Chapter 8

The HyperView Methodology

95



96 CHAPTER 8. THE HYPERVIEW METHODOLOGY

This chapter describes the HyperView methodology and gives a guideline for building Hyper-
View-based virtual Web sites over a collection of information sources in the Web. This process is
related to methodologies for building federated DBMS (cf. [Sheth and Larson, 1990]) and schema
integration (cf. [Batini et al., 1986]). The underlying sources are autonomous and a global schema
is needed that defines the representation into which data from the sources has to be integrated.

However, building a virtual Web site goes well beyond building a federated database since the
underlying sources are not databases and lack schemata and query processing facilities. More-
over, the resulting virtual Web site again is more than a federated database since the contents of
the database layer must be presented in form of a coherent set of dynamically generated HTML
pages.

The main steps to be carried out are:

Content Specification: selection of sources and formulation of a presentation concept

Schema development: for each source, an ACR schema has to be developed. A DB schema
defining a global conceptual model and a schema modeling the virtual Web site have to be
specified as well.

View development: for each source, a HTML view into the ACR schema of this source and a
ACR view into the DB schema have to be defined. The user interface has to be defined as a
view over the global schema.

‘Web Browser ‘ ‘Web Browser‘
HyperView Server\ /
N N 1% ]
Virtual HTTP Serve -7 |T----4 HTML Schema
Web Server ‘
L}
Mediator
-

10~ Wrapper
HyperView

-=~.| | Wrapper -~

_ ;
HTML Vi PR N ,
‘kém\ -] HyperView N-__--

< J

| {ack sehema)

_TX J

" _“2{ HTML Schema

HyperView

HyperView N * .

A

Figure 8.1: Schema and view definitions in the HyperView architecture

In Figure 8.1, the mentioned schema and view definitions are depicted together with the com-
ponents of the HyperView architecture where these definitions are used. We can see that the
HTML views are used in the wrappers to produce the ACR layer for each source. The ACR views
for each source are used together at the DB layer to materialize this layer. Finally the Ul view
maps the DB layer to the Ul layer and produces HTML clusters that are formatted and served to
the user by the HTTP server component.



8.1. USER ROLES 97

8.1 Userroles

Before we discuss the details of the phases for setting up and operating a virtual Web site based on
HyperView, we have to define more precisely the four user roles that are sketched in Section 1.2.3.

the domain expert selects the underlying Web sites sources and information assets therein. He
decides which information is to be offered to the user as a result of integrating the underly-
ing sources, and on the overall form (i.e., the presentation concept) in which this informa-
tion is to be offered to the user.

the designer cooperates with the domain expert to refine his ideas and to implement the Hy-
perViews needed to achieve the integration proposed by the domain expert. Due to the
modular architecture of the HyperView system, several designers can work on wrappers for
different sources, on the mediator, and on the Web interface concurrently.

The designer must be familiar with the HyperView methodology and must understand the
semantics of graph schemata and the graph-transformation rules used to define Hyper-
Views. In the current prototype, the designer must be able to code schemata and rules in
the HVQL language described in Chapter 5. The forthcoming graphical user view defini-
tion interface [Oksiiz, 1999a, Oksiiz, 1999b] will replace this manual coding with interactive
graphical editing.

the administrator operates the HyperView server. This involves mostly system administration
like configuring the HTTP server, administration of the underlying machine, backup of
local data etc. Since maintenance of schemata and HyperView definitions is carried out by
the designer, this role requires a different and less specialized qualification profile than the
designer role.

the end-user retrieves information offered by the HyperView server. The end-user can configure
the presentation of the retrieved data by changing settings in his/her user profile. There
may be several groups of end-users having different information demand, expertise, or
access privileges. HyperView can provide different virtual Web sites to each of these groups.

These role descriptions are reflected in the use case diagrams in Figure 8.2 and Figure 8.3.

