
Chapter 4

The HyperView System

51

52 CHAPTER 4. THE HYPERVIEW SYSTEM

In this chapter the HyperView System is presented. It is a platform for implementing virtual
Web sites based on the concept of hyperviews introduced in the preceding Chapter 3. The Hyper-
View System is implemented mainly in Prolog. Hence it uses Prolog encodings for the introduced
formal concepts like clustered graphs, schemata, queries, rules, and views that are presented in
this chapter. In Chapter 5 we present the HVQL language for denoting graphs, queries, and rules
in a more intuitive way and the translation of HVQL into the Prolog encodings presented here.

4.1 Encoding of Graphs

We start with the encoding of graphs, beginning with plain graphs and then moving on to clus-
tered graphs. in the HyperView System, graphs are used to represent data and schemata at the
different layers of the system as well as further metadata.

4.1.1 Plain Graphs

Plain graphs (cf. Definition 3.1.1 on page 25) are directed vertex- and edge-labeled graphs of the
form G = (V, E, s, t, a) where V denotes the set of vertices and E the sets of edges. s and t are
functions that map edges to their source and target vertices, respectively. a assigns each vertex
and edge its label. Labels are terms from a term algebra TΣ()

We represent a vertex u with label a(u) = x as a Prolog fact vertex(u, x) and an edge e with
source s(e) = u, target t(e) = v, and label a(e) = l by a fact edge(u, l, v) . Vertices from V are
implemented by Prolog atoms. Edges are anonymous in the sense that they do not have identi-
fiers. Hence multiple edges having the same source, target, and label cannot be distinguished.
However, since the multiplicity of an edge is not relevant in most applications, this does not pose
a problem in practice.

As an optimization, we adopt the convention to use a single edge edge(u, l, x) instead of
the two facts {edge(u, l, v) , vertex(v, x) } to represent an atomic attribute value u.l = x of an
object u. To this end, we extend the encoding by admitting vertices that are Prolog terms.

4.1.2 Clustered Graphs

A clustered graph (cf. Definition 3.1.2 on page 26) consists of a base graph and a structure graph.
Each vertex of the base graph is assigned to a cluster that is modeled as a vertex of the structure
graph. Similarly, each edge of the base graph is assigned to a dependency, i.e., an edge of the
structure graph. This dependency points from the cluster of the edge source to the cluster of the
edge target.

We consider all vertices belonging to the same cluster together with their outgoing edges as a
module of the clustered graph. In Prolog, each module constitutes a separate database for facts
and predicates. We use the syntax M : T to denote a fact, clause, or goal T in the context of
module M . We implement each graph module corresponding to a cluster c by a Prolog module
of its own. We denote the name of the Prolog module for cluster c by Mc.

We use the encoding for plain graphs introduced above to store the graph module for cluster
c in the predicates vertex/2 1 and edge/3 in Module Mc. This has the advantage that lookups
for vertices and edges in a known graph module are more efficient than a lookup in a global fact
database. Moreover, a modularized graph database is easier to manage.

However, there remains one problem to be solved: edges pointing to vertices in other clusters
cannot be represented. Therefore, we introduce the special syntax edge(u, l, v@Md) to denote
an edge with target v in cluster d.

Since the details of this mapping from graph modules to Prolog modules should be hid-
den from the user, we introduce two predicates vertex/3 and edge/4 that are defined by the
clauses vertex(M , V , X):- M :vertex(V , X) and similarly edge(M , U , L, V):- M :edge(U , L, V) .
These predicates provide a global interface for the whole clustered graph.

1The notation p/n means a predicate or term with name p and arity n

4.2. ENCODING OF QUERIES 53

4.1.3 Type checking

The formalism presented in Chapter 3 uses strong typing of graphs. Elements of data graphs are
mapped to schema elements by interpretation morphisms (cf. Definition 3.1.10 on page 28). In
the HyperView System, interpretations are not stored explicitly, only the schema cluster in which
a data cluster is to be interpreted is kept in the system. This information allows to check whether
a data graph module conforms to its corresponding schema module.

4.2 Encoding of Queries

According to Definition 3.3.1 on page 37, a query consists of a query graph Q, the anchor graph
Q0 v Q, a query constraint Γ, and a typing τ that maps elements of the query graph to schema
elements. Note that all the mentioned graphs are clustered graphs.

