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5.1 Introduction

In the previous Chapter 4 the HyperView System, a platform for implementing HyperViews has
been presented. However, the Prolog encodings of graphs, queries, and rules used in the Hy-
perView System are too low-level for the human programmer. Moreover, this encoding requires
Prolog skills. A more intuitive syntax that is independent of Prolog is preferable. To this end, the
HVQL query language has been developed as a syntax for

• graph literals, i.e., data and schema graphs,

• queries against the graph database,

• rules for view definitions.

The kernel of the HVQL syntax is formed by the syntax for graph patterns. Graph literals
are ground (i.e., variable free) graph patterns. Queries consist of graph patterns and additional
logical connectors. Rules consist of a LHS expressed as a query and an update pattern which is
a graph pattern that can be annotated with reuse specifications. Rules can be seen as conditional
update statements, and graph literals as (unconditional) insert statements for the graph database.

5.2 Basic Notations

A vertex identifier V is usually a Prolog atom, but in general an arbitrary Prolog term. In par-
ticular, text vertices are represented as Prolog lists containing words. Vertex identifiers are local
to the cluster determined by the syntactical context. To denote a reference for a vertex V in the
external cluster C, the syntax V @C is used.

The label L of a vertex V can be specified using the syntax V : L. The label may be a variable
or a Prolog term. Typically it is a Prolog atom. The label of a vertex is normally used to indicate
its type. Examples of valid vertices are node1:type1 , x@g,v234:l5 , root@db:root_t .

Graphs are represented in the HyperView System in a relational way by the predicates ver-
tex/3 and edge/4 (cf. Section 4.1.2). The tuple (C, X, L) is a solution for vertex( C, X , L) iff
there exists an L-labeled vertex X in cluster C. The goal edge( C, X , E, T ) is true if there exists
an E-labeled edge from X in cluster C to a vertex T in C. In case that T = Y @D, the target is a
vertex Y in cluster D. Edges are denoted in HVQL within graph patterns that are discussed next.

5.3 Graph Patterns

Graph patterns are the main syntactic device to denote graphs or templates for graphs. In Fig-
ure 5.3 the EBNF grammar for graph patterns is given. A graph pattern defines a navigation from
a start vertex to a destination vertex. The start vertex is provided by the syntactic context or the
runtime environment. It can be overridden by a Source nonterminal.

The most simple graph pattern is either an explicit source pattern (nonterminal Source ) or a
single edge (Edge).

A source pattern P has the form S: L or S: for a vertex S and an optional label L. Since a
single vertex cannot be distinguished from an edge label, the : cannot be omitted in S: . The
destination vertex of P is S@C where C is the cluster of the start vertex.

An edge pattern is denoted by a Prolog term specifying an edge label E. Examples are
author , date , get_attr(Attr) , E. For a start vertex X@C, it translates to the Prolog goal
edge( C, X , E, T ) which yields the destination vertex T@C. Using the syntax E=T ′, the con-
straint T = T ′ is imposed which binds T to T ′.

Several patterns P1, . . . , Pn having the same start vertex can be combined using the syntax
[ P1, . . . , Pn] . The combined pattern translates to the conjunction of the component patterns
and its destination vertex of this combined pattern is identical to its start vertex.
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Pattern ::= Pattern "->" Pattern
| Pattern "=>" Pattern
| "[" Pattern ("," Pattern)* "]" ["=" Target]
| Edge ["=" Target]
| Source

Source ::= Vertex ":" [Label]
Target ::= Vertex [":" [Label]]
Vertex ::= Term ["@" Cluster]
Cluster ::= Term
Label ::= Term
Edge ::= Term

Figure 5.1: Syntax for HVQL graph patterns.

To concatenate patterns and specify for instance paths, patterns can be combined using either
the -> or the => operator.

In the combined pattern P -> Q the destination vertex of P is used as start vertex of Q. For
instance, X:->a->b->c=Y denotes a path from X to Y along three edges labeled with a, b,
and c , respectively. Together with the [] operator, arbitrary trees can be constructed, e.g.,

r:->[a=a1->[b=b1,b=b2],c= c1]
for a tree of depth 2 with root r , children a1 and c1 of r and children b1 and b2 of a1 . Cy-
cles and intersections of paths can be introduced by binding the same vertex variable twice, e.g.,
X:->a->b=X .

