Chapter 3

Formal Framework

23

24 CHAPTER 3. FORMAL FRAMEWORK

3.1 Clustered Graph Data Model (CGDM)

3.1.1 Motivation

The HyperView methodology perceives the WWW as a part of a large data graph, where each
syntax tree of a HTML page forms a subgraph connected to other syntax trees by edges modeling
hyper-links. Traversing these edges causes the target pages to be loaded, parsed, and added to
the graph on the fly. This structure motivates a modularization of the graph into so-called clusters
of closely related vertices and edges.

Each HTML page is modeled by a cluster of the graph. On top of these HTML clusters a
hierarchy of views is established. Each view extracts, combines, and restructures information
to build a view-cluster at a higher level of abstraction. In particular, we introduce the Abstract
Content Representation (ACR) level to organize the relevant information from each Web Site in a
cluster of its own, the ACR cluster. In this cluster all irrelevant details of the layout are omitted
while its overall structure is preserved. At the database level this information is integrated into
the site independent and domain specific database cluster. Finally, the user interface level contains
HTML clusters for result pages returned to the user’s browser.

Each cluster in the data graph is structured according to a (sub)schema which forms a cluster
of the global schema. There is a generic schema for HTML pages, an ACR schema for the ACR of
each Web Site, and a database schema for the database cluster.

We introduce the Clustered Graph Data Model (CGDM) by extending the concept of directed
labeled graphs. In a clustered graph, each vertex belongs to a cluster, and each edge belongs to
a dependency connecting the cluster of its source vertex with the cluster of its target vertex. The
term “dependency” stems from the fact that in our view mechanism, clusters containing derived
data are connected to the clusters containing the original data by dependencies.

Therefore, edges between elements of the same cluster belong to a circular dependency from
the cluster to itself. Vertices belonging to the same cluster form together with the edges connect-
ing these vertices a subgraph of the global graph. In our data model clusters and dependencies are
special vertices and edges which form a graph that specifies the module structure of a clustered
graph.

7*\ self

i source

| source

o self

Figure 3.1: Example of a clustered graph: the cluster “HTML #1” models a (fragment of) a HTML
page. Elements in the “Springer ACR” cluster are connected to the corresponding elements of
the HTML page by source edges. A fragment of the “EJournal DB”database cluster is shown in
the topmost box.

In Figure 3.1, an example of a clustered graph is depicted. It shows the same piece of informa-
tion occurring on a web page of Springer Verlag at three levels of abstraction: as HTML graph,
as ACR graph, and finally as database graph. Each of these representations are stored in clusters
of their own. Thus the clustered data model allows to maintain separate representations of the
same entities at different levels of abstraction.

Corresponding elements may be connected by source edges. However, not all elements at
one level have corresponding elements at the other levels. For instance, in the two lower levels,

3.1. CLUSTERED GRAPH DATA MODEL (CGDM) 25

volumes are represented as attributes of issues, whereas at the database level volumes are entities
of their own.

3.1.2 Basic definitions

As data model, we use a clustered graph data model called CGDM. We build our definition
of clustered graphs on the standard definition of attributed (i.e., “labeled”) directed graphs (cf.
[Heckel et al., 1995]). We call these graphs plain graphs to distinguish them from clustered graphs.

Plain graphs consist of vertices and edges. The source and target functions assign start and
destination vertices to each edge. The attribute function assigns a label to each vertex and each
edge. Labels are elements of an universal algebra A which means that almost arbitrary data
structures can be used as labels.

Graph morphisms are functions which map the elements of one graph to the elements of
another graph such that vertices are mapped to vertices, edges to edges, and the source (target)
of an edge to the source (target) of its image. We first introduce plain graph morphisms first which
are mappings between plain graphs.

Definition 3.1.1 (Plain Graph, Plain Graph Morphism)
An (A-labeled) plain graph G = (V, E, A, s, t, a) consists of:

1. disjoint finite sets V' of vertices, F of edges

2. an universal algebra A (the attribute algebra)

3. total functions s,t : E — V indicating the source and target of an edge
4. atotal attribute functiona: VW E — A. !

LetG = (Vg, Eq, Ag, sc,ta,ac) and H = (Vig, Ex, Ay, su,tu,an) be plain graphs. A plain
graph morphism f : G — H isapair f = (fuertex, feage), Where foerier + Vo — Vg and
fedge © Eq — Eg are total functions commuting with the source and target functions (i.e.,
fq;ertex © Sg = SH © fedge and fvertex otg = tg o fedge)-

Two plain graph morphisms f : G — H and [’ : G — H are equal iff ficrtex = [yertes aND
fedge = f,edge'

The result of applying f to G is defined by f(G) = (Vi) Efa): Afa), S5y trc)s a5(a))
where Vi) = fuertea(Va), Efa) = fedge(Ec), Apa)y = An, spc) = SHl|E;q) tra) =
th|E) @5(G) = AV () WB (o)

The identity morphism ¢ on G is defined by (¢ = (vv.,tE.) Where vy, : Vo — Vi and
tes : B — E¢ are the identity functions on the respective carrier sets Vg, Eg of G.

Let K = (Vk,Ek, Ak, sk, tk,ax) be another plaingraphandg: G — Hand h: H — K
be plain graph morphisms. The composition h o g of g with h is defined component-wise by
(h © g)vmez = Nyertex © Juertex and (h o g)edge = hedge O Jedge-]

Remark 3.1.1 A plain graph morphism f : G — H is a purely structural mapping which does
not pose any constraints on the relation of the attribute functions a¢ and ay. |

Remark 3.1.2 It can be seen easily that: (i) the result f(G) of applying f : G — H to G is again
a plain graph (ii) the result .¢(G) of applying the identity morphism to G is G itself (iii) the o
operator defines indeed the sequential composition of morphisms, i.e., (ho ¢)(G) = h(g((G)). O

Theorem 3.1.1 (Plain Graphs form a Category) The class of plain graphs together with the class
of plain graph morphisms forms a category PG.

lw denotes the disjoint union of sets, cf. the table of mathematical symbols on page 135.

26 CHAPTER 3. FORMAL FRAMEWORK

Proof: It hasto be shown that the composition is associative and its neutral elements are identity
morphisms.

Associativity: let f : F — G,g : G — H,h : H — K be plain graph morphisms. Then
(hOg) o f = ((h'uertez Oguertem) o fue’rtem) (hedge Ogedge) o fedge) = (huertem o (guertem o f’uertez)) hedge o
(gedge o fedge)) =ho (g o f)

Neutral elements: let f : F — G be a plain graph morphism. Then foir = (frertes ©tvy, fedge©

LEF) = (fue’rtem; fedge) = f and f = (fue’rtem; fedge) = (LVG o fue’rtem; LEg © fedge) =1lG o f
O

As said before, the idea of clustered graphs is to modularize a large graph by introducing
clusters and dependencies as first class objects which group vertices and edges, respectively. To
each edge there exists a corresponding dependency which connects the cluster of its source with
the cluster of its target. Hence, clusters and dependencies form a “structure graph” inside the
clustered graph which summarizes the “base graph” formed by vertices and edges. Both graphs
are plain graphs. We use a (plain) graph morphism mapping the base graph to the structure
graph to assign clusters and dependencies to the vertices and edges of the clustered graph.

Definition 3.1.2 (Clustered Graph)

A clustered (A-labeled) graph G = (Gpase, Gstruct, ¢) consists of two plain A-labeled graphs
Ghrase = (‘/7 E, A, Sedges Ledge> abase) (the base graph) and Gpryct = (07 D, A, Sdep>tdep, astruct) (the
structure graph) together with a plain graph morphism ¢ : Gpese — Gstruct, the clustering
morphism. We call the carrier sets C' and D clusters and dependencies, respectively. m|

Remark 3.1.3 Let G = (Gpase, Gstruct, ¢) be a clustered graph as defined above. Without loss of
generality we require that all carrier sets V', E, C, D, and A are pairwise disjoint. We use the
notation G = (V, E,C, D, A, s,t,a, c) by using the definitions s := scqge W Sdep, t = tedge W tdep,
a4 := Gpase W Qspruct, ANA € := Cyertes W Ceage. TO distinguish between different graphs, the graphs
will be used as subscript, i.e., Eg, sg etc.

Furthermore, we call edges, vertices, clusters, and dependencies graph elements and use the
notation xz € G to state that x € Vo W Eg W Co W D¢ is an element of the clustered graph G.

