Chapter 1

Introduction

2 CHAPTER 1. INTRODUCTION

1.1 Integration of semistructured information sources

In order to answer a specific question using the WWW, users often have to collect and combine
information from multiple pages at different Web sites. Due to the autonomy of information
providers in the Internet, Web sites show a high degree of incoherence and structural hetero-
geneity. This causes several problems to the Web user:

The user has to learn the organization and layout of each Web site in order to find the rele-
vant pages and interpret them correctly. Even though this structural heterogeneity is not a major
problem for a human user, it still may cause confusion and unnecessary delays.

Most often, there are missing links between closely related information on different Web sites.
For instance, institutions or persons are often mentioned without providing links to their respec-
tive home pages. Instead of directly following links, the user thus has to search for the desired
pages.

Several Web sites may serve similar information on a certain topic, but often no single site
reaches a sufficient degree of completeness. Due to this incomplete coverage, the user may have to
search several Web sites.

Data from one provider often cannot be used to retrieve and/or match data from another
provider due to semantic heterogeneity which manifests itself in different terminology, notation, or
data granularity.

There is a fluctuation of new Web sites that appear and existing ones that cease to be main-
tained or become unavailable. Sources may change their organization, layout, access methods,
and contents without notice. Such external changes often cause dangling links and may also out-
date any other information copied from external Web sites.

Virtual Web Sites One promising approach to facilitate the combination of information from
multiple Web sites is to build “Virtual Web Sites” that integrate existing Web sites. A virtual
Web site is a service that combines information from a number of Web sites and serves it in a
homogenized form in order to save the user from tediously searching for and browsing numerous
pages from these Web sites.

We call such a service “virtual” since it gives the impression of a single, homogeneous Web site
by hiding the heterogeneity and possibly even the existence of the underlying Web sites from the
user. The main promises of virtual Web sites are to resolve the problems of structural heterogeneity,
missing links, incomplete coverage, and to some extent also of semantic heterogeneity and of structural
changes. The problem of source updates can be solved by including notification services into a
virtual Web site. But already the fact that virtual Web sites simplify the search for information
makes it easier for the user to repeat searches and thus stay up-to-date.

According to the definition above, a search machine could be viewed as a virtual Web site as
well, since it offers homogenized information extracted from other Web sites. However, we focus
here on semantic integration of Web sites. This means that the virtual Web site reflects concepts of
a specific application domain rather than serving generic metadata extracted from Web pages.

There is one search machine that indeed is a simple, yet classical example of a virtual Web
site: the MetaCrawler® extracts and combines data from other search machines and presents all
returned references in a uniform format. Thus the application domain is “references for Web
documents”.

However, MetaCrawler may return multiple references from different search engines that
point to the same document. True semantic integration goes a step further requiring that data
from different sources has to be combined and presented as a single entity if it represents the
same entity.

To achieve such semantic integration of data, first the meaning of this data has to be under-
stood and then a transformation homogenizing the data has to be found that restructures the data
according to a conceptual model of the application domain. This clearly requires intelligence and
hence cannot be automated successfully.

L<www.metacrawler.com>

1.2. THE HYPERVIEW APPROACH 3

However, there are many Web sites that show a sufficiently regular structure to allow predic-
tions on the structure and semantic content of their pages based on the analysis of some exem-
plary pages. We call such Web sites semistructured sources since — even though they lack explicit
schemata and strict typing — they still loosely follow an implicit structure up to some variations
and irregularities in the data (cf. [Abiteboul, 1997]).

Thus, the semantic integration of semistructured Web sites depends on a-priori knowledge
about their implicit structure and the meaning of this structure. For documents in layout-oriented
formats such as HTML, discovering this structure requires to find syntactic regularities in the doc-
uments, to identify variable data elements among static layout elements, and finally to deduce a
hypothetical conceptual structure of the data that explains the inspected pages. This task can be
seen as a reverse-engineering process. The result of this analysis must be an executable specifi-
cation that can effectively extract the data at run-time and reorganize it according to the derived
conceptual structure. The advent of application-specific XML formats in the Web will alleviate
the problem of discovering the conceptual structure of the data and of finding the data in docu-
ments. However, facilities for querying of documents and data extraction are necessary as well.
Moreover, the problem of homogenizing and combining data from heterogeneous documents
will stay. Both tasks require solutions very similar to those for the HTML case.