Development

% — Content Specification

Domain Expert :
Schema Development

% Cal— View Development

Designer

Figure 8.2: Use case diagram for the development of a virtual Web site.

Operation

% e D
System Administration

Administrator

Figure 8.3: Use case diagram for the operation of a virtual Web site.



98 CHAPTER 8. THE HYPERVIEW METHODOLOGY

Depending on the tool support and expertise available, the domain expert and/or the admin-
istrator can act as designer. Moreover, it is conceivable that the user designs and maintains a
HyperView server for his/her personal use. Normally however, a HyperView server will be oper-
ated by some organization as a service to some community. This community can be for instance
a group of intranet users in a company or a certain scientific community within the Internet.

8.2 Content Specification

The content specification of a virtual Web site involves selection of sources and the decision which
part of the source content is considered for the integration. On the other hand, it requires the
formulation of an informal presentation concept that describes the content and the form of the
virtual Web site. This step is similar to the preintegration phase of [Batini et al., 1986]. The whole
content specification process is summarized in Figure 8.4.

Analyze

Information
Develop Needs Refine Select
Use Cases Use Cases Sources

Analyze
Information

Supply

[feasible]

Develop
Presentation
Concept

[not feasible]

Figure 8.4: UML activity diagram describing the content specification process.

We assume that an application area for the virtual Web site has been chosen and a domain
expert for this application area is available. The expert collaborates with the HyperView designer
in configuring the virtual Web site.

First, the expert develops Use Cases (cf. Section 2.1.2, Section 7.2.1) that describe how users
would like to use an ideal virtual Web site in the chosen application domain.

Then the expert analyses both the information supply and the information needs in the ap-
plication area. The information supply is determined by inspecting existing relevant information
sources. The information needs may be constrained in advance by preferences of a customer or
may be determined from the experience of the expert or the potential users of the virtual Web
site.

After the analysis of information supply and information needs both are compared by the
expert in order to find those information needs that are not or only to a limited extent satisfied by
the existing information sources. The outcome of this step is a refinement of the use cases from
the first step that takes into account this comparative analysis. The refined use cases define goals
for the outcome of the whole design process.

It is now the task of the expert to actually select those sources whose combination can yield
a value-added information service that overcomes the identified deficiencies in the information
supply and satisfies the requirements of the use cases. Before deciding for a source, copyright
issues have to be resolved. In general this requires negotiations with the owners of a Web site.
The result of this phase is a selected set of sources and a choice of information assets provided by
these sources that will be considered for integration within the virtual Web site.

After selecting the sources, the expert has to collaborate with the designer to develop a pre-
sentation concept that specifies which content is to be presented in the virtual Web site and how
its overall structure will look like. The content of the virtual Web site is decided by determining
the main concepts that are to be modeled in the global schema and their connection to the infor-
mation assets provided by the underlying sources. The form of the virtual Web site is specified
by analyzing use cases and deciding on the access methods and criteria for information selection
by the user that will be supported. The presentation concept may also define several phases of



8.3. THE DESIGN SPACE OF HYPERVIEW 99

extension that allow to start with a subset of the selected sources and add new functionalities to
the virtual Web site step by step.

During or after formulating the presentation concept, the designer has to assess whether the
presentation concept is feasible on the basis of the HyperView System. For instance, Web sites
relying too much on applets or Java Script may have to be ruled out. The designer must also
take care to identify semantic incompatibilities that might prevent a successful integration. If
such incompatibilities are recognized, the designer has to investigate the existence of algorithmic
or external translation facilities. In the case of overlaps between sources, it must be decided
whether one source is given precedence over the other or whether and how the contents of the
overlapping sources are merged?.

If the reached content specification is not satisfying, additional or different sources have to be
considered or the presentation concept has to be modified.

8.3 The Design Space of HyperView

Before we discuss the phases of schema and view development in detail, we describe the design
space, i.e., the conceptual space the designer has to deal with. This space is described by the
HyperView design model depicted in Figure 8.5.