A pattern containing only the [] and -> operators can refer to a single cluster only, namely
the cluster of its start vertex. To cross the boundary between clusters along an inter-cluster edge
or by jumping to an global source specification Y @D, the concatenation operator => has to be
used.

In the combined pattern P=>Q it is assumed that the pattern P yields as destination a global
reference T@C where T = Y @D. Then Y @D is taken as start vertex for Q instead of T@C. A
typical application is in rules where an inter-cluster edge labeled source from the focus F of
the rule to a vertex in a cluster at a lower level and a graph pattern P starting from this vertex
typically comprise a pattern F ->source=> P for the LHS of the rule. Another example is a
pattern P starting from a vertex X in cluster C which is expressed by X@C:=> P .

A table with a more formal description of the implementation of queries (which subsumes
the implementation of graph patterns) can be found in Table 5.1 on page Table 5.1.

5.4 Graph Literals

A graph literal is a term P :: S of a ground (i.e., variable free) graph pattern P and the name S of
the schema cluster of which the graph literal is an instance.

Figure 5.2 shows a graph literal which defines a fragment of a schema graph for journals. It is
an instance of the generic (meta-)schema schema . The graph denoted by this pattern is depicted
in Figure 5.3.

5.5 Queries

5.5.1 Syntax

The syntax for queries extends the syntax for graph patterns by introducing boolean operators
& (conjunction) and | (disjunction). The EBNF grammar defining the syntax of HVQL queries is
depicted in Figure 5.4.
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[ publisher: any -> [
name = atom,
home = url

],
journal: any -> [

title= text,
publisher= publisher,
volume= volume: any -> [

volno = int,
issue= issue: any -> [

issueno= int,
year= int,
source = issue_ref @ springer_schema

],
source = volume_toc_us @ springer_schema

],
source = journal_ref @ springer_schema

]
] :: schema

Figure 5.2: HVQL graph pattern of a schema fragment for scientific journals.

publisher:any

atomname

urlhome

journal:any
publisher

volume:any
volume

texttitle

journal_ref@springer_schema

source

issue:any

issue
intvolno

volume_toc_us@springer_schema

source

intissueno

intyear

issue_ref@springer_schema

source

Figure 5.3: Graph denoted by the graph pattern in Fig 5.2.

As a first example we want to retrieve the IDs and names of all journals in our database. This
can be denoted by the query

JournalID: journal -> title= JournalName .
For every node JournalID with label journal it traverses the title -edge leading to the name
of the journal and unifies the variable JournalName with it. Note that HVQL adopts the Prolog
convention that all capitalized identifiers denote variables. (Single quotes are used to distinguish
capitalized atoms from variables).

If we want to retrieve the titles of all articles in the journal with ID journal_42 we can use
the query

journal_42: -> volume -> issue -> article -> title = Title .
The query defines a path from the mentioned journal node via the edges volume , issue , arti-
cle , and title to the title of an article node, which is unified with the variable Title .

A more complex query retrieving the titles of all articles in 1998 issues of journals on digital
libraries is given in Figure 5.5. The query defines a path from a journal node to an article node,
with several excursions. Excursions are denoted by sub-queries in square brackets. These sub-
queries which have no navigational effect to each other or to the rest of the query. In our example
they are used to bind variables such as JournalName , VolumeNo , IssueNo etc. on the way and
to express additional constraints.

The first such constraint states that the name attribute JournalName of the journal node must
contain the keywords digital and libraries which is denoted by the occur -condition. The
computed edge occur can be materialized between any two text nodes (denoted as lists) where
the words of the target node occur in that order in the source node. Other text matching operators
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Query ::= Query "|" Query
| Query "&" Query
| Query "->" Query
| Query "=>" Query
| "(" Query ")" ["=" Target]
| "[" Query ("," Query)* "]" ["=" Target]
| "?" Condition ["=" Target]
| Edge ["=" Target]
| Source

Figure 5.4: Syntax for HVQL queries.

