Strike-slip	9	270	0	0	90	180	0	0.5-0.6	3
37	Triassic	FÖR	Tensional	4	278	90	154	0	64	0	0	1
56	Triassic	RAC	Compressional	5	47	8	135	1	235	81	0.6-0.9	3
57	Cretaceous	FOL1	Tensional	12	164	86	255	0	345	4	0.2	
57	Cretaceous	FOL2	Tensional	4	306	83	170	5	80	5	0.5	0
58	Triassic	GOR	Tensional	7	133	80	42	0	312	10	0.1-0.2	1

	Dip	40	41	ន	20	27	1	26	ę ,	25	22	16	5	б ч	n 88	84	55	8.	4 6	5 -	26	32	43	р К	24	26	27	35	59 f	28	19	19	26	15	34 10	28	38	19	17	14	21 10	15	15 10	24	34	45
	DipDir	70	84	113	6/	8 F	96	73	50	210 78	0	130	135	316	02	99	48	95	8 6	76	155	76	106	110	92	74	80	60	67 88	101	72	cc 99	71	38	113	134	23	148	164	76	34 65	32	118	138	139 185	189 72
lanes	ata#	24	25	26	27	29 20	30	31	32	34	35	36	37	38	60 A	41	42	43	44 45	46	-	-	0 0	5 4	t 10	9	7	œ د	ء 10	1	ç ;	13	15	16	18	19	50	52	23	24	25 26	27	28	30	31	33
ding p	te D	e E	e							0.00		8		~ ~	<u> </u>						4	0	10 1	0 10	0 10	2	6	0	0 10	2	5	0.10	5 10	6	0 10	2	۰ <u>۵</u>	0 10	6	0	0.0	10	6.6	2 10	6.6	
Bed	Si	Ń	Ń	20	Ň Č	10	Ň	20.0	ŃČ	10	101	6	20.0	64 č	ú ří	6	Ń	20.0	ŃÔ	1 74	0	Ň	R1 7	ŇÕ	1 71	Ñ	20.0	ςί č	10	Ň	τi 7	10	101	či (10	Ň	τ ί τ	1 71	N I	20	~ ~	Ň	ñ ñ	101	7 N	0.0
	k age	Ē	E	E	Εį	E ,E	E	E	E į	e je	Ē	리	르 .	23	<u></u> , E	E	E	E	E E	E	Ē	E	E	E ,E	E ,E	E	E	E	E E	렸	E j	e e	E,E	E	E E	E	E.	E E	E	E	E E	E	E E	E.E	E .E	E,E
	p roc		-				-					,	ĺ		, L	-	7				4	2	- ·			5			 + 0	6			. –			-			6	۳ – ۱ ۳		-			 	
	Dir Di	54 7	1	- ·	6 4 6	2 2	1	4 9	۵. ۵.	- e	10	5	22	2 2	9 6 9 6	9	1	5 5	9 ic 7 ig	9 9 9	3	5	e .	~	- ~	3	8		0 CI	8	66		20	55	- 4 0 0	33	5	0 10	9	=	4 0 0 7	2			1 8	8 2 8
set	# Dip	26	18	8		202	20	53	4 6	- 6	58	26	53	ດະ	1	4	12	5:	1 8	4	20	80	81	1 6	3 9	1	- 1	÷.	- 0	5	F ;	4 L	: ₽	58	- 8	28	e .	4 83	54	53	8 8	36	50	5	ę 6	92
ig plar	Data	7	80	6	; 10	12	13	14	15	17	18	-	~ ~			0	e	4 1	n (4	~	80	6	- (2 6	4	-	0 0	т	t 10	-	- 0	2 60	4	ŝ	0 1-	80	б ;	2 €	12	13	4 1	16	17	19	20	3 23
Beddin	Site	14	14	14	4 4	± 4	14	4	4 4	4 4	4	16	16	17	19	19	19	19	2 0	19	19	19	20	0.2	20	21	21	5 5	5 5	22	53	23	23	53	53	23	33	5 23	23	23	33	23	23	23	23	53 53
	e																																													
	rock ag	Trm	Trm	Ē	Ē	Ē	Trm	đ	88	3 ð	T_T	Trm	Ĕ,	Ē	<u></u>	Trm	Trm	Ē	E E	đ	đ	đ	7	3 ð	3 2	đ	đ,	है है	3 3	Cta	ह ह	<u></u>	리	리	러	ЪГ	리	러	리	Ę.	릭력	Ę	z f	L L	Ē	ĒĒ
	Dip	6	34	15	; 10	35	10	35	00	50	35	18	ω (9	2 ₽	13	e	17	44	49	35	43	49	41	44	45	32	44	31 2	32	24	8 23	15	12	16 20	19	50	32	39	39	38	30	13	12	1 1	40
	DipDir	355	40	35	140	354	300	196	203	198	46	356	100	150	19	162	230	357	346	£ 6	÷	30	26	54 74	26	26	;	226	222	219	230	230	350	35	350	333	88	355	359	178	215	4	238	206	208	62 235
olanes	Data#	20	21	នេះ	8	55 4	26	- (0 0	04	-	2	<i>с</i> .	4 u	n u	7	8	6,	5 5		2	e	4 ı	റയ	2 1	80	<u>в</u> ,	- c	NΒ	4	5	9 1	. .	0 0	04	5	9 1	~ 00	6	9	5 5	13	4 +	- 0	e م	6 5
lding p	te	~	~	~	~ ~		~	~ (. 0	0	0 0	0 0		0	0	0 0		, -	-	-				-		~ ~	10	2	0 0	2 0	10	ლ ი	იო	е		იო		е С			е ч	4	4 4	4 4
Bec	Si	2	~				~			,, 0.	, -	-				-	-				-	-				-				-			. –			-			-	-		-				
	k age	Ŗ	Ţ,	z,	Ŗį	,	Ę	z,	R J	R A	R R	Ę	z,	z,	₹,	Ŗ	Ę	Ŗ	R A	R R	Ŗ	Ŗ	z,	R A	, z	Ţ,	Ŗ	z,	R R	Ę,	Ŗ	R A	렸	E	E E	E	E	E .E	E	E	E E	E	EE	E.E	.E .E	E,E
	p roc	2		0			0	~		0.10		0	_				0				0	0				0	_		0 0							-				н і ю						
	Dir Di	4 1	1 6	2	÷ č	, P	22	20	80	0 0	5 4	2 8(50	20	5 E	5 35	15 4(8 ·	4 4	80	8 75	15 6(55 4		÷ ₩	2	2	0	- ₩	0 24	500	2 6	8	6 0	0 12	5	2 2 2	22 ¥	8	90 90	0 8 77 33	1	89 0	6 17	≍ 9 ≈ 8	000
les	# Dip	12	13	7	5	20 °	7(19	22	2 8	19	19	19	15	28	19	19	21	2 5	12	21	20	18	- 2	1 1	21	21	15	19	17	1 18	71	ñ	én 🕯	+ 0	10	16	5 6	19	19	15 18	18	24 16	1	18	23 35
g plar	Data	-	0	e .	4 4	о с	-	- (0 0	n -	. 0	с	4 :	ŝ	0 1-	80	6	ę ;	= 5	13	14	15	16	- 0	4 M	4	5	. (чю	4	5	9 1		- (νm	4	5		ø	б	5 5	12	13	15	16	19
leddin	Site	-	-	-		- ~	с	4 .	4 •	4 vC	s S	5	5	ŝ	n n	5	2	5	n v	с С	5	5	ŝ	۵ ۵	9 0	9	91	~ ~		7	r 1		. ~	¢0 ¢	0 00	8	œ ٥	0 00	8	8	co co	80	œα	ŝ	œ «	000
Ξ																																														

Appendix A – Part 3

	ock age	E L	L L	T a	Trm	Trm	Trm Trm	Tra	Trm	Trm	Trm	E F	Trm Trm	L E	Trm	Trm	Trm	T T	Tra	Ctu	Ctu	Ctu	23	cta C	Ctu	Ctu	Ctu	55	Tra	Trm	Pru	Pru	Pru	Pru	Trm	Trm	T T	L m	Trm	Trm	Trm	Trm	E	Trm	Trm	Trm	E ji		고 기 디
	Dip	33	8 6	88	30	2	57 F	29	27	28	37	41	31	3 8	80	65	е ·	- 4	24	12	15	20	15	18	17	15	34	53	ŧ €	2	50	31	o 26	9 9	17	20	12	0 ² 4	27	32	16	20	₽ ;	28	36	32	28	6L 08	15
	DipDir	173	200 61	51	59	154	98 286	202	102	133	162	147	E 8	100	20	34	103	308	284	135	138	125		43 64	46	26	12	66	296	50	150	352	63	300	352	332	68	51	218	38	16	43	47 02C	175	195	182	16	۲¢ ۲	18
planes	Data#	35	37	38	39	40	40	43	44	45	46	47	40	20 20	51	52	- (2	• 4	-	-	00	n •	- 1	0	ю	4	ۍ س	o –	-	-	0	e ₹	2	-	0	- c	v m	4	5	9	~ 4	οd	10	; =	12	13	- 0	i m
Bedding	Site	25	67 52	25	25	25	c7 42	25	25	25	25	25	52 S	25	25	25	50	8 %	8 2	27	28	28	Ω7 αC	29 29	29	29	29	29	34	37	38	38	38	38	40	40	44	4 4	41	41	41	41	14	4 4	41	41	41	43	43

	rock age	Jru	Trm	Tra	E F	- L	Jru	Jru	đ d	38	3 ð	E C	L L	Trm	Trm	Ē	Ē	Ē	Ē	T_T	Trm	Trm	E T	E F	E E	Tra	Trm	Trm	Ē	£,	E F	ĒĒ	L T	Trm	Trm	E,	E .	E E	Trm	Trm	E I	Ē	E #	Ē	Trm	Trm	Trm	E,	E 4	Ē	Ē
	Dip	12	27	20	۰ 1	4	4	34	65	5	99	80	17	16	25	ø 1	ŝ	0 0	0 4	. 0	15	16	19	4	2 E	20	10	ო	6	m :	; 1	20	9 6	10	4	9	50	22	60	35	47		4 0	22	70	75	30	54	50 60	37	25
	DipDir	338	9	20	209	286	60	31	12	67 G	24	107	86	98	98	115	88	136	125	188	196	199	198	89	4z 220	182	220	42	46	2/0	8	21	16	14	164	22	350	28	24	256	99	103	all.	30	230	228	40	28	193 15	206	251
planes	Data#	4	-	0	. .	ب ۱	0	-	- 0	2	04	• •	. 6	e	4	5	9,	- 0	10	4	5	9	2	ωc	» 6	; =	12	-	0	ю ·	4 4	с ю	~	8	6	÷ (2 0	04	5	9	7	co c	א קי ת	2 €	12	13	14	15	9 1	18	6
Bedding	Site	43	45	45	46	48	48	50	52	22	70	53	23	53	53	53	23	40.4	5 75	54	54	54	54	5 2	54	54	54	55	55	6 6	55	55	55	55	55	56	20 9	20	56	56	56	56	000	20	56	56	56	56	20 8 8	20	56

	rock age	Trm																				
	Dip	39	12	50	20	42	25	34	80	23	50	27	34	30	55	78	60	25	40	45	40	55
	DipDir	42	25	39	217	28	285	43	78	5	48	210	211	30	246	80	260	20	22	228	70	30
g planes	Data#	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Bedding	Site	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56

	Mineral	8	8	8 8	3 8	3 8	8	8	8	8	8	8	8	8	8	88	3 8	8	8	8	8	8	8	88	8 8	88	3 8	8	8	8	8	8	88	3 8	3 8	8	8	8	CaF2	cc, CuFeS2	8 2	200	cc, CaF2	qz, CaF2	8	8	8 8	3 8	qz, cc	8	S
	Dip	88	80	60	20	88	75	82	88	76	83	86	74	83	12	0	8 6	88	82	06	84	85	80	80 00	N N	02	75	84	72	89	82	75	85 85	8	73	85	78	80	20	18	4 C	21	75	67	65	87	5/	81	88	86	89
	DipDir	118	186	005 9	176	217	236	133	34	114	116	92	292	318	205	007	357	6	247	270	222	210	200	202		65 65	345	70	52	205	160	179	344	340	356	352	54	44	65	20	10	62	22	50	99	21	89	259	64	83	118
	Data#	-	- (2 0	, .	- 0	ю	-	0	-	0	e		- (N 7	- ‹	4 00	4	-	2	e	4	ŝ	9 10	- 0	οσ	, p	1	12	13	-	0,	- 0	1 9	04	5	-	0	e .	4 u	<u>ہ</u>	~	80	6	-	00	m ◄	t -	2	e	-
Veins	Site	4	00 0	0 0	5 ¢	0	10	1	1	12	12	12	14	1	17	- F	2 5	51	23	23	23	23	23	52 62	3 5	5 2	23	23	23	23	25	25	32	3 6	32	32	33	33	33	33	5 5	3 8	33	33	35	35	35	36	36	36	51

Appendix B

Raw data and estimated stress tensors from the Oslo Graben area

Part 1: Fault-slip data.

Lat: Latitude [°N] – Long: Longitude [°E] - DipDir/Dip: dip direction and dip of fault plane – Azimuth/Plunge: azimuth and plunge of striae – Sense: 1-reverse, 2-normal, 3-dextral, 4-sinistral – Quality of kinematic indicators: 1-excellent, 2-good, 3-poor.

Part 2: Reduced stress tensors. az/pl: Azimuth and plunge of the principal stress axes σ_1 , σ_2 , σ_3 ($\sigma_1 \ge \sigma_2 \ge \sigma_3$). R: Stress ratio, R=(σ_2 - σ_3)/(σ_1 - σ_3).

Part 3: Bedding planes, dykes, and veins. DipDir/Dip: dip direction and dip of plane.

Σ
Σ.
žž
Σ
Ň
ΣΞ
~
_
< .
2 2
Ξ
Σ
M.
Ň
Σ. Σ
E E
.998
_
2 2

54	Source	M. Heeremans																									
Long 10.6	Quality	-	-	ო	-	-	-	-	2	-	-	0	-	-	ო	-	2	-	e	2	-	-	2	-	-	-	-
	Sense	-	0	0	0	0	2	2	e	-	-	0	0	ო	0	ო	-	2	-	2	0	0	0	0	-	0	0
Lat 60.66	Plunge	77	63	42	46	68	45	86	23	58	89	99	86	8	35	13	61	49	53	63	34	58	42	41	33	61	72
	Azimuth	210	299	142	216	1	210	290	326	198	288	266	347	283	286	282	127	56	133	72	269	102	79	87	95	250	303
_	Dip	78	72	55	54	71	50	86	80	86	89	87	86	68	76	64	80	70	74	81	70	61	54	55	78	79	81
Bøverbu	DipDir	185	350	193	175	44	177	290	240	114	272	183	347	196	206	199	199	351	200	360	193	129	128	140	177	181	4
5	Data #	-	2	e	4	5	9	7	8	6	10	1	12	13	14	15	16	17	18	19	20	21	23	23	24	25	26

M. Heeremans M. Heeremans Heeremans Heeremans M. Heeremans M. Heeremans M. Heeremans M. Heeremans M. Heeremans Heeremans Heeremans Heeremans Heeremans Heereman Heereman Heereman Heereman Heereman Heereman Heereman Heereman Heereman Heeremar Heeremar Heeremar Heeremar Heeremar Heeremar Heeremar Heeremar Source Heeremar M. Heerema M. Heerema Heerema Heerema Heerema Heerema Heerema Heerem M. Heerem Long 10.502 Quality S N N X X X X X X 00---0----Sense Lat 60.413 Plunge Brandbu 9 Data # $\begin{smallmatrix} & 1 \\ & 2 \\ &$ - 0 m M. Heereman Source Heereman Heereman Long 10.560 Quality S z z z × 5 Sense **Piper Circle Constraints Discrete State Discrete State Circle State Circle State Circle State Circle State Circle State Circle St** loen DipDir Data # Source Source Heeremai Heerema Long 10.717 Quality S 2 M.H .ong 10.471 Quality Sense 2 Sense ~~~~~~~~ gip Skari DipDir 6 Data # Data #

International bit in the proper control of a proper contro proper control of a proper control of a proper control of a prop
22 73 73 74 75 74 75<
And Dipolity Dip Animuth Fundage Series Cuality Source Data at Dipolity Dip Animuth Fundage Animuth Fun
All Dipol Dip All metry Series Cuality Source Data by logs Dipol Dipol <thdipol< th=""> <thdipol< th=""> <thdipol< t<="" td=""></thdipol<></thdipol<></thdipol<>
All Dipir Dip Charter Distant Dipir Dipi
International bioling Source Data is a Diplot Diplot Alimuth Data Diplot Diplot Alimuth Data is a Dip
Image Difference Difference </td
Image Description Description <thdescripion< th=""> <thdescription< th=""> <thdes< td=""></thdes<></thdescription<></thdescripion<>
Att Diplic Dip Atimuth Purope Servet Data Diplic Dip Atimuth Purope Servet Data Diplic Dip Atimuth Purope Servet Diplic Dip Atimuth Purope Atimuth Atimuth
Ath FlipDir Dip Alimuth Funder Punge Sense 61 320 30 310 37 1 2 M. Hoeremans 1 348 62 348 62 348 62 348 62 2 2 M. Hoeremans 3 114 71 31 19 4 1 65 164 77 128 M. Hoeremans 3 114 71 31 19 4 4 66 114 71 31 19 4 1 M. Hoeremans 5 344 82 37 79 2 2 66 114 77 31 18 4 1 M. Hoeremans 7 37
Ath Digitality Source Data Digitality Number Source Data Digitality Number Source Digitality Digitality <t< td=""></t<>
Ath Dipolity
Ath DipDir Dip Atimuth Funge Sense Quality Source Dia DipDir Dip Atimuth Funge Source Dia DipDir Dip Atimuth Funge Source Dia Dip
Ath DipDir DipDir <thdipdir< th=""> <thdipdir< th=""></thdipdir<></thdipdir<>
Ath Filter Cource Data Lin 61 322 73 274 66 2 2 M. Heeremans 3 1 2 65 164 84 164 66 2 2 M. Heeremans 3 1 3 65 164 84 164 84 1 1 M. Heeremans 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 2 M. Heeremans 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 1 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 </td
Atta # Dipolity Azimuth Plunge Sense Quality Source Da 61 322 73 274 66 2 2 M. Heeremans 65 322 73 274 66 2 2 M. Heeremans 66 114 71 31 19 4 1 M. Heeremans 66 114 71 31 19 4 1 M. Heeremans 66 114 71 31 19 4 1 M. Heeremans 67 167 77 128 74 2 2 M. Heeremans 77 311 68 37 37 2 1 M. Heeremans 77 311 68 237 317 2 1 M. Heeremans 77 311 68 237 31 2 1 M. Heeremans 77 344 83 23 16 4
Mark Dipolity Azimuth Plunge Sense Quality Source 61 322 73 274 66 2 2 M. Hoeremans 65 322 73 274 66 2 2 M. Hoeremans 66 114 71 31 19 4 1 M. Hoeremans 66 114 71 31 19 4 1 M. Hoeremans 66 114 71 31 19 4 1 M. Hoeremans 66 114 71 31 19 4 1 M. Hoeremans 77 325 89 327 16 4 1 M. Hoeremans 77 304 84 37 2 1 M. Hoeremans 77 128 74 23 37 2 1 M. Hoeremans 77 305 81 2 1 M. Hoeremans M. Hoeremans
Atta # Diplic Dip Azimuth Plunge Sense Quality 61 322 73 274 66 2 2 2 65 322 73 274 66 2 2 2 65 167 77 128 74 66 2 2 2 66 114 71 31 19 4 1 1 66 114 71 31 19 4 1 1 77 325 88 337 79 2 1 1 77 325 81 237 79 2 1 1 77 326 81 327 16 4 1 1 77 121 82 74 84 1 1 1 77 321 81 327 16 2 2 2 77 323 81 <
Ata # DipDir Dip Azimuth Plunge Sense 61 322 73 214 66 2 62 322 73 214 66 2 64 348 62 281 66 2 65 164 84 14 71 31 1 66 114 71 128 74 86 2 67 167 77 128 74 84 1 67 167 77 128 74 2 2 68 354 82 37 79 2 2 77 311 68 37 37 79 2 77 311 68 231 87 37 2 77 342 89 37 37 37 2 77 342 88 34 88 4 2 77 342 88 234 88 2 2 77 244
Atta # Dipolit Dipoliti Dipolit Dipolitit
Attal Dipolit Dipolitit Dipolitit Dipolitit
Ata DipDir Dip Az 61 329 329 39 65 348 66 329 73 66 324 86 68 329 73 66 167 71 31 84 71 66 167 71 71 71 71 67 167 71 71 84 71 77 167 71 82 89 354 84 77 305 81 82 305 81 77 77 311 68 343 85 84 311 68 77 3305 81 130 66 81 333 56 81 333 333 56 83 333 333 56 83 333 333 56 83 333 333 56 56 56 56 56 56 56 56 <td< td=""></td<>
Atta DipDir 61 329 65 322 66 328 66 328 67 348 67 167 71 124 77 354 73 354 77 311 77 311 77 311 77 313 77 343 77 343 77 343 77 343 77 343 77 343 77 244 77 244 77 244 77 244 77 244 73 330 88 343 88 343 88 344 77 244 77 244 77 244 733 333 88 346 88 346 91 50 91 263 92 345 93 345 94 503 95 345 17 293 18 346
1 1 1 1 1 1 1 1

