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1. Introduction

Diminishing resources have made energy research become more and more prominent over
the recent years. Energy conversion at interfaces is at the center of the rapidly growing field
of basic energy science. This concerns desired conversions like solar to chemical energy, but
also unavoidable by-products like the dissipation of chemical energy into heat. An atomistic
understanding of the involved elementary processes is in all cases only just emerging, but is
likely to question established views and macro-scale concepts. With respect to the dissipation
of heat freed during exothermic surface chemical reactions, such a prevailing view is that of
a rapid equilibration with the local heat bath provided by the solid surface. The view is
nurtured by the rare event dynamics resulting from the typically sizably activated nature of
surface chemical processes: While the actual elementary processes themselves take place on a
picosecond time scale, times between such rare events are orders of magnitude longer. The
understanding is then that in these long inter-process time spans any released chemical energy
is rapidly distributed over sufficiently many surface phononic degrees of freedom to warrant a
description in terms of a mere heat bath with defined local temperature.
At the atomic scale this equilibration with the surface heat bath leads to an efficient loss

of memory of the adsorbates about their history on the solid surface between subsequent rare
events. This motivates the description in terms of a Markovian state to state dynamics that
is e.g. underlying all present-day microkinetic formulations in heterogeneous catalysis.1–3 In
turn, the freed reaction energy only enters the determination of the local heat bath temperature,
commonly achieved through a continuum heat balancing equation.4–6
In many cases7–10 this prevalent framework seems to allow for an accurate account e.g. of

catalytic conversions. However, particularly for nanostructured surfaces and highly exothermic
reactions it is presently unclear whether this effective description is sufficient. With respect
to the exothermicity this suspicion comes from recalling that freed enthalpies can well be
of the order of several eVs. This is e.g. generally the case for the dissociative adsorption of
oxygen molecules at catalytically relevant transition metal surfaces, which is the specific surface
chemical reaction this thesis focuses on.
For a number of reasons detailed below, and not least because of the plethora of previous

studies of the O-Pd interaction in the context of catalytic CO oxidation9–16 Pd(100) has been
chosen to act as particular showcase. Additionally, most intriguing “different dissociation prop-
erties” of O2 molecules with different rotational orientation relative to the surface (cartwheels
and helicopters) have only recently been observed by Rocca and coworkers for this system.17–19
These results exemplify the limited understanding of the initial stages of oxidation when break-
ing things down to elementary processes on an atomistic scale.
Of course, in an atomistic picture, the impingement of individual O2 molecules to undergo

dissociation immediately draws a connection to gas-surface dynamics. In this field, the under-
standing has long been limited by very approximate descriptions of the adsorbate-substrate
interactions like those already proposed by Lennard-Jones in 1932 based on potentials named
after him.20 The applicability of first-principles methods due to the enormous increase of com-
putational resources in combination with methodological developments have led to significant
progress in the understanding of the adsorption dynamics of diatomic molecules during the last
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15 years. Particular focus has been devoted to H2 adsorption on various metal surfaces,21,22
as the latter offers a “computationally convenient” electronic structure. The necessity of in-
cluding all molecular degrees into the dynamics has thus been demonstrated and established.
Notwithstanding, arguing with the huge mass mismatch of hydrogen and transition metal
atoms, calculations of initial sticking probabilities (a primary quantity of interest as it allows
direct comparison with experimental data), have usually relied on a neglect of surface mobility.
Only recently, first attempts to go beyond the frozen surface descriptions have been made based
on ab initio modeling,23–26 which is considered to be of crucial importance for molecules heavier
than H2 for obvious reasons. However, none of them incorporates a description of phonons and
their propagation with the same quality that is used for the adsorbate-substrate interaction.
Several eVs is an enormous amount of energy on the scale of phononic degrees of freedom,