JournalID: journal ->
[ name= JournalName -> occur = [digital,libraries] ] ->
volume = _: volume -> [ volno = VolumeNo ] ->
issue = _: issue -> [ issueno = IssueNo, year = 1998 ] ->
article = _: article -> [ title = Title, pdf = URL ]

JournalID:journal
JournalNamename

volume
volume

[digital,libraries]occur

VolumeNovolno

issue

issue
IssueNoissueno

1998year

article

article Titletitle

URL
pdf

Figure 5.5: HVQL and graph representation of a query that retrieves references of articles having
appeared in 1998 in journals on digital libraries.

such as regular expression matching can be added to the HyperView System in a similar way.
The second constraint fixes the year of an issue to 1998, thus filtering out all issue nodes not

having an year edge with target node 1998.
For each selected article, the query returns a binding for the variables occurring in the query,

namely the JournalID , JournalName , VolumeNo , IssueNo , Title , and URLof the article.

5.5.2 Semantics

A HVQL query 〈Q〉 without conjunction (&) and disjunction (| ) operators corresponds to the
query graph Q of a formal query (c.f. Definition 3.3.1). The query constraint Γ is the conjunction
Γ1 ∧ . . . ∧ Γn of all conditions ?Γi occurring in 〈Q〉. All non-variable vertex identifiers within
the query together define an initial partial match m0 of the query graph. The pre-image of this
partial match is the anchor graph Q0 of the query.

The semantics of a non-disjunctive and non-conjunctive HVQL query 〈Q〉 is the set of variable
bindings resulting from matching the corresponding query graph Q against a given clustered
data graph G in the HyperView System, such that the resulting matches are extensions of m0 and
fulfill the query constraint Γ.

A HVQL query 〈Q〉with conjunctions can always be rewritten as a conjunction 〈Q1〉& . . . &〈Qn〉
of non-conjunctive queries. The semantics of Q is the binding set of the union-graph Q1∪ . . .∪Qn

of the query graphs defined by the queries 〈Qi〉.
A HVQL query 〈Q〉 with conjunctions and disjunctions can always be rewritten into the form
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〈Q1〉| . . . | 〈Qn〉 where all 〈Qi〉 are non-disjunctive HVQL queries. The semantics of 〈Q〉 is then
simply the union of the binding sets of 〈Q1〉 . . . 〈Qn〉.

5.5.3 Implementation

We now discuss the concrete implementation of HVQL chosen in the HyperView System. For
brevity we omit the 〈.〉 notation and use P, Q, R, . . . for HVQL queries.

The implementation [[Q]] of a HVQL query Q is the Prolog goal into which it is compiled.
This Prolog goal yields exactly the bindings defined by the semantics, but in an order defined
by the implementation and the underlying semantics of Prolog. The graph-matching strategy of
the HVQL implementation ensures that graph elements specified by a HVQL query are matched
in textual order; in particular, vertex variables are bound from left to right. Conditions specified
in a query are tested once they are reached. This allows to prune the search space as soon as all
required data for evaluating a condition is available.

Each query has a start vertex and a destination vertex which are needed for the composition
of sub-queries. As a default start vertex that can be overridden by the query the root node of the
database graph is used.

In a conjunction P&Q both queries P and Q share the same start vertex. The semantics of P&Q
is the intersection of the semantics of P and of Q. The destination vertex of the conjunction is the
destination vertex of Q. The “excursion” operator [] is equivalent to & but uses the common
start vertex also as destination vertex.

In a disjunction P | Q the queries P and Q share the start vertex and the destination vertex of is
the destination vertex of P for each solution of P and the destination vertex of Q for each solution
of Q. The semantics of a disjunction is the union of the semantics of its operands. Disjunctive
queries are not covered by the formalism. However, a rule having a disjunctive query as left hand
side can be transformed into an equivalent set of nondisjunktive rules.