First of all, there is a generic domain model of the domain of Web sites. In the HyperView
methodology Web sites are perceived as sets of pages and parts of pages which are generalized
into the concept of WebNode. WebNodes can be linked in different ways: by hyper-links, by
HTML-forms, and by the hierarchical part-of relationship between page parts. These associations
are generalized into the concept of WebAssoc. The instances of the generic domain model are
real-world Web sites, HTML pages, hyper-links etc.

Web sites are modeled by concepts from the design object model. The designer builds for each
Web site an ACRSchema which is a Schema specialized to the ACR level. Schemata are graph
clusters that describe the structure of the runtime graph clusters within the HyperView System.
Schema clusters (like graph clusters in general) consist of vertices and edges. ACRSChemaVer-
tex and ACRSchemaEdge are specializations of the concepts of Vertex and Edge. They model
WebNodes and WebAssocs, respectively.

Design objects are defined by documents as specified by the design document model. Schemata
are defined graphically by SchemaDiagrams and then translated into SchemaDefinition doc-
uments in HVQL format. Each schema definition references ViewDefinition documents that are
created by combining a number of rules. Rules are specified graphically in form of RuleDiagrams.

8.4 Schema development

The source selection and the presentation concept derived in the content specification phase
guide the development of all necessary schemas for the virtual Web site. The following schemata
have to be developed: one ACR schema for each source Web site, the conceptual database (DB)
schema, and the schema of the user interface (Ul).

As already pointed out in Chapter 1, there are correspondences to the schemata in the refer-
ence architecture for federated database systems of [Sheth and Larson, 1990]: ACR schemata are
similar to the export schemata of component databases, the DB schema corresponds to the federated
schema, and the Ul schema is similar to the external schemata offered to applications of the FDBMS.

However, there are major differences as well: while export schemata are defined by the ad-
ministrators of the component databases, the ACR schemata have to be developed by analyzing
the structure of a Web site without support by its administrator. An ACR schema does not model
concepts of the application domain, but the structure of the underlying Web site. The Ul schema
does not describe the restricted view of an application on the global schema, but the structure of

Lwork on linking of databases [Fed, 1997] may serve as a basis here.



100 CHAPTER 8. THE HYPERVIEW METHODOLOGY

Dependency

*
target
A 4

SchemaDiagram

1

translates_to

: v
5 o« defines ! 1
: [ erhan
: 1 SchemaDef
1 4 1 references
- models :
WebSite : v
1 : target | HVQLDoc
+ 4 models 1 N N 3
WebNode - ACRSchemaVertex *
i o [ Ede [—
* Al la : Al A :
. source target
WebPage source target : g
* * * *
*

o defines ———

+ 4 models P
WebAssoc - ACRSchemaEdge

1| a
‘ ‘ ‘ : « | translates_to
‘ WebLink ‘ ‘ WebForm ‘ ‘ WebPartOf ‘ RuleDiagram
generic domain model design object model design document model

Figure 8.5: UML class diagram describing the HyperView design model: on the left, a generic
model of the domain of Web sites is given. Web sites are modeled in HyperView by design objects
described by the design object model (middle). These design objects are defined in documents as
specified by the design document model (right).

a hyper-text that covers the whole global schema in a highly redundant way in order to facilitate
navigation.

Since each layer of a HyperView-based virtual Web site is a view of the layer beneath it, the in-
formation capabilities of each layer must be sufficient to build the layer above it. Hence a bottom-
up approach similar to the one presented in [Sheth and Larson, 1990] to develop the schemata at
the different levels makes most sense. This development process must be guided by the presen-
tation concept derived in the content specification phase in order not to waste efforts in modeling
concepts that will not be included in contents of the virtual Web site. On the other hand, care has
to be taken not to model concepts in a layer that are not supported by the layer below it. If it turns
out that the presentation concept cannot be sufficiently supported by the resulting Ul schema, it
becomes necessary to go back and extend one or more schemata. Figure 8.6 illustrates the schema
development process.