which calls for efficient dissipation channels to achieve the assumed quasi-instantaneous local
equilibration. At metallic substrates electronic excitations could hereby potentially represent
an important additional energy sink. Unfortunately, no consensus has hitherto been reached
concerning the role of this additional channel for the gas-surface dynamics and subsequent
energy dissipation. The chemicurrent measurements of Nienhaus and coworkers27,28 Wodtke
and coworkers29,30 as well as state-resolved scattering experiments with highly vibrationally
excited NO molecules on from Au(111) provide measurable facts for several systems. Among
others Tully and coworkers have frequently stressed that the lack of a band gap in metallic
systems should in principle allow for electronic excitations, namely electron-hole (e-h) pairs, of
arbitrarily low energies to easily couple with the nuclear motion of a particle impinging from
the gas phase.30–39 According to those general arguments, e-h pair excitations should be partic-
ularly facilitated for the Pd(100) substrate because of its extraordinary high density of states
at the Fermi level, which is among the highest known among the low-index transition metal
surfaces.40–43 On the other hand, recent comparisons to experimental data for hydrogen and ni-
trogen molecules on metallic surfaces indicate that electronically adiabatic descriptions provided
within the Born-Oppenheimer approximation (BOA) seem to describe the initial interaction
dynamics governing the dissociation extremely well.44–46 In fact, a proper high-dimensional
description of the nuclear motion appears hereby to be significantly more important than the
effect of e-h pair excitations.44
For the particular case of oxygen dissociation the 3Σ−g spin triplet ground state of gas-phase

O2 brings in another aspect that could require to go beyond an adiabatic BOA treatment. With
the spin of adsorbed oxygen atoms at metal surfaces quenched, a spin transition needs to occur
at some stage during the adsorption process and could then well affect the gas-surface dynamics.
The well-known paradigm system for this is O2 at Al(111), where only an explicit account of a
hindered triplet-singlet transition could reconcile first-principles dynamical simulations with the
experimentally measured low sticking coefficient for thermal molecules47–50 This non-adiabatic
hindrance was traced back to the inefficiency of both coupling mechanisms generally discussed
to relax the spin selection rules that suppress reactions like oxygen dissociation:47–51 The low
mass number of Al leads to a small spin-orbit coupling and the low Al DOS at the Fermi level
prevents efficient spin quenching through the preferred tunneling of minority spin electrons
between substrate and adsorbate. Indeed, when going from Al(111) to Ag(111), i.e. switching
the substrate from a simple to a coinage metal, a recent study has shown that it is not necessary
to invoke a non-adiabatic spin transition.52 For O2 on a platinum group metal like palladium
on might expect the same as well due to the much larger mass number and DOS at the Fermi
level, but this is not clear a priori.
Altogether, these challenges for the representative showcase constituted by O2 dissociation

on Pd(100) for chemical reactions at transition metal surfaces in general, are schematically
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summarized by the figure on the title page. Aiming at ab initio based modeling and quantitative
understanding of energy dissipation they will be addressed in the following, based on several
new methods and approaches that have been developed as part of this work. It is structured
as follows:
In Part I, a concise introduction to the general theory is given which this work is based

on, comprising density-functional theory in Chapter 2, molecular dynamics in Chapter 3 and
phonons in Chapter 4. Starting from textbook knowledge, specialized aspects are incorporated
as needed – if not presented in even more detail in the main chapters due to new theoretical
and methodological developments conceived within this work and thus necessarily preceding
the results obtained therewith. Computational aspects are briefly touched as well.
Results obtained on a frozen Pd(100) surface are grouped into Part II. First, DFT reference

calculations for palladium bulk and surfaces, the oxygen molecule and oxygen adsorbed on
Pd(100) are described in Chapter 5, which have served to establish a proper computational
setup. Second, statistical properties of O2 adsorption dynamics on that surface are the topic
of Chapter 6. E.g. the initial sticking coefficient is obtained in good agreement with available
experimental data. The underlying highly accurate six-dimensional first-principles adiabatic
potential energy surface is based on neural network interpolation and a newly devised symmetry
adapted coordinate transformation. Third and concluding this part, the importance of electron-
hole pair excitations during the adsorption has been investigated in Chapter 7, using and
extending a perturbative approach based on TD-DFT. Concomitant non-adiabatic energy losses
are small compared to the chemisorption energy, but still offer a mechanism that could be
responsible for the adiabatic spin transition of the oxygen molecule.
Part III focuses on surface mobility after the preceding results have clearly pointed towards