Name Pattern Implementation Condition Navigation

P [[P ]] Start
P→ Dest

Source S : true X@C → S@C

U : L vertex( C, U , L) U 6= V @D X@C → U@C

V @D : L vertex( D, V , L) X@C → S@C

Edge E edge( C, X, E, T ) X@C → T@C

Assignment Q = T T=Y X@C
Q→ Y @D X@C → Y @D

Constraint ?G G G is a Prolog goal X@C → X@C

Excursion [ P1, . . . , Pn] [[P1]], . . . , [[Pn]] X@C → X@C

Path Q-> R [[Q]], [[R]] X@C
Q→ Y @D

R→ Z@E X@C → Z@E

Q=>R [[Q]], [[R]] X@C
Q→ (Y @E)@D, Y @E

R→ Z@F X@C → Z@F

Conjunction Q&R [[Q]], [[R]] X@C
Q→ Y @D, X@C

R→ Z@E X@C → Z@E

Disjunction Q| R [[Q]]; [[R]] [[Q]] succeeds ∧X@C
Q→ Y @D X@C → Y @D

[[R]] succeeds ∧X@C
R→ Z@E X@C → Z@E

Table 5.1: Implementation of queries.

5.6 Rules

Before we go into details of the HVQL representation of rules, we repeat the example of a trivial
rule from Figure 4.3 and present in Figure 5.6 the HVQL representation of this rule. As we can
see from the figure, the rule is denoted in the form 〈H〉 <== 〈B〉, where 〈H〉 contains the anchor
node and the update part of the rule, and 〈B〉 the query part without the anchor node.
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Q:q P:p Z

X:t ZZY:s

a

b c

f

{ p(Z) }

D

C
d e

X:t -> d = Y:s ->
[e=Z] -> f=P
<==
a= Q@D:q =>
b= P:p ->
c=Z ->
? p(Z).

compute_edge(C,X,d,Y):-
vertex(C,X,t),
edge(C,X,a,Q@D),
vertex(D,Q,q),
edge(D,b,P),
vertex(D,P,p),
edge(D,P,c,Z),
p(Z),
update((

vertex(C,Y,s),
edge(C,X,d,Y),
edge(C,Y,e,Z),
edge(C,Y,f,P))).

Figure 5.6: Example of a trivial rule shown in graph representation (left), encoded in HVQL (mid-
dle), and its Prolog translation (right).

5.6.1 Syntax

HVQL rules have the form 〈H〉 <== 〈B〉, where 〈H〉 is a HVQL pattern graph denoting the head
H and 〈B〉 is a HVQL query denoting the body of a rule. The head contains an anchor node A,
the primary edge, and the rest of the update part U (cf. Section 4.3).

The update part of a rule may contain reuse specifications. In HVQL, reuse specifications
are indicated by enclosing graph patterns in curly brackets ({ . . . } ). Such reuse patterns differ
slightly from reuse graphs since they are not allowed to overlap, but need not to be complete
graphs. The semantics of reuse patterns are explained in Sec. 5.6.2 below.

Using the operator ~> instead of -> inhibits the materialization of the primary edge. This can
be used for simple utility rules which relay information requests to other rules.

Figure 5.7 shows the detailed EBNF syntax for rules.

Rule ::= Head "<==" Query "."
Head ::= Anchor ("->"|"~>") PrimaryEdge
PrimaryEdge ::= "{" PrimaryEdge "}" [UpdateTail]

| Edge "=" UpdateObject [UpdateTail]
Anchor ::= Source
UpdateTail ::= ("->"|"=>") Update
Update ::= Update UpdateTail

| "{" Update "}"
| "(" Update ")" ["=" UpdateObject]
| "[" Update("," Update)* "]" ["=" UpdateObject]
| Edge ["=" UpdateObject]
| Source

UpdateObject ::= "{" Target [UpdateTail] "}"
| Target

Figure 5.7: EBNF Syntax for rules.

5.6.2 Semantics

A HVQL rule 〈p〉 of the form 〈A〉-> 〈U〉<==〈B〉 without conjunctions, disjunctions, and reuse
specifications corresponds to a formal rule p as defined in Definition 3.2.1. The LHS L of p is the
union of the singleton anchor graph A and the query graph B corresponding to the rule body
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〈B〉. The RHS R is the union of L and U where U is the (incomplete) graph corresponding to the
update part 〈U〉. The application constraint Γ is the query constraint of 〈Q〉 (cf. Section 5.5.2).

The semantics of 〈p〉 is then defined by the semantics of p: Let m0 be a match for A. For each
match m of L in a data graph G that extends m0 and satisfies Γ, a fresh copy of U is instantiated
with the variable bindings induced by m and is then added to G.