Whether the information capability of the schemata in a layer is indeed sufficient to support
the whole schema of the next layer will be discovered in the view development phase when
source and target schema are closely inspected in order to specify transformation rules between
them. Hence it may become necessary to extend or revise schemata in order to remove obstacles
for the definition of HyperViews.

We now discuss the particularities of the schema development in each of the different layers
of the HyperView architecture.

8.4.1 HTML layer

HTML pages are described by a fixed generic schema. Hence source-specific HTML schemata do
not have to be developed. The generic HTML schema includes several computed edges which
provide logic relationships between page elements such as between a list and its list items, or



8.4. SCHEMA DEVELOPMENT 101

ACR Schema
Development

ACR Schema
Development

ACR Schema
Development

Figure 8.6: UML activity diagram describing the schema development.

DB Schema Ul Schema :

[not sufficient
for presentation concept]

between a headline and the following section. In Section 5.8 the available computed edges are
described.

8.4.2 ACR layer

For each of the sources selected in the content specification phase an ACR schema has to be de-
veloped. This requires the designer to analyze the structure of the source Web site. This analysis
proceeds according to the following steps:

1. ldentification of pages and page fragments that that contain the information assets selected
in the content specification process.

2. Discovery of navigation paths that lead from the server’s home page or other fixed entry
pages to the relevant information assets.

3. Abstraction of syntactically similar pages or page fragments into ACR vertex types and of
the respective links or part-of relationships into ACR edge types. Only pages that contain
relevant information assets or that are part of navigation paths have to be considered.

4. Construction of the ACR schema graph. Its vertices represent ACR vertex types and its
edges represent ACR edge types connecting the vertex types.

8.4.3 Database layer

The conceptual (DB) schema models the application domain or more precisely the part of it that
is to be covered by the virtual Web site. Concepts of the application domain are represented
by vertices and the relations between these concepts by edges. In contrast to an ER-schema,
no cardinality constraints are specified (i.e., all relations are m : n), and attributes are modeled
as relationships. For stylistic reasons, nodes representing atomic data-types may be replicated.
Thus each attribute points to a atomic type node of its own.

Similar to object-oriented schemata, edges represent unidirectional navigable relationships.
This means in particular that reverse navigation paths have to be explicitly foreseen in the schema.

Although the DB schema development is driven by the presentation concept, this process
is restricted by the requirement that the DB schema integrates the underlying ACR schemata.
As already pointed out, an ACR schema describes only the structure of a Web site. However,
domain concepts are usually reflected by this structure. Hence it is possible to adapt the relevant
literature on schema integration (cf. [Batini et al., 1986]) for this task. While the mapping between
ACR and DB layer will be specified in detail later in the view development phase, it is important



102 CHAPTER 8. THE HYPERVIEW METHODOLOGY

to find already at this stage the ACR concepts that model the information needed to instantiate a
certain DB concept.

8.4.4 Ul layer

The User Interface layer is specified by a schema similar to an ACR schema. This schema de-
scribes the abstract structure of the Web site generated by the HyperView System. This means
that nodes of the Ul schema model page (fragment) classes and edges model link classes.

Instead of developing a new Ul schema, it is possible to reuse the existing generic Ul schema
of the HyperView browser discussed in Chapter 6 and to use the customization features of this
database browser.

8.5 View development

After the schemata for a virtual Web site have been established, HyperViews that map between
these schemata have to be defined. This process can start as soon as the source and target schema
for a view are specified. Hence view development may as well take place in parallel to the schema
definition phase. These dependencies are depicted in Figure 8.7.

ACR Schema l. DB Schema Ul Schema
Development Development Development DB View
4 Development
ACR View
Development @

HTML View
Development

Figure 8.7: UML activity diagram describing the view development process and its dependencies
from schema development activities.