phonons as main energy dissipation channel. Chapter 8 first reviews energy sinks “from the
shelf”, i.e. approaches previously appearing in the literature that have been used quite fre-
quently over the last 30 years to go beyond the frozen surface description in an approximative
way. A thorough discussion reveals their inherent shortcomings for an accurate description of
the release of chemisorption energy to lattice degrees of freedom at a metallic surface. Along
those lines, a newly developed embedding approach for metallic systems termed “QM/Me” is
then introduced in Chapter 9 and applied to the present system. As indications for a break-
down of the Markov approximation turn out to rather sensitively depend on the description
of the substrate bath, the interaction with (surface) phonons and the reliability of the har-
monic approximation for the latter are characterized in detail in Chapter 10. In the end, this
finally allows to characterize the important role of (surface) phonons during the dissociation
dynamics and concomitant energy dissipation with unprecedented first-principles accuracy in
Chapter 10. The various methodological developments which are part of this work offer many
potential future applications beyond the specific problem of dissociative adsorption. Some of
these are surveyed in a concluding outlook in Chapter 11.
As listed at the end of this thesis, so far only the contents of Chapter 7 have been published

in a recent special issue of the New Journal of Physics, “Focus on Advances in Surface and
Interface Science 2011”, and rated among the 10 % most accessed articles in the quarter of
publication. In addition, methodological parts of Chapter 6 and Appendix A have enabled
a publication addressing non-adiabatic effects of O2 adsorption on Ag(111), in collaboration
with the gas-surface dynamics group in San Sebastian.52 Preparation of several manuscripts
of the remaining chapters is currently under way. It is worth noting that in particular the
contents of Chapter 9 and Chapter 10 have already attracted great interest at recent prestigious
international conferences.
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2. Density-Functional Theory

The making and breaking of chemical bonds during chemical reactions calls for quantum me-
chanics to provide a reliable description on the atomic scale. While the latter allows for exact
analytical solutions of small systems only, the treatment of significantly more complex real
materials usually requires to make a choice between two options: On the one hand, further ap-
proximations to the “first-principles” have to be introduced, resulting in nicely tractable models
which include parameters to capture material specific properties. In addition to the underlying
approximations, adjustment of these parameters, whose values are unknown a priori, might
bear the risk of limited predictive power. On the other hand, one can try to tackle quantum
mechanics ab-initio, heavily relying on numerical techniques, which is the route chosen for this
work. When it comes to metals in at least partly periodic systems with large unit cells like sur-
faces, there is at present no viable alternative to density-functional theory (DFT). This holds
even more, when like in the present case, dynamics are involved, i.e. a manifold of energy and
force evaluations is required.

2.1. The Many-Body Problem
Solutions of the time-independent Schrödinger equation

H |Ψ〉 = E |Ψ〉 , (2.1)

which can be read as an Eigenvalue problem of the Hamilton operator H on the Hilbert space
H of states |Ψ〉, determine the static properties of a (non-relativistic) quantum mechanical
system.53 Finite systems always have discrete spectra, whereas infinite systems can also yield
continous sets of Eigenvalues. Concomitant mathematical subtleties will not be detailed here,
also because practical computer calculations lead to discrete spectra in any case due to finiteness
of computational resources. Of particular interest is the (potentially degenerate) ground state,
i.e. an Eigenstate |Ψ0〉, whose (Eigen-)energy E0 is the lowest possible expectation value

E0 = 〈Ψ0 |H|Ψ0〉 ≤ 〈Ψ |H|Ψ〉 (2.2)