The draw-back of any integration approach based on a-priori knowledge about the content
and structure of Web sites is that this knowledge is site-specific and has to be provided and
maintained by domain experts. Therefore it is crucial to reduce the costs for setting up such an
integration of Web sites. The HyperView approach aims at reducing these costs by providing a
design approach, a declarative view definition language (HVQL), and a software infrastructure
(the HyperView System) for integrating web sites. This work serves as a basis for the interactive
view design tools currently under development ([Okstiiz, 1999a, Oksiiz, 1999b]). These tools will
further reduce the costs for building and maintaining a virtual HyperView Web site.

1.2 The HyperView approach

To solve the problem of integration of semistructured data sources as outlined above, three sub-
problems have to solved:

Extraction: relevant data has to be extracted from the sources. For sources being Web sites, this
means loading HTML pages, finding the relevant pieces of information on these pages, and
identifying the relations between them. The requirement that sources are well-known and
sufficiently regular allows to define the extraction methods in advance.

Integration: data from different sources and from different locations within a source has to be
combined and restructured into a uniform semantic representation. This step relies on the
existence of a global schema of reasonable size due to a narrow application domain.

Presentation: the user interface supports the user in formulating and submitting information
requests and presents responses consisting of parts of the integrated data in a certain target
format. The primary target format is dynamically generated HTML, because it allows to
set up a Web site which the user can browse using a standard HTTP client to access the
integrated data.

These steps are reflected in the HyperView methodology and architecture. HyperView offers an
unifying formal model that applies to all three of these steps and a generic system based on this
formalism that implements virtual Web sites defined by declarative specifications for extraction,
integration, and presentation.

1.2.1 Data Model and View Mechanism

The three steps introduced above can be conceived as consecutive mappings. Each of this map-
pings can be implemented as a view on its input data that provides the input data for the next

4 CHAPTER 1. INTRODUCTION

step.

To reduce the complexity of the system, a uniform data model and view mechanism is to be
used throughout all steps. A graph-based data model has been chosen since graphs have been
found suitable for representing semistructured data [Abiteboul, 1997],[Quass et al., 1996],
[Buneman et al., 1996],[Fernandez et al., 1997]. Thus directed labeled graphs are used uniformly
to represent the input data (HTML pages), the data extracted from these pages, the integrated
data, and finally the data returned to the user. Graphs are described by graph schemata which
are again graphs. Since we have to handle several graphs at a time, we have developed the
Clustered Graph Data Model (CGDM). In this model, each graph in the system is viewed as a so-
called cluster of a global modularized graph. Using this data model, the WWW is represented
conceptually as a clustered graph where each HTML page forms a cluster of its own. Hyper-
links between different are represented by inter-cluster edges.

The view mechanism needed in HyperView has to support mappings between graphs. To be
more precise, it must transform of one or several input graph clusters into an output graph clus-
ter. Since space and time limitations as well as source updates make it difficult to extract and
integrate all available information in advance, the view mechanism must support incremental
materialization in response to user requests. Graph transformation techniques have been inten-
sively studied in the field of graph grammars (cf. [G. Rozenberg Montanari et al., 1997]). How-
ever, the requirements of modularization and of demand driven execution are not met by the
existing approaches. Therefore we have developed a special kind of graph-transformation rules
by which views on graphs can be materialized using demand-driven activation strategy for rules.

To support the composition of views, rule activation propagates through several layers of
views in a backward-chaining fashion. By this, queries expressed as requests for graph elements
are propagated to the bottom layer. In the HyperView System where the bottom layer models the
WWW, this layer is materialized on demand by loading the requested pages and converting them
into new graph clusters. The data added to each layer allows the rules of the succeeding view to
be applied and to extend the next layer. Thus, a cascade of rule activations finally propagates the
requested information back to the top layer.

This novel view mechanism of HyperView forms a key contribution of this work. The formal
treatment of the Clustered Graph Data Model (CGDM) and of the view mechanism is presented in
Chapter 3.

1.2.2 Architecture

In order to separate the steps of information extraction, integration, and presentation, we use a
hierarchy of views which map information from a lower to a higher level of abstraction. These
levels of abstraction are reflected by the layers of the conceptual HyperView architecture depicted
in Figure 1.1.

The HTML layer models single HTML pages loaded from the Web sites at a purely syntactical
level. The Abstract Context Representation (ACR) layer represents the data extracted from each
Web site. This data is described by a schema, the ACR schema of the site. It models the relevant
content of the Web site at a semantic level, but organized according to the Web site’s structure.
The ACR schemata are analogous to the component export schemata in the well-known reference
architecture of [Sheth and Larson, 1990] for federated database management systems. Note, that
ACR schemata do not correspond to the internal component schemata since they capture only the
data relevant for the integration.

Information extracted from different Web sites is combined at the database (DB) layer which
provides an integrated domain-oriented view on top of the ACR layer. The DB layer is de-
scribed by a schema called the DB schema. This schema corresponds to the federated schema in
[Sheth and Larson, 1990].