M. Heeremans M. Heeremans Heeremans Heereman Heeremans Heeremans Heereman Heeremar Heeremar Heeremar Heeremar Heerema Heeremar Heeremar Heerema Heerema Heerema Heerema Heerema Source Heerem Long 10.310 Quality S W N N Ň ž Sense 00000-000000000 Lat 60.132 $\begin{array}{c} \mathbf{6} \\ \mathbf{$ Åsa DipDi 17 Data #
 11
 12
 12
 12
 13
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14< - 0 m Heereman M. Heereman Heereman Heereman Heereman Heereman Heereman Heereman leereman Heereman leereman Heereman Heereman Heereman Heereman Heereman Heereman leereman Source Heeremar Heereman Heeremar leeremar Heereman Cuality S Quality S 2 M.H 2 M.H 2 M.H 2 M.H Σ XXXX s S 5 5 Sense Azimuth **Pinet Pinet Pinet** DipDir Srymy 15 Data # Source Source Source Source . Saintot . Saintot Long 10.601 Long 10.379 × N Long 10.384 Quality Quality Quality 10.3466 Qualit 6 0 0 0 0 0 0 0 0 0 0 0 0 N N T Sense Sense Sense 0000004-000 0 0 0 0 0 0 0 - N Lat 60.115 Lat 60.277 **Plunge** 80 25 59 25 79 79 Plunge 23 88 88 88 88 60.0977 Azimuth 97 62 62 113 115 116 116 305 105 91 90 102 Azimuth 235 313 89 91 72 72 95 Azimuth 34 2202 2022 2027 2077 108 89 89 89 89 89 89 89 327 93 327 3327 3327 3327 345 184 Stubdalskampen **Dip** 80 80 80 71 71 79 79 ы 88 89 Dipplir 70 77 77 77 61 174 56 33 33 33 71 71 DipDir 95 68 237 DipDir 235 239 60 135 226 52 52 95 Jevnak Roa DipDi 100 260 260 260 117 117 148 148 148 148 148 148 165 304 165 165 55 19 Data # 14 Data # 16 Data # Data - 0 0 3 9 4 0 7 0 0 4 9 0 1 ≌

und Lat 60,069 Long 10.300 Dip Azimuth Plunge Sense Quality Source 85 197 68 1 1 M. Heeemans	Lat 60.069 Long 10.300 Azimuth Plunge Sense Quality Source 197 68 1 1 M. Heremans	Lat 60.069 Long 10.300 Plunge Sense Quality Source 68 1 1 M. Heeremans	Long 10.300 Sense Quality Source 1 M. Heeremans	Long 10.300 Quality Source 1 M. Heeremans	300 Source M. Heeremans		21 Data # 1	Sundvoll DipDir 286	en 3 Dip A: 59	L 205	.at 60.056 Plunge \$	Sense 2	ong 10.2 Quality 1)5 Source M. Heeremans	24 Data # 1	Sørked DipDir 115	al Dip	Azimuth 199	Lat 60.010 Plunge 29	Sense	Long 10.61 Quality 1	Source A. Saintot
71 237 69 2 1 M.Heerenmans 2 116 83 49	237 69 2 1 M Heatermans 2 116 83 49	69 2 1 M.Haeremans 2 116 83 49	2 1 M. Heerermans 2 116 83 45	1 M. Heeremans 2 116 83 49	M. Heeremans 2 116 83 49	2 116 83 49	116 83 49	83 49	8 9	. ~	3 23	1 +		M. Heeremans	- ~	180	40	170	40			A. Saintot
54 312 40 2 1 M. Heeremans 3 110 70 76	312 40 2 1 M.Heeremans 3 110 70 76	40 2 1 M. Heeremans 3 110 70 76	2 1 M. Heeremans 3 110 70 76	1 M. Heeremans 3 110 70 76	M. Heeremans 3 110 70 76	3 110 70 76	110 70 76	70 76	76		99	. 0	-	M. Heeremans	1 ო	116	26	27		4	- 64	A. Saintot
78 310 74 2 1 M.Heeremans 4 110 70 15	310 74 2 1 M. Heeremans 4 110 70 15	74 2 1 M. Heeremans 4 110 70 15	2 1 M. Heeremans 4 110 70 15	1 M. Heeremans 4 110 70 15	M. Heeremans 4 110 70 15	4 110 70 15	110 70 15	70 15	15	80	61	2	-	M. Heeremans	4	118	78	194	49	-	2	A. Saintot
75 332 44 1 1 M.Heeremans 5 110 70 3	332 44 1 1 M. Heeremans 5 110 70 3	44 1 1 M. Heeremans 5 110 70 3	1 1 M. Heeremans 5 110 70 3	1 M. Heeremans 5 110 70 3	M. Heeremans 5 110 70 3	5 110 70 3	110 70 3	70 3	ŝ	6	42	0	-	M. Heeremans	2	181	35	171	35	0	2	A. Saintot
52 293 28 2 1 M.Heeremans 6 267 43 28	293 28 2 1 M.Heeremans 6 267 43 28	28 2 1 M. Heeremans 6 267 43 28	2 1 M. Heeremans 6 267 43 26	1 M. Heeremans 6 267 43 26	M. Heeremans 6 267 43 28	6 267 43 28	267 43 28	43 28	88	<u>ട്</u>	41	0 0	. .	M. Heeremans	601	180	68	164	67	0 0	0 0	A. Saintot
89 32 38 2 1 M. Heeremans / 260 05 25 60 26 60 26	32 38 2 1 M. Heeremans / 250 95 29 26 26 26 26 26 26 26 26 26 26 26 26 26	50 Z 1 M. Heeremans / Z6U 50 Z6 54 1 M. Laconomon 8 255 21 26	2 1 M. Heeremans / 250 05 25 1 1 M. Horremans 8 265 21 26	1 M. Heeremans / 25U 00 25 1 M. Horomono 8 255 21 26	M. Heeremans / 25U 55 25 M. Horomono 8 255 21 26	8 255 21 26 8 255 21 26	260 00 23	200	N C	2 5	79	2 1		M. Heeremans M. Heeremans	ς α	180	5 6	120	79	NC	2 6	A. Saintot
74 96 72 2 1 M. Hantermans 9 255 51 2	200 04 1 M.Heeremans 9 255 51 2	72 2 1 M.Heeremans 9 255 51 2	2 1 M. Heeremans 9 255 51 2	1 M. Heeremans 9 255 51 2	M. Heeremans 9 255 51 2	9 255 51 2	255 51 2	12	4 (4	78	49	10		m. recremans M. Heeremans	0 0	125	69	197	39	4 -	2	A. Saintot
77 295 72 1 1 M. Heeremans 10 273 61	295 72 1 1 M. Heeremans 10 273 61	72 1 1 M. Heeremans 10 273 61	1 1 M. Heeremans 10 273 61	1 M. Heeremans 10 273 61	M. Heeremans 10 273 61	10 273 61	273 61	61		284	61	0	~	M. Heeremans	10	120	20	185	49	-	0	A. Saintot
76 52 70 2 1 M.Heeremans 11 264 57	52 70 2 1 M. Heeremans 11 264 57	70 2 1 M. Heeremans 11 264 57	2 1 M. Heeremans 11 264 57	1 M. Heeremans 11 264 57	M. Heeremans 11 264 57	11 264 57	264 57	57		293	53	0	-	M. Heeremans	5	113	73	187	42	-	2	A. Saintot
35 297 35 2 1 M. Heeremans 12 272 85	297 35 2 1 M. Heeremans 12 272 85	35 2 1 M. Heeremans 12 272 85	2 1 M. Heeremans 12 272 85	1 M. Heeremans 12 272 85	M. Heeremans 12 272 85	12 272 85	272 85	85		358	38	-	-	M. Heeremans	12	240	83	156	42	-	2	A. Saintot
30 310 23 2 1 M. Heeremans 13 100 73	310 23 2 1 M. Heeremans 13 100 73	23 2 1 M. Heeremans 13 100 73	2 1 M. Heeremans 13 100 73	1 M. Heeremans 13 100 73	M. Heeremans 13 100 73	13 100 73	100 73	73		06	73	0	-	M. Heeremans	13	250	74	173	38	-	0	A. Saintot
70 326 47 2 1 M. Heeremans 14 268 67	326 47 2 1 M.Heeremans 14 268 67	47 2 1 M. Heeremans 14 268 67	2 1 M. Heeremans 14 268 67	1 M. Heeremans 14 268 67	M. Heeremans 14 268 67	14 268 67	268 67	67		268	67	0	-	M. Heeremans	4	120	99	168	57	-	0	A. Saintot
72 309 68 1 1 M.Heeremans 15 2/1 59	309 68 1 1 M.Heeremans 15 2/1 69	68 1 1 M. Heeremans 15 2/1 69	1 1 M. Heeremans 15 2/1 69	1 M. Heeremans 15 2/1 69	M. Heeremans 15 2/1 69	15 2/1 69	2/1 69	60		341	47	N		M. Heeremans	5 9	115	13	190	40		2 1	A. Saintot
00 3/ 43 Z 1 M. Heeremans 10 ZoU 09 70 A0 Z4 2 4 M. Heeremans 17 25 A5	0/ 40 2 1 M. Heeremans 10 200 09	40 Z I M. Heeremans IO ZOU 09	2 I M. Heeremans IO 200 09	1 M. Heeremans 10 200 09	M. Heeremans 10 200 09	10 200 09	200 007	200		RC7	8 6	N C	- •	M. Heeremans	₽ ţ	747	86	100	40		чc	A. Saintot
/0 40 01 Z I M.Heefemans 1/ 200 43	40 01 Z I M. Heeremans 1/ Z00 43	70 2 I M. Heefemans I/ 200 43	2 1 M. Heeremans 1/ 200 43	1/ 200 40	M. Heeremans 1/ 200 40	CH 007 /1	CH 007	6		100	5 0	N C	- 6	M. Heeremans		771	2 4	+0-	0,0	- 0	N	A Saintot
60 58 56 2 1 M. Heeremans 18 99 84	58 56 2 1 M. Heeremans 18 99 84	56 2 1 M. Heeremans 18 99 84	2 1 M. Heeremans 18 99 84	1 M. Heeremans 18 99 84	M. Heeremans 18 99 84	18 99 84	99 84	84		14	88	2	3	M. Heeremans	18	272	6/	199	56	24	2	A. Saintot
70 68 63 2 1 M. Heeremans 19 264 87	68 63 2 1 M. Heeremans 19 264 87	63 2 1 M. Heeremans 19 264 87	2 1 M. Heeremans 19 264 87	1 M. Heeremans 19 264 87	M. Heeremans 19 264 87	19 264 87	264 87	87		264	87	-	2	M. Heeremans	19	200	60	188	59	-	-	A. Saintot
77 46 70 2 1 M.Heeremans 20 265 88	46 70 2 1 M. Heeremans 20 265 88	70 2 1 M. Heeremans 20 265 88	2 1 M. Heeremans 20 265 88	1 M. Heeremans 20 265 88	M. Heeremans 20 265 88	20 265 88	265 88	88		348	73	-	0	M. Heeremans	20	272	74	219	65	0	0	A. Saintot
87 16 75 2 1 M.Heerermans 21 266 76	16 75 2 1 M. Heeremans 21 266 76	75 2 1 M. Heeremans 21 266 76	2 1 M. Heeremans 21 266 76	1 M. Heeremans 21 266 76	M. Heeremans 21 266 76	21 266 76	266 76	76		313	70	2	-	M. Heeremans	21	120	99	183	46	-	2	A. Saintot
57 322 8 4 1 M. Heeremans 22 265 70	322 8 4 1 M. Heeremans 22 265 70	8 4 1 M. Heeremans 22 265 70	4 1 M. Heeremans 22 265 70	1 M. Heeremans 22 265 70	M. Heeremans 22 265 70	22 265 70	265 70	70		320	58	2	-	M. Heeremans	23	275	80	211	68	0	-	A. Saintot
65 85 58 2 1 M. Heeremans 23 262 73	85 58 2 1 M. Heeremans 23 262 73	58 2 1 M. Heeremans 23 262 73	2 1 M. Heeremans 23 262 73	1 M. Heeremans 23 262 73	M. Heeremans 23 262 73	23 262 73	262 73	73		322	20	0	-	M. Heeremans	23	80	78	126	73	-	-	A. Saintot
72 15 62 1 1 M Heeremans 24 86 85	15 62 1 1 M. Heeremans 24 86 85	62 1 1 M Heeremans 24 86 85	1 1 M. Heeremans 24 86 85	1 M. Heeremans 24 86 85	M. Heeremans 24 86 85	24 86 85	86 85	85		86	85	0	0	M. Heeremans	24	270	85	189	60	0	0	A Saintot
80 30 59 1 1 M. Heeremans 25 262 74	30 59 1 1 M. Heeremans 25 262 74	59 1 1 M. Heeremans 25 262 74	1 1 M. Heeremans 25 262 74	1 M. Heeremans 25 262 74	M. Heeremans 25 262 74	25 262 74	262 74	74		319	62	10	·	M. Heeremans	i	i	;		;	ı	ı	
79 69 64 2 1 M. Heeremans 26 273 40	69 64 2 1 M.Heeremans 26 273 40	64 2 1 M. Heeremans 26 273 40	2 1 M. Heeremans 26 273 40	1 M. Heeremans 26 273 40	M. Heeremans 26 273 40	26 273 40	273 40	40		273	40	10	-	M. Heeremans	;		:					
72 118 32 2 1 M Haaramane 27 257 84	118 32 2 1 M Hearenmans 27 257 84	32 2 1 M Heatenmans 27 257 84	2 1 M Hearemans 27 257 84	1 M Hearemans 27 257 84	M Heeremans 27 257 84	27 257 84	257 84	84		341	46		-	M Heeremans	25	Holmer	ıkollen		Lat 59.979		Long 10.66	_
20 21 21 21 21 21 21 21 21 21 21 21 21 21	20 21 21 21 21 21 21 21 21 21 21 21 21 21	24 25 24 27 24 27 24 24 27 24 24 27 24 24 24 24 24 24 24 24 24 24 24 24 24	28 257 84	25 25 82 AV	20 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	28 257 84	257 84	5 8		257	2 8	10		M Hooromane	Data #	DipDir	Dip	Azimuth	Plunge	Sense	Quality	Source
20 22 02 36 070 36	20 231 04 20 270 66	40 107 07 89 040 00	40 127 02 90 070 06	20 201 04 00 070 66	20 22 04	20 220 07 20 270 66	270 RF	5 %		301	5 2	4 0		M Locrement	-	305	57	287	56	0	-	A. Saintot
ollen 2 Lat 60.055 Long 10.328 20 20 20 20 20 20 20 20 20 20 20 20 20	Lat 60.055 Long 10.328	Lat 60.055 Long 10.328	Long 10.328	Long 10.328 20 20 270 27	328 20 270 67	20 212 22	10 020	3 5			3	4 •			0	303	65	262	58	0	-	A. Saintot
Dip Azimuth Plunge Sense Quality Source	Azimuth Plunge Sense Quality Source	Plunde Sense Quality Source 21 51	Sense Quality Source	Quality Source 24 5/0 5/	Source 21 2/U 5/ Source 24 5 70	30 2/0 5/	10 0/7	20		322	8			M. Heeremans	ო	306	60	278	57	0	-	A. Saintot
89 335 6 4 1 A Saintot 20 2	335 6 4 1 A Saintot 20 /9	6 4 1 A Saintot 21 2 /9	4 1 A Saintot 21 2 79	1 A Saintot 21 2 79	A Saintot 20 / 9	51 C 15	R/ 010	2		54 C	2 6	- (M. Heeremans	4	320	78	260	67	2	2	A. Saintot
84 160 2 4 1 A Saintot 22 2/3 /0	160 2 4 1 A Saintet 22 2/3 /0	2 4 1 A Saintot 32 2/3 /U	4 1 A Saintot 32 2/3 /U	1 A Saintot	A Saintot 2/3 /U	32 2/3 /0	2/3 /0	2 2		2/3	51	2 0		M. Heeremans						I	I	
80 295 68 2 1 A Saintot 21 200 00	295 68 2 1 A Saintot 20 20	68 2 1 A Saintot 21 20 00	2 1 A Saintot	1 A Saintot	A Saintot	33 200 00	CQ QQ7	81		308	/6	2 0	- (M. Heeremans	;	,						
87 305 58 2 1 A Saintot 34 261 //	205 58 2 1 A Sainter 34 261 //	58 2 1 A Solution 34 201 //	24 261 //	1 A Solutor	A Solutor	34 261 //	7/ 197	2		31/	89	N	2	M. Heeremans	26	Frogne	rsetere	_	Lat 59.978		Long 10.67	_
20 200 20 2 1 A. Sainton 35 281 79	200 50 2 1 A. Samuo 35 281 79	56 2 A Science 35 281 79	2 A Science 35 281 79	3 A Solution 35 281 79	A Science 35 281 79	35 281 79	281 79	79		281	79	5	,	M. Heeremans	Data #	DipDir	Dip	Azimuth	Plunge	Sense	Quality	Source
00 200 00 20 20 20 A. Saintot 36 295 65	4 5 5 A. Saintor 36 295 65	50 295 65 65	2 3 A. Saintot 36 295 65	3 A. Saintot 36 295 65	A. Saintot 36 295 65	36 295 65	295 65	33		273	63	5	0	M. Heeremans	-	220	55	147	23	0	2	A. Saintot
63 14 54 2 1 A. Saintot 37 288 67	14 54 2 1 A. Saintot 37 288 67	54 2 1 A. Saintot 37 288 67	Z 1 A. Saintot 37 288 67	1 A. Saintot 37 288 67	A. Saintot 37 288 67	37 288 67	288 67	67		313	65	2	-	M. Heeremans	0	320	80	80	75	0	2	A Saintot
72 344 54 2 1 A. Saintot 38 295 70	344 54 2 1 A.Saintot 38 295 70	54 2 1 A. Saintot 38 295 70	2 1 A. Saintot 38 295 70	1 A. Saintot 38 295 70	A. Saintot 38 295 70	38 295 70	295 70	2	~	295	02	2	e	M. Heeremans	100	50	80	124	57	0	-	A Sainto
54 261 42 2 1 A. Saintot 39 293 88	261 42 2 1 A. Saintot 39 293 88	42 2 1 A. Saintot 39 293 88	2 1 A. Saintot 39 293 88	1 A. Saintot 39 293 88	A. Saintot 39 293 88	39 293 88	293 88	88		20	09	-	-	M. Heeremans	4	48	85	129	62		-	A. Sainto
40 145 82	40 145 82	40 145 82	40 145 82	40 145 82	40 145 82	40 145 82	145 82	8		64	48	2	-	M. Heeremans	ŝ	54	89	142	28	0	-	A Sainto
villen 1 1 at 60 053 1 cond 10.322 41 120 89	Lat 60 053 Lond 10 322 41 120 89	Lat 60 053 Lond 10.322 41 120 89	I ond 10 322 41 120 89	1 ond 10.322 41 120 89	41 120 89	41 120 89	120 89	89		31	55	2	2	M. Heeremans		245	202	232		10	• •	A Cointot
Din Asimith Dinna Conce August	Azimith Dinna Cance Auslin's Course 42 298 82	Dinna Canco Autor Source 42 298 82	tonce Outline Source 42 298 82	Oublin Source 42 298 82	Source 42 298 82	42 298 82	298 82	82		346	78	0	ı ო	M. Heeremans	•	OVC	200			4 0	- ເ	A Cointo
Dip Azimuu Flunge Sense Wuany Source 2 23 278 67	Addition Fluige Selise Quality Source 43 278 67	runige dense wuanty dounce 2 23 278 67		43 278 67	Source 43 278 67	43 278 67	278 67	67		255	65		, .	M Heeremans	- 0	040		202	D C	ч .	4 0	
22 130 40 Z 1 A.Saimot 3 239 64	756 56 5 1 A. Saintot 7 289 64	Feb 2 1 A. Saintot 289 64	2 I A. Saintot	A. Saintot 44 289 64	A. Saintot 44 289 64	44 289 64	289 64	64		267	62	10		M. Heeremans	0 0		t 6	100		- c	4 +	A. Sainto
50 200 20 2 1 A.Saintot 7 25 201 60	200 00 Z I A.Saintot	50 Z I A. Saintot 7. 20 50	2 1 A. Saintot 45 291 60	45 291 60	A. Saintot 45 291 60	45 291 60	291 60	, US		259	99	10		M Heeremans	n Ç	0 1	3 6	10	0 0	4	- •	
2/ 300 33 Z 1 A. Saintot 46 206 60	300 30 Z 1 A.Saintot 7 Z 20 20	20 Z I A. Saintot A. 200 Fo	Z 1 A. Saintot A. Saintot A. Saintot	A. Saintot	A. Saintot		00 200	0		190	8 6	1 0	•		2 :	t 0	70	201	2 8	1 (A. Saintot
86 96 86 2 1 A. Saintot 40 200 30	96 86 2 1 A. Saintot 40 200 30	86 2 1 A. Saintot 40 200 30	2 1 A. Saintot 40 200 30	1 A. Saintot 40 200 30	A. Saintot 40 200 30	40 200 30	200 007	200		107	20	чc	- ~	M. Heeremans	5	230	78	180	72	CN •		A. Saintot
50 279 50 2 1 A. Saintot 4/ 2/0 33	279 50 2 1 A. Saintot 4/ 2/0 33	50 2 1 A. Saintot 4/ 2/0 33	2 1 A. Saintot 4/ 2/0 33	1 A. Saintot 4/ 2/0 33	A. Saintot 4/ 2/0 33	4/ 2/0 33	CC 0/7	201		0/7	2	7	n (M. Heeremans	12	358	73	85	10	4	-	A. Saintol
60 292 60 2 1 A. Saintot 48 290 55	292 60 2 1 A. Saintot 48 290 55	60 2 1 A. Saintot 48 290 55	2 1 A. Saintot 48 290 55	1 A. Saintot 48 290 55	A. Saintot 48 290 55	48 290 55	290 55	55		261	51	2	ო	M. Heeremans	13	50	82	126	59	-	-	A. Saintot
62 294 62 2 1 A.Saintot 49 297 50	294 62 2 1 A.Saintot 49 297 50	62 2 1 A Saintot 49 297 50	2 1 A. Saintot 49 297 50	1 A. Saintot 49 297 50	A. Saintot 49 297 50	49 297 50	297 50	50		297	50	0	-	M. Heeremans	14	30	80	81	74	2	-	A. Saintot
52 200 52 2 1 A Sainter 50 297 61	290 52 2 1 A Saintot 50 297 61	52 2 1 A Saintot 50 297 61	2 1 A Saintot 50 297 61	1 A Saintot 50 297 61	A Saintot 50 297 61	50 297 61	297 61	61		297	61	2	-	M. Heeremans	15	50	83	70	81	0	-	A Saintot
		02 2 1 7. Odiiitot 51 288 63	51 288 63	51 788 63	51 288 63	51 288 63	288 63	63		288	63	0		M Heeremane	2 4		2		- 6	4 (. ,	
89 3 20 4 3 A. Saintot 21 20 20	3 20 4 3 A.Saintot 31 20 00	20 4 3 A. Saintot 21 20 03	4 3 A. Saintot 21 200 00	3 A. Saintot 51 200 00	A. Saintot	50 784 68	20 100	3 8			3 0	4 0			9	20	22	06	9/	2	-	A. Sainto
82 15 18 4 2 A. Saintot 22 20 00	15 18 4 2 A.Saintot 32 20 90	18 4 2 A. Saintot 32 20 00	4 2 A. Saintot 32 201 00	2 A. Saintot 32 201 00	A. Saintot 02 20/ 00	00 107 70	107	8 3		200	0 (° (M. Heeremans	17	35	84	101	76	2	-	A. Saintot
89 20 10 4 1 A. Saintot 53 287 64	20 10 4 1 A.Saintot 53 287 64	10 4 1 A. Saintot 53 287 64	4 1 A. Saintot 53 287 64	1 A. Saintot 53 287 64	A. Saintot 53 287 64	53 287 64	287 64	64		323	59	2	-	M. Heeremans	18	54	80	102	75	0	-	A. Sainto
82 27 18 4 1 A.Saintot 54 274 75	27 18 4 1 A. Saintot 54 274 75	18 4 1 A. Saintot 54 274 75	4 1 A. Saintot 54 274 75	1 A. Saintot 54 274 75	A. Saintot 54 274 75	54 274 75	274 75	75		274	75	-	-	M. Heeremans	19	216	75	170	69	2	-	A. Sainto
84 19 22 4 1 A.Saintot 55 278 58	19 22 4 1 A. Saintot 55 278 58	22 4 1 A. Saintot 55 278 58	4 1 A. Saintot 55 278 58	1 A. Saintot 55 278 58	A. Saintot 55 278 58	55 278 58	278 58	58		296	57	0		M. Heeremans	20	220	78	168	71	0	-	A. Sainto
48 323 41 2 1 A.Saintot 56 289 52	323 41 2 1 A. Saintot 56 289 62	41 2 1 A. Saintot 56 289 62	2 1 A. Saintot 56 289 62	1 A. Saintot 56 289 62	A. Saintot 56 289 62	56 289 62	289 62	82		272	61	0	-	M. Heeremans								
48 335 31 2 1 A Sainton 57 283 66	335 31 2 1 ≜ saintet 57 283 66	31 2 1 A Saintot 57 283 66	2 1 A Saintot 57 283 66	1 A Saintot 57 283 66	A Saintot 57 283 66	57 283 66	283 66	99		227	52	2	-	M. Heeremans								
				A Solution																		
00 010 11 4 0 A. Caintot	010 11 4 0 A.Gaintot	11 # 0 A. Gaintot	4 J A. Gaintot	 A. Gaintot 	A. carritot																	