In the following we call clustered graphs simply graphs. |

The definition of graph morphisms for clustered graphs builds on the definition of graph
morphisms for plain graphs. Essentially we need two plain graph morphisms one of which as
mapping between the base graphs and the other as mapping between the structure graphs. It is
natural to require that these two morphisms have to commute with the clustering morphisms.
Finally, we introduce as a third component of a clustered graph morphism a mapping between
the attribute algebras of the two involved clustered graphs.

Definition 3.1.3 (Graph Morphism) A graph morphism f : G — H between (clustered) graphs
G = (Gbase; Gstruct;CG) and H = (Hbase;Hstruct;CH) is a t”ple f = (fbaseafst'ruct; fattr) where
fbase : Gbase I Hbase’ fstruct : Gstruct I Hst'ruct are plain graph morphisms CommUting
with the clustering morphisms (cg o frase = fstruct © cg) aNd foir : Ag — Ag is an algebra
homomorphism Compatible with Jhase and fstruct (fattr cag = ag o (fbase W fstruct))-

The graph G is called the domain of f, denoted dom(f).

Two graph morphisms are equal iff their respective components are pairwise equal, i.e.,
f = f, <~ fbase = f,base A fstruct = flstruct A fatt'r = f,att'r'

The result f(G) of applying f to Gisdefined by f(G) := (H' pase, H' struct, ¢) Where H' pose =
fbase (Gbase)r Hlstruct = fstruct (Gstruct)y CH = CH|H’,,‘M-

The identity morphism g on G is defined by (¢ = (16, s tGouers LA) WhHETE 1, IS the
identity morphism on the plain graph Guase, tG.,... the identity morphism on the plain graph
G struct, and ¢4, the identity homomorphism on the attribute algebra Ag of G.

Let K = (Kpase, Kstruct, cxc) another (clustered) graphand g : G — Handh : H — K
graph morphisms. The composition & o g of g with h is defined component-wise by (h o g)
hase © Goase (h o g)stmct = Rstruct © Gstruct and (h o g)am = hatir © Gattr-

base

3.1. CLUSTERED GRAPH DATA MODEL (CGDM) 27

Theorem 3.1.2 (Clustered Graphs form a Category) The class of clustered graphs together with
the graph morphisms between clustered graphs forms a category CG.

Proof: It hasto be shown that the composition is associative and its neutral elements are identity
morphisms. This proof is analogous to the proof of Theorem 3.1.1.

Associativity: let f : F — G,g : G — H,h : H — K be graph morphisms.
Then (h o 9) o f = ((hbase o gbase) o fbase s (hstruct o gstruct) o fstruct ; (hattr o gattr) o fattr) =
(hbase o (gbase o fbase) s Rstruct © (gstruct o fstruct) y hater © (gattr o fattr)) =ho (g o f)

Neutral elements: let f : FF — G be a graph morphism. Then f o tp = (fpase © LF,,.,, fstruct ©
UFstruct) fattr o LAF) = (fbase; fstructv fatt'r) = f and f = (fbasev fst'ruct; fattr) = (LGh,m, o fst'ructv LG gtruet ©
fst'ruct; LAg © fattr) =1lGg° f]

Remark 3.1.4 Using the flat notation for the graphs G = (V&, Eq,Cq, Dg, Ag, sc, ta, aa,ca)
and H = (VH, Ey,Cy,Dy, Ay, sy, ty,am, CH), a graph morphism f = (fbase, fstruch fattr) :
G — H can be represented by a family (foertes, fedge, fetuster, fdep, fater) OF total functions which
map each of the carrier sets Vi, E¢, Cq, D, Ag of G to the corresponding carrier sets of H (i.e.,
foertez + Va — Vu, fedge : Eq — Ep, ...) and commute with the functions s, ¢,a and c in all
possible compositions (e.9., fuerter © 5¢ = SH © fedger fetuster © G = CH © foertea-+.)-

This implies that the category CG of clustered graphs forms a specialization of the category of
attributed graph structures with total morphisms as defined in [Lowe, 1993, Heckel et al., 1995].
O

From this definition it follows in particular that the source (target) of an edge is always
mapped to the source (target) of the image of this edge. Graph morphisms may not be injec-
tive in general. A graph morphism may map a path in a graph to a circular edge, or several
edges to a single edge. Since we have graph morphisms defined to be total, all graph elements
are included in the mapping. In the following, we denote the image of a graph element (i.e.,
vertex, edge, cluster, or dependency) = under a graph morphism m with m(z).

Since clustered graphs are a special case of attributed graph structures which in turn are many-
sorted algebras [Wechler, 1992], the notion of subgraph is inherited directly from the notion of
subalgebra:

Definition 3.1.4 (Subgraph) Let G = (V,E,C, D, A, s,t,a,c) be an A-labeled graph. A graph
G'=(V',E',C' D A, ¢t d,)isasubgraphof G (denoted G' C G) ifthe carriersets V', E', C’, D’
of G’ are subsets or equal to the respective carrier sets V, E, C, D of G, the attribute algebras are
the same (A’ = A), and the operations s’,t’,a’, ¢’ are restrictions of the respective operations
s,t,a,c.

Consequently, we define G J G’ :<= G’ C G to be the supergraph relationship.

A graph morphism f that is the identity morphism from a subgraph G’ C G into the super-
graph G isdenoted by f : G’ — G.]

Since clustered graphs are algebras, the definitions for the union and intersection of graphs
are inherited.

Definition 3.1.5 (Union, Intersection) We use G U H to denote the smallest graph containing
both G and H as subgraphs and G N H to denote the largest subgraph of both G and H.
We denote by G w H the union G U H iff the intersection of G and H is the empty graph. O

Definition 3.1.6 (Restriction) Let f : G — H a graph morphism and K be a graph. Then we
denote by f|x the graph morphism f’ : K N G that is identical with f on KN G. |

We use the same syntax f|x for the restriction operation on other functions as well.

28 CHAPTER 3. FORMAL FRAMEWORK

Definition 3.1.7 (Compatible Functions or Morphisms) Let f, g be two functions or morphisms
defined on overlapping domains dom(f) and dom(g).

Then f and g are called compatible (denoted fVyg) if they coincide on the intersection of their
domains, i.e., f|p = g|p where D = dom/(f) N dom(g). a

Definition 3.1.8 (Reachability) Let G = (V, E, A, s, t,a) be a plain graph. Then the reachability
relation ~ is defined by (s=* Ut)* 2,

Let G = (Gpase, Gstruct, ¢) @ graph. Then reachability between vertices and edges is defined
as reachability on G.se, and reachability between clusters and dependencies is defined as reach-
ability on Ggyyct- O

Definition 3.1.8 implies that every edge is reachable from its source and the target of an edge
is reachable from the edge.

Corollary 3.1.1 If an element y € V & E of the base graph is reachable from another element
x € V W FE of the base graph (z ~ y), then the same holds for the corresponding elements
c(x), c(y) € C'W D in the structure graph (c(z) ~ ¢(y)).

Proof: Since cisagraph morphism, it commutes with the source and target functions s, t. Hence
x=s(y) = c(x) =s(c(y)) and t(x) =y = t(c(x)) = c(y) proves this correspondence for the
case (s~ Ut)?, where i = 1. By induction, it follows for (s=! Ut)*. |

3.1.3 Schemata and instances

Definition 3.1.9 (Atomic Data) We fix a multi-sorted signature ¥ = (T, Q) forasetT = {T3,...T,}
of sorts and © of operation symbols on these sorts.

With 7% (V) we denote the multi-sorted term algebra for signature ¥ over a multi-sorted set
V of variables.

We denote by type : Tx(V) — T the algebra homomorphism which assigns each term its
typein T.

We define the universe U of atomic data to be the multi-sorted term algebra 7% () of ground
terms over signature X.

a

Definition 3.1.10 (Pattern Graph, Data Graph, Schema Graph) A pattern graph (with variable
set V) is a Tx:(V)-labeled graph, i.e., its labels are (possibly non-ground) terms over X.

A data graph is a pattern graph whose labels are ground, i.e. it is a U-labeled graph.

A schema graph is a T-labeled graph, i.e., its labels are atomic data types T; € T.]

Remark 3.1.5 A data graph is a pattern graph carrying ground labels only. |

Example 3.1.1 (Schema for Electronic Journals) Figure 3.2 shows a part of the schema devel-
oped for the integration of electronic journals in a Digital Library. This diagram shows only
the ACR schema cluster for the Web Site of a particular publisher 3, together with the database
schema cluster describing electronic journals in a publisher-independent way.