This is commonly referred to as variational principle and forms the foundations of quantum
chemistry: The energy as a functional E = E [|Ψ〉] on the Hilbert space of trial states is to be
minimized in order to obtain the ground state. For a system of electrons (e) and nuclei (N), both
of which are not assumed to have any substructure here, without any external perturbations,
the Hamilton operator can be written as

HeN = Te + Vee + VeN︸ ︷︷ ︸
He

+TN + VNN , (2.3)

where the electronic part He of the total Hamiltonian H will deserve particular attention in
the next sections. Contributions of kinetic and potential energy operators are as usual denoted
by T and V , respectively. For physical systems consisting of n electrons and N nuclei, with
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coordinates ri andRI , as well as electron massme and nuclear massesMI , for i ∈ {1, . . . , n} and
I ∈ {1, . . . , N}, respectively, the position space representations of the individual contributions
to HeN are as follows:

Kinetic energy of the electrons Te =
n∑
i=1

−~2

2me
∇2
ri . (2.4a)

Electron-electron interaction Vee =
n∑
i=1

n∑
j>i

1
4πε0

e2

‖ri − rj‖2
. (2.4b)

Electron-nuclear interaction VeN =
n∑
i=1

N∑
I=1

1
4πε0

−ZI e2

‖ri −RI‖2
. (2.4c)

Kinetic energy of the nuclei TN =
N∑
I=1

−~2

2MI
∇2
RI

. (2.4d)

Nuclear-nuclear interaction VNN =
N∑
I=1

N∑
J>I

1
4πε0

ZIZJ e
2

‖RI −RJ‖2
. (2.4e)

SI units have deliberately been chosen over atomic units here and in the following, in order
to keep all masses visible and avoid confusion with Rydberg and Hartree atomic units.i Only
electrostatic interactions are taken into account, for which no doubts have been cast by any
experiment that has been carried out so far. As Eq. (2.1) does not take relativistic effects into
account, spin does not appear “naturally” and would need to introduced as an additional degree
of freedom. For the purposes of this thesis however, interactions resulting from both electron
and nuclear spin are too weak to be important. Accordingly, Eqs. (2.4) would not change and
hence notation (also in the following) can be kept simple. In Section 2.5 however, spin will be
reintroduced for the electronic degerees of freedom.

2.2. Born-Oppenheimer Approximation

Although the Hamiltonian in Eq. (2.1) for chemical systems is as indicated believed to be
known very accurately, the 3n+ 3N degrees of freedom make a solution yet a quite challenging
task. However, the “degree of quantum mechanical nature” of electrons and nuclei motivates,
in a first step, to save some efforts by restricting the quantum mechanical problem to the
electronic sub-Hilbert space He of the total space H = He ⊗ HN of electron-nuclear states.
An Eigenvalue problem for the electronic Hamiltonian He with its 3n degrees of freedom thus
needs to be solved. There, the nuclear degrees of freedom R = {RI}I enter only as parameters
in the electron-nuclear interaction VeN({ri}i;R) given by Eq. (2.4c), which is also referred to
as external potential in this context.
The total electron-nuclear wavefunction from the original problem Eq. (2.1) is a priori not

separable into a product of an electronic |φ〉 ∈ He and a nuclear state |ψ〉 ∈ HN, but can be

iThis is particular importance in the context of nuclear dynamics, where no common units for the latter have
been established so far in corresponding first-principles computer codes.
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written as

|Ψ(R)〉 =
∑
j

(|φj(R)〉 |ψj(R〉) (2.5)

for every set of nuclear coordinates R. The corresponding orthonormal system of Eigenstates
|φj(R)〉j , obtained as solutions for the electronic Hamiltonian He(R), forms a basis of the
subspaceHe, and |ψj(R)〉 are the concomitant projections in its complement. While the nuclear-
nuclear interaction VNN given by Eq. (2.4e) only acts in HN alone, the nuclear kinetic energy
couples the two parts - since motion of the nuclei also changes the electronic Eigensystem
|φj(R)〉j . Therefore, the nuclear kinetic energy term in Eq. (2.3) as given by Eq. (2.4d) can be
responsible for transitions between states in the electronic subsystem, H(1)

e,j→k and H(2)
e,j→k:

〈Ψ |TN|Ψ〉 =
∑
j

〈ψj |TN|ψj〉

+ 2
N∑
I=1

∑
j,k

~2

2MI
〈ψk| 〈φk |∇RI |φj〉︸ ︷︷ ︸

H
(1)
e,j→k

∇RI |ψj〉

+
N∑
I=1

∑
j,k

~2

2MI
〈ψk|

〈
φk
∣∣∣∇2

RI

∣∣∣φj〉︸ ︷︷ ︸
H

(2)
e,j→k

|ψj〉

(2.6)

In order to keep the notation simple, the parametric dependencies on R explicitly indicated in
Eq. (2.5) have been dropped here. Diagonal contributions H(1)

e,j→j to the so-called non-adiabatic
coupling vector vanish exactly

H
(1)
e,j→j = 〈φj |∇RI |φj〉 = 1

2∇RI 〈φj |φj〉 = 0 . (2.7)

The diagonal matrix elements H(2)
e,j→j can be interpreted as kinetic energy contributions for the

electrons due to the motion of the nuclei and hence be estimated against the electronic kinetic
energy as given by Eq. (2.4a):

~2

2MI
H

(2)
e,j→j = ~2

2MI

〈
φj
∣∣∣∇2

RI

∣∣∣φj〉 ≈ me
MI
〈φj |Te|φj〉 (2.8)

The mass ratio me
MI

< me
mp

< 6 × 10−4, where mp is the proton mass, gives a good motivation
to neglect these terms, in particular in a chemical context for elements heavier than hydrogen.
The non-diagonal terms of both H(1)

e,j→j and H
(2)
e,j→j are difficult to estimate in general. In order

to decouple nuclear and electronic systems entirely, they are commonly neglected nevertheless.
This is known as Born-Oppenheimer approximation (BOA).54 From a physical point of view, it
assumes that the electrons instantaneously adjust to the current set of nuclear positions, reflect-
ing the different time-scales of nuclear and electronic motion induced by the aforementioned
mass ratio. In general, this is believed to be a reasonable assumption though in particular
in gas-surface dynamics on metals both experimental and theoretical work has questioned the
validity of the BOA.30
Within the BOA, the total electron-nuclear wave function becomes a product state

|Ψ〉 = |φ〉 |ψ〉 ∈ He ⊗HN , (2.9)
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such that the nuclear part of the Hamiltonian HN simplifies to

HN = TN + VNN + Ve . (2.10)

The BOA thus introduces the concept of a so-called potential energy surface Ve, obtained as
expectation value of the electronic Hamiltonian

Ve = Ve(R) = 〈φ(R)|He(R)|φ(R)〉 , (2.11)

which parametrically depends on the nuclear coordinates. Ve is typically given by the elec-
tronic ground state |φ0〉, but depending to the initial conditions can also be another (excited)
state. However, the neglect of non-adiabatic coupling described by Eq. (2.6) obviously excludes
transitions between electronic states. On the other hand, precisely this decoupling described
by Eq. (2.9) allows for a straightforward classical treatment of the nuclear system. The para-
metric dependence of Ve on R described by Eq. (2.11) allows to apply the Hellmann-Feynman
theorem55 to conveniently obtain the classical forces: For a set of nuclear positions R forces FI
on a nucleus I are given by the ground state expectation value of the gradient of the Hamiltonian
with respect to the corresponding position parameter

F I(R) = −∇RIVe(R) = 〈φ(R) |∇RIHe(R)|φ(R)〉 . (2.12)

This forms the foundations of the dynamics discussed in Chapter 6 and Chapter 9.