Heeremans Heereman Heereman M. Heeremar Heeremar Heeremar Heeremar Heeremar Heeremar Heereman Heerema Source Heerem Heerem Heerema Heerema Heerem Heerem Heerem Heerem Long 10.425 Quality S 990004 m 0 0 Sense 000-Lat 59.938 Plunge 52 74 49 49 49 70 75 75 60 25 32 32 18 61 DipDi lvile 33 Data # A. Saintot A. Saintot A. Saintot Source A. Saintot A. Saintot A. Saintot A. Saintot A. Saintot Source A. Saintot
 A. Saintot Sainto Sainto Sainto Sainto A. Sainto Source Sainto Sainto A. Saintot A. Sainto Saintot Saintot Sainto Sainto Sainto Saintot Saintot Sainto Sainto Sainto Sainto Sainto Sainto Sainto A. Sainto Sainto A. Sainto A. Sainto Long 10.509 Quality S Long 10.513 Long 10.533 Quality Quality Sense - N N N N N N N N N N - N Lat 59.944 Lat 59.94 Plunge 56 Plunge 56 Plunge 68 Plunge Azimuth 10 11 120 115 49 120 355 355 337 2290 0 0 215 207 Azimuth Ringeriksvel
 75
 153
 65
 193
 76
 193
 76
 193
 76
 193
 76
 193
 76
 193
 76
 193
 76
 193
 76
 193
 76
 193
 76
 193
 76
 193
 76
 193
 76
 193
 76
 76
 193
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 77
 76
 76
 76
 76
 76
 76
 77
 76
 77
 76
 77
 76
 76
 77
 76
 77
 76
 77
 76
 76
 77
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 77
 76
 76
 76
 76
 77
 76
 76
 77
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76
 76 Skollerudveien Barums Verk Dipbir Dip A 28 74 190 72 57 68 57 68 80 89 70 78 66 73 56 73 55 85 290 75 72 80 233 70 235 70 77 883 64 62 62 65 DipDir DipDir 240 245 245 245 144 130 125 90 185 90 185 190 190 190 190 190 Samle 30 Data # Data <u>Ω</u> Ω <u>4</u> 15 18 13 Data 2 3 2 A. Saintot Source Saintot Saintot Saintot Source Source Saintol Saintof Saintol Saintol Sainto Long 10.635 Long 10.497 Long 10.631 Quality Quality Quality Sense Sense Sense 00004 20000 000000 Lat 59.952 Lat 59.971 Plunge 59 64 54 54 54 55 54 55 51 77 77 77 76 Plunge 74 74 74 73 73 73 73 67 67 79 67 79 67 67 67 Lat 59.9 **Azimuth** Azimutl Azimut 174 22 22 207 207 198 199 181 181 181 181 181 181 181 183 2306 2206 323 323 323 141 1102 86 88 88 88 95 95 95 79 95 79 95 2260 2260 2263 2263 86 86 **Pien Dip** 69 60 60 60 60 55 53 50 57 53 53 74 ġ 85 Bogstad Dipplic Dipplic Dipplic Dipplic Dipplic Dipplic Dipplic Dipplication D Grinibr DipDir Dipplir 15 38 54 1 1 86 84 84 84 84 84 84 255 46 30 213 202 202 74 Burudv 28 Data # 29 Data # 27 Data # 9 1 1 1 0 0 9 11 10 9 13 13 10 9 0 0 7 7 3 9

M. Heeremans M. Heeremans Heeremans Heeremans Heereman M. Heeremar M. Heeremar M. Heeremar Heeremar Heeremar Heeremar Heeremar Heeremar Heeremar Heeremar Source Heeremar M. Heerema Heerema Heerema M. Heerema Heerema M. Heerems Heerem Heerem Heerema Heerem Heerem M. Heerema Heerema M. Heerem M. Heerem M. Heerem M. Heerem Long 10.770 Quality S 2 M. H. 2 M. H. Ň W Ň Ň W ŇŇ Ň ž Sense 000-00-000 Lat 59.900 Plunge 27 27 56 56 28 8 8 41 41 41 41 47 52 38 31 31 Dip 67 57 62 62 62 62 62 62 62 $\begin{smallmatrix} 556\\ 5555\\ 555$ 48 60 70 60 85 89 89 69 76 Ekeberg DipDir 103 257 257 257 217 100 355 355 355 355 355 355 350 360 360 360 23 18 321 310 37 Data # $\begin{smallmatrix} & 1 \\ & 0 \\ &$ - 0 m M. Heereman M. Heereman M. Heereman Heereman M. Heereman Heereman Heereman Heereman Heereman Heereman Heereman Heereman Heereman leereman Heereman Heereman Heereman Heereman leereman Source Heereman Heereman Heereman Long 10.650 Quality S Š s S Sense Azimuth Vækerø DipDir 36 Data # 18 20 Source Source Saintot Saintot Saintot Saintot Saintot leerema Saintol Saintot Saintol Saintol Long 10.485 Long 10.812 Quality Quality Sense Sense Lat 59.933 Lat 59.917 Azimuth 201 201 193 119 97 97 1110 1110 1110 294 221 294 291 294 291 291 61 150 61 233 233 233 233 Azimuth Dip 68 68 73 73 73 73 73 73 73 70 70 70 70 70 Ыġ Rykkinn DipDir 265 267 268 258 263 264 192 255 255 255 255 275 275 275 260 74 80 260 260 Sinsen 34 Data # 35 Data #

	Source	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Horromore	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans																					
261	ality	1 M.	M.	2 W.	1 M.	2 M.	1 M.	M.	1 M.	M.	2 M.	1 M.	2 M.	1 M.	1 M.	1 M.	2 M.	2 M.	2 W.	1 M.	1 M.	1 M.	1 M.	1 M.	1 M.	1 M.	M.	1 M.	1 M.	1 M.	1 M.	M.	Ϋ́Ξ	zi :	ž z	ž z	- C	M	1 M.	1 M.	1 M.	1 M.	M.	M	M.	M.	Z M.	N. N	N S	Ϋ́.
10.6	se Qui				-									-	-										-				-		-									-					-					
10	e Sen:	2	2	e	4	-	e	-	-	0	-	2	4	4	4	2	2	4	-	4	-	0	-	0	2	0	-	-	2	-	2	-	0 ,	- (N *	1 0	- 1	0	2	2	2	2	0	2	-	-	-	00	20	7
59.887	Plung	35	62	14	1	41	6	40	40	33	62	29	15	12	14	31	54	e	67	6	32	33	21	52	54	39	35	34	70	74	82	54	40	39	32	; ;	46	32	39	38	57	47	43	35	34	22	47	51	54	ρΩ
	Azimuth	197	290	240	48	320	50	307	282	76	323	242	233	249	244	264	237	242	348	246	303	263	267	254	210	304	123	143	54	51	123	308	288	295	83 7	5 6	118	273	275	279	238	275	263	258	285	286	170	100	73	711Z
P	Dip	67	62	64	72	42	67	40	42	64	63	75	72	60	86	55	54	62	67	72	33	42	48	52	79	39	46	34	71	74	88	55	40	40	32	24	54	40	48	50	64	59	72	72	40	28	88	54	54	2
ornebr	DipDir	270	289	323	322	302	324	310	305	147	309	323	148	332	333	330	230	154	337	333	321	307	337	261	285	303	170	137	75	47	199	319	290	311	136	135	160	315	319	328	280	325	335	335	320	326	258	22	22,	103
41 F	Data # [-	2	ю	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34 35	90	37	38	39	40	41	42	43	44	45	46	47	48	49	nc
	Source	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Horomone	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans	Heeremans																												
10.522	Ą	M	M	Ň	M	×	Ň	Ň	Μ	M	M	M	M	M	Σ	M	M	M	M	M	M	Ň	Μ	M	M	Ň	Ň	M	M	M	M	ž	ž	ž :	Ξ	ž	Ξ	M	M	Ň	M	Ň	Ň							
Long	Quali	0	2	-	e	0	-	-	0	0	2	0	2	2	0	0	0	2	0	0	0	0	0	0	0	0	2	2	7	2	7	-	0 0	0 0	2 1	10	- v	0	2	2	2	0	7							
	Sense	0	0	-	4	-	-	0	0	-	0	0	4	0	2	e	0	-	0	0	0	0	0	0	0	-	0	0	0	0	-	ო	. .		- c	10	14	0	0	0	0	0	0							
Lat 59.888	Plunge	50	41	19	7	88	88	33	59	55	34	32	6	43	76	18	55	70	67	50	58	46	41	53	49	39	61	28	32	45	43	-	10	24	53	8 6	14	34	78	76	74	61	52							
	Azimuth	84	6	324	248	85	19	65	220	15	258	53	38	297	6	163	36	349	128	66	178	42	62	324	308	62	241	230	84	118	262	282	319	132	298	040	158	72	116	124	188	71	264							
ka	Dip	50	99	42	68	88	89	33	60	64	99	70	70	50	85	83	55	84	73	52	82	56	43	86	80	39	68	99	89	62	72	85	6 i	20	9/	8 6	8	8	88	86	74	65	55							
Sandvil	DipDir	95	76	256	335	85	82	65	239	330	330	130	125	335	79	75	30	62	86	79	255	89	84	239	230	52	284	306	355	60	334	12	319	216	216	282	75	72	187	198	188	37	289							
40	Data #	-	2	e	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34 35	20	37	38	39	40	41	42	43							
		22	5	SL	ş	SL	SL	SL	s	SL	su	SL	S	s	S	SL	JS L	JS.	s	s	s	s	SL					IS	22	S	2	2 2	a 2	2 22	5				-	<u>e</u> 2	2 9	<u>e</u> 22	s	s	. 2		2 22			
170	Source	M. Heerema		200	Control of	source	M. Heerema	M. Heerema	M. Heerema	M. Heerema	M Hooroma	M. Heerema	M. Heerema	M. Heerema		202	Control	M Loorom	M Heerema	M Heerema	M. Heerema	M. Heerema	M. Heerema	M. Heerema	M. Heerema	M. Heerema																								
ong 10.7	Quality	-	-	e	-	ю	-	e	-	-	-	-	2	2	ы	-	e	2	-	e	0	-	ო		101		Quality	N (NC	N (N C	4 6	2	10	0		01 DUO	Cuelline C	2 cuality	10	10	10	2	(m	0	0	1 01			
-	Sense	2	-	-	0	2	0	4	0	0	0	0	2	0	0	0	2	2	2	4	0	-	0		-		Sense	N (NC	N 0	N C	ч г	- 0	10	0		-	-	201120	10	10	10	0	-	0	0	10			
at 59.900	Plunge \$	58	53	59	65	34	45	3	76	39	23	38	31	40	47	32	34	76	49	24	23	51	27		-+ ED 00E	-at 00.000	runge .	20	64 6	2 8	00	# 8	5 6	20	32		at 60 806	Dinnan 6	20 P	45	04	60	44	84	63	20	32			
-	Zimuth	76	175	182	117	222	191	213	338	47	52	197	16	221	202	291	307	35	284	242	233	194	280		-	-		44	202	202		280	283	112	320		-	- Hermite		309	232	295	280	289	283	112	320			
	Dip 4	59	87	82	65	74	84	81	88	40	44	86	75	89	85	54	35	88	51	83	67	99	72		5			00	6 6 7	7 0	no Ve	5 7 2	65	72	32		5	nic vic		45	5	60	46	85	65	72	32 5			
Ekeberg	DipDir	06	89	105	117	301	275	127	60	61	116	284	97	310	117	354	320	313	305	329	313	138	360		in postor			10	213		807	202	259	141	320					313	205	289	302	259	259	141	320			
37	Data #	61	62	63	64	65	99	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82		30	1 4 4 4	Data #	- (7 0	•	4 u	n ư	0 1-	. @	6		38	10tot	- 1 -	- ^	1 00	> 4	2	9	2	~ ~~~	0			

21	Source	M. Heeremans		5		source	A. Saintot	A. Saintot		2		Source	A. Samo	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot																														
Long 10.48	Quality	0	0	2	2	2	-	2	0	0	-	-	-	e	e	0		1 ond 10 63		quality		0	7	0	2	2	-	-	-	-	2	-	-	-	-	-	-	۲		1 ond 10 47		udality		- •			-	e	-	-	-
6	Sense	0	0	e	2	0	-	-	-	-	0	2	2	2	-	2		-		Sense	10	7	2	2	-	4	4	4	4	-	2	0	0	2	0	2	2	0			00000	Selise	4 0	2 0	N	N	2	0	0	0	2
Lat 59.85(Plunge	75	64	80	50	54	27	36	19	35	40	46	68	38	37	53		l at 59.82		abunia	20	33	39	58	23	0	0	0	0	40	85	32	75	71	50	70	99	99		1 at 60 816	Dimes	Plunge	5 C	17	50	33	60	44	49	46	59
	Azimuth	182	193	227	126	131	145	71	156	317	127	121	60	151	183	101		c/1/2			1/9	200	144	137	7	355	160	30	30	110	312	102	100	95	95	120	111	150			A		087	//1	180	189	06	83	111	182	134
ъ	Dip	77	74	74	79	87	28	40	20	36	45	48	89	50	99	65		Brund	566.12		88	68	64	69	63	40	60	40	50	40	85	32	75	72	50	20	99	70			į		200	B r	8	89	09	68	60	60	64
valsta	DipDir	210	139	139	202	217	160	39	175	329	159	143	147	101	112	153		lumern			90	275	78	85	85	85	250	120	120	110	290	95	100	114	06	120	111	114		laketa				002	240	255	80	150	160	235	66
46 H	Data # [-	2	e	4	5	9	7	8	6	10	11	12	13	14	15		48/49 0		Data # L	- 1	0	ო	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18		50 B		Udia # L	- (2	0.	4 u	5	9	7	8	6
568	Source	M. Heeremans	M Heeremans	M Hooromans		M. Heeremans	M. Heeremans	M. reeremans	M. Heeremans		M. Heeremans	M Heeremans	M. Heeremans	M. Heeremans	M Heeremans	M Heeremans	M Haramans	M Heeremans	M. Regressions	M. Heeremans	M. Heeremans	M. Heeremans	M. Heeremans M. Heeremans																												
ong 10.4	Quality	0	0	0	0	-	0	-	-	-	-	0	2	0	-	e	-	-	-	e	2						- ,	- ,	- ,	- (2	с	2		N	° ,			- ო		0	10	-			, .	- c	ч .	- 0	n r	10
Ľ	ise 0																																																		
1 59.862	unge Ser	44 2	40 2	44	29	36 2	86 2	32 2	46 2	63	7 2	1	52 2	30 2	74 2	20	73 1	37 1	81 2	69 2	46 2	36			8.6	22	- 0	31 31		0	44	34	65	090	200		86	107	5 69	62	61	64	Ed C	10	5	75	20	10	44 00	00 4	36 1
Lat	imuth PI	89	149	135	162	252	120	290	171	109	51	332	136	128	24	168	254	169	269	120	150	157	106		107	364		190	0/7	79	169	128	215	312	339	203	0/1 85	138	146	267	204	150	208	259	267	47	14/	231	79	310	159
	ip Az	55	31	16	20	36	36	32	75	33	21	00	20	00	22	26	73	9	5	60	24	02		2 6	2 4	2 4	1 8	1 6	2	0	2	37	5		2 2	2 2	2 2	1 8	2 2	6	1 02	6	Ş	8.22	2 6	5.6	2 2	2 9	2 4	2 2	4 G
tøya	pDir D	137	231	116	94	252	104	590	97	601	124	242	107	44	347	253	254	144	569	120	99	33	000		000	102	2			22	249	155	528	800	203	202	22	36	84	287	260	62	770	800	287	20	101	200	70	0.17	75
5 05	Data # D	-	~	e	4	2 S	9	2	80	6	10	=	12	13	14	15	16	17	18	19	20	2 1	: 5	3 8	3 6	- 4	3 8	88	17	87	67	8	31	22	5	5 8	5 9 9	8 6	38	68	9 4	4 1	42	4 64	44	42 42	2 4	6 5	4	₽ ₽ ₽	20 20
4	-																																																		
503	Source	M. Heeremans			764	Source	M. Heeremans	M Hooromans	M Heeremans			656	Source	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot		237	031 5	Source																								
ong 10.	Quality	0	0	-	e	e	e	-	2	2	e	0	e	2	2	2			ong 10.	Quality	2	2	0	5		0	10	10	ı		ong 10.	Quality	0	-	-	-	-	-	-	-	-	, ,	-	-	-	-		10		Quaiity	-
-	ense	-	2	-	-	-	5	2	-	-	2	2	-	2	e	2			-	suse	-	-	2	0	10			10	1		-	ense	e	2	2	2	2	5	20	2	2	N ,	4	4	4	4		-		suse	N
at 59.881-	Plunge Se	72	83	50	57	52	65	50	46	51	35	52	51	34	16	45			-at 59.880	Plunge Se	72	52	17	1	13	0	77	28	2		at 59.870-	Plunge Se	20	57	40	26	32	53	49	48	36	26 2	D	0	0	0		-+ 60 833	-di 09.004	Plunge of	ΩΩ
-	zimuth	165	66	170	123	156	185	240	140	203	208	123	123	160	147	164			-	zimuth	102	52	310	296	293	60	285	75	-		_	zimuth	180	301	142	114	95	125	145	140	142	142	067	80	143	130		-	-		U∠L
tad	Dip 4	82	85	67	67	80	82	54	65	63	70	72	70	34	84	85			ā	Dip 4	72	79	32	30	31	33	28	3 6	1		tangen	Dip 4	78	57	99	60	49	60	22	99	62	00	88	89	70	80			1		βΩ
Grysses	DipDir	101	108	230	74	79	113	269	79	254	283	58	60	160	59	249			Malmøy	DipDir	115	128	248	226	225	149	304	105			Vesodd	DipDir	94	312	74	40	38	86	80	80	75	68	n7	170	230	220		monneit			N∠ľ
42 0	Data #	-	2	e	4	5	9	7	8	6	10	1	12	13	14	15			43	Data #	-	2	е	4	. 2	9			,		44	Data #	-	2	e	4	5	9	7	80	o :	10	=	12	13	14		-	1	Data #	-

	source	. Saintot	. Saintot	. Saintot	. Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Caintot	Saintot	Saintot	Saintot				source	. Saintot	. Saintot	. Saintot	. Saintot	Saintot	Colored	Caintot	Saintot	Saintot	Saintot	. Saintot	. Saintot	. Saintot	. Saintot	. Saintot	. Saintot	. Saintot	. Saintot	Saintot	Saintot	Cointot	Saintot	Saintot	. Saintot															
10.691	lity	٩	٩	٩	٩	٩	٩	٩	٩	٩	٩	٩	٩	٩	٩	٩	٩	٩	٩	٩	4	. 4	4	. 4			. 4			F		III N	٩	4	۹.	٩	٩.		4		. 4	٩	٩	٩	٩	٩	٩	٩	۹.	¢,	۹.	٩.	4 <	ि	. 4	٩	
Long	Qual	С	-	2	0	-	-	-	-	-	-	7	-	0	2	С	2	-	e	-	-		-			1 -				CF 07	10.43	Gual	-			-		- c	N +			-	-	-	-	-	-				- 0	n c	0 0	20	101	0	
_	Sense	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	10	4		10	10	10	10	4			Sense	N	0 0	0 0	N	~ ~	N C	9 0	10	10	2	0	0	0	0	0	0	4 •	4 .	4 (~ ~	N 0	4 00	0	0	
Lat 59.77	Plunge	18	26	19	39	29	25	31	33	58	36	72	46	82	27	18	37	39	38	24	69	26	20	28	22	28	62	26	24	E0 7054	59./651	Plunge	20	ω;	54	41	48	6 5	50 88	45	36	45	58	79	52	38	43	26	0 (0 0	0 8	38	31	5	- 09	25	
	zimuth	243	244	246	248	180	187	185	197	269	181	270	171	295	250	212	236	263	189	180	271	174	180	185	259	191	254	246	2		1	zimuth	286	235	284	150	129	001	140	185	181	202	216	234	346	180	194	232	182	290	170	190	6/1	179	279	187	
	Dip 4	22	28	20	40	65	58	76	66	58	72	72	84	84	30	40	45	40	68	76	69	20	69	52	1 5	64	30	30	8		u a	diD	80	8	60	28	54	00	00	67	65	62	58	79	60	78	99	30	78	88	76	33	7 J	68	200	58	
asle	DipDir	280	270	262	260	255	260	266	270	260	257	257	255	255	278	280	277	278	260	264	260	254	262	285	265	266	270	770		ionellet	Iøllevel	DipDir	310	310	320	92	92 06	200	174	250	251	260	216	234	28	260	260	266	272	20	260	275	001	264	279	260	
57 H	Data # [-	0	e	4	5	9	7	8	6	10	5	12	13	14	15	16	17	18	19	20	21	8	18	24	25	28	77	ĩ		20	Data # [0 0	ю ·	4	ۍ ۲	0 1	_ α	0 0	0	7	12	13	14	15	16	17	18	19	20	5 5	3 8	24	25	26	
	ource	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Caintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Caintot	Saintot	Caintot	Saintot	Saintot	10000																				
0.619	y S	۲	۲	A	۲	۲	<	۲	۲	Ā	۲	۲	۲	۲	۲	۲	A	A	A	<	4	< ⊲	4	< ⊲	(4	ć∢	4	< ⊲	< ◄	. ⊲	(∢	(∢	4	ć∢	<	4	<	۲	۲	۲	۲	۲	<	< ۲	< •	¢ <	14	(∢	. <	4	:						
Long 1	Qualit	2	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	-	-		~				. ~			0	1 -		-			-		-	-	-	-	-		- (N •				· -								
	Sense	-	0	0	-	-	0	-	-	-	е	-	-	0	-	-	0	0	-	2	0		-	• •	• •		-		10	-		4	~	4 -	. 0	0	10	-	-	-	-	2	- (~ ~	4 4	- 0	4 -	- 0	· -	• -	-						
Lat 59.803	Plunge	35	39	38	42	38	62	52	76	83	20	72	20	48	68	36	40	44	58	60	20	65	58	en Bu	20	215	59	64	48	60	82	18	73	47	47	90	23	76	54	71	45	28	49	22	DL 00	80	3 2	74	28	42	ŧ						
	Azimuth	225	228	222	215	211	162	230	260	143	261	102	211	182	127	44	16	238	204	208	210	208	128	210	214	191	84	190	188	208	199	267	144	102	273	990	261	216	169	185	214	215	202	241	207	512	198	211	200	209	~~~						
and	Dip	87	80	88	68	68	70	85	82	85	82	86	68	76	80	85	85	74	85	88	88	68	79	80	000	8 8	909	85	76	68	8	80	78	2 02	282	6	58	89	20	85	89	87	83	82	000	204	35	3 8	68	68	3						
Fjellstr	DipDir	137	310	310	126	122	115	314	314	188	174	180	124	256	191	130	290	312	122	295	295	120	200	122	127	110	100	110	114	120	110	180	190	95	320	320	295	130	110	110	125	300	120	320	180		115	794	112	120	24						
52	Data #	-	2	e	4	5	9	7	ø	6	10	5	12	13	14	15	16	17	18	19	20	2 5	8	18	74	25	92	77	28	28	30	31	32	33	34	35	38	37	38	39	40	41	42	43	44	04 AR	47	48	49	50	2						
	ource	Saintot				ource	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot				ource	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot			ource	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot	Caintot	Saintot	Caintot	Saintot	Saintot	Saintot	Saintot	Saintot	Saintot													
0.412	۲ S	۷	۲	۷	۷	۷	۲	۲	۲	۷	۲	∢	۷	٩		920 0	0.276	× s	۲	۷	۲	۲	۷	۷	٩		0000	007.0	~ ~	∢ ,	< -	∢ .	≪ 1	< -	∢ '	<	< <	٢		0.439	۲ S	۲	٩	< 1	∢ /	≪ •	٤ ٩	٤ ٩	(<	[⊲	(<	< ◄	< <	٨	A	∢	
Long 1	Qualit	2	-	-	-	-	-	-	-	-	-	-	-	0			Long 1	Qualit	-	-	e	ო	e	0	0		1 202		Qualit		~ ~		- (~ ~	- (2		-		Long 1	Qualit	0	-						- 0	10	4 -	- 0	-	-	- (2	
	Sense	4	0	2	4	0	0	0	0	0	0	4	4	0				Sense	0	0	0	-	0	-	0				Sense	4 (η,	4 .	4 (η.	4 (N.	4 C	v			Sense	0	2	0	<i>ღ</i> (NC	40	ч c	4 (**	0	10	10	101	0	0	2	
at 59.806	Plunge	0	74	70	8	69	28	35	63	49	44	20	6	64		-+ E0 704	Lat 59./91	Plunge	55	53	47	40	51	37	56		04 EQ 703	Lat 33.703	Plunge	10	26	18	2;	74	01	ng (2 84	6		at 59.772	Plunge	48	36	78	13	202	00 74	38	8	24	44	52	62	39	39	62	
_	Zimuth	106	201	245	159	135	128	137	155	217	221	107	281	175		-	-	Azimuth	135	140	156	175	149	297	203		-			160	142	168	134	171	134	1/9	328	44		_	Azimuth	280	274	5	38	2967	311	308	343	215	231	225	247	285	295	119	
	Dip 4	99	74	75	82	80	86	80	20	82	17	83	68	75			_	Dip 4	68	72	64	84	89	80	57				din	70	84	64		62 2	6/	22	68	00			Dip 4	50	52	83	83	8 8	R 4	5 f	25	78	2 02	88	22	39	40	68	
lauger	DipDir	196	201	203	248	197	216	220	199	136	144	194	195	118		and all all all all all all all all all al	Itsikter	DipDir	80	75	215	260	60	215	185		intered of		Uppur	248	229	249	777	219	777	524	238	C77		Bøveien	OipDir	300	330	310	310	345	210	212	261	288	300	280	294	294	308	160	
т т	Data # 1	-	0	ю	4	5	9	7	8	6	10	5	12	13		-	2	Data #		7	ო	4	5	9	7		2	 	Data #	- 0	0 0	ю ·	4 1	ۍ م	9 I		80 G	D		56 E	Data # 1	-	0	<i>с</i> ,	4 i	n u	0 1	- α	σ	, t	5 5	12	13	14	15	16	