Finally, the user interface (Ul) layer consists of a set of views on the database layer which are
then formatted as HTML pages and delivered to the user’s HTTP client. Each of these views is
described by a corresponding Ul schema. In [Sheth and Larson, 1990], these schemata are analo-
gous to external schemata.

1.2. THE HYPERVIEW APPROACH 5

‘Web Browser ‘ ‘Web Browser‘
HyperView Server.
Virtual
| WebServer
HyperView User Interface
| tyer
Mediator HyperView Database
! - Layer
Wrapper ,-~ N Wrapper
y pp V'/ y lep ACR
yperView yperView Layer

Sy

e ha
. -H erVie
| raper

HyperView

. g

] — | --= Request
Web Site I T T Web Site [Results :

Figure 1.1: The HyperView architecture.

¥

Besides virtual Web sites, all other conceivable kinds of applications that rely on integrated
information from Web sites can be built on top of the database layer. One example of such an
application in the field of digital libraries is presented in Chapter 2.

From the viewpoint of systems design, the layered conceptual architecture of HyperView fits
well in a wrapper-mediator architecture [Wiederhold, 1992]. Each Web site can be encapsulated
into a site-specific wrapper which implements the HTML and the ACR layer. Information from
different wrappers is integrated in a mediator which implements the DB layer. The Ul layer is
implemented by the user interface which can be seen as a specialized kind of mediator.

The basic building block of the HyperView architecture is the module depicted in Figure 1.2.
Each of these modules stores a virtual graph that is computed as a view of the virtual graphs
in the underlying modules. Since this view mechanism is the core functionality within the Hy-
perView architecture, these modules are called HyperView modules. Each HyperView module
contains a processor that receives HVQL queries against the graph base of the module. This
graph stores the already materialized part of the view. If the query cannot be answered from the
current contents of the graph base, the processor uses view definitions stored in a rule base to
guery other HyperView modules and to materialize the needed graph elements on the fly.

The bottom most HyperView modules are called Webh Adaptors since they do not issue HVQL
gueries, but load pages from the underlying Web sites in order to answer the queries they have
received.

The modular HyperView architecture lends itself for a distributed implementation even though
the current prototype runs on a single machine.

1.2.3 Application of the HyperView Technology

There are several application scenarios for the HyperView technology: the HyperView System can
be used to integrate competing sources and / or to join complementary sources. Moreover it can
also employed to wrap and transform single legacy sources.

As mentioned, the main application of HyperView is to build virtual Web sites. To the human
user, a virtual Web site does not look different from a conventional Web site. Hence, the usage of
virtual Web sites will be quite similar as well.

6 CHAPTER 1. INTRODUCTION

HVQL query | graph matches

y HyperView
HVQL —

processor rule base

[
graph base

HVQL query.””” graph matches \\._ HVQL query

HyperView ‘ ‘ HyperView

Figure 1.2: The HyperView module: basic building block of the HyperView architecture.

Instead for building virtual Web sites that serve pages to human users, the HyperView System
can be used also to feed other existing information systems, such as conventional database sys-
tems. This is for instance the case in the DARWIN project where a bibliographic database is filled
with data gathered by the HyperView System. Alternatively, the HyperView System can also pro-
vide input to other Web-based applications by serving XML documents in application-specific
formats.

The view specifications necessary for setting up a HyperView System can be developed by sin-
gle parties as proprietary code or on an open source basis by (groups of) interested individuals
within the Internet. The view development requires both expertise in the domain of the informa-
tion to be integrated, and software engineering skills to write the view specifications. Hence we
envision that domain experts will collaborate with software engineers in this task.

The installation and operation of the HyperView System does not require any particular sys-
tem administration skills since it is similar to the installation and operation of a HTTP server.
Hence the deployment of the HyperView technology is not limited by this factor. It is even con-
ceivable that single users operate their personal HyperView server.

Typically however, a virtual Web site will be operated by some organization as a service to a
larger user group. This user group could for instance be the intranet users within a company or
a certain scientific community within the Internet.

1.3 Related Work (Overview)

This section gives a brief overview of the related work which is reviewed in detail in Sec-
tion 9.1. For each of the steps of data extraction, integration, and presentation there exist various
approaches:

Data extraction. Most approaches for data extraction represent Web documents as strings and
use regular expression matching to find substrings relevant for extraction. We argue that these
approaches neglect important structural information inherent in HTML documents and tend to
be not very robust. Therefore we have adopted a graph representation based on HTML parse
trees. Recently, this approach has been adopted by other projects like WebOQL

[Arocena and Mendelzon, 1998] and W4F [Arnaud Sahuguet and Fabien Azavant, 1999].