2.3. Hohenberg-Kohn-Sham Theory
2.3.1. The Hohenberg-Kohn Theorems
Even within the Born-Oppenheimer approximation introduced in the last section, the solution
of the electronic quantum mechanical problem to be found is a state |φ〉 represented by a
complicated 3n-dimensional many-electron wave function φ({ri}i) in position space. Obviously,
a three-dimensional function like the electron density

ρ(r) = n ·
∫
dr2 · · · drnφ∗(r, r2, . . . , rn)φ(r, r2, . . . , rn) (2.13)

would be much simpler to deal with. This object already was the protagonist in Thomas-Fermi
theory from 1927.56–58
Nevertheless, it took nearly 40 more years before in 1964 Hohenberg and Kohn could rigor-

ously prove that it is indeed sufficient to “only” consider densities instead of wave functions to
characterize any physical property of a quantum mechanical system.59 By reductio ad absurdum
they could show that the electron density as given by Eq. (2.13) of a non-degenerate ground
state uniquely determines an external potential like the one provided by the electron-nuclear
interaction VeN (cf Eq. (2.4c)) as already mentioned in Section 2.2. Since this potential de-
fines the electronic Hamiltonian He (cf Eq. (2.3)), which in turn provides electronic states that
(according to the foundations of quantum mechanics) contain the entire physical information
about the system, the same must also hold for the density. This is commonly referred to as the
first Hohenberg-Kohn theorem. Consequently, the ground state energy is not only a functional
of wave functions as already indicated in Section 2.1, but can also, at least formally, be written
as a functional of the density

E = 〈φ |He|φ〉 = E [ρ] . (2.14)
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For the contribution from VeN to Eq. (2.14), an explicit analytical expression can be easily
constructed:

〈φ |VeN|φ〉 =
N∑
I=1

1
4πε0

n∑
i=1

∫
dr1 · · · drnφ∗(r1, . . . , rn) ZI e

2

‖ri −RI‖2
φ(r1, . . . , rn)

=
N∑
I=1

1
4πε0

n∑
i=1

1
n

∫
driρ(ri)

ZI e
2

‖ri −RI‖2

=
N∑
I=1

1
4πε0

∫
drρ(r) ZI e

2

‖r −RI‖2
≡ EeN [ρ]

(2.15)

Likewise, the respective contributions from the kinetic energy of the electrons and the electron-
electron interaction (cf Eqs. (2.4a) and (2.4b)) in principle must also be describable by a
functional FHK, such that

E [ρ] = FHK [ρ] + EeN [ρ] (2.16)

FHK is even a universal functional since it does not depend on system specific properties like
e.g. the number of nuclei in EeN (cf Eq. (2.15)). Unfortunately, an exact explicit analytic
representation of FHK is not known.
Notwithstanding, the enormous importance of Eqs. (2.14) and (2.16) is due to the second Ho-

henberg-Kohn theorem,59 which establishes a variational principle. Consequently, minimization
of Eq. (2.14) with respect to the density under the normalization constraint

n =
∫
drρ(r) (2.17)

paves the way for practical (computer) calculations by iteratively improving initially chosen
trial densities. This brings up the problem of v-representability: In general,ii not all real-valued
functions in three variables are electron densities resulting from electronic Hamiltonians with
(one-particle) external potentials as occurring in Eq. (2.15), which has been proved even for
physically “reasonable” subsets.61,62 This complicates the proper mathematical description of
the definition range for the minimization as originally proposed by Hohenberg and Kohn.59
Levy’s constrained search approach61,63 circumvents these difficulties and also lifts the afore-
mentioned restriction to non-degenerate ground states. In practice, a direct minimization of
Eq. (2.16) is nowadays known as orbital free DFT – the reason for this designation will get
obvious in the next paragraph. Unfortunately, good approximations for FHK, in particular the
contribution from the kinetic energy of the electrons, are difficult to construct and the accu-
racy of results can hence be quite limited.64 Still, orbital free DFT is used within embedding
techniques for the description of a larger part of a system for which a more accurate quantum
mechanical treatment is then used for a smaller part.65