Lat 59.764 Long 10.585 61 Slemmestadvelen Nip Azimuth Plunge Sense Quality Source Data # DipDir Dip 55 84 7 3 2 A. Saintot 1 292 76 233	Lat 59.764 Long 10.585 61 Slemmestadvelen uth Plunge Sense Quality Source Data # DipDir Dip 7 3 2 A. Sainot 1 292 76 233	t 59.764 Long 10.585 61 Slemmestadvelen Iunge Sense Quality Source Data# DipDir Dip Azimu 7 3 2 A. Saintot 1 292 76 233	Long 10.585 61 Slemmestadvelen e Quality Source Data# DipDir Dip Azimu 2 A Saintot 1 292 76 233	0.585 61 Slemmestadvelen y Source Data # DipDir Dip Azimu A. Saintot 1 292 76 233	61 Slemmestadveien Data # DipDir Dip Azimu 1 292 76 233	Slemmestadveien # DipDir Dip Azimu 292 76 233	estadveien Dip Azimu 76 233	en zimu 233	 _	_at 59.757 Plunge S 64	L bense (ong 10.456 Quality 2	Source A. Saintot	64 Data # 1	Dalbane DipDir 273	n Dip Az	Inuth P	at 59.750 'lunge S 16	l iense 4	ong 10.71 Quality 1) Source A. Saintot
35 84 7 3 2 A. Saintot 1 292 76 233	T 7 3 2 A. Saintot 1 292 76 233	7 3 2 A. Saintot 1 292 76 233	2 A. Saintot 1 292 76 233	A. Saintot 1 292 76 233	1 292 76 233	292 76 233	76 233	233		64	0 0	0,	A. Saintot	- (273	54	195	16	4 .	. .	A. Saintot
72 40 72 2 2 A. Saintot 2 195 74 263	72 2 2 A. Saintot 2 195 74 263	72 2 2 A. Saintot 2 195 74 263	2 A. Saintot 2 195 74 263	A. Saintot 2 195 74 263	2 195 74 263	195 74 263	74 263	263		53	2	-	A. Saintot	2	240	52	291	39	-	-	A. Saintot
70 29 42 2 1 A. Saintot 3 268 86 185	A 42 2 1 A. Saintot 3 268 86 185	42 2 1 A. Saintot 3 268 86 185	1 A. Saintot 3 268 86 185	A. Saintot 3 268 86 185	3 268 86 185	268 86 185	86 185	185		60	2	e	A. Saintot	e	275	78	206	60	0	0	A. Saintot
37 115 5 4 2 A.Saintot 4 318 68 252	5 5 4 2 A. Saintot 4 318 68 252	5 4 2 A. Saintot 4 318 68 252	2 A. Saintot 4 318 68 252	A. Saintot 4 318 68 252	4 318 68 252	318 68 252	68 252	252		45	0	-	A. Saintot	4	288	88	14	99	-	ო	A. Saintot
35 306 40 2 2 A. Saintot 5 334 72 272	5 40 2 2 A. Saintot 5 334 72 272	40 2 2 A. Saintot 5 334 72 272	2 A. Saintot 5 334 72 272	A. Saintot 5 334 72 272	5 334 72 272	334 72 272	72 272	272		55	2	-	A. Saintot	5	100	85	20	64	2	e	A. Saintot
52 15 47 1 1 A.Saintot 6 80 35 350	5 47 1 1 A. Saintot 6 80 35 350	47 1 1 A. Saintot 6 80 35 350	1 A. Saintot 6 80 35 350	A. Saintot 6 80 35 350	6 80 35 350	80 35 350	35 350	350		0	-	-	A. Saintot	9	154	60	239	6	e	e	A. Saintot
32 4 6 3 1 A.Saintot 7 50 40 320	6 3 1 A. Saintot 7 50 40 320	6 3 1 A. Saintot 7 50 40 320	1 A. Saintot 7 50 40 320	A. Saintot 7 50 40 320	7 50 40 320	50 40 320	40 320	320		0	e	-	A. Saintot	7	112	76	197	20	4	-	A. Saintot
33 186 10 3 1 A. Saintot 8 295 64 271	3 10 3 1 A. Saintot 8 295 64 271	10 3 1 A. Saintot 8 295 64 271	1 A. Saintot 8 295 64 271	A. Saintot 8 295 64 271	8 295 64 271	295 64 271	64 271	271		62	2	-	A. Saintot	80	277	60	227	48	2	-	A. Saintot
34 186 10 3 1 A. Saintot 9 308 70 253	3 10 3 1 A. Saintot 9 308 70 253	10 3 1 A. Saintot 9 308 70 253	1 A. Saintot 9 308 70 253	A. Saintot 9 308 70 253	9 308 70 253	308 70 253	70 253	253		58	2	-	A. Saintot	б	248	75	175	48	2	e	A. Saintot
32 331 69 2 1 A.Saintot 10 300 58 300	1 69 2 1 A.Saintot 10 300 58 300	69 2 1 A.Saintot 10 300 58 300	1 A. Saintot 10 300 58 300	A Saintot 10 300 58 300	10 300 58 300	300 58 300	58 300	300	_	58	0		A. Saintot	10	240	40	235	40	0	e7	A. Saintot
79 212 34 1 1 A Sainter 11 328 72 25	2 34 1 1 A Saintot 11 328 72 25	34 1 1 A Saintot 11 328 72 25	1 A Saintot 11 328 72 25	A Saintot 11 328 72 25	11 328 72 25	328 72 25	72 25	25	9	43	0	-	A Saintot	÷	257	76	180	42	0	-	A Saintot
24 242 15 1 1 A Saintot 12 02 82 16	7 15 1 1 A Saintot 17 07 87 16	15 1 1 A Saintot 17 07 87 16	1 A Saintot 12 02 82 16	A Saintot 12 02 82 16	10 Q7 R7 16	an R0 16	R2 C8	4	g	58			A Saintot	5	257	76	176	31		-	A Caintot
						20 20 20		- :	2 2	3 8	4 0	- ,	2. Odilitot	4 5	107	2 3		- 4	4 0	- ,	
39 104 00 2 1 A. Saintot 13 92 64 1/ 10 2 0 2 1 A. Saintot 13 92 64 1/	4 00 Z 1 A.Saintot 13 9Z 04 1/	00 Z 1 A.Saintot 13 92 64 1/	1 A. Saintot 13 92 64 1/	A. Saintot 13 92 04 1/	13 92 04 1/	AZ 04 1/	04 1/	2 9	- (na	2		A. Saintot	2:	204	40	2/1	ç, ç	N C	- 0	A. Saintot
3/ 1/8 35 2 2 A.Saintot 14 95 84 16	8 35 2 2 A. Saintot 14 95 84 16	35 2 2 A. Saintot 14 95 84 16	Z A. Saintot 14 95 84 16	A. Saintot 14 95 84 16	14 95 84 16	95 84 16	84 16	16	0	69	2	-	A. Saintot	14	288	44	247	36	2	N	A. Saintot
30 270 60 2 1 A. Saintot 15 108 38 14	0 60 2 1 A. Saintot 15 108 38 14	60 2 1 A. Saintot 15 108 38 14	1 A. Saintot 15 108 38 14	A. Saintot 15 108 38 14	15 108 38 14	108 38 14	38 14	4	5	32	-	2	A. Saintot	15	290	48	237	34	2	-	A. Saintot
39 270 89 2 1 A. Saintot 16 230 24 22	0 89 2 1 A. Saintot 16 230 24 22	89 2 1 A. Saintot 16 230 24 22	1 A. Saintot 16 230 24 22	A. Saintot 16 230 24 22	16 230 24 22	230 24 22	24 22	2	5	24	-	e	A. Saintot	16	262	66	192	38	2	ო	A. Saintot
17 110 80 18	17 110 80 18	17 110 80 18	17 110 80 18	17 110 80 18	17 110 80 18	110 80 18	80 18	18	4	57	2	-	A. Saintot	17	306	36	256	25	2	-	A. Saintot
17 08 87 17	18 08 87 17	18 08 80 17	18 08 87 17	18 08 87 17	18 QR R7 17	08 80 17	17	ţ		63	0		A Saintot	18	288	58	228	30	0	-	A Saintot
Lat 59.763 Long 10.496 0 00 00 02 02 02	Lat 59.763 Long 10.496	It 59.763 Long 10.496	Long 10.496	0.496		70 00			, ç	4 6	4 0	- ,	A. 0411101	2 9	001	8			4 0	- ,	
Nip Azimuth Plunge Sense Quality Source ¹⁹ 100 74 16	uth Plunge Sense Quality Source 19 100 /4 16	lunge Sense Quality Source ¹⁹ 100 74 16	e Quality Source 19 100 74 16	v Source 19 100 /4 16	19 100 /4 16	100 /4 16	74 16	16	3	89	2	-	A. Saintot	19	156	80	238	39	2	-	A. Saintot
55 45 0 4 1 A Saintot	0 4 1 A Saintot	0 4 1 A Saintot	1 A Saintot	A Saintot										20	164	72	242	33	2	-	A. Saintot
23 133 53 7 1 A contract 23 Dameholmon	a 63 0 1 A Cointai 60 Damahalman	63 2 1 A Califort 62 Damehalmon	1 A Solitat C2 Demokalman	A Calatat 62 Dameholmon	63 Bracholmon	Dameholmon	almon		-	01 EQ 7E4	-	10 44		21	148	80	232	30	0	-	A. Saintot
									-	-41 03.101	-			22	330	48	360	44	-	0	A. Saintot
48 142 48 2 1 A.Saintot Data#DipDir Dip Azim	2 48 2 1 A. Saintot Data # DipDir Dip Azim	48 2 1 A. Saintot Data # DipDir Dip Azim	1 A. Saintot Data # DipDir Dip Azim	A. Saintot Data # DipDir Dip Azim	Data # DipDir Dip Azim	# DipDir Dip Azim	Dip Azim	zim	ft H	Plunge S	Sense (Quality	Source	5	345	22	en en	00		10	A Cointot
33 60 0 4 1 A.Saintot 1 105 68 84	0 4 1 A. Saintot 1 105 68 84	0 4 1 A. Saintot 1 105 68 84	1 A. Saintot 1 105 68 84	A. Saintot 1 105 68 84	1 105 68 84	105 68 84	68 84	8	_	67	2	-	A. Saintot	77	2	3	8	74	4	4	A. Galliot
55 45 0 4 1 A.Saintot 2 84 74 154	0 4 1 A. Saintot 2 84 74 150	0 4 1 A. Saintot 2 84 74 150	1 A. Saintot 2 R4 7A 150	A. Saintot 2 RA 7A 150	2 RA 7A 15	84 74 150	74 150	1		54	0		A Caintot								
70 288 68 1 1 A Saintot 2 408 78 40	8 68 1 1 A.Saintot 2 1/0 78 10	68 1 1 A Saintot 2 108 78 10	1 A.Saintot 2 108 78 10	A. Saintot 2 100 78 10	2 108 78 10	100 78 40	40 az			f	4 -	- •	A Scintot	65	Røvken		59	.7488		0.4023	
	A 20 10 10 10 10 10 10 10 10 10 10 10 10 10	80 1 1 4 A Saintat	1 A Calimentation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A Calintation 1 100 100 100 100 100 100 100 100 100			01	0	- (3 8		- ,	A. Sairtot	H of O			-	0		- Hilono	000000
	74 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	74 1 1 × 201444 - 1 10 60 19	1 A Solution 4 110 60 19	A Solution 4 110 60 19.	4 110 60 19.		20 18	<u>ה</u>	ч.	31			A. Saintot	+ piqia		ł din (e afiini	- Sellae	oudiiity î	aninoe
	74 1 A. Saintot 5 260 87 17	14 1 1 A. Saintot 5 260 87 17	1 A. Saintot 5 260 87 17	A. Saintot 5 260 87 17	5 260 87 17	260 87 17	8/ 1/	1	4	20	2	-	A. Saintot	-	44	88	314	16	5	5	A. Saintot
40 01 43 2 1 A. Saintot 6 257 85 19	43 Z 1 A. Saintot 6 257 85 19	43 Z 1 A. Saintot 6 257 85 19	1 A. Saintot 6 257 85 19	A. Saintot 6 257 85 19	6 257 85 19	257 85 19	85 19	19	9	80	2	-	A. Saintot	N	48	83	320	17	e	2	A. Saintot
35 161 32 2 1 A.Saintot 7 270 79 19	1 32 2 1 A.Saintot 7 270 79 19	32 2 1 A. Saintot 7 270 79 19	1 A. Saintot 7 270 79 19	A. Saintot 7 270 79 19	7 270 79 19	270 79 19	79 19	÷	00	43	2	-	A. Saintot	e	94	80	129	78	0	2	A. Saintot
30 171 41 2 1 A. Saintot 8 110 74 17	1 41 2 1 A.Saintot 8 110 74 17	41 2 1 A. Saintot 8 110 74 17	1 A. Saintot 8 110 74 17	A. Saintot 8 110 74 17	8 110 74 17	110 74 17	74 17	÷	8	53	-	-	A. Saintot	4	288	60	288	60	0	0	A. Saintot
76 149 4 3 1 A.Saintot 9 344 82 6	9 4 3 1 A.Saintot 9 344 82 6	4 3 1 A. Saintot 9 344 82 6	1 A. Saintot 9 344 82 6	A. Saintot 9 344 82 6	9 344 82 6	344 82 6	82 6	œ		35	~	÷	A Saintot	5	82	79	138	71	0	0	A. Saintot
18 343 1 3 1 A Saintot 10 20 10	3 1 3 1 A Saintot	1 3 1 A Saintot 40 60 70 4	1 A Saintot 40 20 70 4	A Saintot 40 60 78 4	10 00	10 10	1 0		200	0	1 0				36	V G	212	202	1 0	1 0	A Cointer
	2 16 A 1 A Solution 10 00 70	16 A 1 A Saintat 10 00 /0	1 A Solidate 10 00 70			0/ 10	0		001	s i	ч.	- ,	A. Saintot	1 C	8		2.0		4 0	4 0	
	2 10 4 1 A. Sainton 11 44 79	10 4 1 A. Sainton 11 44 79	11 A. Saintot 11 44 79	A. Sairtor 11 44 79	11 44 79	44 79	6/		122	4/	-	-	A. Saintot	_	011	2	184	3/	N	'n	A. Saintot
34 34/ 4 3 1 A. Saintot 12 43 76	/ 4 3 1 A. Saintot 12 43 76	4 3 1 A. Saintot 12 43 76	1 A. Saintot 12 43 76	A. Saintot 12 43 76	12 43 76	43 76	76		118	45	-	-	A. Saintot	80	110	70	176	48	2	-	A. Saintot
34 125 38 2 2 A. Saintot 13 292 77	5 38 2 2 A. Saintot 13 292 77	38 2 2 A. Saintot 13 292 77	2 A. Saintot 13 292 77	A. Saintot 13 292 77	13 292 77	292 77	77		231	65	2	-	A. Saintot	б	110	67	173	47	0	-	A. Saintot
39 149 28 2 2 A. Saintot 14 70 80	9 28 2 2 A. Saintot 14 70 80	28 2 2 A. Saintot 14 70 80	2 A. Saintot 14 70 80	A. Saintot 14 70 80	14 70 80	70 80	80		142	60	-	+	A. Saintot	10	110	70	174	50	0	-	A. Saintot
30 6 20 3 3 A. Saintot 15 282 84	20 3 3 A. Saintot 15 282 84	20 3 3 A. Saintot 15 282 84	3 A. Saintot 15 282 84	A. Saintot 15 282 84	15 282 84	AR CRC	84		cuc	50	~		A Caintot	ŧ	190	72	190	72	0	-	A Saintot
55 147 33 2 3 A.Saintot 16 104 BD	7 33 2 3 A.Saintot 16 104 80	33 2 3 A Saintot 16 104 80	3 A. Saintot 16 104 80	A. Saintot 16 104 80	16 104 BU	10.4 BD	5 8		178	3	1 -		A Caintot	: 0	000	88	105	1 89	10		A Saintot
38 67 48 2 1 A Saintot 10 10 10	48 2 1 A Saintot 47 574 60	48 2 1 A Saintot 47 774 60	1 A Saintot 47 574 60	A Saintot 47 574 60					200	5	- c	. ,		; ;	104	24	010	200	1 0	• •	
		7 00 4/7 /1 100000 7 7 7		7. Campo 7. 2/4 00 2	11 2/4 50 2	7.14 00 2	00	N 1	5	4 i	7		A. Saintot	2	t20-	40	710	00	7	_	A. Saintot
18 103 80 1	18 103 80 1	18 103 80 1	18 103 80 1	18 103 80 1	18 103 80 1	103 80 1	80	÷	48	/6	2	-	A. Saintot								
Lat 59.752 Long 10.715 19 192 83 1	Lat 59.752 Long 10.715 19 192 83 1	t 59.752 Long 10.715 19 192 83 1	Long 10.715 19 192 83 1	0.715 192 83 1	19 192 83 1	192 83 1	83	-	08	42	-	-	A. Saintot	67	Alværn	Brvade 3	la	t 59.747		ong 10.61	_
bib Azimuth Plunge Sense Quality Source 20 115 80 19	uth Plunge Sense Quality Source 20 115 80 19	lunde Sense Quality Source 20 115 80 19	e Quality Source 20 115 80 19	v Source 20 115 80 19	20 115 80 19	115 80 19	80 15	÷	38	35	-	-	A. Saintot	Data #	DinDir	Din 47	d think	S opun	oneo	Ouality	Source
75 150 0 3 1 A Saintot 21 116 82 19	0 0 3 1 A Saintot 21 116 82 19	0 3 1 A Saintot 21 116 82 19	1 A Saintot 21 116 82 19	A Saintot 21 116 82 19	21 116 82 19	116 82 19	82 19	19	2	47	-	-	A. Saintot	± ,						, ,	
		22 8 80 92	22 8 80 92	22 8 80 92	22 8 80 92	8 80 92	80 92	6		31	0	+	A. Saintot	-	707	83	760	81	7	-	A. Saintot
39 332 0 3 1 A. Saintot	2 0 3 1 A. Saintot	U 3 1 A. Saintot	A. Saintot	A. Saintot			1 1 1	Ļ	. 4	9			A Colored	0	5	72	11	72	2	-	A. Saintot
39 48 0 4 1 A. Saintot 23 00 02 17	3 0 4 1 A. Saintot 23 00 02 173	0 4 1 A. Saintot 20 00 02 17	1 A. Saintot 20 00 02 117	A. Saintot 23 00 02 113	11 70 00 C7	20 00	20	É	2	2	t	-	A. Odintot	e	30	58	52	56	2	-	A. Saintot
40 60 0 3 1 A Saintot	1 D 3 1 A Saintot	0 3 1 A Saintot	1 A. Saintot	A. Saintot											00						
														t 1	0	2		2	_ ,	N I	A. Gaintot
		41 Z I A. Saintot	A. Gaintot	A. Saintot										5	24	57	49	54	2	-	A. Saintot
75 150 14 3 1 A. Saintot	0 14 3 1 A. Saintot	14 3 1 A. Saintot	1 A. Saintot	A. Saintot										9	22	82	91	69	2	-	A. Saintot
30 708 D 3 1 A Calinat	a 0 3 1 A Solitat	0 3 1 A Calintet	1 A Contrat	A Cointot												4 6			4 (
				C. Calling										_	70	89	66	79	N	-	A. Sainto
72 112 0 3 1 A. Saintot	2 0 3 1 A.Saintot	0 3 1 A. Saintot	1 A. Saintot	A. Saintot										ø	212	48	180	43	2	ო	A. Saintot
20 170 14 4 3 A Sainter	2 14 4 3 A Saintot	14 4 3 A Saintee	3 A Saintat	A Saintot															1 0		
														מ	N02	7	2	20	v	_	A. Sainto
		VE I A. Saintot	A. Saintot											10	35	60	63	57	5	n	A. Sainto
ru 113 4-0 1 3 A. Saintot	3 4U 1 3 A. Saintot	4U 1 3 A. Saintot	3 A. Saintot	A. Saintot										1	315	70	225	0	ო	0	A. Sainto
75 198 62 2 1 A. Saintot	8 62 2 1 A. Saintot	62 2 1 A. Saintot	1 A. Saintot	A. Saintot										12	350	77	60	67	0	6	A Saintot
														1 5	202	10	0, 0	50	10	1 +	A Cointed
														2 :	20	2	0	20	4		A. Salhiut
														14	35	70	18	69	2	-	A. Saintol
-	Lat 59.746	~	Long 10.6	97	69	Mjøndal	en	-	-at 59.744	, Buor	0.022	70	Gullau	gfjellet	-	Lat 59.741	_	-ong 10.304			
------------	------------	----------------	------------	------------------------------	----------	------------	-------------	---------	------------	----------	------------------------------	-----------	-----------	----------	-----------	-------------	----------------	----------------	--------------------------		
Azimuth	Plunge	Sense	Quality	Source	Data #	DipDir	Dip	Azimuth	Plunge Ser	se Quali	ty Source	Data #	DipDi	Dip	Azimuth	Plunge S	ense	Quality	Source		
234	80	-	-	A. Saintot	-	-	83	-	83	-	M. Heeremans	-	216	68	304	5	4	-	A. Saintot		
139	40		-	A. Saintot	2	12	76	324	70	-	M. Heeremans	0	200	75	111	5	4	-	A. Saintot		
29	56	2	-	A. Saintot	e	160	68	179	67 2	-	M. Heeremans	ю	210	84	183	83	2	-	A. Saintot		
140	18	e	-	A. Saintot	4	10	09	10	60	-	M. Heeremans	4	78	89	78	89	e	2	A. Saintot		
342	50	2	-	A. Saintot	5	35	59	35	59 2	-	M. Heeremans	5	237	76	325	8	e	2	A. Saintot		
244	6	4 (A. Saintot	91	192	64	143	54		M. Heeremans	91	135	74	47	8,	4	. .	A. Saintot		
10	6 6	N +	- •	A. Saintot	- α	250	00 4	514	00 62	- "	M. Heeremans	- α	8	4 G	04 6	4 C	4 4	- •	A. Saintot		
211	77	- 0		A Saintot	σ	175	2 09	175	5 US	- c	M Heeremans	σ	810	008	261	282	t .	- 0	A Saintot		
100	43		-	A. Saintot	6	175	22	160	71 2	-	M. Heeremans	10	108	88	198	6	• 4	1 74	A. Saintot		
67	13	4	-	A. Saintot	1	63	88	175	63	-	M. Heeremans										
290	32	2	-	A. Saintot	12	356	09	356	60 2	-	M. Heeremans		Conde	20		01 EQ 740		10 00			
175	41	0		A. Saintot	13	355	80	68	58		M. Heeremans	Data #	DinDi		Azimuth I	Plunde S	anse L	Ouality	Source		
181	55	0	-	A. Saintot	14	352	8	78	47	-	M. Heeremans	- 1 1	ee a		337	runge o	1		A Calatot		
133	69			A. Saintot	15	360	61	69	98	- (M. Heeremans	- 0	747	23	181	04 0		4 +	A. Saintot		
157	61	- 0		A. Saintot	16	190	87	103	46	~ 17	M. Heeremans	4 00	1001	88	178	55	- ~		A. Saintot		
363	2	" ,		A. Saintot	1/	340	8	090	4 8	- c	M. Heeremans	04	335	30	328	30	10	- 0	A. Saintot		
100	02	o .		A. Saintot	0 ₫	340	4 4 4	251	- °	ч с	M. Heeremans M. Hooromons	2	308	29	260	48	1 (1		A. Saintot		
320	44	- ~		A. Saintot	20	336	87	246	- 4	10	M. Heeremans	9	296	70	226	43	0	-	A. Saintot		
245	22	10		A Saintot	2 5	200	87	110	- 4		M Heeremans	7	290	45	277	44	0	-	A. Saintot		
202	5 00	4		A. Saintot	: 8	16	44	287) 4		M. Heeremans	80	285	68	233	56	2	-	A. Saintot		
314	10	-	-	A. Saintot	23	219	79	307	10 4	-	M. Heeremans	თ	84	84	161	64	0	-	A. Saintot		
330	39	2	-	A. Saintot	24	339	82	99	18 3	-	M. Heeremans	10	80	88	168	67	0	-	A. Saintot		
334	50	2	-	A. Saintot	25	16	86	287	14 4	2	M. Heeremans	: 5	78	89	166 î	62	0 0	. (A. Saintot		
229	6	4	-	A. Saintot	26	336	88	99	3	-	M. Heeremans	12	288	17	6	24	2 10	~ ~	A. Saintot		
323	20	0	-	A. Saintot	27	353	8	82	6	5	M. Heeremans	2	707	0 0	10/	00	NC	n e	A. Saintot		
7	30	0	-	A. Saintot	28	148	8	238	0	-	M. Heeremans	4 4	2007	2 2	102	+ C	ч т	o •	A. Saintot		
357	31	0 0		A. Saintot	53	159	8	71	11		M. Heeremans	n 4	1	2 6	338	57	- 0		A. Saintot		
321	14			A. Saintot	83	161	2	248	12	- (M. Heeremans	2 [205	75	13	38	10		A Saintot		
47	21	Ν,		A. Saintot	31	1/9	9/	267	80 5	ю ·	M. Heeremans	2	663	2	2	2	4	-			
305	1	- ,		A. Saintot	33	179	20	102	42		M. Heeremans										
010	96	- (- c	A. Saintot	33	138	6 3	877	0 [M. Heeremans	72	Ovner	udveien	-	_at 59.738	-	ong 10.335-			
007	R7	۲	7	A. Saintot	5 8	701	5	607	- c	- c	M. Heeremans	Data #	DipDi	Dip	Azimuth	Plunge S	ense	Quality	Source		
					c, a	000	Do a	87	+ €	ч с	M. Heeremans	-	130	65	135	65	2	-	A. Saintot		
-	Lat 59.745	5	Long 10.4.	55	86	106	8 8	107	84	4 -	M Hooromans	2	138	63	153	62	2	-	A. Saintot		
Azimuth	Plunge	Sense	Quality	Source	88	164	88	12	24		M. Heeremans	e	265	68	180	78	0	-	A. Saintot		
247	43	2	-	A. Saintot	39	194	76	116	39	-	M. Heeremans	4	180	78	199	22	2	7	A. Saintot		
					40	183	74	110	45	-	M. Heeremans	ۍ د	172	67	201	64	0 0	, ,	A. Saintot		
-	Lat 59.744	-	Long 10.0	22	41	193	20	115	30 2	-	M. Heeremans	οr	30	80	000	8/			A. Saintot		
Azimuth	Plunge	Sense	Quality	Source	42	169	76	63	44	-	M. Heeremans	~ 00	8 6	64	103	0 00	4 4		A. Saintot A. Saintot		
328	68	2	-	M. Heeremans	43	188	82	107	49 2	-	M. Heeremans	00	189	72	101	0 00	4		A. Saintot		
319	62	0	-	M. Heeremans	4	337	68	99	32		M. Heeremans										
69	52	- 1	- 1	M. Heeremans	04 AA	227 227	87 87	0/	000		M. Heeremans	5	Tuese		-	24 EO 797		000 10 000			
319 160	50 Q	2 0	N +	M. Heeremans M. Heeremans	47	158	68	69	42	. –	M. Heeremans	Data #	iDaid	Din	Azimuth .	Plunde S	, ense	Ouality	Source		
	2	4			48	160	57	160	57 1	-	M. Heeremans	-	286	44	252	39	-	-	A. Saintot		
					49	156	44	156	44	-	M. Heeremans										
					20	165	23	165	53 2	-	M. Heeremans	77	Neology 1	don		of E0 726		000 10 440			
					51	165	63	136	60		M. Heeremans	4 (Jobo #		uan .		-dt 39.7 20	-	Olig 10.448	Country		
					20	100	80	2	10		M. Heeremans	- 1 1			308		201120		A Cointet		
					20	10/	8 8	35.7	2 2 2		M. Heeremans	- 0	113	283	2002	2 č	4 00		A Saintot		
					5 5	336	8 8	92	10		M. Heeremans	ι m	295	20	15	=	0 00	-	A. Saintot		
					56	338	68	68	20	-	M. Heeremans	4	132	72	70	55	0	-	A. Saintot		
					57	169	87	82	44 2	2	M. Heeremans	5	112	82	37	62	7	-	A. Saintot		
					58	161	68	73	59 2	-	M. Heeremans	9	110	89	20	0	4	-	A. Saintot		
					59	136	22	65	45		M. Heeremans										
					09	30	80	291	22	-	M. Heeremans										