Answering a query for a given initial match m0 : Q0 −→ G0 in an initial data graph G0

amounts to finding matches m : Q −→ G in an extension of G0 that coincide with m0 on Q0

and satisfy the boolean condition on the label variables occurring in Q specified by the query
constraint Γ. A match for a query graph is a graph morphism that assigns each element of the
query graph a corresponding element of the data graph such that the query graph element and
the data graph element are of the same type.

In the HyperView System, queries are encoded as Prolog goals. The translation into this en-
coding does not have to be done manually: in Chapter 5, the query language HVQL is presented
which allows queries to be denoted in a more intuitive way.

The query graph is encoded in the HyperView System as a conjunction of atomic goals for the
predicates vertex/3 and edge/4 . Distinct variables instead of atoms are used for the vertices
of the query graph. The atomic goals have to be ordered according to a topological ordering. This
means that the vertex goal representing the source of an edge has to come before the edge goal
representing this edge which in turn comes before the vertex goal for the edge target. This way,
the query graph goal implements the traversal of a data graph.

The anchor graph is encoded implicitly within the query graph. When the query is executed,
it is required that the variables occurring in the anchor graph are bound to corresponding data
graph elements with respect to a given initial match.

The query constraint is expressed as a conjunction of arbitrary Prolog goals. The conjunction
of the query graph encoding and the query constraint encoding forms the encoding of the query.
The conjuncts forming the query constraints can be arbitrarily mixed with the vertex and edge
goals provided that upon execution, all constraint goals will be sufficiently instantiated. This
can be checked statically by taking into account that all variables occurring in previous vertex
or edge goals are already instantiated at the moment that the constraint goal is called. This
reordering does not change the semantics of the query goal, but influences its performance. It is
most efficient to execute constraint goals as early as possible.

The typing of a query is not explicit in its Prolog encoding; however, it is implicitly deter-
mined by the query and can be statically checked against the clustered schema graph. Currently,
this is not supported by the HyperView System.

In Figure 4.1, an example for a query and its Prolog encoding is presented. As we have seen
in Section 4.1.2, targets of edges pointing from one cluster into another are denoted using the
special “@” syntax. This has to be taken into account when encoding the query graph as well. For
instance, the second goal in Figure 4.1 denotes an edge from a vertex in the module to which the
variable EjournalDB is bound to a vertex in the module to which the variable SpringerACR is
bound as a result of calling this goal.

A query is executed by providing an initial match for the anchor graph and then calling the
Prolog goal expressing the query. The initial match is given by unifying the vertex and cluster
variables in the goal that belong to the anchor graph with the identifiers of the corresponding
vertices or clusters of the data graph.

54 CHAPTER 4. THE HYPERVIEW SYSTEM

journal

journal_toc year_toc issue_ref

Year: int VolumeNo: int IssueNo: int

source

SpringerACR

EJournalDB

year_toc
issue

numberyear volume

{ VolumeNo > 0 and IssueNo > 0 and Year > 1900 and Year < 2100

=⇒

vertex(EJournalDB,Journal,journal),
edge(EjournalDB,source,JournalTOC@SpringerACR),
vertex(SpringerACR,JournalTOC,journal_toc),
edge(SpringerACR,JournalTOC,year_toc,YearTOC),
vertex(SpringerACR,YearTOC,year_toc),
edge(SpringerACR,YearTOC,year,Year),
Year > 1900, Year < 2100,
edge(SpringerACR,YearTOC,issue,IssueRef),
vertex(SpringerACR,IssueRef,issue_ref),
edge(SpringerACR,IssueRef,volume,VolumeNo),
VolumeNo > 0,
edge(SpringerACR,IssueRef,number,IssueNo),
IssueNo > 0

Figure 4.1: Example of a query and its encoding in the HyperView System. Note that Prolog
variables are always capitalized.

When the initially bound query goal is then called, Prolog enumerates all possible solutions
of the goal. A subgoal of the form vertex(M , X , l) binds X to each vertex in module M with
label l. A subgoal of the form edge(M , x, l, Y) binds Y to the target vertex Y of each l-labeled
edges emanating from x.

Prologs starts the evaluation of a conjunctive goal with the leftmost subgoal and enumer-
ates for each variable binding returned by this subgoal all compatible solutions of the remaining
subgoals. This results in a depth-first traversal of the underlying data graph.

Each solution of the query goal corresponds to a match of the query graph in the data graph.