2.3.2. The Kohn-Sham Equations
In order to circumvent the difficulties with the limited knowledge about the kinetic energy
functional indicated in the previous paragraph, in 1965 Kohn and Sham proposed a mapping to

ii i.e. not only for quantum lattice systems60
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a non-interacting reference system66 described by single-particle states |ϕi〉 which are supposed
to yield the same density as the interacting system.iii These so-called Kohn-Sham orbitals do not
have any strict physical meaning. Nevertheless, they can provide similarly good physical insight
like molecular orbitals from wave function based electronic structure theories.67 In Chapter 7,
this will be made use of for band structures of periodic metallic systems in particular.
Since electrons are Fermionic particles, the many-electron wave function of such a system is

given by a Slater determinant of the (normalized) single particle states

φs(r1, . . . , rn) = 1
n!

∣∣∣∣∣∣∣
ϕ1(r1) · · · ϕ1(rn)

... . . . ...
ϕn(r1) · · · ϕn(rn)

∣∣∣∣∣∣∣ (2.18)

in order to be anti-symmetric under particle exchange

φs(r1, . . . , ri, . . . , rj , . . . , rn) = −φs(r1, . . . , rj , . . . , ri, . . . , rn) . (2.19)

Consequently, the density is simply given by

ρ(r) ≡ ρs(r) =
n∑
i

ϕ∗i (r)ϕi(r) , (2.20)

so that the kinetic energy contribution becomes

Es
Te = 〈φs |Te|φs〉 = − ~2

2me

n∑
i=1

∫
drϕ∗i (r)∇2

rϕi(r) . (2.21)

The Hohenberg-Kohn functional FHK (cf Eq. (2.16)) is now written as

FHK [ρ] = Es
Te + EH [ρ] + Exc [ρ] (2.22)

Here the Hartree energy EH is the classical electrostatic interaction energy of a (“continuous”)
electron gas with density ρ

EH [ρ] = 1
4πε0

1
2

∫
drdr′

ρ(r)ρ(r′) e2

‖r − r′‖2
. (2.23)

The exchange-correlation functional Exc accounts for the missing quantum mechanical interac-
tion of the electrons in the aforementioned non-interacting reference system due to exchange
(cf Eq. (2.19)) and correlation effects, i.e. the contributions not captured by both ETe and
Eee [ρ]. Thus it can formerly be written as

Exc [ρ] = ETe − Es
Te + Eee [ρ]− EH [ρ] , (2.24)

where ETe = 〈φ|Te|φ〉. The hope is that these missing parts are “small” and hence can perhaps
even be crudely approximated in practice. Minimization of Eq. (2.16) yields single-particle
Schrödinger equations− ~2

2me
∇2
r + vH(r) + vxc(r) + vext(r)︸ ︷︷ ︸

veff(r)

ϕi(r) = εiϕi(r) , (2.25)

iii Tough it appears to be physically plausible that such a non-interacting reference system with the same density
can always be found “close enough” to the interacting system of interest, mathematically this is all but clear.
Indeed, this aspect has not yet been discussed extensively in the literature.
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which are commonly referred to as Kohn-Sham equations. The contributions to the effective
potential veff are given by the functional derivatives with respect to the density of the respective
energy contributions:

vH([ρ]; r) = 1
4πε0

∫
dr′

ρ(r′)e2

‖r − r′‖2
(2.26a)

vxc([ρ]; r) = δExc [ρ]
δρ

(r) (2.26b)

vext(r) = 1
4πε0

N∑
I=1

ZIe
2

‖r −RI‖2
(2.26c)