68 Gunnerud Data# DipDir Dip A 1 228 45

 66
 Nordre Dat

 Data #
 DipDir
 Dip

 1
 155
 88

 2
 5
 58

 3
 5
 58

 4
 53
 50

 5
 333
 50

 6
 323
 50

 7
 1255
 58

 11
 1255
 58

 12
 1255
 58

 13
 240
 75

 14
 248
 75

 15
 210
 85

 16
 215
 74

 17
 248
 75

 18
 248
 75

 210
 215
 74

 211
 276
 87

 220
 320
 75

 221
 290
 75

 221
 290
 75

 223
 240
 75

 224
 310
 47

 233
 2300
 55

 231
 47

it 59.720		Long 10.6	54	80	Hallang	shage	E.	Lat 59.716		Long 10.64	5	
lunge	Sense	Quality	Source	Data #		dia 3	Azimuth	Plunge	Sense	Quality	So .	Irce
9	N	- 0	M. Heeremar	2 - C	190	6 F	100	07	n (- 0	¢ ∘	aintot
0.00	ч c	ч т	M. Heeremar	2 2	001	2	105	5 6	9 6	7 6	n o ⊄ <	aintot
まに	40	- 0	M. Heeremar	5 2		75	<u>8</u>	r (c	° "	o .	o u ≮ ⊲	aintot
48	10	1 -	M. Heeremar	2 S	182	292	95	12	ი ი		່∢	aintot
56	0	2	M. Heeremar	8	42	68	131	42	0	e	A S	aintot
46	0	-	M. Heeremar	1s 7	203	85	117	40	-	e	A.S	aintot
45	0	-	M. Heeremar	5 8	8	75	81	48	0	-	A.S	aintot
41	0	-	M. Heeremar	IS								
47	0 0		M. Heeremar	15 81	Hyggen			Lat 59.716		Long 10.37	0	
0 1 %	чc	- •	M. Heeremar	Data #	DipDir	Dip	Azimuth	Plunge	Sense	Quality	So	urce
80	N 4	- c	M. Heeremar	-	291	73	204	8	4	2	M. Hee	remans
	4 4	ч c	M. Heeremar	12	108	83	32	64	0	0	M. Hee	remans
- 02	t +	4 6	M. Hooromar	e ;	107	85	26	60	2	2	M. Hee	remans
g u	- 4	5	M Haaramar	4	200	80	111	9	ო	2	M. Hee	remans
3	10	- r	M Hooromar	0	106	83	22	39	0	2	M. Hee	remans
50	10		M. Heeremar	9	93	78	5	8	4	2	M. Hee	remans
38	-	-	M. Heeremar	1s 7	108	83	21	21	4	2	M. Hee	remans
69	0	ю	M. Heeremar	s 8	207	74	295	ωı	e (0	M. Hee	remans
27	2	2	M. Heeremar	ی ع	32	2	120	-	m (2	M. Hee	remans
46	0	-	M. Heeremar	10 2 2	31	68	121	24		2 4	M. Ho	remans
24	0	-	M. Heeremar	11 21	515	4 0	077	20	N	2	M. Hee	remans
12	4	0	M. Heeremar	12 12	107	0 1	177	00	чc	ч c	M. Hee	remans
9	4	-	M. Heeremar	15 14	02	τ 1	110	20	40	ч с	M. 19	remans
15	ლ ი	- (M. Heeremar	15	000	52	307	5 8	10	10	W Hor	remans
28	2	5	M. Heeremar	15 16	133	29	85	29	10	• 0	W Hor	Tomane
53	0 0	~ ~	M. Heeremar	17	20	182	46	5 5	10	10	M Hoc	remans
£2 6	η,		M. Heeremar	ls st	5	2	2		1	4		
22	4 •		M. Heeremar	2								
4 G	4 C	o ₹	M. Heeremar	15 82	Hallang	en		Lat 59.699	_	Long 10.61	3	
5 5	4 4	- •	M. Heeremar	Data #	DipDir	Ы	Azimuth	Plunge	Sense	Quality	So	Irce
- 6	t C	- ເ	M. Looromor	e ;	285	55	202	10	4	2	M. Hee	remans
00	чc	чc	M. Heeremar	12	260	63	311	51	0	-	M. Hee	remans
21	N	Z	M. Heeremar	35	252	79	315	99	0	-	M. Hee	remans
				4	259	87	174	56	0	2	M. Hee	remans
it 59.719	_	Long 10.6	53	2	290	67	208	18	4	e	M. Hee	remans
lunge	Sense	Quality	Source	91	264	2	190	38	0	0	M. Hee	remans
99	0	-	A. Saintot	L Č	274	5	204	45	~ ~	2 0	M. Hee	remans
63	0	-	A. Saintot	80 (19	22	065	2 2	2	υ,	M. Hee	remans
54	0		A. Saintot	א כ	717	20	RLZ	20	N		M. He	remans
45	0 0	2	A. Saintot	2 5	787	10	231	n ac	4 0	° °		remans
44	~ ~		A. Saintot	12	287	24	199	32	10	ი <i>ლ</i>	M. Hoc	remans
8 8	ч г		A Saintot	13	161	45	196	39	0	5	M. Hee	remans
22	- 0		A. Saintot	14	257	71	220	67	0	-	M. Hee	remans
39	0	-	A. Saintot	15	279	68	211	43	0	2	M. Hee	remans
41	0	-	A. Saintot	16	213	87	134	75	2	2	M. Hee	remans
32	0	-	A. Saintot	17	185	40	185	40	2	en 1	M. Hee	remans
48	0	-	A. Saintot	18	261	61	327	36	0	-	M. Hee	remans
42	0	-	A. Saintot	19	217	68	307	10	e	-	M. Hee	remans
84	-	-	A. Saintot	20	210	88	300	8	e	0	M. Hee	remans
43	0	-	A. Saintot	21	256	64	329	30	21		M. Hee	remans
30	0	-	A. Saintot	22	222	82	312	0 8	m (~ ~	M. Hee	remans
38	2	-	A. Saintot	67	6/7	2 6	CO 7	2 2	NC	2 0	W. Hộ	remans
38	0	-	A. Saintot	24 2 2	200	2	8	2.5	NC	° °	M. He	remans
80 S	~ ~		A. Saintot	90	34	7 08	315	48	10	ο .	M Hot	remane
60	NC	- •	A. Saintor	27	109	74	109	74	10		M. Hoc	remans
80 80	N 0		A. Saintot	28	100	61	138	55	10	- 0	M. Hee	remans
5	ų	-	A. OBINA	29	27	62	27	62	2	7	M. Hee	remans

1	Holtbrå	ten 3		Lat 59.7
Data #	DipDir	dio 3	Azimuth	Plunge
- 0	276	88	188	51
e	279	81	195	34
4 1	258	81	211	12
n 0	282	29 5	136	8
9 1-	306	6/ 82	23/	90 97 97
- 60	281	51	245	45
6	315	65	249	41
10	288	64	230	47
53	290	69	223	46
12	88	4 6	133	8
13	00 256	2 2	350 166	
<u>t</u> f	100	2, 2	182	- 08
16	88	2 28	177	ς υ
17	85	43	135	31
18	347	11	273	50
19	69	80	151	38
88	316	78	13	69
5 8	269	8	199	21
38	283	204		8 6
24	308	8	223	12
25	304	29	33	9
26	321	57	241	15
27	236	67	158	26
28	236	82	150	53
50	246	20	181	42 6
DF 7	007	2 8	1/3	22
58	242	60 8	401	47 78 79
30	1040	5 8	191	3 5
85	260	8 8	187	08
5	007	3 5	156	86
3	004	5	8	5
79	Holtbrå	ten 2		Lat 59.7
Data #	DipDir	Dip	Azimuth	Plunge
-	-	81	292	99
00	350	78	285	83
0 4	5 5	5 4	<u>с</u>	88
20	: 0	4	~	4
9	338	71	299	99
7	223	21	271	61
	, 18	22	18	57
в (- 5	90	615 41	99 41
; =	15	44	325	32
12	10	75	297	48
13	18	15	302	42
14	n ;	8	306	8
1 10	308	70	312	54 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
17	345	8	260	88
18	340	86	253	88
19	169	80	165	89
8 2	112	5 2	160	6 6 6
38	320	2 89	246	3 8

75	Fagerst	randv	eien	Lat 59.722	~	Long 10.6	576
Data #	DipDir	Ы	Azimuth	Plunge	Sense	Quality	Source
-	355	54	355	54	-	e	A. Saintot
2	108	89	197	46	-	-	A. Saintot
e	125	89	215	26	4	-	A. Saintot
4	128	75	201	48	-	-	A. Saintot
5	295	7	223	42	2	-	A. Saintot
9	296	85	241	81	2	-	A. Saintot
7	315	44	300	43	-	e	A. Saintot
8	320	50	320	50	-	e	A. Saintot
6	320	47	320	47	-	e	A. Saintot
10	325	48	235	0	e	e	A. Saintot
1	340	44	250	0	e	e	A. Saintot
12	350	40	260	0	e	e	A. Saintot
13	346	40	256	0	ę	e	A. Saintot
14	355	54	355	54	-	e	A. Saintot
15	310	40	242	18	-	e	A. Saintot
76	Konner	р		Lat 59.721	_	Long 10.1	147
Data #	DipDir	Dip	Azimuth	Plunge	Sense	Quality	Source
-	303	80	213	0	4	-	M. Heeremans
2	ø	84	81	70	2	-	M. Heeremans
ю	258	72	347	2	4	-	M. Heeremans
4	274	86	193	65	0	e	M. Heeremans
5	333	54	354	52	2	-	M. Heeremans
9	59	73	59	73	2	-	M. Heeremans
7	347	74	260	10	e	e	M. Heeremans
ø	236	89	148	68	2	e	M. Heeremans
6	108	89	197	51	0	-	M. Heeremans
10	68	83	68	83	2	-	M. Heeremans
5	21	20	106	14	e	e	M. Heeremans
12	125	78	215	2	4	e	M. Heeremans
13	172	81	82	-	e	e	M. Heeremans
14	5	84	275	4	e	е	M. Heeremans
78	Holtbrå	ten 1		Lat 59.720	_	Long 10.6	999
Data #	DipDir	Dip	Azimuth	Plunge	Sense	Quality	Source
-	290	84	207	50	2	e	A. Saintot
2	94	89	183	35	-	e	A. Saintot
e	305	65	244	46	2	-	A. Saintot
4	296	58	233	36	2	-	A. Saintot
5	246	88	158	48	2	e	A. Saintot
9	110	28	164	41	2	-	A. Saintot
7	80	48	123	39	2	-	A. Saintot
8	96	42	128	37	2	-	A. Saintot
6	72	60	146	26	2	-	A. Saintot
10	107	22	164	40	2	-	A. Saintot
1	260	85	176	50	0	-	A. Saintot
12	285	55	208	18	2	-	A. Saintot
13	303	60	221	13	4	-	A. Saintot

Appendix B – Part 1

M. Heeremans M. Heeremans Heereman Heereman M. Heeremar Heeremar Heereman Source M. Heeremar M. Heeremar A. Heeremar Heeremar Heeremar M. Heeremar Heeremar M. Heerema M. Heerema M. Heerems M. Heerems M. Heerema M. Heerema Heerema M. Heerema Heerem Heerem Heerema Heerema M. Heerem A. Heerem A. Heerem A. Heerem M. Heerem M. Heerem M. Heerem M. Heerem M. Heerem M. Heerem A. Heerer Long 10.454 Quality 20 ~~~~~~ Sense Lat 59.433 Plunge Azimuth lorten DipDi 90 Data # Heeremans Heeremans Heeremans Heeremans Heereman: Heereman Heereman Heereman Saintot Saintot Saintot Saintot Saintot Source Saintot Saintot Saintot Source Source Sainto Sainto Sainto Sainto Sainto Long 10.642 Long 10.623 Long 10.408 Quality Quality Quality Sense sense Lat 59.489 Lat 59.448 Lat 59.409 Plunge Plunge 59 49 48 48 48 48 64 76 52 80 80 80 80 80 80 80 80 80 80 Plunge 82 67 63 63 63 53 53 74 65 65 73 66 67 67 52 52 52 52 68 74 38 53 35 35 25 Azimuth Azimuth 42 79 214 1195 1187 1195 1195 1164 230 96 206 9 25 360 350 350 350 350 9 71 10 31 33 31 294 0 46 ы Dip DipDir Dip 80 40 32 80 85 84 85 Jeløya 2 Steinholt DipDir DipDir Jeløya 93 67 245 245 245 245 245 245 231 91 79 79 79 1119 1142 1142 1153 1537 287 287 50 30 58 230 320 222 222 255 263 95 95 267 250 250 278 278 278 79 90 231 99 237 86-88 Data # 91 Data # Data # 5 112 13 2 0.040 9 8 M. Heeremans M. Heeremans Heereman Source Source Heerema Heerema Heerem Heerem Heerem Source Long 10.497 Quality S 5 ≥ ž ≥ × z × z × × Long 9.663 -ong 10.449 ×. Quality Quality ~~~~~~ Sense Sense Lat 59.600 Plunge Lat 59.551 Plunge _at 59.640 Plunge 53 67 67 80 80 64 77 77 77 50 Azimuth Azimuth 249 2555 2525 247 246 75 75 75 75 80 80 28 Azimut 252 266 313 313 313 2268 221 2265 265 282 282 282 332 37 37 37 197 129 306 254 Tofte Tronstad Dip 61 61 70 70 80 64 80 80 80 Dip 74 74 89 85 85 85 85 70 77 70 77 87 87 87 Heistadmoer DipDir DipDir 256 315 307 307 280 94 139 220 225 263 215 263 315 Selvik DipDir 291 286 2286 2247 2247 257 257 75 75 75 135 135 189 266 197 197 177 177 177 177 51 177 51 177 51 197 275 5255 275 275 275 275 275 289 84 Data # 85 Data # 83 Data # 12 12 13 154131110001004001111111