Each HyperView consists of a set of rules which match elements in one or more input graph
clusters in a layer of the HyperView architecture and materialize new elements in an output clus-
ter at the layer above it. Typically, when a rule is a applied to a start node, it follows an edge to
the input cluster, matches graph elements in this cluster, and adds a new outgoing edge from the
start node, a new target node, and possibly (as a side effect) further graph elements to the output
cluster. When the rule contains reuse specifications, existing elements of the output cluster may
be reused instead. The rule usually adds again an edge pointing to the input layer that enables
the application of further rules.

Thus, for every schema element at the upper layer, at least one rule has to be developed
that can be used to materialize this element directly or as a side effect. Each activated rule may
match multiple times and materialize for each match a new set of graph elements. Multiple rules
implementing the same schema elements are allowed as well; all of them will be executed and
may contribute new graph elements.

The implementation of a HyperView starts at the root node(s) of the output schema and con-
tinues along the paths of the schema. A rule for a schema edge can be tested once that all edges
along a path from a root node have been implemented.



8.5. VIEW DEVELOPMENT 103

8.5.1 Implementing HTML views

HTML views define mappings between the graph representation of HTML pages and the ACR
graph of a single source. To develop a HTML view, the designer inspects the source code of the
pages corresponding to the ACR nodes, starting from the entry node(s) of the ACR schema.

The first goal of this inspection is to identify the parts of the HTML graph that correspond to
instances of the ACR schema elements. The second goal is then to define for each edge of the
ACR schema a navigation in the HTML graph that corresponds to the traversal of this edge. This
navigation is a HVQL query as described in Chapter 5.

The challenge in defining these navigations is to generalize from a few example pages or
page fragments to yield navigations that work reliably on all instances of a page (fragment)
class even in the presence of small variations and structural evolution. The HyperDesigner tool
[Okstiz, 1999a] currently under development will help in the task of generalization by discover-
ing the common structure of a set of pages. The robustness of rules is an issue of programming
discipline. This discipline tries to avoid order-dependent navigations, navigations relying on
font style elements or graphical ornaments, or specifying the full text of labels to be matched.
Sometimes however, the designer is forced to use such unreliable features due to the bad design
of the underlying HTML code.

Basically, each of the navigations designed in the last step is now turned into a HVQL rule
implementing the corresponding ACR schema edge. However, schema edges that serve as sin-
gleton attributes of an ACR node may be computed by the same rule that computes the ACR
node.

ACR schema edges that correspond to hyper-links may use the computed href target edge
that dereferences the href attribute of an anchor (<a>) tag.

Often text nodes occurring in the HTML graph have a regular structure that corresponds to a
small subschema of the ACR schema. For instance, a date string consists of components for year,
month, and day that may be modeled by corresponding attributes of an ACR node. Hence, the
text has to be parsed and the relevant data has to be extracted from it. The required parser can
be implemented externally as a Prolog predicate that is called as a rule constraint from within
a HVQL rule. Alternatively, there is a set of computed edges that allows to split text nodes into
tokens that can be matched and extracted within a rule. A library of parsers for common formats
such as dates, times or prices is provided by the HyperView System and can be used for both
alternatives.

8.5.2 ACR Views

The DB layer is formed as an integrated view of the ACR layer that consists of an ACR cluster for
each of the underlying sources. The purpose of an ACR view is to translate the source-dependent
representation of a Web site in its ACR cluster into the source-independent representation of the
DB cluster.

In contrast to HTML views where only a generic HTML schema is available, rules of ACR
views can be specified against the ACR schema. Often there exist ACR schema nodes which
correspond closely to nodes of the database schema. Other ACR schema nodes may have been
introduced primarily for the purpose of modeling navigation paths in the underlying Web site
and may provide only little information that is to be extracted. In such cases, the respective rules
in the ACR views will use relatively simple navigations compared to rules for the HTML views.