If we admit arbitrary HVQL queries 〈B〉 in the rule body, the semantics generalizes as follows:
we instantiate the HVQL query 〈L〉= 〈A ∪B〉 corresponding to L with the variable binding for A
induced by the initial match m0. Then we pose 〈L〉 against the data graph G. For each resulting
variable binding, U is instantiated and added to G as discussed before.

Now we come to HVQL rules with reuse specifications. The reuse patterns are ordered inner-
most first, left to right. For each match of 〈B〉 the algorithm in Figure 3.16 is applied. This means
that before a copy of U is added to G, it is tried for each reuse specification Ki to match it in G.
Only if there is no match, a copy of Ki is added to G. The algorithm proceeds in the specified
ordering. Finally, the remainder of U is added to G.

5.6.3 Implementation

A HVQL rule of the form 〈A〉-> 〈U〉<==〈B〉 is implemented as a clause of predicate compute_edge/4
(cf. Section 4.3). Let X@C be the anchor vertex, L the label of the primary edge, and Y @C the des-
tination vertex of the primary edge. Then this clause has the following form:

compute_edge( C, X , L, Y ):- [[A ∪B]], update( [[U ]]).
This clause is activated if an L-labeled edge emanating from a vertex x@c is requested and

cannot be found in the graph database. In this case, the substitution {C = c, X = x} is applied
to the clause, the query Q = [[A ∪ B]] is solved, and for each solution of it the update [[U ]] is
performed.

To be more exact, the update specified by U is carried out in the following way: starting from
the primary edge, the update part is traversed in textual order, but handling the target of an edge
before the edge itself. Targets are only inserted if a label is specified. Otherwise, it is assumed
that an already existing target is referenced.

A pattern that is marked as a reuse pattern by enclosing it in curly brackets is first tried to be
matched in the data graph. Reuses that are included are tried to be matched recursively. If the
match fails, the elements of the reuse pattern are inserted into the data graph. To illustrate this,
we introduce reuse patterns to the rule presented in Figure 5.6 so that the rule head becomes

X:t ->{ d = { Y:s -> [e=Z] } } -> { f=P}
For each binding of Z and P, it is checked whether a node Y:s with an e-labeled edge pointing
to Z exists. If not, a vertex Y and the e-edge are created. Now it is checked whether a d-labeled
edge to the matched or created Y exists and if not, this edge is created. Finally, it is tried to match
a f -labeled edge from Y to P exists and if this fails, the edge is added to the graph database.

When the whole update part of the rule has been executed, the target Y of the primary edge
is returned as a match for the requested edge with label L. If there is more than one match for
the query part Q, backtracking will enumerate all matches and for each one, the update part will
be executed and a target of the primary edge is returned. While the variable bindings within
the rule will be revoked on backtracking, the newly inserted graph elements will persist since
backtracking does not apply to the graph database.

5.6.4 Example

In order to provide a realistic example of a rule in HVQL notation, we use again the rule get_issue
from Figure 2.8. For convenience, we repeat the graphical representation of this rule in Figure 5.8.

This rule materializes all volumes and issues of an electronic journal of the German branch
of Springer in one step since its presentation on the Springer Web Site is organized by years and
issues. Thus volumes have to be materialized by collecting all volume numbers occurring in the
available issues. A HVQL representation of this rule is shown in Figure 5.9.
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journal issue

Year: int

IssueNo: intvolume

VolumeNo: int

journal_ref journal journal_toc year_toc issue_ref

Year: int VolumeNo: int IssueNo: int

issue

year

volume

volno

numbervolumeyear

year_toc

contents
journal

source source

issue

EJournalDB

SpringerACR

issueno

{ VolumeNo > 0 and IssueNo > 0 and Year > 1900 and Year < 2100 }

Figure 5.8: ACR rule get_issue.

Journal:journal-> {{volume=Volume:volume ->
[journal=Journal, volno=VolumeNo] }->
issue= Issue:issue->
[volume=Volume, issueno=IssueNo, year=Year ] } ->
source = IssueRef @ springer_acr

<==
source = _ @ springer_acr =>
journal->
contents->
journal_toc->
year_toc-> [year=Year-> ? (Year > 1900, Year < 2100)]->
issue= IssueRef -> [

volume=VolumeNo-> ? (VolumeNo > 0),
number=IssueNo-> ? (IssueNo > 0) ].