6 Q

	Source	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A Saintot	A Saintot	A Caintot	A. Saintot	A. Saintot	A Cointot	A Deletet	A. Saintot		000000	A Cointot	A. Caintot	A Solution	A. Caintot	A Saintot	A Saintot	A. Saintot	A Saintot			Source	A. Saintot			Source	A. Saintot	A. Saintot	A. Saintot				
Long 9.703	Quality	-	-	-	6 .				-	-	-	-	-	0	2	-	. -		- (N 0	N •	- •		- +	- +		- 6) ,	- •	-	000 9849	, Hileno	udality		- •	- ,						Long 9.855	Quality	2	000 0 200	Long 9.869	Quality	v r		-
9	Sense	-	2	-	0 0	2 0	2 0	2	- 1	5	5	2	0	2	5	-		2 0	2		- (ч т		- 0	10	ч г	- 0	4 +	- 0	n	T.	Conco	Sense	- 0	4	t t	1 (*	•	4		1	9	Sense	2	•	×	Sense	10	10	2
Lat 59.05	Plunge	64	69	67	38	4 8 8	74	68	40	82	32	11	74	40	78	11	74	88	48	10	4 7	5 F8	5 4	78	45	45	7 g	64	3 9	D	l at 59.03		BE	8 5	- 4F	2 6	2 0	67	16	19	2	Lat 58.99	Plunge	30	00 07 1 T	Lat 58.90	Plunge	+ č	56	58
vik	Azimuth	287	308	280	80	6/	303	13/	42	320	91	359	349	94	290	1	34	102	121	0.0	200	21 23	154	322	138	152	114	5	202	187		Arimited		106	0.001	040	200	020	184	176		havn	Azimuth	264		2	Azimuth	249	235	245
f Bre	Dip	76	85	2	41	8 8	8	2	8	8	22	88	8	4	18	8	8	3	8 8	88	8 8	Ba	88	2 2	6 6	2 8	3 4	e a	8 8	8	La la			8 8	2 6	0	3 %	38	99	8	8	vlung	Dip	80	and a	gnavr		2 8	3 8	28
North o	DipDir	228	25	250	50	40	263	08	42	275	30	278	277	75	295	75	85	20	85	88	76	05 05	60	280	80	00	57	à	8 6	70	Tveidal			135	200		145	320	265	254		NW-Nev	DipDir	180	- Contractor	Neviun	DipDir	020	265	245
96	Data #	-	2	e	4 1	ۍ م	91	- ·	80	6	10	1	12	13	14	15	16	17	18	8L	202	2 5	3 8	24	25	C7 40	77	ac BC	0,0	87	97	# ctcC	Data #	- ເ	4 6	0 4	t v	a	~		•	98	Data #	-	00 101	101-66	Data #	- 0	10	4

Appendix B – Part 1

Site	Rock age	Stress state	Туре	n	σ 1-az	σ1 -pl	σ_2 -az	σ 2-pl	σ_3 -az	σ3 -pl	R	Rest
1	Silurian	TORU1	Tensional	6	170	78	1	12	271	2	0.3	
1	Silurian	TORU2	Oblique	17	243	52	26	32	128	19	0.1	1
2	Permian	BRUM1	Tensional	6	350	78	237	5	146	11	0.3	
2	Permian	BRUM2	Oblique	14	302	69	192	8	99	19	0.4	2
3	Prec.	HELL1	Tensional	11	253	77	349	1	79	13	0	
з	Prec.	HELL2	Oblique	12	142	65	310	24	42	5	0.3	
3	Prec.	HELL3	Strike-slip	6	192	12	317	70	99	16	0.1	6
4	L. Ord.	GORU	Tensional	13	255	82	76	8	346	0	0.2	0
5	CamSil.	BOVR1	Oblique	7	245	67	111	16	16	16	0.1	
5	CamSil.	BOVR2	Oblique	5	58	68	203	18	297	12	0.1	
5	CamSil.	BOVR3	Oblique	7	160	35	47	30	287	41	0.2	
5	CamSil.	BOVR4	Strike-slip	4	312	15	132	75	42	0	0.2	3
6	OrdSil.	KORS1	Tensional	11	2	77	262	2	171	13	0.6	
6	OrdSil.	KORS2	Oblique	9	358	30	200	58	94	10	0.8	
6	OrdSil.	KORS3	Strike-slip	5	338	12	173	78	69	3	0.2-0.4	4
7	Prec.	SKAR1	Tensional	13	114	80	24	0	294	10	0.3	
7	Prec.	SKAR2	Tensional	8	335	74	148	16	239	2	0	
7	Prec.	SKAR3	Tensional	6	245	75	51	15	142	4	0.9	0
8	Prec.	MOEN1	Tensional	6	325	73	183	13	91	10	0.3	
8	Prec.	MOEN2	Oblique	11	339	65	98	13	193	21	0.2-0.3	
8	Prec.	MOEN3	Oblique	7	86	58	309	25	210	19	0.1	6
9	OrdSil.	BRAN1	Compressional	12	319	12	50	5	162	77	0.3	
9	OrdSil.	BRAN2	Tensional	42	193	77	65	8	334	10	0	
9	OrdSil.	BRAN3	Oblique	30	128	60	299	30	31	4	0.3	
9	OrdSil.	BRAN4	Oblique	11	195	40	3	49	100	6	0.6	
9	OrdSil.	BRAN5	Oblique	8	9	38	167	50	270	11	0.3	8
10	OrdSil.	TING1	Tensional	24	178	74	72	4	341	15	0.2	
10	OrdSil.	TING2	Oblique	7	231	65	6	18	101	17	0.2	
10	OrdSil.	TING3	Strike-slip	9	10	9	184	81	280	1	0.6	8
11	Prec.	ENGN	Tensional	9	83	73	193	6	285	16	0.0-0.3	1
12	Permian	JARE1	Tensional	10	346	81	166	9	256	0	0	
12	Permian	JARE2	Oblique	4	125	29	293	60	32	5	0.6	
12	Permian	JARE3	Strike-slip	6	350	15	138	72	258	9	0.0-0.1	1
13	Prec.	RAHO	Oblique	8	210	60	19	30	112	5	0.3-0.7	3
14	OrdSil.	ROAX1	Tensional	5	161	83	348	7	258	1	0.3-0.4	
14	OrdSil.	ROAX2	Oblique	7	73	53	211	29	313	21	0.6-0.7	4
15	OrdSil.	GRYM1	Compressional	11	354	2	84	7	248	83	0.3	
15	OrdSil.	GRYM2	Tensional	13	356	85	175	5	265	0	0	
15	OrdSil.	GRYM3	Oblique	16	347	68	254	1	163	22	0.5	11
16	Prec.	JEVN	Oblique	10	140	68	353	19	259	11	0.5	2
17	U. Sil.	ASAX1	Oblique	28	320	61	157	28	63	7	0.2	
17	U. Sil.	ASAX2	Oblique	9	322	26	135	64	231	3	0.0-0.4	
17	U. Sil.	ASAX3	Strike-slip	11	136	10	352	78	227	7	0.4	12
18	OrdSil.	STUB	Tensional	5	94	85	339	2	249	5	0	2
19	CamSil.											3
20	Silurian	KROK1	Oblique	19	340	60	199	24	101	17	0.2	
20	Silurian	KROK2	Oblique	6	279	39	178	13	74	48	0.1-0.2	2
21	Silurian	SUN31	Tensional	39	11	85	191	5	281	0	0.1	
21	Silurian	SUN32	Oblique	10	352	48	196	39	96	12	0	
21	Silurian	SUN33	Oblique	5	280	48	179	10	81	40	0.7	3
22	CamSil.	SUN2	Oblique	8	335	65	134	23	227	8	0.6	0
23	Permian	SUN11	Tensional	8	293	78	193	2	103	12	0	
23	Permian	SUN12	Strike-slip	5	346	14	203	73	79	10	0.0-0.6	3
24	Permian	SORK1	Tensional	4	109	77	262	12	353	6	0.2	
24	Permian	SORK2	Oblique	14	156	34	28	42	268	29	0.3	
24	Permian	SORK3	Oblique	4	181	32	308	44	71	29	0.1	2