In other cases however, there may be a larger mismatch between the concepts modeled in the
database schema and the concepts offered by the ACR schemata. For instance, issues of electronic
journals may be organized in the source by year and in the database by volume (cf. Figure 2.8
on page 19). ACR rules may even have to collect information for a single database node from
several ACR nodes.

The task of an ACR view includes the translation of site specific notations, physical units or
local conventions into the uniform representation used in the database graph. Often, this means
to complement the data explicitly stored in the ACR with other data in order to provide a context.



104 CHAPTER 8. THE HYPERVIEW METHODOLOGY

This context may be implicitly or explicitly given. For instance, local telephone numbers may
have to be completed to full telephone numbers by adding a fixed area code if it is known that
the source is dedicated to a certain city. Alternatively, the knowledge for which city a telephone
number is valid may be explicitly given in the source. Then this information can be used (together
with some translation service) to add the correct area codes.

Further tasks of ACR views deal with resolving the problems of recognizing identical entities
and classification of entities that were discussed in Chapter 7.

8.5.3 DB Views

Result pages generated by the HyperView Web Site are views over the database graph which
map some part of the database to an output HTML graph. From this HTML graph, HTML code
is printed and returned to the user requesting the page. Each DB view corresponds to a class of
similar result pages which is represented by a node in the Ul schema. Schema edges pointing to
other page classes are implemented by hyper-links in the generated pages. Source edges are used
to compose different page fragments to a whole page. How such views look like is described in
detail in Chapter 6.

In the case that the generic HyperView browser is used as a Web interface, the DB view consists
of the rules defining this browser. Instead of writing new rules, the browser is customized by
choosing style parameters.

8.6 Maintenance

Virtual Web sites have to be actively maintained due to changed information needs on one hand,
and source evolution and fluctuation on the other hand. Changed information needs of users can
be countered by extending and or restructuring the virtual Web site. Extensions almost always
require additional information assets to be integrated. Source fluctuation means the disappear-
ance of existing sources or the appearance of new potential sources. Source evolution means
changes in structure and/or content of a source.

In all cases, the design may have to be revised in order to adapt the virtual Web site to the
changes. However, the HyperView approach shows an inherent robustness that minimizes the
effort needed for this adaptation.

8.6.1 Robustness

First, HyperView uses rules rather than regular expressions to match syntax graphs of HTML
pages. Independence from details of the HTML layout can be easier achieved in rules than in
regular expressions. Differently from regular expressions, rules are insensitive to the ordering
of elements on a HTML page and are thus not affected by textual reorderings and insertions of
additional text elements. Furthermore, since rules can invoke other rules, a library of base, layout
independent rules can be built and serve as a basis for the design. If details of the layout, such
as ordering, are inevitable, they can be encapsulated into the rule library as well, and become
transparent to the rules using the library.

Second, rule sets can be designed in a way that ensures maximal independence of the rules.
This can be achieved by using separate rules to compute different edges emanating from the
same schema node. The failure of one of these rules might be due to missing data or structural
evolution; this does not affect the computation of the other rules. This means that the HyperView
does not break as a whole, but just yields less complete information.

Finally, the intermediate ACR layer to some extent decouples the HyperView defining the
database graph from the HyperViews defining the ACR graphs. It allows many small structural
changes to be handled by modifying the rule set for the ACR layer, without having to change the
ACR schema. In this case the HyperView over the ACR layer is not affected.



8.7. SUMMARY 105

8.6.2 Error detection

The HyperView system provides tracing of rule failures for debugging purposes. This allows to
identify rules that have been broken by structural source evolution. The designer of a Hyper-
View may annotate rules to identify whether a failure is to be considered an error. Rule failure
messages can be collected in log files and then aggregated to determine the average behavior of
rules. If failure rates increase significantly, the administrator is notified. Data mining techniques
can also be applied to distinguish critical from unimportant failure patterns.