4.3 Encoding of Rules

A HyperView-Rule consists of a LHS graph contained in a RHS graph, an anchor graph contained
in the LHS graph, a typing morphism, and an application constraint (cf. Definition 3.3.4 on page 40).
Additionally, there may be a reuse specification with one or more reuse graphs associated with a
rule (cf. Definition 3.4.1 on page 47).

We call the LHS the query part since it defines (together with the anchor graph and the ap-
plication constraint) a query against the data graph. We call the elements of the RHS graph that
are not contained in the LHS graph the update part. Note that the update part is not necessarily a
graph, since there typically exist edges with source or target vertices in the LHS graph.

A rule is applied to an initial match for its anchor graph by executing the query defined by its
query part, the anchor graph, and the application constraint. For each match of the query part,
the graph elements defined by the update part are added to the data graph.

In the HyperView System, the following restrictions apply: the anchor graph must consist of
a single vertex, and there is exactly one outgoing edge from the anchor vertex that points to a
vertex in the update part. We call this edge the primary edge of the rule.

Note that all the graphs in the definition of a rule are clustered graphs. Rules have one or
more input clusters and one output clusters. The query part may include all these clusters, while
the update part is within the output cluster. In practice most rules will have a single input cluster
even though this is not restricted by the implementation.

In Figure 4.2, a schematic diagram of such a HyperView System rule with a single input cluster
is presented. The output cluster of the rule is determined by the module in which the rule is
placed. Similar to queries, the typing of a rule is not given explicitly, but can be checked statically,
by matching the rule against the schema.

A rule as a whole is represented as a clause of the predicate compute_edge/4 that is called
by the rule activation mechanism described in the next section. The query part of the rule together
with the application constraint is represented as a query goal as presented in Section 4.2. The

4.3. ENCODING OF RULES 55

������
������
������
������
������
������

������
������
������
������
������
������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

Input Cluster

Output Cluster

Anchor Vertex

SchemaRule

Query Part

Primary Edge

Update Part

Sp

τ

τ

A

L

Figure 4.2: Schematic diagram of a rule p in the HyperView System.

encoding of the update part is discussed below. Let Q be a query goal representing the query
part and U a goal representing the update part. Let X be the variable denoting the anchor vertex
and C a variable denoting the module in which the anchor vertex is stored. Let l be the label of
the primary edge and Y the variable denoting its target. Then the rule is denoted by the clause
compute_edge(C, X , l, Y):- Q, U .

The update part is encoded in form of statements that insert new graph elements encoded as
facts into the Prolog database. The HyperView System provides the meta-predicate2 update/1
that takes as argument a goal that is a conjunction of vertex/3 and edge/4 goals and executes
this conjunction in a special environment where calls to vertex/3 and edge/4 are interpreted
as insert-statements for vertices and edges, respectively. If the vertex identifier argument in a
vertex/3 goal is a variable, the system will generate and assign a new vertex identifier to it.
edge/4 goals have to be fully instantiated upon execution. This requires a slight reordering of
the subgoals, compared to the encoding of queries: the vertex/3 fact specifying the target of
an edge has to be called before the edge/4 fact in order to ensure that the target is bound to a
vertex identifier when the edge is inserted.

Reuse graphs within the update part have to be translated into goals for the meta-predicate
ensure/1 that first executes its argument as a query goal to match the reuse graph in the data
graph; only if this fails it will call update/1 with this argument to add a new instance of the
reuse graph to the data graph.

We illustrate the encoding of rules with a trivial example presented in Figure 4.3.

Q:q P:p Z

X:t ZZY:s

a

b c

f

{ p(Z) }

D

C
d e

compute_edge(C,X,d,Y):-
vertex(C,X,t),
edge(C,X,a,Q@D),
vertex(D,Q,q),
edge(D,b,P),
vertex(D,P,p),
edge(D,P,c,Z),
p(Z),
update((

vertex(C,Y,s),
edge(C,X,d,Y),
edge(C,Y,e,Z),
edge(C,Y,f,P))).

Figure 4.3: Example of a trivial rule shown in graph representation (left) and its Prolog translation
(right). The rule starts from a vertex X and creates for each graph match binding the variables D,
Q, P, and Z a new vertex Y and edges labeled d, e, and f in cluster C. Z represents an attribute
value that is not represented as a vertex of its own, but as edge target only (cf. Section 4.1.1)

2Traditionally, predicates that take Prolog goals as arguments are called meta-predicates. More precisely, such predicates
are higher-order predicates.