25 Permian HOM Tensional 15 141 71 321 16 30 0 0 5 27 Permian BOGSI Tensional 7 221 87 100 3 101 0.0 0.1 1 27 Permian BOGSI Tensional 8 477 811 101 73 235 1.0 0.0.2 1 28 LSII GRIN1 Tensional 8 477 812 23 1.5 0.0.4 0.0.9 0.0 90 0.0 90 0.0 0.0 0.0 0.0 90 9 0.0 0.0 0.0 0.0 90 9 0.0 90 0.0 0.0 0.0 10	Site	Rock age	Stress state	Туре	n	σ 1-az	σ ₁ -pl	σ_2 -az	σ 2-pl	σ_3 -az	σ3 -pl	R	Rest
26 Perman PROG Tensional 75 281 87 100 3 10 0 0 1 27 Perman BOGSI Strike-alip 5 327 14 110 73 235 10 0.0-02 1 28 Lelit GRIN1 Tensional 8 30 74 242 144 150 8 0.0 0 0.0 0 0.0 0 <	25	Permian	HOLM	Tensional	4	198	74	32	16	301	4	0.0-0.3	0
27 Permian BOGS2 Strike-alip 5 327 14 100 3 10 0 0.0-0.2 1 27 Permian BURU Tensional 8 47 61 278 68 171 50 5 327 14 100 70 0.0 1 28 L Sill GRIN2 Collique 6 148 66 39 30 74 242 14 150 8 0.0-9 0 30 Permian SKOL1 Tensional 14 128 88 311 2 2.71 15 0.5-07 0 31 Permian GAML1 Tensional 10 0 90 90 9 0 9 0 0 0 0 0 33 Permian GAML1 Tensional 11 357 641 201 11 10 0.0 11 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 <td< td=""><td>26</td><td>Permian</td><td>FROG</td><td>Tensional</td><td>15</td><td>141</td><td>71</td><td>321</td><td>19</td><td>51</td><td>0</td><td>0</td><td>5</td></td<>	26	Permian	FROG	Tensional	15	141	71	321	19	51	0	0	5
27 Perman BURU Tensional 8 327 14 110 73 235 10 0.0.02 1 28 LSI. GRN1 Tensional 8 30 74 242 14 150 8 0.0 29 LSI. GRN1 Tensional 11 128 88 311 2 21 0 0.1 30 Permian SKOL1 Tensional 11 218 68 30 0 9 0	27	Permian	BOGS1	Tensional	7	281	87	100	3	10	0	0.1	
permain BURU Tensional 8 47 61 278 6 187 7 6.0 5 29 L Sil. GRN2 Colique 6 148 65 39 107 150 6.5.0.7 0 0.1 1 10 20 28 10 2 25 171 15 0.5.0.7 1 15 0.5.0.7 0 1 1 2 28 711 15 0.5.0.7 0 1 1 2 22 1 16 0 9 0 9 0 0 0 1 1 2 2 2 1 16 0 1 10 0.0 1 1 10 0.0 1 10 0.0 1 10 0.0 1 10 0.0 1 10 0.0 1 10 10 10 10 10 10 10 10 10 10 10	27	Permian	BOGS2	Strike-slip	5	327	14	110	73	235	10	0.0-0.2	1
P3 L.S.N. GRN1 Tensional 8 90 74 242 14 150 8 0.1 Parmian SKOL1 Tensional 14 128 88 311 2 22 0.0.0 0 0.0.1 10 Permian SKOL1 Tensional 10 108 10 225 71 15 15 0.5.0 0 20 Permian GAML1 Tensional 10 20 00 0	28	Permian	BURU	Tensional	8	47	81	278	6	187	7	0.5	5
29 L.S.H. GRN2 Oblique 6 148 65 39 9 305 23 0.0.9 0 30 Permian SKOL1 Tensional 14 128 88 311 2 25 71 15 0.5.07 1 0	29	L. Sil.	GRIN1	Tensional	8	30	74	242	14	150	8	0.1	
90 Permian SKOL2 Strike-alp 8 108 12 235 71 15 15 0.5 0.5 0 10 Permian GAML1 Tensional 10 0 00 99 0 9 4 0.1 2 20 Permian GAML2 Strike-silp 4 7.7 12 222 75 344 10 0.0 0.0 1 10 0.0 1 10 0.0 1 1 12 29 10 0.0 1 1 12 0.0 1 1 10 0.0 1 1 10 0.0 1 1 10 0.0 1 1 10 0.0 1 1 10 0.0 1 1 10 0.0 1 1 10 1 10 1 10 1 1 10 1 1 1 10 1 10 1 10	29	L. Sil.	GRIN2	Oblique	6	148	65	39	9	305	23	0.0-0.9	0
30 Permian SK(2) Style 8 108 12 22 5 71 15 15 0 0 31 Permian GAML1 Tensional 11 218 86 99 2 9 4 0	30	Permian	SKOL1	Tensional	14	128	88	311	2	221	0	0.1	
11 Permian GAML1 Tensional 11 218 86 99 2 9 4 0.1 2 2 Permian GAML1 Tensional 10 0 99 0 9 4 0.0 1 2 2 3 2 3 3 2 3 3 4 4 0.7 12 2.22 1 1 16 0 0 0.0 1 3 33 Permian HVIL3 Oblique 6 152 37 311 51 54 10 0.01 4 34 U.Sit RYKK1 Tensional 7 118 7.7 348 8 2.7 10 0.10 3 3 35 Cam-Sit SNK5 Oblique 6 2.02 2.8 2.8 6 0.40 5 0.40.5 5 0.40.5 5 0.40.5 5 0.40.5 0.50.6 5	30	Permian	SKOL2	Strike-slip	8	108	12	235	71	15	15	0.5-0.7	0
12 Permian GAML1 Tensional 10 0 90 97 345 8 0.2 4 33 Permian HVIL1 Censional 11 357 84 222 75 345 8 0.2 4 33 Permian HVIL1 Censional 11 357 84 247 1 16 6 0.0.1 4 33 Permian HVIL5 Censional 7 61 16 306 52 162 33 0.6 1 4 34 14 0.3 0.0 4 30 3 33 14 0.3 0.0 4 33 14 0.3 14 0.0 1 33 23 14 14 3 3 33 33 23 14 10.3 87 0.0 1 33 14 0.0 10.3 10 10 10 10 10 10 10 <t< td=""><td>31</td><td>Permian</td><td>BAER</td><td>Tensional</td><td>11</td><td>218</td><td>86</td><td>99</td><td>2</td><td>9</td><td>4</td><td>0.1</td><td>2</td></t<>	31	Permian	BAER	Tensional	11	218	86	99	2	9	4	0.1	2
32 Permian GAML2 Strike-sip 4 77 12 222 75 345 8 0.0 1 33 Permian HVIL1 Tensional 11 357 84 247 1 166 6 0.0 1 37 33 Permian HVIL3 Oblique 6 152 37 311 51 54 0 0.0 4 34 U.Sil. RYKK1 Tensional 7 118 77 348 8 257 10 0.1 4 34 U.Sil. RYKK1 Tensional 7 118 77 348 8 257 10 0.1 3 3 35 Cam-Sil. SINS1 Oblique 6 225 41 24 27 403 3 10 10 27 7 31 0.10 2 36 Cam-Sil. VAEK2 Tensional 13 216 </td <td>32</td> <td>Permian</td> <td>GAML1</td> <td>Tensional</td> <td>10</td> <td>0</td> <td>90</td> <td>99</td> <td>0</td> <td>9</td> <td>0</td> <td>0</td> <td></td>	32	Permian	GAML1	Tensional	10	0	90	99	0	9	0	0	
33 Permian HVIL1 Tensional 11 357 64 247 1 16 6 0.0.1 33 Permian HVIL3 Oblique 6 152 37 151 51 52 162 33 3 0.0.1 33 Permian HVIL4 Oblique 7 61 18 77 34 0.3 31 0 0.10.3 4 34 U.Sil. RYKK2 Oblique 5 128 62 28 40 38 62 38 62 31 0.0 0.10.3 3 35 Cam-Sil. SINS1 Oblique 6 303 3 213 14 0.30 14 0.0.0 3 36 Cam-Sil. VAEK1 Compressional 6 303 3 213 15 24 0.5 0.0.0.1 37 Prec. EKEB1 Tensional 13 216 1 133 <td>32</td> <td>Permian</td> <td>GAML2</td> <td>Strike-slip</td> <td>4</td> <td>77</td> <td>12</td> <td>222</td> <td>75</td> <td>345</td> <td>8</td> <td>0.2</td> <td>4</td>	32	Permian	GAML2	Strike-slip	4	77	12	222	75	345	8	0.2	4
33 Permian HVIL2 Oblique 13 144 61 92 1 1 16 10 0.0 33 Permian HVIL3 Oblique 6 152 37 11 67 58 51 54 10 0.0 1 33 Permian HVIL5 Strike-slip 12 301 5 121 85 31 0 0.1 4 34 U.Sil. RYKK1 Tensional 7 118 77 348 8 257 11 0.0 0.1 4 35 Cam-Sil. SINS1 Oblique 6 233 3 11 12 246 47 13 0.10 1.1 36 Cam-Sil. VAEK2 Tensional 13 216 1 123 74 306 16 0.0 1.3 37 Prec. EKEB1 Oblique 10 173 10 279	33	Permian	HVIL1	Tensional	11	357	84	247	1	166	6	0.0-0.1	
33 Permian HVIL3 Oblique 7 61 50 51 54 64 10 0.6 33 Permian HVIL5 Oblique 7 61 309 52 162 33 0.6 34 U.Sil. RYKK1 Tensional 7 118 77 248 8 257 10 0.10 3 35 Cam-Sil. SNN51 Oblique 6 203 244 47 128 10 0.0.2 33 36 Cam-Sil. SINS1 Oblique 6 303 3 213 1 103 87 0.10-3 36 Cam-Sil. VAEK1 Compressional 6 303 3 213 1 103 87 0.0.0.1 37 Prec. EKEB1 Tensional 13 216 1 123 74 30 0.50 7 37 Prec. EKEB3 Oblique <t< td=""><td>33</td><td>Permian</td><td>HVIL2</td><td>Oblique</td><td>13</td><td>184</td><td>61</td><td>92</td><td>1</td><td>1</td><td>29</td><td>0</td><td></td></t<>	33	Permian	HVIL2	Oblique	13	184	61	92	1	1	29	0	
33 Permian HVIL4 Oblique 7 61 16 309 52 162 33 0.6 4 33 Permian HVIL5 Strike-alip 12 301 5 121 85 31 0 0.1 4 34 U.Sit RYKK2 Oblique 5 129 32 280 54 30 14 0.0.3 3 35 Cam-Sit SINS2 Oblique 6 303 3 213 1 103 67 0.1.0.3 5 36 Cam-Sit VAEK2 Tensional 15 235 82 4 5 94 5 0.0.0.1 5 37 Prec. EKEB1 Tensional 15 235 82 4 5 94 0.5 0.0.1 1 3 0.1.0 2 37 7 36 0.0.2 37 7 7 30 0.1.2 11 10	33	Permian	HVIL3	Oblique	6	152	37	311	51	54	10	0.6	
33 Permian HVL/LS Strike-slip 12 301 5 121 85 31 0 0.1.0 34 U,Sil. RYKK1 Tensional 7 118 77 348 8 257 30 14 0.1.0.3 3 35 Cam-Sil. SINS1 Oblique 6 225 41 24 47 126 11 0.0.0.2 5 36 Cam-Sil. VAEK1 Compressional 6 303 3 213 1 103 67 0.1.0.2 36 Cam-Sil. VAEK3 Strike-slip 13 216 1 123 74 306 16 0.0.0 1 37 Prec. EKEB1 Tensional 215 42 5 94 31 15 29 77 31 0.0.0 2 37 Prec. EKEB3 Oblique 17 175 528 34 34 9	33	Permian	HVIL4	Oblique	7	61	16	309	52	162	33	0.6	
14 U.Sill. RYKK1 Tensional 7 118 77 348 8 257 10 0.1.3 34 U.Sill. RYKK2 Oblique 6 129 32 280 54 30 41 0.0.3 3 35 Cam-Sill. SINS2 Strike-alip 4 358 66 138 822 288 55 0.4.0.5 9 36 Cam-Sill. VAEK1 Compressional 6 303 3 213 1 103 67 10.1 123 14 126 1 123 74 306 16 0.5.0 5 37 Prec. EKEB1 Tensional 15 232 62 44 55 0.0.1 110 0.1 200 13 115 232 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34	33	Permian	HVIL5	Strike-slip	12	301	5	121	85	31	0	0.1	4
34 U. Silt RYKK2 Oblique 5 129 32 280 54 30 14 0.3 3 35 Cam-Sil. SINS1 Oblique 6 225 41 24 47 126 11 0.0.0 J 36 Cam-Sil. VAEK1 Compressional 6 303 3 213 1 103 87 0.1.0.3 36 Cam-Sil. VAEK3 Strike-alip 13 216 1 123 74 306 16 0.50.6 5 37 Prec. EKEB1 Tensional 15 225 82 4 5 94 5 0.0.0.1 37 Prec. EKEB2 Oblique 12 196 37 32 52 28 34 34 9 0.50.7 7 37 Prec. EKEB5 Oblique 6 50 30 286 13 0.1.0.6 0.1 11<	34	U. Sil.	RYKK1	Tensional	7	118	77	348	8	257	10	0.1-0.3	
35 CamSil. SINS1 Oblique 6 225 41 24 47 126 11 0.0.0.7 35 CamSil. SINS2 Stinke-slip 4 368 6 138 62 248 5 0.4.0.5 9 36 CamSil. VAEK2 Tensional 24 22 86 215 4 103 87 0.1.0.5 37 Prec. EKEB1 Tensional 15 235 62 44 5 94 5 0.0.0.1 7 37 Prec. EKEB1 Oblique 10 173 102 29 37 0.0.0.1 7 37 Prec. EKEB3 Oblique 17 137 55 298 34 90 0.50.7 7 38 CamSil. HOVE Tensional 15 61 84 133 0.0 222 4 111 11 0.1 0.1 39 Prec. EKEB3 Oblique 5 130 0 220 21 <td>34</td> <td>U. Sil.</td> <td>RYKK2</td> <td>Oblique</td> <td>5</td> <td>129</td> <td>32</td> <td>280</td> <td>54</td> <td>30</td> <td>14</td> <td>0.3</td> <td>3</td>	34	U. Sil.	RYKK2	Oblique	5	129	32	280	54	30	14	0.3	3
35 CamSil. INS2 Strike-slip 4 358 6 138 82 268 5 0.4.0.5 9 36 CamSil. VAEK1 Compressional 24 86 215 4 125 1 0.2 36 CamSil. VAEK3 Strike-slip 13 216 1 123 74 306 16 0.5.0.6 5 37 Prec. EKEB1 Tensional 15 235 82 44 5 94 5 0.0.0.1 . 37 Prec. EKEB2 Oblique 12 106 37 32 52 292 8 0.2 . 37 Prec. EKEB5 Oblique 17 137 55 298 34 49 0.0.2 . 11 0 0 . <t< td=""><td>35</td><td>CamSil.</td><td>SINS1</td><td>Oblique</td><td>6</td><td>225</td><td>41</td><td>24</td><td>47</td><td>126</td><td>11</td><td>0.0-0.2</td><td></td></t<>	35	CamSil.	SINS1	Oblique	6	225	41	24	47	126	11	0.0-0.2	
36 CamSil. VAEK1 Compressional 6 303 3 213 1 103 87 0.1.0.3 36 CamSil. VAEK2 Tensional 24 22 86 215 4 105 1 0.2 37 Prec. EKEB1 Tensional 15 235 82 4 5 94 5 0.0-0.1 37 Prec. EKEB2 Oblique 10 173 10 279 57 77 31 0.1-2 13 37 Prec. EKEB3 Oblique 17 137 55 298 34 34 9 0.5-0 13 38 CamSil. HOVE Tensional 9 310 78 202 4 11 11 0 0 233 39 Prec. KCBB Oblique 6 50 30 202 4 11 11 0.1 12 40 CamSil. SAND1 Tensional 12 308 60 12 11	35	CamSil.	SINS2	Strike-slip	4	358	6	138	82	268	5	0.4-0.5	9
36 CamSil. VAEK2 Tensional 24 22 86 215 4 125 1 0.2 36 CamSil. VAEK3 Strike-slip 13 216 1 123 74 306 16 0.5-0.6 5 37 Prec. EKEB1 Tensional 15 235 62 4 5 0.0-0.1 7 37 Prec. EKEB3 Oblique 12 196 37 32 52 292 8 0.2 7 37 Prec. EKEB4 Oblique 17 130 55 298 34 9 0.5-0.7 7 38 CamSil. HOVE Tensional 9 310 78 202 4 111 11 0	36	CamSil.	VAEK1	Compressional	6	303	3	213	1	103	87	0.1-0.3	
36 CamSil. VAEK3 Strike-slip 13 216 1 123 74 306 16 0.5.6 5 37 Prec. EKEB1 Tensional 15 225 82 4 5 0.0-0.1 1 37 Prec. EKEB2 Oblique 10 173 10 279 57 77 31 0.1-0.2 37 Prec. EKEB2 Oblique 12 196 37 52 292 37 0.3 1.0 0.0 33 38 CamSil. EKEB5 Oblique 6 50 30 296 35 169 40 0.2 13 38 CamSil. SAND1 Tensional 15 61 84 153 0 265 13 0.10 11 0.1 1 14 14 153 0 265 13 0.10 11 11 0.1 1 12 11	36	CamSil.	VAEK2	Tensional	24	22	86	215	4	125	1	0.2	
37 Prec. EKEB1 Tensional 15 235 82 4 5 94 5 0.0-0.1 37 Prec. EKEB2 Oblique 10 173 10 279 57 77 31 0.1-0.2 37 Prec. EKEB3 Oblique 12 196 37 32 292 88 0.2 33 37 Prec. EKEB5 Oblique 17 137 55 298 34 34 9 0.5-0.7 37 Prec. EKEB6 Oblique 6 50 30 286 35 169 40 0.2 13 38 Cam-Sil. SAND1 Tensional 15 61 84 153 0 243 6 0 0 0 0 0 245 13 0.1-0.6 12 40 Cam-Sil. SAND1 Tensional 12 308 6 38 30 12 11 0.1 0 12 41 Cam-Sil. FORN1 <t< td=""><td>36</td><td>CamSil.</td><td>VAEK3</td><td>Strike-slip</td><td>13</td><td>216</td><td>1</td><td>123</td><td>74</td><td>306</td><td>16</td><td>0.5-0.6</td><td>5</td></t<>	36	CamSil.	VAEK3	Strike-slip	13	216	1	123	74	306	16	0.5-0.6	5
37 Prec. EKEB2 Oblique 10 173 10 279 57 77 31 0.1-0.2 37 Prec. EKEB3 Oblique 12 196 37 32 52 292 88 0.2 37 Prec. EKEB4 Oblique 9 239 49 131 15 29 37 0.3 3 37 Prec. EKEB6 Oblique 6 50 30 296 35 169 40 0.2 13 38 CamSil. HOVE Tensional 9 310 78 202 4 111 11 0 0 0 39 Prec. KONG Tensional 15 61 84 153 0.0 243 6 0.0 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 11 11 11 11 11 11 11 11 11 11 10 <t< td=""><td>37</td><td>Prec.</td><td>EKEB1</td><td>Tensional</td><td>15</td><td>235</td><td>82</td><td>4</td><td>5</td><td>94</td><td>5</td><td>0.0-0.1</td><td></td></t<>	37	Prec.	EKEB1	Tensional	15	235	82	4	5	94	5	0.0-0.1	
37 Prec. EKEB3 Oblique 12 196 37 32 52 292 8 0.2 37 Prec. EKEB4 Oblique 17 137 55 298 34 34 9 0.5-0 - 37 Prec. EKEB5 Oblique 17 137 55 298 35 169 40 0.2 13 38 Cam-Sil. HOVE Tensional 15 61 84 153 0 243 6 0 0 39 Prec. KONG Tensional 20 85 77 355 0 245 13 0.1-0 1 40 Cam-Sil. SAND1 Tensional 20 85 77 355 0 226 13 0.1-0 1 1 41 Cam-Sil. FORN1 Compressional 12 308 6 38 0 129 84 0.4 1 41 Cam-Sil. FORN4 Oblique 10 227 51	37	Prec.	EKEB2	Oblique	10	173	10	279	57	77	31	0.1-0.2	
37 Prec. EKEB4 Oblique 9 239 49 131 15 29 37 0.3 37 Prec. EKEB5 Oblique 17 137 55 298 34 34 9 0.5-0	37	Prec.	EKEB3	Oblique	12	196	37	32	52	292	8	0.2	
37 Prec. EKEB5 Oblique 17 137 55 298 34 34 9 0.5-0.7 37 Prec. EKEB6 Oblique 6 50 30 296 35 169 40 0.2 13 38 CamSil. HOVE Tensional 15 61 84 153 0 243 6 0 0 39 Prec. KONG Tensional 15 61 84 153 0 243 6 0 0 40 CamSil. SAND1 Tensional 20 85 77 355 0 265 13 0.1-0.6 40 CamSil. SAND1 Compressional 12 308 6 38 0 129 84 0.4 12 41 CamSil. FORN1 Compressional 12 308 6 38 0 123 11 0.2-0.4 14 41 camSil. FORN3 Oblique 5 103 29 97	37	Prec.	EKEB4	Oblique	9	239	49	131	15	29	37	0.3	
37 Prec. EKEB6 Oblique 6 50 30 296 35 169 40 0.2 13 38 CamSil. HOVE Tensional 15 61 84 153 0 243 6 0 0 39 Prec. KONG Tensional 15 61 84 153 0 243 6 0 0 40 CamSil. SAND1 Tensional 20 85 77 355 0 2265 13 0.1-0.6 40 CamSil. SAND2 Oblique 6 94 68 306 19 212 11 0.1 41 CamSil. FORN1 Compressional 12 308 6 38 0 129 84 0.4 40 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 4.0 3.0 4.0 4.0 3.0 4.0 4.0	37	Prec.	EKEB5	Oblique	17	137	55	298	34	34	9	0.5-0.7	
38 CamSil. HOVE Tensional 9 310 78 202 4 111 11 0 0 39 Prec. KONG Tensional 15 61 84 153 0 243 6 0 0 40 CamSil. SAND1 Tensional 20 85 77 355 0 265 13 0.1-0.6 40 CamSil. SAND3 Oblique 5 130 0 220 21 40 69 0.1 12 41 CamSil. FORN1 Compressional 12 308 6 38 0 129 84 0.4 11 0.2-0.4 11 0.2-0.4 11 0.2-0.4 11 0.2-0.4 11 0.2-0.4 11 0.2-0.4 11 0.2-0.4 11 0.2-0.4 11 0.2-0.4 11 0.2-0.6 11 12 11 0.1 1 0.2-0.6 13 0.0-0.	37	Prec.	EKEB6	Oblique	6	50	30	296	35	169	40	0.2	13
39 Prec. KONG Tensional 15 61 84 153 0 243 6 0 40 CamSil. SAND1 Tensional 20 85 77 365 0 265 13 0.1-0.6 40 CamSil. SAND2 Oblique 6 94 68 306 19 212 11 0.1 1 40 CamSil. SAND3 Oblique 5 130 0 220 21 40 69 0.1 12 41 CamSil. FORN1 Compressional 14 126 83 346 5 256 4 0.3.4 41 CamSil. FORN3 Oblique 10 32 2 292 79 122 11 0.4 0.5 41 CamSil. FORN5 Strike-slip 10 32 22 292 79 122 11 0.1 1	38	CamSil.	HOVE	Tensional	9	310	78	202	4	111	11	0	0
40 CamSil. SAND1 Tensional 20 85 77 355 0 265 13 0.1-0.6 40 CamSil. SAND2 Oblique 6 94 68 306 19 212 11 0.1 40 CamSil. SAND3 Oblique 5 130 0 220 21 40 69 0.1 12 41 CamSil. FORN1 Compressional 12 308 6 38 0 129 84 0.4 12 41 CamSil. FORN1 Compressional 14 126 83 346 5 256 4 0.30.4 13 0.20.4 41 CamSil. FORN3 Oblique 10 327 51 25 37 123 11 0.20.4 1 41 CamSil. FORN4 Oblique 5 103 29 9 7 267 61 0.5 41 CamSil. FORN4 Oblique 6 109 33	39	Prec.	KONG	Tensional	15	61	84	153	0	243	6	0	0
40 CamSil. SAND2 Oblique 6 94 68 306 19 212 11 0.1 40 CamSil. SAND3 Oblique 5 130 0 220 21 40 69 0.1 12 41 CamSil. FORN1 Compressional 12 308 6 38 0 129 84 0.4 12 41 CamSil. FORN1 Compressional 12 308 6 38 346 5 256 4 0.3 4 41 CamSil. FORN3 Oblique 5 103 29 9 7 267 61 0.5 11 41 CamSil. FORN4 Oblique 5 103 22 292 79 122 11 0.1 1 42 Permian GRY51 Tensional 4 329 80 174 9 83 4 0.91.0 1 42 Permian GRY51 Dblique 4 309 <t< td=""><td>40</td><td>CamSil.</td><td>SAND1</td><td>Tensional</td><td>20</td><td>85</td><td>77</td><td>355</td><td>0</td><td>265</td><td>13</td><td>0.1-0.6</td><td></td></t<>	40	CamSil.	SAND1	Tensional	20	85	77	355	0	265	13	0.1-0.6	
40 CamSil. SAND3 Oblique 5 130 0 220 21 40 69 0.1 12 41 CamSil. FORN1 Compressional 12 308 6 38 0 129 84 0.4 41 CamSil. FORN2 Tensional 14 126 83 346 5 256 4 0.3-0.4 41 CamSil. FORN3 Oblique 10 227 51 25 37 123 11 0.2-0.4 41 CamSil. FORN4 Oblique 5 103 29 9 7 267 61 0.5 41 CamSil. FORN5 Strike-slip 10 32 2 292 79 122 11 0.1 1 42 Permian GRYS1 Tensional 4 329 80 174 9 83 4 0.9.1.0 1 42 Permian GRYS2 Oblique 4 309 45 200 18 94 </td <td>40</td> <td>CamSil.</td> <td>SAND2</td> <td>Oblique</td> <td>6</td> <td>94</td> <td>68</td> <td>306</td> <td>19</td> <td>212</td> <td>11</td> <td>0.1</td> <td></td>	40	CamSil.	SAND2	Oblique	6	94	68	306	19	212	11	0.1	
41 CamSil. FORN1 Compressional 12 308 6 38 0 129 84 0.4 41 CamSil. FORN2 Tensional 14 126 83 346 5 256 4 0.3-0.4 41 CamSil. FORN3 Oblique 10 227 51 25 37 123 11 0.2-0.4 41 CamSil. FORN4 Oblique 5 103 29 9 7 267 61 0.5 41 CamSil. FORN5 Strike-slip 10 32 2 292 79 122 11 0.1 1 42 Permian GRYS1 Tensional 4 329 80 174 9 83 4 0.9-1.0 1 42 Permian GRYS2 Oblique 6 109 33 352 35 229 38 0.0-0.1 5 43 CamSil. MALM Oblique 9 183 54 7 36 27	40	CamSil.	SAND3	Oblique	5	130	0	220	21	40	69	0.1	12
41 CamSil. FORN2 Tensional 14 126 83 346 5 256 4 0.3-0.4 41 CamSil. FORN3 Oblique 10 227 51 25 37 123 11 0.2-0.4 41 CamSil. FORN4 Oblique 5 103 29 9 7 267 61 0.5 41 CamSil. FORN5 Strike-slip 10 32 2 292 79 122 11 0.1 1 42 Permian GRYS1 Tensional 4 329 80 174 9 83 4 0.9-1.0 5 43 CamSil. MALM Oblique 4 309 45 200 18 94 39 0.2-0.6 3 44 Prec. NESO1 Oblique 9 183 54 7 36 276 2 0.9 3 44 Prec. NESO2 Strike-slip 4 255 13 75 77	41	CamSil.	FORN1	Compressional	12	308	6	38	0	129	84	0.4	
41 CamSil. FORN3 Oblique 10 227 51 25 37 123 11 0.2-0.4 41 CamSil. FORN4 Oblique 5 103 29 9 7 267 61 0.5 41 CamSil. FORN5 Strike-slip 10 32 2 292 79 122 11 0.1 1 42 Permian GRYS1 Tensional 4 329 80 174 9 83 4 0.9-1.0 1 42 Permian GRYS1 Tensional 4 309 45 200 18 94 39 0.2-0.6 3 43 CamSil. MALM Oblique 4 309 45 200 18 94 39 0.2-0.6 3 44 Prec. NESO1 Oblique 9 183 54 7 36 276 2 0.9 1 45 OrdSil. OSTO1 Tensional 25 232 86 6	41	CamSil.	FORN2	Tensional	14	126	83	346	5	256	4	0.3-0.4	
41 CamSil. FORN4 Oblique 5 103 29 9 7 267 61 0.5 41 CamSil. FORN5 Strike-slip 10 32 2 292 79 122 11 0.1 1 42 Permian GRYS1 Tensional 4 329 80 174 9 83 4 0.9-1.0 1 42 Permian GRYS2 Oblique 6 109 33 352 35 229 38 0.0-0.1 5 43 CamSil. MALM Oblique 4 309 45 200 18 94 39 0.2-0.6 3 44 Prec. NESO1 Oblique 9 183 54 7 36 276 2 0.9 1 45 OrdSil. OSTO1 Tensional 25 232 86 6 3 96 3 0 - 45 OrdSil. OSTO1 Tensional 25 232 86 6 <td>41</td> <td>CamSil.</td> <td>FORN3</td> <td>Oblique</td> <td>10</td> <td>227</td> <td>51</td> <td>25</td> <td>37</td> <td>123</td> <td>11</td> <td>0.2-0.4</td> <td></td>	41	CamSil.	FORN3	Oblique	10	227	51	25	37	123	11	0.2-0.4	
41 CamSil. FORN5 Strike-slip 10 32 2 292 79 122 11 0.1 1 42 Permian GRYS1 Tensional 4 329 80 174 9 83 4 0.9-1.0 42 Permian GRYS2 Oblique 6 109 33 352 35 229 38 0.0-0.1 5 43 CamSil. MALM Oblique 4 309 45 200 18 94 39 0.2-0.6 3 44 Prec. NESO1 Oblique 9 183 54 7 36 276 2 0.9 44 Prec. NESO2 Strike-slip 4 255 13 75 77 165 0 0.9-1.0 1 45 OrdSil. OSTO2 Oblique 10 208 41 357 44 103 16 0.3 45 OrdSil. OSTO3 Oblique 5 139 31 325 59	41	CamSil.	FORN4	Oblique	5	103	29	9	7	267	61	0.5	
42 Permian GRYS1 Tensional 4 329 80 174 9 83 4 0.9-1.0 42 Permian GRYS2 Oblique 6 109 33 352 35 229 38 0.0-0.1 5 43 CamSil. MALM Oblique 4 309 45 200 18 94 39 0.2-0.6 3 44 Prec. NESO1 Oblique 9 183 54 7 36 276 2 0.9 1 44 Prec. NESO2 Strike-slip 4 255 13 75 77 165 0 0.9-1.0 1 45 OrdSil. OSTO1 Tensional 25 232 86 6 3 96 3 0 33 0 45 OrdSil. OSTO1 Tensional 25 232 86 6 3 99 0.4 33 45 OrdSil. OSTO2 Oblique 5 139 31 325 </td <td>41</td> <td>CamSil.</td> <td>FORN5</td> <td>Strike-slip</td> <td>10</td> <td>32</td> <td>2</td> <td>292</td> <td>79</td> <td>122</td> <td>11</td> <td>0.1</td> <td>1</td>	41	CamSil.	FORN5	Strike-slip	10	32	2	292	79	122	11	0.1	1
42 Permian GRYS2 Oblique 6 109 33 352 35 229 38 0.0-0.1 5 43 CamSil. MALM Oblique 4 309 45 200 18 94 39 0.2-0.6 3 44 Prec. NESO1 Oblique 9 183 54 7 36 276 2 0.9 1 44 Prec. NESO2 Strike-slip 4 255 13 75 77 165 0 0.9-1.0 1 45 OrdSil. OSTO1 Tensional 25 232 86 6 3 96 3 0 0 45 OrdSil. OSTO2 Oblique 10 208 41 357 44 103 16 0.3 45 OrdSil. OSTO3 Oblique 5 139 31 325 59 230 3 0.1 4 </td <td>42</td> <td>Permian</td> <td>GRYS1</td> <td>Tensional</td> <td>4</td> <td>329</td> <td>80</td> <td>174</td> <td>9</td> <td>83</td> <td>4</td> <td>0.9-1.0</td> <td></td>	42	Permian	GRYS1	Tensional	4	329	80	174	9	83	4	0.9-1.0	
43 CamSil. MALM Oblique 4 309 45 200 18 94 39 0.2-0.6 3 44 Prec. NESO1 Oblique 9 183 54 7 36 276 2 0.9 1 44 Prec. NESO2 Strike-slip 4 255 13 75 77 165 0 0.9-1.0 1 45 OrdSil. OSTO1 Tensional 25 232 86 6 3 96 3 0 45 OrdSil. OSTO2 Oblique 10 208 41 357 44 103 16 0.3 45 OrdSil. OSTO3 Oblique 5 139 31 325 59 230 3 0.1 4 46 CamSil. HVAL1 Compressional 6 329 6 239 1 140 84 0.2 1	42	Permian	GRYS2	Oblique	6	109	33	352	35	229	38	0.0-0.1	5
44 Prec. NESO1 Oblique 9 183 54 7 36 276 2 0.9 44 Prec. NESO2 Strike-slip 4 255 13 75 77 165 0 0.9-1.0 1 45 OrdSil. OSTO1 Tensional 25 232 86 6 3 96 3 0 45 OrdSil. OSTO2 Oblique 10 208 41 357 44 103 16 0.3 45 OrdSil. OSTO3 Oblique 6 34 51 175 32 278 19 0.4 45 OrdSil. OSTO3 Oblique 5 139 31 325 59 230 3 0.1 4 46 CamSil. HVAL1 Compressional 6 329 6 239 1 140 84 0.7 1 47 Prec.	43	CamSil.	MALM	Oblique	4	309	45	200	18	94	39	0.2-0.6	3
44 Prec. NESO2 Strike-slip 4 255 13 75 77 165 0 0.9-1.0 1 45 OrdSil. OSTO1 Tensional 25 232 86 6 3 96 3 0 45 OrdSil. OSTO2 Oblique 10 208 41 357 44 103 16 0.3 45 OrdSil. OSTO3 Oblique 6 34 51 175 32 278 19 0.4 45 OrdSil. OSTO4 Oblique 5 139 31 325 59 230 3 0.1 4 46 CamSil. HVAL1 Compressional 6 329 6 239 1 140 84 0.7 1 47 Prec. Tensional 8 89 74 238 14 330 8 0.2 1 48/49 Ordovician<	44	Prec.	NESO1	Oblique	9	183	54	7	36	276	2	0.9	
45 OrdSil. OSTO1 Tensional 25 232 86 6 3 96 3 0 45 OrdSil. OSTO2 Oblique 10 208 41 357 44 103 16 0.3 45 OrdSil. OSTO3 Oblique 6 34 51 175 32 278 19 0.4 45 OrdSil. OSTO4 Oblique 5 139 31 325 59 230 3 0.1 4 46 CamSil. HVAL1 Compressional 6 329 6 239 1 140 84 0.7 46 CamSil. HVAL2 Tensional 8 89 74 238 14 330 8 0.2 1 47 Prec.	44	Prec.	NESO2	Strike-slip	4	255	13	75	77	165	0	0.9-1.0	1
45 OrdSil. OSTO2 Oblique 10 208 41 357 44 103 16 0.3 45 OrdSil. OSTO3 Oblique 6 34 51 175 32 278 19 0.4 45 OrdSil. OSTO4 Oblique 5 139 31 325 59 230 3 0.1 4 46 CamSil. HVAL1 Compressional 6 329 6 239 1 140 84 0.7 46 CamSil. HVAL2 Tensional 8 89 74 238 14 330 8 0.2 1 47 Prec. - - - - 1 0.1 - - 1 0.1 - - 1 0.1 - - 1 0.1 - - - 1 0.1 - - - 1 0.1 - - - - 1 0.1 - - - - - <	45	OrdSil.	OSTO1	Tensional	25	232	86	6	3	96	3	0	
45 OrdSil. OSTO3 Oblique 6 34 51 175 32 278 19 0.4 45 OrdSil. OSTO4 Oblique 5 139 31 325 59 230 3 0.1 4 46 CamSil. HVAL1 Compressional 6 329 6 239 1 140 84 0.7 46 CamSil. HVAL2 Tensional 8 89 74 238 14 330 8 0.2 1 47 Prec. Tensional 9 183 87 18 3 287 1 0.1 48/49 Ordovician ALVA1 Tensional 9 183 87 18 3 287 1 0.1 48/49 Ordovician ALVA2 Strike-slip 5 183 4 326 85 93 3 0.2 4 50 Ordovician BLAK1 Tensional 4 205 80 22 10 112 1	45	OrdSil.	OSTO2	Oblique	10	208	41	357	44	103	16	0.3	
45 OrdSil. OSTO4 Oblique 5 139 31 325 59 230 3 0.1 4 46 CamSil. HVAL1 Compressional 6 329 6 239 1 140 84 0.7 46 CamSil. HVAL2 Tensional 8 89 74 238 14 330 8 0.2 1 47 Prec. - - - - - 1 0.1 - - 48/49 Ordovician ALVA1 Tensional 9 183 87 18 3 287 1 0.1 48/49 Ordovician ALVA2 Strike-slip 5 183 4 326 85 93 3 0.2 4 50 Ordovician BLAK1 Tensional 4 205 80 22 10 112 1 0.4-0.5 50 Ordovician BLAK2 Oblique 5 163 57 307 28 46 16 0.	45	OrdSil.	OSTO3	Oblique	6	34	51	175	32	278	19	0.4	
46 CamSil. HVAL1 Compressional 6 329 6 239 1 140 84 0.7 46 CamSil. HVAL2 Tensional 8 89 74 238 14 330 8 0.2 1 47 Prec. 1 48/49 Ordovician ALVA1 Tensional 9 183 87 18 3 287 1 0.1 48/49 Ordovician ALVA2 Strike-slip 5 183 4 326 85 93 3 0.2 4 50 Ordovician BLAK1 Tensional 4 205 80 22 10 112 1 0.4-0.5 50 Ordovician BLAK2 Oblique 5 163 57 307 28 46 16 0.3-0.5 0	45	OrdSil.	OSTO4	Oblique	5	139	31	325	59	230	3	0.1	4
46 CamSil. HVAL2 Tensional 8 89 74 238 14 330 8 0.2 1 47 Prec. 1 48/49 Ordovician ALVA1 Tensional 9 183 87 18 3 287 1 0.1 48/49 Ordovician ALVA2 Strike-slip 5 183 4 326 85 93 3 0.2 4 50 Ordovician BLAK1 Tensional 4 205 80 22 10 112 1 0.4-0.5 50 Ordovician BLAK2 Oblique 5 163 57 307 28 46 16 0.3-0.5 0	46	CamSil.	HVAL1	Compressional	6	329	6	239	1	140	84	0.7	
47 Prec. 1 48/49 Ordovician ALVA1 Tensional 9 183 87 18 3 287 1 0.1 48/49 Ordovician ALVA2 Strike-slip 5 183 4 326 85 93 3 0.2 4 50 Ordovician BLAK1 Tensional 4 205 80 22 10 112 1 0.4-0.5 50 Ordovician BLAK2 Oblique 5 163 57 307 28 46 16 0.3-0.5 0	46	CamSil.	HVAL2	Tensional	8	89	74	238	14	330	8	0.2	1
48/49 Ordovician ALVA1 Tensional 9 183 87 18 3 287 1 0.1 48/49 Ordovician ALVA2 Strike-slip 5 183 4 326 85 93 3 0.2 4 50 Ordovician BLAK1 Tensional 4 205 80 22 10 112 1 0.4-0.5 50 Ordovician BLAK2 Oblique 5 163 57 307 28 46 16 0.3-0.5 0	47	Prec.											1
48/49 Ordovician ALVA2 Strike-slip 5 183 4 326 85 93 3 0.2 4 50 Ordovician BLAK1 Tensional 4 205 80 22 10 112 1 0.4-0.5 50 Ordovician BLAK2 Oblique 5 163 57 307 28 46 16 0.3-0.5 0	48/49	Ordovician	ALVA1	Tensional	9	183	87	18	3	287	1	0.1	
50 Ordovician BLAK1 Tensional 4 205 80 22 10 112 1 0.4-0.5 50 Ordovician BLAK2 Oblique 5 163 57 307 28 46 16 0.3-0.5 0	48/49	Ordovician	ALVA2	Strike-slip	5	183	4	326	85	93	3	0.2	4
50 Ordovician BLAK2 Oblique 5 163 57 307 28 46 16 0.3-0.5 0	50	Ordovician	BLAK1	Tensional	4	205	80	22	10	112	1	0.4-0.5	
	50	Ordovician	BLAK2	Oblique	5	163	57	307	28	46	16	0.3-0.5	0