Moreover, a suite of test queries that is periodically executed can be employed to detect bro-
ken views by comparing their results. To this end, the queries must be designed in a way that
they produce the same or monotonically increasing results over time.

For instance, the set of available issues of an electronic journal in a publisher Web site can
be expected to increase over time. Similarly, the set of movie theaters in Berlin will be almost
constant from week to week, and the number of announced concerts in a city will always be
over some reasonable threshold. By comparing the current results with archived earlier results,
failures can be detected.

In principle this technique can also be adapted to test virtual Web sites. Since queries cannot
be issued directly but must be expressed as navigations in the virtual Web site, this requires to
wrap this Web site. The HyperView System can be employed to wrap another HyperView-based
virtual Web site and to monitor it by running the test suite against it and evaluating the results.

8.6.3 Adaption

Minor structural changes are thus tolerated by the inherent robustness of HyperView rules. Changes
that are not tolerated can be detected as described in Section 8.6.2.

Structural changes in a source that break the existing HTML view require rules of this view to
be reimplemented. Larger structural changes, in particular those that reflect new content types,
require the ACR schema to be modified. This in turn may require rules of the ACR view to be
fixed. If the ACR schema has been extended and the additional content is to be presented in
the virtual Web site, then these extensions have to be propagated to the DB schema and the Ul
schema and appropriate rules implementing these extensions have to be added.

Sources that disappear entirely or new sources that are added to the virtual Web site result in
the removal or addition of entire ACR schemata, HTML and ACR views for these sources.

Compared to wrappers written in an ad-hoc way using text matching, HyperView rules are
easier to design and to maintain for the following reasons:

HyperView rules are on a much higher conceptual level. There is no need to care about the un-
derlying HTTP protocol for loading pages and about syntactical details of HTML pages. Match-
ing in graphs is more intuitive than the specification of complex regular expressions.

Rule sets are easily extensible. The scope of a HyperView is typically extended by adding
new rules rather than modifying existing ones. For instance, it may be discovered that a class
of pages is not homogeneous, but has some structural variants. Then alternative rules may be
added which cover those variants for which the existing rules fail to work.

8.7 Summary

The HyperView methodology for building virtual Web sites foresees three tasks: content specifica-
tion, schema development, and view development. The content specification phase precedes the
other two and consists of selecting source Web sites and deciding about the content and overall
structure of the virtual Web site.

The database schema has to be developed as a conceptual model of the application domain.
For each source Web site, an ACR schema, a HTML view, and an ACR view has to be developed.
Finally, the user interface layer is modeled by a schema and its content is defined by a HyperView
on the database.



106 CHAPTER 8. THE HYPERVIEW METHODOLOGY

The amount of work to set up a virtual Web site can vary depending on the design of the
underlying sources and the chosen presentation concept. According to our experience in the case
study on electronic journals (see Chapter 2), it took about one person day to develop a HyperView
wrapper for a typical publisher Web site. Such a wrapper has about 20-50 rules and 200-500 lines
of code.

Compared to an ad-hoc solution for a virtual Web site, the HyperView System encapsules the
complete details of the HTTP protocol, provides powerful matching facilities for data extraction
from HTML pages, libraries for parsing common notations such as date or time formats, a pow-
erful query language, and a generic Web interface. Together with the guideline of the HyperView
methodology this reduces the development effort considerably. Moreover, the robustness and
easy maintainability of the HyperView approach reduces the maintenance costs compared to con-
ventional programs.

A bottleneck currently remaining in setting up a virtual Web site is the missing tool sup-
port for design and maintenance of views. The graph-based approach taken in the HyperView
methodology lends itself easily to visualization and graphical editing of rules. HVQL will serve as
a target language for the view design and schema discovery tools [Oksiiz, 1999a, Okstiz, 1999b]
currently under development. We expect that these graphical development tools for HyperViews
will reduce the time for constructing and testing views significantly.