Figure 5.9: Rule get_issue in HVQL notation.

The query of this rule follows a source edge to the springer_acr cluster and there a path
along edges labeled journal , contents , year_toc , and journal_toc , respectively, to a ver-
tex having a year edge whose target Year is in the interval [1900, 2100]. From there, it follows an
issue edge to an issue vertex having a volume and number edges which point to nonnegative
integers VolumeNo and IssueNo .

The presented rule contains two nested reuse components. A volume is identified by the
journal to which it belongs and its number. This is expressed by the inner reuse components.
Since the condition on the volume number is formulated as excursion by using the [] notation,
the destination of this reuse component is the volume vertex Volume .

An issue is identified by the volume wherein it is contained and its number. Hence the outer
reuse specification includes the one for Volume , the issue vertex Issue itself, and the issueno
and year edges. The the source vertex of the issue is not used for identification purposes and
hence not included in the reuse component.

5.7 Meta Edges

HVQL itself does not have any aggregation operators. However, it supports the definition of
meta edges which define parameterized edges that take other HVQL queries as arguments. The
following query retrieves for instance the set of all authors of an article a1 by using the meta rule
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set/1 :

a1: article -> set({author}) = Authors

The HVQL compiler recognizes edge parameters enclosed in curly brackets as queries and
replaces them by a query execution plan represented as a term of the form query( S, P , D)
where P is a prolog goal which computes for a given start vertex S the destination vertex D.

This makes it easy to define Prolog clauses which take as input a start vertex and an edge label
containing a query execution plan and use the available meta predicates of Prolog to aggregate,
select, or transform the solutions of this plan and return them as target of the meta edge. A library
of such meta rules is provided by module hvs(meta_hvql) of the HyperView System.

We conclude this section with another example. The meta-edge maximize( E, Q) returns all
solutions for a query Q which maximize an arithmetic expression E. To retrieve volume number,
issue number, and year of the most recent issue of a given journal Journal , we use maximize/2
as in the query depicted in Figure 5.7.

Journal: journal->
maximize(VolNo,

{volume -> [volno = VolNo ]}) ->
maximize(IssueNo,

{issue -> [issueno = IssueNo ] }) ->
year = Year

This query finds the volume of Journal with maximal volno and for this volume the one of
its issues having maximal issueno and finally the year of this issue.

A list of the most important meta edges supported by the HyperView System is presented in
Table 5.2.

Edge Description
set(Query) set of all results of Query as a list
bag(Query) return the multiset of all results of Query as a lis
list(Query) synonym for bag(Query)
count(Query number of solutions of Query
max(Expr,Query) return the maximum value of arithmetic expression Expr over all solutions

of Query
min(Expr,Query) analogous
distinct(Query) return only distinct results of Query
opt(Query, Default) return each result of Query , and Default if there are none
not(Query) succeeds if Query has no solution
maximize(Expr,Query) return the result of Query for which the integer expression Expr is maximal

and not negative
minimize(Expr,Query return the result of Query for which the integer expression Expr is minimal

and not positive
nth(Index, Query) return the Index -th result of Query
star(Query) Concatenate Query arbitrarily often (Query ∗)
plus(Query Concatenate Query at least once (Query +)
alt(Query1,Query2) execute Query1 , if it does not have any solutions, execute Query2
try(Query) execute Query ; if it fails, ignore it
once(Query) execute Query once

Table 5.2: A selection of Meta edges supported by the HyperView System.
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5.8 HTML Edges

When HTML pages are loaded into the HyperView System, they are converted into parse trees.
Each parse tree forms a cluster of the data graph which conforms to the schema cluster html_schema .
The vertices of such a HTML cluster are labeled with the HTML tags to which they correspond.
Text without markup (so-called PCDATA) is represented by lists of words. The children of a node
in the parse tree are ordered textually and can be accessed via numbered edges with labels #( i) .
Attributes of HTML tags are represented by edges labeled with the attribute names.

Since the parse tree does not represent the logical relations between HTML tags, the html_schema
provides several rules which materialize such connections.