2The functions s and ¢ are treated as relations here.
3Springer Berlin Heidelberg New York, <link.springer.de>

3.1. CLUSTERED GRAPH DATA MODEL (CGDM)

_ self
- source RN
self RN ‘ N
/ N

— , N N , /

, ~ ~ N . y * o 7\ s .
N / |

« ¥ e \asone EJOUrNAlDB |
| SpringerACR \ |

‘ libraries ‘ name "\ journal

‘ souree el

‘ library,_ref title (‘publisher \ home_page "\ volume

TEXT volume

name | library volno | issue '
| e

oo e eoeno o m |
1 ‘ ‘ |NTEGER‘ ‘ INTEGER ‘ article ‘.l “
ournal | journal ‘ author /tite (" pdf Gfgz source

TEXT TEXT URL

L1

contents [contents ‘ source source

journal_toc_us

volume

volume_toc_us|

library_ref ‘ TEXT ‘

URL ‘

ATOM

TEXT URL

journal

journal_us

journal_toc

curent_issue | source

volume /"year \ issue

INTEGER

INTEGER INTEGER issue_ref

number / volume / toc @mber &c

‘ ‘ INTEGER ‘ ‘ INTEGER‘ INTEGER ‘

issue_ref_us|

issue_toc_us|

issue_toc

‘ article article

article article_us

author title [pdf \ ps_gz author [title "\ pdf ‘

H TEXT‘ ‘TEXT‘ ‘ URL ‘ ‘ URL ‘ ‘TEXT‘ TEXT

‘ URL H

29

Figure 3.2: Clustered schema for Database and Springer ACR. Uppercase labels denote atomic
data types (e.g. INTEGER), lowercase labels denote singleton types consisting of a single element

(e.g. journal).

Correspondences between nodes of the ACR and database schema are indicated by source-
edges. Note, that certain nodes of the ACR schema appear in two versions (with and without
extension _us, e.g., journal and journal_us). This is due to the fact that journals published by the
US branch of Springer have a different layout, even though they are part of the same Web Site. O

To define the structural conformance of a data graph to a schema, we introduce the notion of

an interpretation for the data graph in terms of a schema graph.

Definition 3.1.11 (Typing, Interpretation, Conformance, Instance) Let S be a schema and G be

a pattern graph.

A graph morphism 7 : G — S is a typing of G w.r.t. S, if its attribute component is the
typing function, i.e., 7.4 = type : U — T such that 7 assigns to each element x of G a schema

element whose label as(7(x)) equals the type type(ac(z)) of the label of .
A pattern graph G conforms to a schema S, if there exists a typing 7 : G — S.

30 CHAPTER 3. FORMAL FRAMEWORK

A typing p : G — S'is called an interpretation if G is a data graph (i.e., has ground labels
only). In this case we call G an instance of S.]

This definition extends the typing concept of [Heckel et al., 1996] to attributed graph structures.
It has the following implications:

e there may be several interpretations for G w.r.t. S
e several parts of the instance graph may be interpreted by the same part of the schema
e an interpretation must cover all elements of the instance graph

e not all schema elements must have corresponding data elements. In particular, the empty
data graph conforms to any schema.

In [Buneman et al., 1997] a schema concept is presented which is based on schema graphs
labeled with unary predicates. Conformance depends on the existence of a simulation relation
between instance and schema graph. This schema concept is more general than ours. In partic-
ular, predicates may have overlapping solution sets whereas our atomic data types are disjoint.
Predicates can model application specific data types like movie titles or names of months which
are subtypes of more general types, e.g., string.

However, this limitation can be overcome by introducing application specific atomic data
types and use conversion functions in rules (discussed in the next section) to convert instances of
general data types into instances of application specific types.

Definition 3.1.12 (Type-Compatible Morphism) A morphism f : G — H for pattern graphs
with typings 7 : G — S and p: H — S is type-compatible if it satisfies po f = 7. o

In the HyperView methodology we group the clusters of a graph into different layers with
dependencies only within layers or between adjacent layers.

Definition 3.1.13 (Layered Graph) Let G = (V,E,C,D, A, s,t,a,c) be agraphand ! : C —

{1,..., N} afunction which assigns each cluster ¢ € C a level I(c) such that for all dependencies
d € D the level of the target is equal to or the predecessor of the level of its source, i.e.,, Vd € D :
I(s(d)) € {i(t(d)), I(t(d)) + 1}. O

In particular, schemata are layered graphs. The following corollary states that an interpre-
tation of a data graph with respect to a layered schema induces a layered structure on the data
graph as well:

Corollary 3.1.2 Let S be a layered schema graph and p : G — S an interpretation of a data
graph G. Then G is a layered graph with the level function i = s o 7 induced by p.

3.2 Rules

A HyperView defines the content of a new cluster of the global data graph (called view cluster)
as the result of a mapping from one or more other clusters (called source clusters). This mapping
is defined by a set of rules. In Section 3.3, we describe how HyperViews can be materialized on
demand by invoking appropriate rules. When a rule is fired, it matches some parts of the source
clusters and produces new elements in the target cluster. Therefore we have chosen to use graph
transformation rules for this purpose.

We base our definition of rules on the well-established algebraic single pushout approach to
graph transformation as described in [Lowe, 1993] and [Heckel et al., 1995]. In this approach, a
rule is modeled by a single partial graph morphism that maps the left hand side of a rule to its
right hand side. The application of a rule to a data graph is implemented by a single category-
theoretic operation, a so-called pushout. Informally speaking, a subgraph matching the left hand

3.2. RULES 31

side is cut out and replaced by a new subgraph matching the right hand side of the rule. Besides
its simplicity the SPO approach has the advantage that it does apply not only to conventional
graphs, but to a wide range of graph data models including our notion of clustered graphs.
Moreover, the SPO approach can be easily adapted to match our need for non-deleting rules that
extend existing data graphs.

Since we do not need single pushout rules in their full generality, we can simplify the original
definition. On the other hand, we need to add two new features, a typing morphism which
ensures that a rule conforms to the schema, and a set of application constraints which is used
to control rule application by posing additional restrictions on the matched labels in the data
graph. Both additions restrict only the applicability of rules, but do not change the semantics
of rule application. In summary, we use typed attributed Single Pushout graph transformation with
application conditions on attributes (cf. citegKoc99), applied to clustered graphs.

In Section 3.3 we will enhance our rule concept further. Hence the following definition is
preliminary.

Definition 3.2.1 (Rule) — preliminary definition*
Arulep = (L,R,T, 1) for a schema S consists of:

a pattern graph R (see Definition 3.1.10), called the right hand side (RHS) graph.
a subgraph L of R, called the left hand side (LHS) graph.

atyping morphismr: R — S.

a boolean term I" from T (V) interpreted as an application constraint for p.

el NS

O

This definition is illustrated in Figure 3.3. Rules are intended to be applied to one or more in-
put clusters and an output cluster and to add new graph elements to the output cluster. Although
this is not specified in Definition 3.2.1, but will be formalized in Definition 3.3.4, this intention is
indicated by dividing the diagram into a lower and an upper half.

Rule p Schema S

(Output Cluster)

(Input Clusters)

Figure 3.3: Schematic diagram of a rule p (depicted by the left circle) and its typing 7 in schema
S (right). The LHS graph L (white) is contained in the RHS graph R (green hatching).

Example 3.2.1 An example of a rule is shown in Figure 3.4. The rule get_issue introduced on
page 19 matches a journal vertex in the database cluster EJournal DB together with some el-
ements of the Springer ACR cluster and adds the elements shown in boldface to the database
cluster. We use boldface to distinguish new graph elements from those in the left hand side of
the rule. For comparison with Figure 3.3, the LHS and RHS are additionally indicated using the
same style as there.

The application constraint is shown below the ACR cluster. It defines some integrity con-
straints for the occurring variables. The typing morphism 7 is not shown explicitly, but is rather
indicated by the graph labels. It maps the RHS of the rule into the schema graph shown in Fig-
ure 3.2. If the concrete label of a vertex is of interest, then a variable name can be introduced using

4Full definition on page 40

32 CHAPTER 3. FORMAL FRAMEWORK

the notation “Variable: Type”. This is important for restricting labels by application constraints
and for assigning labels to new vertices in the right hand side.

r-- self

. source

”””””””””””””””””””””””””””””””” Springer ACR | |

S

'

(]
e X
jo

a\ oC
| o™ o ol .eV@
3 journal_ref}—\>‘journal \—(’0—} j urnal_toc}JE>\ year_toc{i—}issue_ref\

T self
year volume \ number 3)

\ Year: int\ \VolumeNo: int\ \ IssueNo: int\ 3"

{VolumeNo >0 and IssueNo >0 and Year > 1900 and Year <2100}

Figure 3.4: ACR Rule get_issue

O

Definition 3.2.2 (Variable Substitution) Let V and V' be disjoint sets of variables. A variable
substitution (short: substitution) is a function o : V. — T%(V’) such that type(o(X)) = type(X)
forevery X € V.