Site	Rock age	Stress state	Туре	n	σ 1-az	σ1 -bl	σ_2 -az	σ 2-pl	σ_3 -az	σ3 -pl	R	Rest
51	Permian	HAUG1	Tensional	7	292	79	91	10	182	4	0.3	
51	Permian	HAUG2	Strike-slip	6	84	14	264	76	354	0	0.3	0
52	Prec.	FJEL1	Compressional	4	311	3	42	20	213	70	0.7	
52	Prec.	FJEL2	Tensional	7	232	73	34	16	125	5	0.1	
52	Prec.	FJEL3	Oblique	31	170	55	20	31	281	14	0.3	
52	Prec.	FJEL4	Oblique	4	68	14	194	67	333	18	0.6-1.0	4
53	Permian	UTSI	Oblique	4	198	49	351	38	92	14	0.3-0.5	3
54	Permian											0
55	Permian	REIS	Strike-slip	6	116	17	279	72	25	5	0.6	3
56	Ordovician	BOVE1	Tensional	10	222	85	42	5	132	0	0.4	
56	Ordovician	BOVE2	Oblique	4	173	60	10	29	276	7	0.2-0.4	2
57	Prec.	HASL1	Tensional	14	153	80	348	10	257	2	0.6	
57	Prec.	HASL2	Oblique	13	148	38	322	52	56	3	0.3	0
58	Cambrian	MOLL1	Tensional	7	145	74	24	8	292	14	0.5	
58	Cambrian	MOLL2	Tensional	6	321	83	94	4	180	2	0.2	
58	Cambrian	MOLL3	Oblique	9	148	48	328	42	238	0	0.3	5
59	Prec.	SPR01	Tensional	6	103	79	303	10	212	4	0.2	
59	Prec.	SPRO2	Strike-slip	7	41	0	311	79	131	11	0.5-0.7	3
60	Prec.	NAER1	Tensional	6	318	79	215	3	124	11	0.7	
60	Prec.	NAER2	Strike-slip	9	194	9	63	76	286	10	0.3	0
61	Ordovician	SLEM	Oblique	13	216	63	22	26	116	5	0.1-0.2	6
62	Prec	BREV1	Strike-slip	5	3	3	261	76	94	14	0.0-0.1	
62	Prec	BREV2	Strike-slip	4	145	3	266	84	55	5	0.2	3
63	Prec	BRYN1	Tensional	5	246	76	5	7	96	12	0.8	-
63	Prec	BRYN2	Oblique	16	125	64	334	23	239	12	0.4	2
64	Prec	DAL B1	Oblique	14	151	65	318	24	49	5	0.3	-
64	Prec	DAL B2	Strike-slip	6	268	12	35	71	175	15	0.2	3
65	Permian	ROYK	Oblique	11	254	67	103	20	9	10	0.4	2
66	Prec	NORD1	Tensional	8	11	70	237	14	143	14	0.8-1.0	-
66	Prec	NORD2	Tensional	7	0	90	128	0	218	0	0.3	
66	Prec	NORD3	Strike-slin	12	207	6	81	80	298	8	0.2	7
67	Prec.	ALVA3	Tensional	12	133	83	294	7	200	2	0.1-0.2	2
68	Prec	ALV NO	Tensional	12	100	00	204	,	24	2	0.1-0.2	1
69	Ord -Sil	M.ION1	Tensional	16	160	80	266	3	357	10	0.3	
69	Ord -Sil	MION2	Oblique	4	160	26	252	4	349	64	03-06	
69	Ord -Sil	MION3	Oblique	11	59	44	263	43	161	12	0.1-0.4	
69	Ord -Sil	MIONA	Oblique	8	111	39	243	40	358	27	0.1-0.4	
69	Ord -Sil	MION5	Strike-slip	16	97	7	261	83	7	2	0.3	
69	Ord -Sil	MIONE	Strike-slip	6	27	1	120	72	297	18	0.0	4
70	Permian	GUU	Strike-slip	5	3	0	0	90	93	0	04-09	5
71	Prec	SOND1	Tensional	6	219	80	83	7	352	7	0.4-0.3	5
71	Prec.	SOND2	Oblique	8	213	60	5	26	101	13	0.0	3
72	Permian	OVNE	Tensional	6	283	89	77	1	167	0	0.1	3
72	Prec	OVINE	Tensional	0	200	05	11		107	0	0	1
74	Permian											6
74	Prec	FAGE1	Compressional	5	349	13	79	1	174	77	07.09	0
75	Prec.	FAGE2	Oblique	5	163	56	350	33	264	7	0.7-0.3	
75	Prec	FAGE3	Strike-elin	5	80	15	318	70	182	15	0.2	0
70	Cam Sil	KONNI	Tensional	6	120	77	310	10	103	2	0.1	3
76	Cam Sil	KONNO	Strike alia	5	109	5	215	15	42	2	0.00	5
70	Droc		Oblique	10	124	5	247	20	214	0	0.2-0.3	0
70	Prec.		Oblique	13	167	10	34/	39	266	0	0.1	0
70	Proc.		Oblique	10	107	49	210	40	200	0	0.04	
78	Prec.		Oblique	7	120	34	319	20	216	9	0.0-0.1	0
18	Prec.	HOL13	Strike-slip	1	143	10	350	19	234	5	0.3	2

Site	Rock age	Stress state	Туре	n	σ 1-az	σ ₁ -pl	σ_2 -az	σ ₂ -pl	σ_3 -az	σ3 -pl	R	Rest
79	Permian	HOL21	Tensional	7	17	74	111	1	201	16	0.1	
79	Permian	HOL22	Oblique	12	242	62	62	28	333	0	0.4	3
80	Prec.	HAHA	Strike-slip	7	139	5	247	74	48	15	0.7	1
81	Permian	HYGG1	Tensional	4	150	78	359	11	268	6	0.2	
81	Permian	HYGG2	Oblique	5	338	63	195	22	99	15	0.1-0.6	
81	Permian	HYGG3	Strike-slip	8	334	0	0	90	244	0	0.6	0
82	Prec.	HALL1	Tensional	6	213	76	102	5	11	13	0.1-0.3	
82	Prec.	HALL2	Oblique	14	164	50	344	40	74	0	0.4-0.6	
82	Prec.	HALL3	Strike-slip	6	184	0	94	71	274	19	0.3	3
83	Permian	SELV	Tensional	11	104	88	355	1	265	2	0	4
84	Prec.	HEIS	Tensional	9	6	85	204	5	294	2	0.2	0
85	Permian	TOFT1	Tensional	4	303	70	170	14	76	14	0.3	
85	Permian	TOFT2	Oblique	6	136	62	338	26	244	9	0.0-0.6	1
86/88	CamSil.	JEL11	Strike-slip	5	325	0	0	90	55	0	0.2	
86/88	CamSil.	JEL12	Tensional	8	278	75	132	13	40	8	0.1	2
89	Permian	JEL4	Oblique	17	46	60	174	19	272	22	0	11
90	Permian	HORT1	Tensional	28	354	78	174	12	264	0	0.1	
90	Permian	HORT2	Oblique	14	25	58	244	26	145	17	0.0-0.1	
90	Permian	HORT3	Oblique	7	108	47	203	5	298	43	0.7	7
91	Permian	STEI	Tensional	9	291	77	60	8	151	10	0.2	1
92	Permian	HIMB1	Tensional	30	354	82	174	8	84	0	0.1	
92	Permian	HIMB2	Oblique	12	222	49	38	41	130	2	0.2	
92	Permian	HIMB3	Strike-slip	22	170	9	298	76	78	11	0.1	8
93	Permian	LAKS1	Tensional	7	276	85	127	4	37	3	0.0-0.1	
93	Permian	LAKS2	Oblique	6	295	49	163	30	57	25	0	5
94	Permian	SKOP	Tensional	5	296	70	171	12	78	16	0	1
95	OrdSil.	EIDA1	Tensional	22	152	86	21	3	291	3	0	
95	OrdSil.	EIDA2	Oblique	8	78	46	258	44	168	0	0.0-0.2	
95	OrdSil.	EIDA3	Oblique	8	212	67	320	7	53	22	0.2	
95	OrdSil.	EIDA4	Oblique	6	214	5	313	60	121	29	0.4-0.5	
95	OrdSil.	EIDA5	Strike-slip	5	144	8	261	73	52	15	0.4	10
96	Ordovician	NBRE	Oblique	22	75	64	181	7	274	25	0.2	7
97	Permian	TVEI	Strike-slip	6	317	5	137	85	47	0	0.6	2
98	Permian											1
99-101	Permian	NEVL	Tensional	4	59	72	152	1	242	19	0	0

Bedding	planes	~			Dykes					Dykes					Dykes				
Site	Data #	DipDir	Dip	Source	Site	Data#	DipDir	Dip	Source	Site	Data#	DipDir	Dip	Source	Site	Data#	DipDir	Dip	Source
19	-	60	8	A. Saintot	5	-	268	61	M. Heeremans	34	4	100	06	A. Saintot	72	-	74	80	A. Saintot
19	0 0	102	9	A. Saintot	ۍ ۱	0 0	12	85	M. Heeremans	88	- (255	02	M. Heeremans	72	0 0	88	86	A. Saintot
19	ب دی	05	1 02	A. Saintot	n u	т т	250	5/2	M. Heeremans	38	0 0	49	68 8 8	M. Heeremans	2 5		0 0	4/	A. Saintot
61	t (c	48	- :-	A. Saintot	n un	t (1	126	200	M. Heeremans M. Heeremans	00	0 4	80	60	M. Heeremans M. Heeremans	2 52	t (c	- ¢	00	A. Saintot
2 23		110	52	A. Saintot	5	9 0	283	65	M. Heeremans	38	2	64	85	M. Heeremans	72	9 0	4	65	A. Saintot
29	-	226	14	A. Saintot	5	7	331	20	M. Heeremans	38	9	237	76	M. Heeremans	72	7	20	55	A. Saintot
29	0	320	80	A. Saintot	6	-	268	61	M. Heeremans	38	7	144	87	M. Heeremans	72	8	114	80	A. Saintot
59	ю ·	298	50	A. Saintot	6	20	77	85	M. Heeremans	41	- (71	76	M. Heeremans	72	6,	114	83	A. Saintot
29	4 -	306	62 u	A. Saintot	5 0	ب رو	250	n 04	M. Heeremans	41	2 1	766	80	M. Heeremans	27	p •	114	06	A. Saintot
5 2	- 0	± 2	n (A. Saintot A. Saintot	n 0	4 ư	807	00	M. Heeremans M. Heeremans	41	0 4	CC7	00	M. Heeremans M. Heeremans	74	- 0	2 6	0.0	A. Saintot A. Saintot
8 8	u m	1 4	<u>1</u> 10	A. Saintot A. Saintot	n 01	n u	283	65	M. Heeremans M. Heeremans	42	t	60	84	M. Heeremans	74	N M	110	06	A. Saintot
34	9 4	33	; =	A. Saintot	0	~	331	20	M. Heeremans	44	. –	80	606	A. Saintot	29		15	38	A. Saintot
34	5	335	4	A. Saintot	10	-	268	61	M. Heeremans	44	0	75	06	A. Saintot	80	-	275	46	A. Saintot
34	9	15	16	A. Saintot	10	0	77	85	M. Heeremans	44	е	110	06	A. Saintot	80	7	273	42	A. Saintot
38	-	144	87	M. Heeremans	10	e	283	65	M. Heeremans	44	4	100	06	A. Saintot	86-88	-	44	06	A. Saintot
50	-	150	30	A. Saintot	10	4	331	20	M. Heeremans	44	2	06	06	A. Saintot	86-88	0	70	06	A. Saintot
50	0	180	30	A. Saintot	17	-	77	89	M. Heeremans	44	9	85	65	A. Saintot	86-88	ო	48	90	A. Saintot
56	-	350	60	A. Saintot	1	0	74	74	M. Heeremans	45		161	45	M. Heeremans	86-88	4	60	06	A. Saintot
61	- ,	352	40	A. Saintot	¢ ;	с .	262	81	M. Heeremans	45	0 0	260	80	M. Heeremans	86-88 20 20	ŝ	50	06	A. Saintot
QQ	-	N71	10	A. Saintot	2 ¢	4 u	507 19	2/2	M. Heeremans	C4 AA	n •	101	C/	M. Heeremans	00-00 86 88	9 1	0 4 4 V	20	A. Saintot
					74	، د	500	55	A Saintot	46	t .	8	04	M. Heeremans	86-88	~ 00	5	88	A. Saintot
					24	- 0	198	60	A. Saintot	46	- 0	67	86	M. Heeremans	86-88	0 0	80	02	A. Saintot
					24	۳	198	79	A. Saintot	48/49	-	330	70	A. Saintot	86-88	6	70	09	A. Saintot
					24	4	195	84	A. Saintot	48/49	0	315	70	A. Saintot	86-88	5	40	09	A. Saintot
					26	-	350	30	A. Saintot	50	-	95	70	A. Saintot	86-88	12	06	25	A. Saintot
					27	-	85	80	A. Saintot	50	0	110	70	A. Saintot	86-88	13	290	65	A. Saintot
					27	2	95	06	A. Saintot	51	-	102	82	A. Saintot	95	-	185	80	A. Heeremans
					27	ю ·	85	80	A. Saintot	51	0	103	82	A. Saintot	95	0 9	267	28	A. Heeremans
					27	. .	0200	90	A. Saintot	51	ю ·	100	81	A. Saintot	97	<i>т</i> .	138	8	A. Saintot
					87		087	60	A. Saintot	5	4 •	011	000	A. Saintot	16	et u	90	0. 10	A. Saintot
					R7 00	- 0	00 130	Do O	A. Saintot A. Saintot	4 4		000	202	A. Saintot	9/	n u	011	00	A. Saintot
					67	4 6	861	06 18	A. Saintot	20	- ເ	125	3	A. Saintot	10	0 1	285	200	A Caintot
					67 67	04	120	- 68	A. Saintot A. Saintot	55	4 67	021	20	A. Saintot A. Saintot	16	~ 60	145	85	A. Saintot A. Saintot
					29	2 2	110	06	A. Saintot	55	4	265	85	A. Saintot	97	6	320	80	A. Saintot
					29	9	94	65	A. Saintot	59	-	06	06	A. Saintot	97	10	265	60	A. Saintot
					29	7	92	62	A. Saintot	60	-	40	80	A. Saintot	99-101	-	60	06	A. Saintot
					29	ω (60,	60	A. Saintot	64	- 0	80	50	A. Saintot	99-101	0	130	06	A. Saintot
					87 C	n €		20	A. Saintot	67	v +	315		A. Saintot					
					31	2 -	20	802	A. Saintot	69		277	68	M. Heeremans					
					31	0	50	70	A. Saintot	70	-	114	06	A. Saintot					
					31	ю	70	70	A. Saintot	70	0	120	06	A. Saintot					
					31	4	50	06	A. Saintot	20	e	115	20	A. Saintot					
					31	5	44	06	A. Saintot	20	4	112	20	A. Saintot					
					31	91	300	64	A. Saintot	20	ŝ	112	72	A. Saintot					
					5 5	- α	01	00 10	A. Saintot	02	0 1	1/20	50	A. Saintot					
					5 6	οσ	110	0	A. Saintot	0/2	- α	801	000	A. Saintot					
					31	, 6	340	808	A. Saintot	20	ი	12	8 06	A. Saintot					
					31	11	300	80	A. Saintot	70	10	120	06	A. Saintot					
					31	12	290	80	A. Saintot	70	5	110	80	A. Saintot					
					34	- 1	70	80	A. Saintot	20	12	105	74	A. Saintot					
					34 34	0 N	280 278	80 70	A. Saintot A. Saintot	0/	13	310 310	80 86	A. Saintot A. Saintot					

Appendix B – Part 3

	Source	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot A. Saintot	A Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	Heremans	A. Saintot	. Heeremans	. Heeremans	. Heeremans	Heeremans	. Heeremans					
	Dip	80	76	00 82	06	75	62	08 7	65	79	80	81	85	90 20	8/	88	76	50	60	55	50	09	06	06	06	84	6	06	62	55	60 58	20	45	85	80	80	87	06	85	78	80	/9	99	4 0 20	78	. 06	48 N	90 V	22	85	2 2 2 8
	DipDir	50	75	047 80	8 6	50	64	011	20	34	62	241	42	36	14	00	58	280	280	285	290	290	10	000	210	210	38	110	290	268	276	273	270	270	80	148	115	113	104	94	230	303	244	20	110	0	179	126	220	149	102
		10	£ 9	2 5	2 4	15	16	18	19	20	21	-	0	с •	4 +	- 0	10	-	2	e	4	۰ ک	- (0 4	- 10	9 0	-	0	с С	4 u	n u	2	80	-	~ ~	04	5	9	7	. (2 1	<i>т</i> .	4 +	- 0		-	0	ю ·	4 u	n o
Veins	Site	63	63	03	83	63	63	63	63	63	63	64	64	64	04 8.6	65	65	66	66	66	66	99	0/	0,5	0/	20	70	71	71	71	71	12	71	71	72	72	72	72	72	72	74	47	74	77	: 11	86-88	91	91	91	91	9 19
	Source	A. Saintot	A. Saintot	A. Saintot A. Saintot	A. Saintot A. Saintot	A. Saintot A. Saintot	A Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot A Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot A. Saintot																			
	Dip	70	17	ΩΩ α	55	60	45	00 92	85	06	85	85	85	90	600	90	89	85	82	86	80	2	11	22	20	53	82	67	73	20	78 82	89	09	58	72	06	75	80	75	85	80	21	47	08	84	85	80	84	80	78	85
	DipDir	179	220	701	80	76	100	200	100	115	295	120	125	126	071	115	300	114	295	117	35	28	330	116	867	263	6	68	65	57	260 268	264	279	260	40	18	42	140	0	55	230	230	160	0 P	230	244	230	220	45	40	48
		7	ω (ד ת		0	ი -	- •		0	ю	4	сı	91		- 0	10	4	5	-	-	0	т ч	d r	റയ	~	. 00	6	10	7	çi ç	2 4	15	16	-	. .	4 M	4	5	9	2	20 1	- ,		- 0	10	4	5	91	۵	ით
Veins	Site	34	34	34 AF	48/49	48/49	48/49 50	50 12	53	53	53	53	53	53	20	4C	54	54	54	55	58	58	58	38	58 58	58	58	58	58	58	58 58	58	58	58	59	60	09	60	60	60	60	00	61	70 70	63	63	63	63	63	63	03 63
	Source	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot A. Saintot	A. Saintot A Saintot	A Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot A. Saintot													
	Dip	64	64	0, 2	75	70	68	3	70	70	76	67	79	65	90	00 18	78	79	99	50	62	37	80	8/	80	29	84	78	68	80	83 67	83	72	80	80	79	80	83	82	66	64	48	60	22 85	285	80	84	83	62	58	73
	DipDir	86	195	001	193	115	130	170	0.00	130	126	181	144	80	8 t	71	5 09	60	220	13	230	4	214	203	230	226	212	215	102	154	108 228	270	235	214	252	250	246	262	254	196	189	8/L	126	149	185	102	80	80	210	236	181 240
		29	8.3	5	33.5	34	35	8 5	8	39	40	41	42	43	- (2 6	0 4	5	9	7	ø	6	6;	= 9	2 5	14	15	16	17	18	19	5 5	8	23	24	55	51 62	28	29	30	31	- 0	2	5 4	r 40	9		2	ю ·	4 u	റശ
Veins	Site	29	39	8 8	29	29	3 3	R7 00	29	29	29	29	29	53	0.0	6	8 8	30	30	30	30	90	00	8	6	900	80	30	30	30	90	8 8	8	30	30	8	8 8	30	30	30	8	32	32	25	32	32	8	34	8	34 8	5 5
	Source	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot A Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot	A. Saintot A. Saintot											
	Dip	72	78	7 0	2 2	11	78	77	8 2	74	78	69	72	8	200	20	89	73	88	55	52	09	80	2 2	96	85	88	60	85	72	22	80	20	76	84	88	88	06	85	76	65	79	63	\$ %	38	62	2.9	63	22	6	8 B
	DipDir	286	274	256	262	263	264 254	707	252	248	240	248	264	210	120	348	212	160	30	200	210	140	220	114	12U	86	210	114	30	180	130	20	230	50	70	260	40	84	65	218	75	25	87	203	60	06	190	95	195	02	017
	Data#	-	00	n ₹	1 10	9	× ۲	0 0	ء 10	÷	12	13	14	- 0	2 0	0 4	r vo	9	7	8	o :	9	: 3	29	14	5	16	-	0	с С	4 u	n u	7	8	0	6;	- 6	13	14	15	16	1	18	er Oc	3 5	22	23	24	25	26	28
Veins	Site	19	19	19	19	19	19	20	19	19	19	19	19	28	87	28	28	28	28	28	28	28	28	87	28	28	28	29	29	29	29	29	29	29	29	29	29	29	29	29	29	RZ.	29	87	29	29	29	29	29	29	29