Edge Description
child A logical child of a node. By default, this is the child relation in the parse

tree. For headers (<h1> ,..,<h6> ), the outermost nodes to the right of the
header up to the next header of the same or higher rank are found.

right_sibl Any sibling (w.r.t. child ) textually to the right of a node
sub any node which logically belongs to the source node of the sub edge. By

default any descendent of the node in the parse tree.
right Any node textually to the right of a node
item Any item of a list-like node, for instance any <li> belonging to a <ol>

node.
href_resolve Resolves the (possibly relative) URL stored in the href attribute of an an-

chor tag <a> into an absolute URL.
href_target Dereferences the hyperlink of an anchor tag <a> , loads the referenced page,

and returns the root node of this page.

Table 5.3: Virtual edges defined for HTML graphs

5.9 Embedding of HVQL in the HyperView System

How are schemata and rule sets in HVQL loaded into the HyperView System? Schema clusters
and the initial values of data clusters are encoded in HVQL graph literals as described in Sec-
tion 5.4 and then declared as Prolog modules. These modules carry the names of the clusters (cf.
Section 4.1.2). Templates for data graph and schema files are shown in Figure 5.10 and Figure 5.11,
respectively. The syntax of HVQL is supported in Prolog by means of several operator declara-
tions that have to be included in the module using the consult/1 statement in the second line of
the templates. With respect to these declarations, HVQL constructs are ordinary Prolog terms that
are treated as facts asserted by the source file. However, when loading the source files, these facts
are intercepted by a special predicate that translates them into the Prolog encodings required by
the HyperView System. Thus graph literals are translated on the fly into sets of vertex/2 and
edge/3 facts as discussed in Section 4.1.2.

:- module(<GRAPH>, []).
:- consult(hvs(hvql_syntax)).
<GRAPH_LITERAL> :: <SCHEMA>.

Figure 5.10: Template of a data graph file.

Schema files are distinguished from source files for data graphs in that they export the pred-
icate dispatch_edge/4 that is called for rule activation. A schema is itself an instance of the
meta-schema called schema . Finally, a schema file can include or import rules of the Hyper-
View that has the schema cluster as output cluster. Imports are specified by use of facts for the
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predicate implementation/1 that forces the implementation module given as argument to be
loaded.

:- module(<SCHEMA_NAME>, [dispatch_edge/4]).
:- consult(hvs(hvql_syntax)).
<GRAPH_LITERAL> :: schema.
<RULE>.
...
implementation(<IMPLEMENTATION_MODULE>).
...

Figure 5.11: Template of a schema file.

Implementation modules (see Figure 5.12) contain rule sets. These rules are included in the
HyperView for the schema that imports the implementation module. Rules are treated as Prolog
terms that are translated at load time into clauses of the predicate compute_edge as discussed
in Section 4.3. These clauses are then compiled by the Prolog system into bytecode for the Prolog
engine (WAM). Auxiliary predicates that are called from application constraints in rules may be
included in the implementation module or imported from other modules.

:- module(<MODULENAME>, []).
:- consult(hvs(hvql_syntax)).
<RULE>.
...
<AUXILIARY PREDICATE>.
...

Figure 5.12: Template of an implementation module.

5.10 Summary

The HVQL language provides a syntax to encode graphs, queries and rules in an intuitive nota-
tion that can be translated into the Prolog encodings required by the HyperView System.

The central notion of HVQL is that of a graph pattern. Variable free graph patterns are used to
denote graph literals such as schema graphs. Queries consist of nonground graph patterns that
may be connected with boolean operators.

Rules are denoted by a head and a body part, the head being an update pattern and the body
being a query. Update patterns are graph patterns that may contain additional reuse patterns
that prevent the creation of redundant graph elements.

HVQL is extensible via so-called meta-edges. Meta-edges are virtual edges that take HVQL
queries as arguments. The set of meta-edges currently available in the HyperView System in-
cludes various aggregation operators and a number of control and navigation operators that are
not part of HVQL itself. In particular, regular path expressions are suppported this way.

For graph clusters representing HTML pages, the HyperView System provides a set of virtual
edges that provide specialized navigation operators for HTML parse trees. Like meta-edges, they
can be seen as an extension of the HVQL language.