Let ¢t € T%(V") over some variable set V. Then the result of replacing all occurrences of a
variable v € V by o(v) in ¢t is denoted by to. |

Corollary 3.2.1 Substitutions enjoy the following nice properties:
1. A substitution is free of redundancies since the case o(v) = v is excluded.
2. A substitution does not allow cyclic variable settings such as o(X) = f(Y),o(Y) = f(X).
3. to is well-defined since every variable occurrence in ¢ has to be replaced at most once.

4. Applying a substitution to a term does not change its type since by definition variables are
substituted only with terms of the same type.

5. Applying a substitution to a term is an idempotent operation.

Proof: These properties follow immediately from the disjointness of V and V’. For instance,
cyclic variable settings of the form ¢(X) = f(V),0(Y) = f(X) are not possible since f(X) €
Ts({X}) which leads to the contradiction X € VNV’ = ().]

Definition 3.2.3 (Variable Substitutions for Graphs) Let G be a pattern graphand o : V —
T (V') a substitution.
Then Go is a copy of G where ag,(z) = (ag(x))o for all elements z of Go. O

Corollary 3.2.2 (Preservation of typings under substitutions) Let G be a pattern graph having
atyping 7 : G — S. Let o be a substitution. Then 7 : Go — S is a typing for Go.

3.2. RULES 33

Proof: The structure of GG is not affected by the application of 0. As pointed out in Corol-
lary 3.2.1, applying o to the labels of G does not change their type, hence the conditions 7, =
type and Vo € G : ag(7(x)) = type(acg(z)) from Definition 3.1.11 are satisfied and therefore
7:Go — S isatyping for Go as well.]

Definition 3.2.4 (Induced substitution) LetV and V' be disjoint sets of variables. Let f : 75 (V) —
Tx (V') be a term algebra homomorphism. Let Vy := {v € V | f(v) # v}.

Then o; := f|y, is called the substitution induced by f.

Let @Q and G be T5(V)-labeled pattern graphs and m : Q@ — G a graph morphism. Then the
substitution o induced by m;;. is called the substitution induced by m. O

Example 3.2.2 Let @ consist of a singleton vertex « labeled by f(X,Y) and G consist of two
vertices v, w labeled by f(c, Z) and g(Z), respectively. Assume that all variables and terms have
the same type.

Then the only possible morphism m : Q@ — G maps u to v. The induced substitution o
consists of the bindings X =candY = Z.]

Definition 3.2.5 (Match, Match Set) Let S be a schema graph.

Let G and @ be pattern graphs over a variable set V with typing morphisms p : G — S and
T:Q — S, respectively.

A type-compatible (cf. Definition 3.1.12) graph morphism m : Q — G is called a match for
QinG.

We denote the set of all matches for @ in G by Matches(Q, G). ad

Remark 3.2.1 A match does not permit ground terms occurring in a label of @) to be mapped to
variables occurring in labels of G. This can be remedied by applying an appropriate substitution
o to G first. If GG is a data graph it does not carry variables and hence this problem cannot arise.
O

Definition 3.2.6 (Rule Match) Let S be a schema graph. Let GG be a data graph conforming to S
with interpretation p: G — S.

Letp = (L,R,T",7) a rule. A match for p isamatchm : L — G for L in G such that there
exists a solution of I" for the substitution induced by m.

A partial match is a match for a subgraph L of L for which a solution of I" exists.

A full match is a match m : R — G for R such that the substitution induced by m is a
solution of I. m]

Remark 3.2.2 Note, that a full match for a rule is a by-product of applying this rule. Rule appli-
cation will be defined in Section 3.2.1. From the definition of full match it follows that application
constraints in T" can be used to compute bindings for variables occurring in R, but not in L. For
instance, let L contain variables X and Y and "' = X + Y = Z. Then the value of a variable Z
occurring in R outside of L is determined by the linear constraint T'. |

A variable substitution (whether it is induced by a partial match or not) can be applied to a
rule, resulting in an instantiation of this rule. The instantiation of a rule can be used just like the
original rule, but is more specific.

Definition 3.2.7 (Rule Instantiation) Letp = (L, R,T',7) bearuleand o : V — Tx(V’) a vari-
able substitution. Then po, the result of applying o to p is the rule (Lo, Ro,I'o, 7o) obtained
by replacing any variable v € V which occurs in a label of R or in T by o(v). The new typing
7o : Ro — S'is identical with 7. a

34 CHAPTER 3. FORMAL FRAMEWORK

3.2.1 Rule application

Before we give a formal construction for the result of applying a rule p = (L, R,T', 7) to a match
m, we explain its intuitive meaning: the match m : L — G specifies the subgraph m(L) of G
to which the rule is to be applied. This subgraph is extended with a new copy of R — L whose
labels have been fully instantiated with respect to the substitution ¢ induced by m : L — G and
the application constraint I'. The resulting graph G is constructed in such a way that the match
m can be extended to a full match m : R — G. Figure 3.5 illustrates this description.

Rule P

Data Graph »

|
|
! |
|3
I

Schema

P

Figure 3.5: Application of a rule p to a data graph G.

Definition 3.2.8 (Rule Application) Letp = (L, R,T",7) be arule and m : L — G a match for its
LHS in the data graph G.

Let & be an extension of the substitution ¢ induced by m which binds all variables occurring
in R and satisfies I". We use the notation R := Rz and L := La.

Letr : L — R be the inclusion morphism from the instantiated left hand side L into the right
hand side R. Let ., 7 be the pushout of m, r and the data graph G be the corresponding pushout
object (see Figure 3.2.1).

We call G the result of the application of rule p to match m w.r.t. substitution .

We denote by Apply(p|m) the set of all full matches m : R — G (with extended data graphs
G) resulting from the application of p to m with respect to different substitutions &. o

Remark 3.2.3 The match m : L — G is a match for L as well since the application of to L
has the same effect as the substitution ¢ induced by m and the application of substitutions is an
idempotent operation (cf. Corollary 3.2.1). The morphism m is a full match for the rule p. |

Theorem 3.2.1 The graph G resulting from applying a rule p to a data graph G at match m (w.r.t.
to a substitution & that binds all variables in R and is compatible with m) is defined uniquely up
to isomorphism.

Proof: The instantiated rule p := p& defines a single variable-free pushout rule » : L — R
where r is the inclusion morphism r : L — R embedding L in R. The graph morphism m is a
match for r in terms of SPO graph transformation theory.

In [Heckel et al., 1995] and [Koch, 1999] it is shown that in the category of attributed graph
structures the pushout object G of the graph morphisms and m exists. Since the category of

3.2. RULES 35

L L R
r _
G G

Figure 3.6: The pushout defining the result of the application of rule p = (L, R, T',) (represented
by the inclusion morphism r : L — R) to a match m as specified in Definition 3.2.8.

clustered graphs is an instance of this category, this result applies also to clustered graphs. By
definition, a pushout object (here () is defined uniquely up to isomorphism. |

We now give a set-theoretic construction for the result of a rule application. Informally speak-
ing, the pushout object of m : L — G and r : L — R in the domain of attributed graph
structures is created by taking the disjoint union of G and R — L. The attributes of old elements
(in 7(G) = G) are kept. The attribute of a new element = € m(R) is the attribute of its preimage
in R. Since & is an extension of the substitution induced by m no conflicts for the attributes of the

elements in the intersection of 7(G) and m(R) occur. 8

Construction 3.2.1 (Rule Application) Letp = (L,R,T,7) bearuleand m : L — G withm =
(Myertes, Medge, Melusters Mdep; Mattr) D& @ match for p in G. Let ¢ be a substitution assigning
ground terms to all variables occurring in R such that 5 extends the substitution induced by m
and satisfies the application constraint T".

We call the U-labeled result graph to be constructed G. For each carrier set X of G (i.e.,
vertices Vg, edges Eg, clusters C¢, and dependencies D), the corresponding carrier set X of
G is a disjoint union X¢ W Xr_1 of X and a new copy Xz = mx(Xz — X;) of Xp — X1
under an arbitrary bijection 7 x which ensures m.x (X — X;) N X = (). Therefore the respective
component mx : Xz — Xg € {Muertess Medges Meiuster, Mdep ; OF the match m can be extended
to a function mx : Xz — Xg& by defining mx := mx Wimx.