56 CHAPTER 4. THE HYPERVIEW SYSTEM

When executing the goal compute_edge(c, x, l, Y) where x@c denotes an initial match for
the anchor vertex of the rule, the query goal Q is called with X = x and C = c. For each resulting
rule match (cf. Definition 3.2.6 on page 33), the rule is applied (cf. Definition 3.2.8 on page 34) by
calling U to add the elements of the update part to the data graph.

4.4 Rule Activation

Each cluster c in the graph database corresponds to a unique cluster c′ = ι(c) in the schema
graph. How this correspondence is stored in the HyperView System is discussed in Section 4.7.
From the schema cluster c′, several dependencies can point to other schema clusters c′1 . . . c′n.
Rules for c′ may refer to c′ and the c′i. Most rules will refer to a single c′i only. In order to support
modularization, for each dependency (c′, c′i) there will be a separate implementation module Mi

in which the translations of all rules referring to c′ and c′i are stored as clauses of the predicate
Mi:compute_edge/4 . However, this does not preclude a rule stored in Mi to access other input
clusters as well.

In order to support virtual graphs that are materialized on demand, the edge/4 predicate
introduced in Section 4.1.2 is redefined to implement the following algorithm:

When solving a goal edge(c, u, l, V) , it is tried first to find all facts of the form Mc:edge(u, l, V)
in module Mc. If no such facts can be found, it is tried to materialize the requested edge using
an appropriate rule by calling Mc:dispatch_edge(c, u, l, V) . This predicate is imported into
the graph module Mc from the schema module Mc′ . For each implementation module Mi, this
predicate contains a clause that calls Mi:compute_edge(c, u, l, V) in Mi in order to activate
the relevant rules in Mi. The relevant rules within an implementation module are selected by
matching the label l of the requested edge against the label of the rule’s primary edge.

All solutions of all selected compute_edge/4 clauses from all implementation modules Mi

constitute the final solution set for the target V of the edge l starting in u. The graph elements
of the rule update parts are created as a side effect of calling the compute_edge/4 implementa-
tions. This side effect materializes the requested edge and thus saves the effort to recompute it the
next time. Moreover, additional graph elements created by the rules may be necessary to answer
subsequent requests for vertices or edges. For instance, the goal edge(c, u, l, V) retrieves only
the identifier V of the target vertex, but not its label. The label has to be retrieved by a subsequent
call vertex(c, V , x) that matches the vertex/2 fact added by the rule as a side effect.

4.5 Query execution

How does the rule activation mechanism described in the last section implement the formal query
semantics defined in Section 3.3? The formalism introduces the concept of query execution plans
(Definition 3.3.10 on page 44) that cover a query graph with binding graphs that are mapped by
binding morphisms to the RHS graphs of appropriate rules.

A straight-forward implementation of this query execution concept would require to deter-
mine and execute all possible QEPs. For each QEP, the rules called by this plan would have to be
determined and an ordering of the rules would have to be established.

As mentioned before, the HyperView System implements a restricted form of HyperView rules.
This restriction allows QEP and their binding morphisms to be built implicitly and incrementally:
when calling edge/4 as a subgoal of a query goal, the binding morphism for the edge is estab-
lished by unifying the arguments with the respective parameters of the rule clause implementing
the requested edge. Similarly, the rule dependencies and the initial rule matches induced by these
dependencies are established by unifying the anchor vertex of a rule with a vertex identifier re-
sulting from a previous rule application. Since alternative rule implementations may exist, the
query plans corresponding to these alternatives are enumerated via the Prolog backtracking that
selects the alternative clauses.

4.6. COMPLEXITY AND PERFORMANCE 57

Thus, the underlying Prolog mechanisms of unification and backtracking are employed to
find graph matches and to enumerate all solutions of a query in a natural way without explicit
management of alternative QEPs and graph matches.

4.6 Complexity and Performance

Graph transformation techniques often have the draw-back of showing a very low performance.
This is often excused with the exponential complexity of graph matching. One can easily see that
for instance the task of finding all matches for a linear path of length n in a fully connected graph
of N vertices takes Nn steps. Hence the worst case complexity of graph matching is indeed
exponential. However by using efficient implementation techniques, the performance can be
improved considerably. The main strategy for speeding up graph matching is to prune the search
space. In the HyperView System this strategy applies as follows:

1. Since the cluster in which a graph element is to be matched is always known, the search
space is reduced to a single cluster instead of the whole graph.