Data integration. Integration of semistructured data is often tackled with query-based approaches.
Web query languages like WebSQL [Mendelzon et al., 1997] and W3QS [Konopnicki and Shmueli, 1997]
aim at ad-hoc queries, not at a permanent integration of Web sites. WebOQL is primarily a query
language, not a data integration tool. It can be used to a limited extent to achieve data integration,

but the lacking schema concept seems to make the specification and maintenance of the necessary

1.4. OVERVIEW 7

gueries difficult. The same holds for MedMaker [Papakonstantinou et al., 1996b] and for Strudel
[Fernandez et al., 1997] which do not use any schemata to model input and output data.

In ARANEUS [Paolo Atzeni, 1997], the task of integration is left to relational views. However,
the large body of relational approaches to data integration does not apply well to semistructured
data due to the inherent variability and irregularity of such data.

Rule-based approaches like HyperView, YAT [Cluet et al., 1998], or FLORID
[Ludascher et al., 1998a] support the definition of views consisting of rule sets. Such rule-based
views have the advantage that they are easier maintainable and extensible than views defined by
single monolithic queries. In contrast to approaches like Strudel, FLORID, HyperView supports
the demand-driven integration of data.

Data presentation. Data presentation nowadays primarily means publishing the integrated
data in the Web. This amounts to generating HTML or XML documents and serving them to
the user’s browser on request. A static approach is taken by Strudel which generates all pages
of a virtual Web site in advance. In general this is not feasible for external information sources.
Moreover, HTML forms cannot be supported this way.

WebOQL uses document patterns to facilitate the formulation of queries that return HTML
pages as results. However, this approach aims not so much at defining complex virtual Web sites
but at providing certain focused information services.

The PENELOPE language used in the ARANEUS project uses relational nesting operators to
format sets of tuples from a relational table into HTML pages.

In YAT, incoming HTTP requests trigger rules that generate HTML pages by matching infor-
mation in the input data (which may be loaded from external wrappers).

Similarly to YAT, HTTP requests reaching a HyperView virtual Web site trigger rules that pro-
duce HTML graphs which are then formatted as HTML documents. Differing from other ap-
proaches such as WebOQL and YAT, rules for the presentation layer are specified against the
database schema, rather than against the structure of the (HTML) input data.

Completeness. Most of the approaches presented in this chapter do not cover all three subtasks
necessary for the integration of semistructured information sources, i.e., extraction, integration,
and presentation. For instance, TSIMMIS supports data extraction and integration, but not the
creation of virtual Web sites. YAT and Strudel do not support data extraction from HTML, even
though adding this functionality seems possible. MedMaker, WebOQL, and Strudel are miss-
ing a schema concept which makes it difficult to build and maintain complex virtual Web sites.
Moreover these approaches are lacking a formal semantics similar to the formal framework of
HyperView which forms one of the main contributions of this thesis.

In ARANEUS, heterogeneous approaches are combined into a complete, even though prag-
matic solution. This has the disadvantage that different languages and data models are involved.
In contrast to this, HyperView offers a homogeneous approach using a graph-based data model
and graph-transformation techniques that are applied uniformly throughout all stages. This uni-
form approach is reflected in the HyperView architecture which consistently uses the same view
mechanism to map between different levels of abstraction. This architecture and the HyperView
methodology constitute unique contributions of this thesis.

1.4 Overview

The rest of this thesis is organized as follows: in Chapter 2, HyperView is introduced informally
in a case study from the field of digital libraries.

Chapter 3 treats the formal framework that constitutes one main contribution of this work.
It includes the graph data model and the view mechanism based on graph transformation tech-
niques.

8 CHAPTER 1. INTRODUCTION

The next three chapters deal with the other main contribution, namely the implementation
of this formal framework: In Chapter 4 the HyperView System prototype is discussed. This pro-
totype implements the view mechanism of HyperView and provides infrastructure for accessing
the underlying Web sites. The view definition language HVQL is presented in Chapter 5. HVQL
defines a notation for the graph-transformation rules introduced in Chapter 3 and a translation
into the internal representations used in the prototype. The generation of virtual Web sites on top
of the database layer of the HyperView architecture is discussed in Chapter 6.

An extended case study in the field of town information is presented in Chapter 7. The
methodology derived from both case studies is then introduced in Chapter 8.

Chapter 9 concludes the thesis. In Section 9.1 related work is reviewed. Future XML-based
applications of the HyperView approach in the fields of metadata management and alerting are
described in Section 9.2.