The attribute component m .- is the term algebra homomorphism induced by .

We define each of the source, target, labeling, and clustering function of G as extension of the
respective function of G that is compatible with the respective function of R. Let us : Xg —
Yo € {sa,ta,aa,ca}. Forxz € X we define ug(z) = ug(x). For z € Xgp_r the respective
component mx is bijective, hence we define us(mx(x)) := my(ug(z)) which guarantees the
commutativity condition us o mx = my o up on Xg_r. In particular, this definition reconnects
“dangling edges” since u(z) may be in L in which case ug(mx (z)) = my (up(r)) isin G.

Altogether this ensures that /m : R — G where m = (Muyertex, Medge, Metusters Mdeps Mattr) 1S
a graph morphism that forms an extension of the match m to a full match.

The morphism 7 is defined as the inclusion morphism 7 : G — G. O

It has to be shown now that Construction 3.2.1 indeed yields the pushout of (m,). But before
that we first introduce the following lemma:

5Note, that the difference of two graphs is not a graph since it may have “dangling edges”. Hence care has to be taken
to reconnect those edges properly when merging the difference graph with some other graph.

6 An alternative method that is used in [Ldwe, 1993] is to take a disjoint union of copies of G and R — L and glue all
elements with common preimages in L together.

36 CHAPTER 3. FORMAL FRAMEWORK

Lemma3.2.1 Let F,G,H begraphsand g : F — G, h : F — H such that g(z1) = g(z2) =
h(z1) = h(z2) for all z1,22 € F. Then f(y) := h(x) for y = g(x) € g(F) defines a unique graph
morphism f : g(F') — H that satisfies f o g = h.

Proof: Define f(y) := h(x) for y = g(z). For 2’ € F satisfying g(z’) = y it follows that h(z') =
h(z), hence f(y) is independent of the choice of the preimage x of y.

Let « denote either the source, target, clustering, or attribute function of a graph. In order to
verify that f is a graph morphism we have to show that v commutes with f just as it does with
the graph morphisms g and h: up (f(y)) = un (h(z)) = h(urp(z)) = f(g(ur(2))) = f(ua(g(z))) =
flug(y)). Hence ug o f = foug.

f is uniquely defined since f o g = h implies f(y) = h(x) for y = g(x). O

Theorem 3.2.2 The pair (m,) as defined in Construction 3.2.1 forms a pushout with pushout
object G.

Proof: We have to show first that the diagram in Figure 3.2.1 commutes. Both » and 7 are
inclusion morphisms. Moreover, m(z) = m(x) for all z € L. Hence m(r(z)) = m(z) = m(z) =
7(m(x)) for each element x € L which proves mor =7 om.

Second we have to show that for any alternative pair (m’,7) of morphisms m’ : R7—> G’ and
7 : G — G’ that satisfies m' o r = 7 o m there is a unique morphism d’ : G — G’ such that
7 =dorandm' =d om.

We use Lemma 3.2.1 to define graph morphisms d, : G E G — G'and dy : m(L) C G — G’
and show than that d’ := d; Uds : G — G’ is well-defined and satisfies the required properties.

Since 7 is the inclusion morphism, Lemma 3.2.1 can be applied immediately and hence d; (z) =
dy(7(x)) := 7 (x) is the unique graph morphism on G satisfying d, o 7 = 7.

For d, we have to show the premise of Lemma 3.2.1 using g := m and h := m/. Let x;, 25 € R
such that m(z1) = m(z2) =: y. Since m is by construction injective on R — L and its range
on R — L does not overlap with its range L, the only nontrivial case is z1,z> € L. In this case
x; = r(x;). We use this and the commutativity m' o r = # o m to derive m/(z;) = m/(r(z;)) =
7 (m(x;)) = 7 (y). Hence m/(x1) = #(y) = m’(z2). Now we can apply Lemma 3.2.1 and conclude
that do(y) := m/(z) for y = m(x) is well-defined and is the unique graph morphism on m(R)
satisfying ds o = m/.

Finally we have to show that d; and ds coincide on the overlap of G and m(R): An element y
is in the intersection of G and m(R) iff there exists a x € L such that y = m(z). By using again
the commutativity m' o r = 7 om and m|; = m we yield d; (y) = 7 (y) = 7 (m(x)) = 7 (m(x)) =
m' (r(z)) =m/(z) = da2(m(x)) = da(y). Hence d' := d; U ds is well-defined and unique.

Therefore (m, 7) is the pushout of (m,r) and G is its pushout object. a

Example 3.2.3 In order to demonstrate this construction, we show the effect of applying the rule
get_issue (depicted in Figure 3.4) to a small fragment of a data graph. Since for this rule only the
database cluster and the Springer ACR cluster are relevant, we show in Figure 3.7 only fragments
of these clusters and disregard the HTML clusters on which the ACR cluster depends.

3.3. QUERIES AND ORACLES 37

r \
| . : i i o 5 . 'EJournal DB
! | ejournals name,: "Computer Science' tife jntl. Journal on Digital Libraries ~ —oNEEE ‘
discipline) Issueno
~ journal volume Issue _
discipline journal volume| issue
“\volume voino
issue i
_> i | dependency
volume volno
volume; ! dependency
Lo
,, source .5 source.
v link - Jibraries i
N libraries: idependency
library s
199 [
Vlibrary_ref o Y ear !
library_ref " (\r‘)\ e“ﬁ a(/ :«;
A library ¥ —}Journal ref}——houmal‘—-}]oumal toc}——{ year_toc |ssue ref number i
volume
name name
a
¥ "Computer Science” Intl. Journal on Digital Libraries

Figure 3.7: Two applications of the rule get_issue, corresponding to the issues 1/4 and 2/1 of the
“International Journal on Digital Libraries”. New elements are indicated by bold lines, elements
matched by the left hand side by normal full lines, and irrelevant elements which are not matched
and further matching elements which have been omitted are denoted with dotted lines.

3.3 Queries and Oracles

In the previous section we have defined the application of single rules. In this section, we define
how a set of rules is used for answering queries. Roughly speaking, a query is a pattern graph
and the solutions of a query are matches from this graph into data graphs which result from
extending a given data graph by applying rules to it. Later we will extend the definition of rules
slightly to use left hand sides of rules as queries.

Definition 3.3.1 (Query) Let .S be a schema.
A query on a data graph G is a tuple (Q, Qo, ', 7) consisting of:

a pattern graph @ over a variable set V, the query graph
a subquery Qo C @, the anchor,

a constraint " being a boolean term from 7% (V),
atypingt:@Q — Sof Q

PN

O

Definition 3.3.2 (Solution) Let GGy be a data graph with interpretation py : Go — S. Let ¢ be a
query as defined above.

A solution for ¢ is a triple (G, p, m) consisting of a supergraph G of G, having an extension
p: G — S of pg as interpretation and the match m : @ — G of @ in G such that the substitution
induced by m on the variables of @ satisfies the query constraint T". |

38 CHAPTER 3. FORMAL FRAMEWORK

We now introduce the concept of an operator that takes a query and a data graph and returns
the solutions that result from applying this query to the data graph. We treat this operator as
a black box that has to satisfy certain properties, but can be implemented arbitrarily. A similar
concept exists in complexity theory [Davis and Weyuker, 1983]: an oracle is a black box that is
assumed to compute a certain (typically uncomputable) function. We borrow this concept, but
use it strictly for computable functions. Moreover, we show later how more powerful oracles can
be build on top of existing oracles using the rules of a hyperview.

Definition 3.3.3 (Oracle) An oracle ® is an operator which takes a query ¢ = (Q, Qo,I',7) and a
data graph Gy (with interpretation py : Go — S) and returns a set ®(q, Go) of solutions (G, p, m)
for g w.r.t. Go.

For notational ease we write (m : Q — G) € ®(q, Go) instead of (G, p, m) € ®(q, Gy).

Furthermore we use the abbreviation ®(q|mg) := {m € ®(q,Go) | m|g, = mo} to express a
call of an oracle with a fixed initial match mg : Qo — Go.

We say an oracle ¢ is competent for schema clusters c;,... ,c, € Cg of a schema S if it
answers only such queries where all vertices of @) (except of those in @) are typed by vertices of
one of the schema clusters ¢;, i.e., Yv € Vg : v & Vg, = ¢cs(7(x)) € {c1,... ,en} C Cs. a

The solutions of a query are matches which extend existing matches for the anchor @, of the
guery in the given data graph. Furthermore each solution must be compatible with the typing
7 and satisfy all constraints in I". An oracle can be seen as a “black box” which computes for a
given query and a data graph a solution set satisfying all these requirements. The result of such
an oracle for a query ¢ against a data graph G is shown schematically in Figure 3.8.