2. Most graph matches start from an anchor vertex that has a fixed match. This reduces the
search effort by a factor that is equal to the number of vertices in the graph cluster.

3. Since the Prolog fact database is indexed by the Prolog machine, looking up partially in-
stantiated graph elements does not require all graph elements in a cluster to be scanned.
This applies for instance if an edge with given source vertex or the label of a given vertex
have to be retrieved.

Since the costs of graph matching dominate the performance of query execution and rule
application, the performance gains reached by these measures are sufficient to make applications
like in those discussed in Chapter 2 and Chapter 7 feasible. This means that response times are
typically below a few seconds. Timing experiments suggest that response time is dominated by
the response times of the underlying sources and the network connection rather than the graph
transformation operations.

4.7 Metadata management

Three kinds of metadata are stored in the HyperView System: schema clusters describing the
structure of data clusters, information about all available graph clusters in the system, and data
about URLs and Web pages.

4.7.1 Schema clusters

Schemata are represented as clusters whose vertices and edges represent vertex and edge classes,
respectively (cf. Definition 3.1.10 on page 28). The labels of schema elements denote types that
specify the admissible labels of corresponding instance elements. In the HyperView System, in-
stance labels may be arbitrary Prolog terms. For schema labels, the following convention has
been adopted: reserved names such as integer , or atom denote the corresponding atomic data
types. Further names such as url denote application specific data types. Text vertices are rep-
resented by lists and denoted by the type name text . Except of these, all other schema labels
denote the class of terms that are equal or more specific 3. Thus a schema edge labeled name
denotes instance edges labeled name, and a schema edge select(_) denotes instance edges
labeled select(t) where t may be an arbitrary term.

Several examples of schema clusters are presented in Chapter 2 and Chapter 7. These exam-
ples have been exported by the HyperView System system from the respective applications.

3Formally, this means that the schema label subsumes all corresponding instance labels.

58 CHAPTER 4. THE HYPERVIEW SYSTEM

4.7.2 The meta cluster

The dedicated cluster named meta records information about all clusters in the HyperView Sys-
tem system. Each cluster is represented as a vertex whose identifier is the name of the Prolog
module in which the cluster is stored. Additionally, the meta cluster also records all implemen-
tation modules containing rules. Three vertex types are distinguished: instance , schema , and
(implementation) module . Each instance vertex has a schema edge pointing to the vertex rep-
resenting its schema. Schemata have implementation edges pointing to the implementation
modules. This information is crucial for static type checking of graphs.

The meta cluster is an instance of the meta_schema schema cluster. A schema cluster called
schema specifies the schema of all other schema clusters. In Figure 4.4, an example of the meta
cluster is depicted.

meta_schema:schema

schema:schema

schemameta:instance schema

www_schema:schema schemawww:instance schema

ejournal_schema:schema

schema

ejournal_vch:module
implementation

meta_hvql:module

implementation

ejournal_springer_de:moduleimplementation

ejournal_springer_us:module
implementation

ejournal_acm:module

implementation

vch_schema:schema

schema

vch_html:moduleimplementation

implementation

springer_schema:schema

schema

implementation

springer_de:moduleimplementation

springer_us:module
implementation

acm_schema:schema

schema

implementation

acm_html:module
implementation

ejournal_db:instance schema

style_schema:schema

schema

implementation

html_styles:module

implementation
style_graph:instance schema

browser_schema:schema

schema

implementation

implementation
dl_browser:instance schema

vch_acr:instance schema

html_schema:schema

schema

page1:instance

schema

springer_acr:instance schema

page2:instance

schema

page3:instance schema

acm_acr:instance schema

page4:instance schema

Figure 4.4: Example of a meta cluster for a run of the electronic journals application (cf. Chap-
ter 2).

4.7.3 WWW meta data

In the dedicated cluster wwwthe HyperView System stores metadata about documents loaded
from the Web. It contains two vertex types, url and page . If the page from a certain URL has
been loaded, vertices representing the URL and the module in which the page cluster is stored
are created. From the url vertex, an edge labeled “page ” points to the page node which has an
inverse “base ” edge. From each page node, a “root ” edge points to the root node of the page
cluster. Furthermore, the time at which the pages was loaded and the HTTP headers returned by
the HTTP server are recorded as attributes of the page vertex.

Page fragments addressed by named anchors within the document text are represented by
page vertices of their own that have a fragment attribute recording the name of the anchor and
a source edge pointing to the page vertex representing the page as a whole.

4.8. THE HYPERVIEW SYSTEM PROTOTYPE 59

For the wwwcluster, computed edges are available that support the loading of a page for a
given URL, the conditional loading if the document at a URL has changed after some date, the
deletion of a page cluster, and the call of an external Web browser for a given URL.

An example of a small wwwcluster is presented in Figure 4.5.

’http://link.springer.de/ol/csol/’:url page1:page
page
base

9.32318e+08time

html1@page1
root

HTTP
http_header(protocol)

1.1
http_header(version)

200http_header(status)

Domino-Go-Webserver/4.6.2.2http_header(’Server’)

Sun, 18 Jul 1999 17:20:29 GMThttp_header(’Date’)

bytes

http_header(’Accept-Ranges’)

*

http_header(’Vary’)

index.htm

http_header(’Content-Location’)

text/html

http_header(’Content-Type’)

16462
http_header(’Content-Length’)

Mon, 17 May 1999 13:03:57 GMT
http_header(’Last-Modified’)

Figure 4.5: Example of the cluster wwwafter loading a single page.

4.8 The HyperView System prototype

The HyperView System (without application-specific code) consists of approx. 250 kilobyte of
Prolog code in approx. 9000 lines, divided into currently 49 modules. The application exam-
ples presented in this thesis fill another 5000 lines. The HyperView System runs on SWI-Prolog
(Version 3.2.6), but can be adapted to most other current Prolog implementations that support
modules. The HyperView distribution includes all necessary external tools. It can be easily in-
stalled on most Unix platforms since it supports automatic configuration.

The following external tools are used by the HyperView System:

wget : a HTTP client implementation that is used to retrieve HTML pages and XML documents
from the Web.

JSDK : virtual Web sites are supported by a Java servlet that is based on the Java Servlet De-
velopment Kit (JSDK2.0). Includes the servlet runner (a rudimentary HTTP server). The
servlet-based Web interface of the HyperView System is discussed in Chapter 6.

Apache + JServ : the Web interface servlet of HyperView runs inside a servlet-enabled HTTP
server. The current distribution supports Apache(1.3.4) with servlet module JServ(1.0b3).
This tool is not included in the distribution.

graphviz : a tool box for visualizing graphs. The graph diagrams in this thesis are exported from
the HyperView System into the graph format of graphviz and then converted to PostScript
by the dot program from this tool box.

HyperDesigner : a graphical editor for HyperView-rules and schemata. It is based on the graph
editor VGJ and implemented in Java. From the graphical representation of rules and schemata
HyperDesigner generates HVQL code that serves as input for the HyperView System. Hy-
perDesigner has been developed as part of the HyperView project and is described in the
diploma thesis [Öksüz, 1999b].

60 CHAPTER 4. THE HYPERVIEW SYSTEM

HyperDiscoverer : an interactive graphical tool for analyzing the structure of HTML graphs. Hy-
perDiscoverer offers several algorithms for typing nodes and merging subtrees of similar
structure. Together with HyperDesigner, HyperDiscoverer forms a development environ-
ment for the HyperView System. It is described in the diploma thesis [Öksüz, 1999a].

The architecture of the whole HyperView System prototype is shown in Figure 4.6. The servlet
coupling is discussed in Chapter 6.

Java

. . . .

Prolog

Server
HyperView

View Processor

graph

schema

. . . .

graph

schema

. . . .

. . . .

Servlet-Enabled HTTP Server

Java servlet

Servlet Listener HTML Formatter

HyperDiscoverer

HTTP client (wget)

HyperDesigner/

HTML/XML Parser

Web Browser

HTTP Server

Compiler
HVQL

HTTP Server

rules

rulesrules

schema

Figure 4.6: Architecture of the HyperView System prototype.

4.9 Summary

The HyperView System provides a software platform for implementing HyperViews and Hyper-
View-based virtual Web sites in Prolog. It maps the concepts defined in Chapter 3 to Prolog
constructs. Some restrictions of the formal framework apply in order to ensure the efficient exe-
cution of HyperViews.

Graphs are represented in the HyperView System as sets of Prolog facts. Queries are encoded
as conjunctive goals over this fact database. Rules are implemented as clauses of Prolog pred-
icates. These predicates return targets for requested edges that are not yet materialized. As a
side effect, rule clauses materialize the requested edges and possibly further graph elements by
adding them to the fact database.

The HyperView System additionally uses graph clusters to store schemata and metadata on
the available graph clusters and the pages loaded from the Web.