The exception for the typing of the elements of () in the definition of an oracle competent for
schema clusters ¢, ... , ¢, is motivated by the fact that Qo may have to match already existing
inter-cluster edges leading to the clusters for which the oracle is competent.

Figure 3.8: A query ¢ = (Q,Qo, T, 7) against an oracle ® w.r.t. an initial data graph G,. The
solution set is indicated by dashed lines.

Example 3.3.1 The HyperView System provides one builtin oracle, the WWW oracle. As anchor
Qo of a query it assumes a graph which matches a part of an existing HTML cluster. Every
element of the rest of the query graph @ must be reachable from within @, or from a node labeled
by an URL.

Then the WWW oracle tries to find matches for @ in the already materialized HTML clusters
and for each of these matches it tries to complete this match to a number of matches for the whole
guery graph Q. To do so, it loads HTML pages from the WWW, triggered by the attempt to match
edges representing hyper-links, e.g., the href_target edge in the query depicted in Figure 3.9. The
WWW oracle supports sub edges to denote a transitive descendent relation among HTML page
elements.

3.3. QUERIES AND ORACLES 39

To access a HTML page at a known URL directly, one asks the WWW oracle for a root edge
from a vertex labeled by the given URL to a html vertex. This query causes then the page refer-
enced by the URL to be loaded and its root node will become the target of root edge.

"http:/iwww.foo.edu/pub/”: url\ : www!

Figure 3.9: Query against the WWW oracle matching the hyper-link from a home page to the
publications page of www.foo.edu. The home page is assumed to be already materialized in a
cluster page_1. The match indicated by dotted arrows binds the query cluster labeled with the
variable HomePage to the HTML cluster labeled page_1 and the query cluster labeled PubPage
to the newly loaded HTML cluster page_2.

3.3.1 Applying arule to a virtual data graph

If there is an oracle ¢ available for queries against a certain cluster of the data graph Gy, we can
use this oracle to apply a rule p = (L, R, T',) to it even though we cannot find matches for p in
Gy itself.

To do so, we have to formulate a query ¢ for ® which will return matches for L. It follows im-
mediately that L should be contained in the query graph; in fact, we choose Q = L. Furthermore,
it is clear that the application constraint should be used as a constraint for ¢ and the restriction
7|1, of the typing 7 as typing of Q. The only open question is how to determine the anchor graph
Qo of g. One solution would be to determine @ by the form of L, for instance by requiring that
L has a unique root vertex which forms a singleton anchor graph.

However, a more flexible approach is to add a graph A C L to the definition of p to indicate
the portion of L for which a match in the already materialized data graph is required.

We now also formalize the concept of input and output clusters of a rule. Input and output
clusters of a rule are schema clusters. The idea is to allow new graph elements only to be created
in data graph cluster that corresponds to the output cluster.

Thus a rule gets the following form:

40 CHAPTER 3. FORMAL FRAMEWORK

Definition 3.3.4 (Rule) — final definition
Let S be aschemaand ¢y, ¢y, ... ,c, € Cs be clusters of S.

Arulep = (A, L,R, T, 1) for a schema S consists of:

a pattern graph R (see Definition 3.1.10), called the right hand side (RHS) graph.
asubgraph L of R, called the left hand side (LHS) graph.

asubgraph A of L, called the anchor graph.

a typing morphism 7 : R — S. We require that all vertices of L are mapped by 7 to
schema vertices belonging to the clusters ¢y, ... , ¢, and all vertices of R that are not in L to
be mapped to schema vertices belonging to ¢g.

5. aboolean term I' from Tx (V) interpreted as an application constraint for p.

PwbdE

We call ¢y the output cluster and ¢4, . . . , ¢, the input clusters of the rule p. |

Remark 3.3.1 Although the definition does not explicitly restrict the typing of edges in R, the
properties of morphisms ensure that 7 maps edges of R to schema edges belonging to depen-

dencies that connect the clusters ¢y, ... ,c¢,. The creation of vertices or edges within data graph
clusters that correspond to an input cluster is thus excluded. However, edges to or from such a
data cluster are permitted.]

Definition 3.3.4 is illustrated by Figure 3.10. In Figure 3.11 the rule get_issue already intro-
duced in Figure 3.4 is depicted with anchor graph.

Rule p Schema S

Output Cluster

Input Clusters

CECLy e, Cp

Figure 3.10: Schematic diagram of a rule p with anchor graph A and its typing 7 in a schema S.

The query associated with arulep = (A, L, R,T', 7) now becomes ¢ = (L, A,T", 7|1). Using the
oracle ® we obtain a set ®(q, Gy) of matches m : L. — G each of which is an extension of a match
mo : A— GQ.

3.3. QUERIES AND ORACLES 41

EJournal DB
journal N self
[
77 [\ source
A sibizi? 7 N j
e 5 \o° Springer ACR 1
! oW e X e <~
) \0 00(\ P ‘\56\)
! journal_ref——+journal|— journal_toc [year_toc] " +fissue_ref|
! T self
= year volume \, number

- Anchor \ Year: int\ \VolumeNo: int\ \ IssueNo: int\ f’

{VolumeNo >0 and IssueNo >0 and Year >1900 and Year <2100}

Figure 3.11: ACR Rule get_issue with anchor graph. Typically the source edge created by the
right hand side will provide a match for the anchor graph of another rule to be called after
get_issue.

To each m € ®(g, Go), the rule can be applied in the usual way, producing full matches /m :
R — G. This application of p against the oracle ® over the initial data graph Gy is depicted in
Figure 3.12.

Rule
R
A L
p
Output Cluster m € ®(q, Go)

Input Clusters

Figure 3.12: Applying a rule to a virtual data graph with oracle ®. The match for Aismg: A —
Gy, the match for the left hand side m : L — G, and the full match for the right hand side is
m:R— G.

Definition 3.3.5 (Rule Application against Oracle) Letp = (A, L, R, T, 7) be a production, ® an
oracle, and mgy : A — Gy a partial match for p.

Then we define Apply(b(p|m0) = {m € Apply(p|m) | m € ®(q|mo)} where ¢ = (L, A, T, 7|L),
called the rule application operator for oracle ®.]

The rule application operator Applyq)(.|.) uses an oracle ® to extend a partial match mq for a
rule p to a total match m and then applies p to this match using the operator Apply(.|.) for rule
application without oracle as defined in Definition 3.2.8.

42 CHAPTER 3. FORMAL FRAMEWORK

3.3.2 Hyperviews

A hyperview defines a mapping which computes a cluster of a data graph as a function of several
other clusters of this graph. This mapping is specified by a set of rules defined with respect to a
subschema describing the input and output clusters of the hyperview.

Definition 3.3.6 (Hyperview) Let S be a schema. Let ¢y, cy, ... , ¢, be disjoint clusters of S such
that there exists in S a dependency from ¢y toeach ¢;, i = 1,... ,n. Let Sy C S be the subschema
constructed by omitting all other clusters of S and their dependencies.

Let IT be a set of rules. We call IT a hyperview with input clusters ¢y, . .. , ¢,, and output cluster
co iffeach p = (L, R, T, 7) € II satisfies the following conditions:

1. pistyped w.r.t. Sy, i.e., 7: R — Sy
2. each vertex v € Vi — V, is typed by a schema vertex belonging to cg, i.e., ¢(7(v)) = ¢

3. each edge e € Er — Ey, is typed by a schema edge belonging to a dependency emanating
from co, i.e., s(c(7(e))) = co

4. the variable set of p does not overlap with the variable set of any other rule in II

3.3.3 Using arule to answer a subquery

Let IT be a hyperview (cf. Definition 3.3.6) and ® an oracle for data graph clusters described by
the input clusters of II. Let p € IT one of its rules.

Letg = (Q,Qo.T',7) beaqueryand B C Q. Wecanuse p = (4,, Ly, R,,T',, 7,) to find a match
for B if we can come up with a suitable mapping between B and R. We call such a mapping a
binding morphism. B can be compared to the call site of a procedure in an imperative program. It
specifies which rule to activate, which parameters to supply, and where to use its result.

Definition 3.3.7 (Binding Morphism) Let ¢ = (Q, Qo,T'y,74) be aquery and B C Q.
Letp=(A,L,R,T,7) be arule.

A binding morphism b : B — R is a type-compatible graph morphism which does not map
B entirely into into L, i.e., b(B) Z L. We call B the binding region of b. ad

Remark 3.3.2 In general, p and ¢ will be the result of applying a variable substitution ¢ to a rule
po and a query qo. This provides a means of communication by introducing common variables
in p and q¢. In particular, this mechanism can be used to instantiate variables occurring in p with
terms occurring as labels of B. m]

Applying rule p to a match m : L — G yields a full match m : R — G. This match can be
lifted to a match mp : B — G for B by defining mp = m o b. This is illustrated by Figure 3.13.

3.3. QUERIES AND ORACLES 43

Figure 3.13: Using a binding morphism to obtain a match for a subquery B.

3.3.4 Chaining rules to answer a query

To answer a whole query using a hyperview II, we introduce the notion of a query execution
plan. Such a plan consists essentially of a set of binding morphisms b, for rules p; € II which
cover (together with the anchor graph of the query) the whole query graph. If we can apply the
rules p; in such a way that the matches induced by the binding morphisms are compatible with
each other and with a match for the anchor graph, we yield a match for the whole query graph
being the union of all these matches.

Since a rule can be applied only if there is a match for its anchor graph in the existing data
graph, care must be taken to activate rules in the right order. If an anchor match does not exist in
the initial data graph it has to be materialized by a preceding rule. Only if this is guaranteed for
all rules in the query execution plan, a query can be answered completely.

We have chosen a plan concept which ensures statically that rules are executed in the right
order. This poses a slight restriction to the form of rule sets over which queries can be answered.
The key idea is to require that the anchor graph of a rule is either to be matched against the initial
data graph or there exists a so-called rule dependency morphism (see Definition 3.3.8 below) which
maps it to the right hand side of a rule which is to be executed before. This idea is illustrated
schematically by Figure 3.14 and can also be seen in the example of the query execution plan
shown in Figure 3.15.

44 CHAPTER 3. FORMAL FRAMEWORK

Figure 3.14: Chaining of rules p; and ps. Rule p; has already been applied, yielding a full match
m1. Rule dependency morphism d2; maps the anchor graph of p, to the right hand side of p; and
thus lifts the full match m; for p; to a partial match myg for pso.

Definition 3.3.8 (Rule Dependency) Let py,ps berules p; = (A;, L;, R;, T, ;) fori =1, 2.
A dependency of rule ps from rule p, is a type-compatible morphism d : A, — R; mapping
A, to the right hand side R; of p;. O

Having defined rule dependencies, we require that only binding morphisms compatible with
existing rule dependencies are considered. For the following definition we need the concept of
compatible morphisms introduced in Definition 3.1.7. Two morphisms are compatible with each
other if they coincide on the intersection of their domains.

Now we can define two binding morphisms to be admissible with respect to a rule depen-
dency if elements in the two rules which are bound to the same query element are also connected
by the rule dependency. This requirement will ensure that only consistent matches will be chosen
for these rule elements and in consequence for the query element.

Definition 3.3.9 (Admissible Binding Morphisms) Let py,ps be rules p; = (A;, L;, R;, T;, ;) for
i=1,2and d: A, — R, mapping A, a dependency of ps from p;.

Let @ be aquery graph and b; : B; — R; be binding morphisms for i = 1, 2, respectively. Let
F = B; N Bs.

Then b4, b, are called admissible with respect to d iff

1. Fis nonempty
2. Fis mapped completely into As, i.e. bo(F) C A

3. by and d o by are compatible, i.e., b1|r = d o ba|r holds.

Definition 3.3.10 (Query Execution Plan) Let II be a hyperview for a schema S.

3.3. QUERIES AND ORACLES 45

Letq = (@, Qo, T, 7) be a query.
A query execution plan (QEP) for ¢ is a tuple P = (¢, B, D, I") consisting of:

1. avariable substitution o
2. asequence B = (b1,...,b,) of binding morphisms b, : B, — R; where B; C Qo, p, =
(Ai, Li, R;, Ty, 73) = pioo for some p;g € I1

3. asequence D = (dy,...,d,) such that for each i either there is a j < i such that d; is a rule
dependency d; : A; — R; for which b; and b; are admissible, or d; = () and b;(By) C A;
for By := Q()O'.

Furthermore the query graph under the substitution o has to be completely covered by bind-
ing regions and its anchor graph, i.e., J;_, B; = Qo.

A plan P = (0,B,D,T) for ¢ is called a subplan of plan P’ = (¢/,B',I/,I") for ¢ if o is a
restriction of ¢/, and B and ID are (possibly permuted) subsequences of B’ and IV, respectively.

A plan is minimal if it has no subplans other than itself. a

Query execution plans for a query can be generated automatically. By using the schema in-
formation and the rule typings, critical pairs of overlapping rules and the dependencies between
these rules can be identified. We do not go into details of plan generation here, but rather define
the notion of plan generator as a black box:

Definition 3.3.11 (Plan Generator) A plan generator Plans' is an operator which assigns to a

query ¢ the set Plans'(¢) of all minimal query execution plans for ¢ with respect to hyperview
IL. o

In Figure 3.15asimple QEP is shown. It involves only two productions, the rule p; =get_issue
shown in Figure 3.4 and the rule p2 =get_article which retrieves an article from an issue of a jour-
nal. The query selects all articles from issues of the “International Journal of Digital Libraries”
having appeared in 1998. It is assumed that the vertex representing this journal is already present
in the EJournalDB cluster, hence it is put into the anchor graph @, of the query. The rule de-
pendency morphism dz; maps the elements of the anchor graph of p; on the right hand side
(excluding the left hand side) of p;.

Lo self
|| amc/s (0 m/s | M“’: X

——issi
4 -amcle Tﬂ |
= Ui IIIIIIIwlllllllllllll ” ” Il o "ng

volume issue

o
artice eev, self

,,,,,,, sburce A . N — \
o saurce
@“‘5 ,,,,,,,, o4

; ‘(\a
journal_ref] ournal;—)]oumal &oc}—\ﬁ——{ year_| toc{——hssue refl< !
T SEIf

year Volume '\, number

" self|

Anchor [ear:in [volumeNo:inf [lssueNo: mt\ ==

is_title(Title)

VqumeNo >0 and IssueNo >0 and Year >1900 and Year < 2100

d21

Figure 3.15: Example of a query execution plan

46 CHAPTER 3. FORMAL FRAMEWORK

Recall, that the solution of a query is a match for the query graph into an (expanded) data
graph that contains the initial match of the query anchor in the initial data graph. Using a QEP, a
solution for the query can be constructed from matches for the rules referenced in the QEP.

Definition 3.3.12 (Solution for a QEP, Plan Oracle)

Let ¢ = (Q,Qo,I",7) be aquery and P = (0,B,D,T") be a minimal QEP for ¢ with binding
morphisms B = (b1, ... ,b,) and rule dependencies D = (d1, . ..,d,).

Let ® be an oracle.

Let Gy be an initial data graph and mg : By — G € Matches(By, Gp) a match for By := Qo
in Gy. Let G be a supergraph of Gy.

Letm; : Ry — G (i = 1,...,n) be full matches for the rules p; such that for each rule
dependency d; : A; — R; the match m, is compatible to m;, i.e., m;|4, = m; o d; and for each
d; = () the match m; is compatible to my, i.e., mg = m; o b;|g,. Let m; := m; o b;.

The union m = (J!_, m; is called a solution for plan P iff it forms a match m : Qo — G of
Qo inG.

We denote the set of all solutions for P w.r.t. ® by PlanOracle® (P|my). ad

The following construction shows that all solutions for a plan P can be found algorithmi-
cally by enumerating the matches for By, and for each match executing the rules whose binding
regions B; intersect with By, and then recursively firing rules having dependencies to already ex-
ecuted rules. The rule dependencies guarantee that matches for the anchor graphs are provided,
thus avoiding the problem that the data graph is not sufficiently materialized to fire a rule.

Construction 3.3.1 (Solution for a QEP, Plan Oracle) Using the names of Definition 3.3.12, we
define recursively a set M; of full matches for the first ; rules in P. The initial set M is defined as
{(Go)}.

Let (Gl‘,l,ﬁll, ce ,ﬁll‘,l) € M;_1. Let myg € Matches(Ai,Gi,l) in case that d; = () and
mio = My od; ifd; : A; — RJ‘.

Then for every m; : R, — G, € Apply(p;|m.o) the set M, contains the tuple (G;, ma, ... ,m;).
For each tuple of M, which consists of compatible matches m;, m; fulfilling m;|p,~B, =
m;|B,n, the corresponding union m = J;"_, m; is an element of PlanOracle® (P|my). O

Remark 3.3.3 By checking for each match for a new rule the compatibility with the matches for
the rules executed before, branches not leading to solutions can be pruned out early. o

Remark 3.3.4 The term QEP is used here slightly differently than in the field of databases: exe-
cuting a QEP does not yield the complete result of a query, but rather a subset of it.

In order to get the complete result of a query, all minimal plans for this query have to be
evaluated and the union of the returned partial results has to be built. a

We come now to a construction which is central for the HyperView architecture since it pro-
vides the formal foundation for the composition of HyperViews. We construct an oracle that uses
a HyperView II and an oracle ® for the input clusters of II to answer queries against the Hyper-
View.

Definition 3.3.13 (HyperView Oracle) Let ¢ = (Q, Qo, ', 7) be a query.

Let ® be an oracle for the input clusters of a hyperview II.

Let Plans™ be a plan generator for hyperview II.

Then we define the query match operator Oracle®'! which returns all matches for ¢ when
starting from initial data graph G, with respect to the oracle ¢ and rule set II:

Oracle® (g, Go) := {m € PlanOracle® (P|my) | P € Plans"™ (q), mo € Matches(Qq, Go)} O

3.4. REUSE OF EXISTING SUBGRAPHS 47

Remark 3.3.5 The construction of Oracle®' for a hyperview II with output schema cluster ¢
yields an oracle competent for this cluster.

Different oracles competent for schema clusters ¢y, . .. , ¢, can be combined to one oracle com-
petent for all these clusters, provided that there are no dependencies between these clusters in
the schema.

A query against ¢, ... , ¢, can be decomposed into subqueries ¢; against single clusters c;.
The anchor graphs Qo; may intersect because by Definition 3.3.3 need not conform to ¢;. Unions
of solutions m,; returned for the different ¢; are solutions for ¢ if they are compatible with each
other and satisfy the constraint I" of ¢.

This enables us to compose hyperviews in a way that allows information from different
sources to be retrieved, restructured and combined on a higher level of abstraction. In a typi-
cal HyperView System several succeeding levels of abstraction exist, from the HTML layer up to
the result layer presented to the user. a

3.4 Reuse of existing subgraphs

The problem of identifying entities uniquely by their properties applies not only to classical
databases, but to data graphs as well. Hence, the concept of key attributes must be adapted
appropriately. In particular, when applying rules, it must be avoided to create duplicates.

First we present a pragmatic solution based on Reuse Specifications, which has been imple-
mented in the current HyperView prototype.

Definition 3.4.1 (Reuse Specification) Letp = (A, L, R,T',7) be arule. A reuse specification for
rulepisalist Ky,..., K, C R of subgraphs (called reuse graphs) of the RHS graph R. |

The application of a rule p with reuse specifications K, ... , K, to a match m in a data graph
G is specified by the algorithm in Figure 3.16.

This algorithm starts with the match m : K — G where K = L (1). It sequentially checks for
each reuse graph K; whether the current match m can be extended to a match m’ that covers also
the reuse graph (3). In this case, m’ becomes the current match (4).

Otherwise the data graph G is extended (8) with an isomorphic copy K7 of K; under a isomor-
phism 7 (6) that is compatible with m and allows K to overlap with G only in the part matched
by K (7). The current match is then extended with 7 (9). This second case is similar to the normal
rule application step, except that R is replaced by K.

In both cases, K; is included in K and the algorithm proceeds with the next reuse graph.

This approach can be expressed in a declarative way by using rules with negative structural
application conditions. A rule with a reuse specification is translated into a set of rules each
of which covers the case that a certain subset of the reuse graph can be matched in the data
graph. However, the number of resulting rules will be 2™ for n reuse graphs, and only one of
these rules can be applied. Hence it would be completely inefficient to use this translation as an
implementation technique.

Reuse specifications have the advantage that they can be implemented efficiently. However,
they depend on the assumption that all K; are sufficiently selective to match at most one sub-
graph of the data graph. Otherwise the matching subgraphs would have to be glued together or
one of them has to be chosen nondeterministically. To achieve determinism, the rule set has to
be carefully designed. The goal must be to specify key properties by schema annotations and to
generate reuse specifications for all rules.

3.5 Bibliography on Graph-Transformation

The formal framework of the HyperView approach is based on the algebraic approach to Single
Pushout (SPO) graph transformation as treated in [Lowe, 1993]. This approach applies not only

48 CHAPTER 3. FORMAL FRAMEWORK

Inputt L, Ky,...,K,,m:L—G
Output: K (includes L and some K3),
extended matchm : K — G

Q) K:=L

(2 fori=1tondo

(3) ifdm': (m': KUK; — G A m/|x =m) then
4) m:=m'

(5) else

(6) letm : K; — K! = m(K;) be a graph isomorphism
(7 such that mVm A GU K| =m(K)

(8) G:=GUK]

9 m:=mUm

(10) end

(11) K =KUK;,

(12) end

Figure 3.16: Algorithm for applying a rule with reuse specifications.

to classical graphs, but to so-called graph structures in general. A graph-structure is an universal
algebra with unary operators only. In [Heckel et al., 1995], this approach is extended to attributed
graph structures, a generalization of labeled graphs.

In the SPO approach, a graph transformation rule is a (possibly partial) graph morphism
which maps a LHS graph to a RHS graph. The intuitive meaning of applying such a rule to a
graph is the following: Graph elements matching LHS elements are transformed into elements
matching the images of these LHS elements in the RHS. If the graph morphism is not defined for
a particular LHS element, the corresponding graph element will be deleted. If a RHS element is
not in image of the LHS, then a corresponding element will be added to the graph. Using category
theory, the resulting graph can be characterized as the pushout object of the graph morphism
defining the rule and the graph morphism specifying the match of the LHS in the original graph.

An alternative graph transformation technique is the Double Pushout (DPO) approach [Ehrig et al., 1991]
in the category of partial graph morphisms. There, a rule is expressed as a pair of graph mor-
phisms which map a common interface graph to the LHS and to the RHS, respectively. All LHS
elements which are in the image of the interface graph denote graph elements which must be
retained. All remaining LHS elements denote graph elements that must be deleted. Similarly,
all RHS elements not in the image of the interface graph denote graph elements to be added.
Additional constraints ensure that the result of applying a rule is again a graph. The name of
the DPO approach indicates that the category theoretic construction of the result graph involves
two pushout diagrams. There are several extensions to the DPO approach, such as allowing la-
beled or incomplete graphs, using more powerful types of productions or support parallel and
distributed rule application[Taentzer, 1996].

There is a number of other approaches to graph transformation such as hyper-edge replace-
ment, higher-order replacement systems etc., the discussion of which is beyond the scope of this
work. The currently most complete source on the various approaches to graph transformation is
[Rozenberg, 1996, Rozenberg et al., 1999a, Rozenberg et al., 1999b]. Surveys of relevant literature
are also given in [Ehrig and Taentzer, 1996, Nagl, 1979]. A short tutorial to the SPO and DPO
approaches is presented in [Ehrig et al., 1991].

3.6 Summary

In this chapter the formalization of the HyperView concept for graph transformation based
views has been presented. The introduced clustered data model CGDM uses term-attributed

3.6. SUMMARY 49

graphs to represent data. It supports the modularization of large graphs into loosely connected
clusters. The schema concept of CGDM defines conformance by a graph morphism from an in-
stance graph to a schema graph. Our notion of graph transformation uses typed attributed Single
Push Out rules with application conditions on attributes. The main contribution of this formalism
is a novel demand-driven rule activation mechanism by which the incremental materialization
of HyperViews is achieved. This activation mechanism is based on the notion of Oracles against
which Queries in form of graph patterns can be posed. In particular, the WWW can be modeled
by such an oracle. HyperViews consist of rules which are evaluated against a number of existing
oracles, thus combining them to a more powerful oracle on a higher level of abstraction. This
ensures the composability of HyperViews which is essential for the layered architecture of the
HyperView System.

The formal framework presented here is published in [Faulstich, 1998] and [Faulstich, 1999b].
This framework forms the theoretic basis on top of which the HyperView System is implemented.
The storage and manipulation of graphs by the HyperView System is presented in Chapter 4. The
language HVQL which is used to formulate rules and encode schemata is presented in Chapter 5.
There, the translation of HVQL into Prolog is discussed.

50

CHAPTER 3. FORMAL FRAMEWORK