As exact analytic expressions for the exchange correlation energy (cf Eq. (2.24)) are unknown,
vxc can likewise only be given formally in Eq. (2.26b) and has to be approximated in practice,
as will be detailed in Section 2.5. Most of the computing time spent within the scope of this
thesis was used to solve the Eigenvalue problem given by Eq. (2.25), relying on a particular
approximation for vxc. Since veff depends on the density as indicated in Eq. (2.26a) and
Eq. (2.26b) and hence via Eq. (2.20) on the to be obtained Kohn-Sham orbitals ϕi themselves,
this problem has to be solved self-consistently which complicates the computational procedure.
It is typically based on an iterative algorithm as detailed in Section 2.7, with the total energy
being calculated in each iteration using the Kohn-Sham Eigenvalues εi according to

E [ρ] =
n∑
i=1

εi − EH [ρ] + Exc [ρ]−
∫
dr vxc([ρ]; r) ρ(r) . (2.27)

2.4. Time-Dependent Density Functional Theory

In 1984, Runge and Gross have extended the “Hohenberg-Kohn-Sham” theory presented in the
previous section to dynamical electronic systems,68 whose time evolution is described by the
time-dependent electronic Schrödinger equation

i~
∂

∂t
|φ(t)〉 = He(t) |φ(t)〉 . (2.28)

Analogously to the static case, the time-dependent density ρ(r, t) alone is sufficient to com-
pletely determine any physical observable, like e.g. (differences of) the total energy. Further-
more, the system can be mapped onto a non-interacting reference system fulfilling single par-
ticle equivalents of Eq. (2.28), which, analogously to Eq. (2.25), contain a now time-dependent
effective potential

vTD,eff(r, t; ρ(r, t)) = vTD,H(r, t; ρ(r, t)) + vTD,xc(r, t; ρ(r, t)) + vTD,ext(r, t; ρ(r, t)) . (2.29)

Like in the static case (cf Eqs. (2.26)), it also depends on the time-dependent density and
contains an exchange-correlation part which needs to be approximated in practice. This time-
dependent density-functional theory (TD-DFT) is the starting point for a pertubative treat-
ment of (electron-hole pair) excitations of the electronic system due to non-adiabatic effects (cf
Eqs. (2.6)) in Chapter 7. Extensions of TD-DFT to the full electron-nuclear dynamics beyond
the Born-Oppenheimer approximation are subject of current research.69–71
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2. Density-Functional Theory

2.5. Exchange-Correlation Functionals
In both the static and dynamic case, the exact exchange-correlation functional (and associated
potentials, cf Eqs. (2.26) and (2.29)) are not known and hence need to be approximated in
practical calculations. The local density approximation (LDA) is inspired by Thomas-Fermi
theory56–58 and takes

ELDA
xc [ρ] =

∫
dr ρ(r) vLDA

xc (ρ(r)) , (2.30)

intrinsically assuming a slowly varying density. This is a purely local functional since the
exchange-correlation potential vLDA

xc at each point in space is taken to be the same as for the
homogeneous electron gas

vHEG
xc = vHEG

x + vHEG
c (2.31)

with the same density ρ(r) at that point.
For systems where the spin of the electrons is important – like for example in case of the

oxygen molecule – the local spin density approximation (LSDA) provides an improvement since
the former is taken into account explicitly.

ELSDA
xc

[
ρ↑, ρ↓

]
=
∫
dr ρ(r) vLSDA

xc (ρ↑(r), ρ↓(r)) (2.32)

The exchange and correlation contributions to vLSDA
xc are obtained just like in case of the LDA

from the homogeneous electron gas. This is based on the spin (or also referred to as spin-
polarized) density-functional theory generalization by Barth and Hedin.72 ρ↑ and ρ↓ represent
the charge densities in the two so-called spin channels, |↑〉 and |↓〉, respectively, due to a collinear
spin treatment, i.e. measuring the spin along an axis which is homogeneously aligned at each
point in space. Equivalently, the same information is represented by the electron charge density
ρ = ρ↑ + ρ↓ and spin density ρs = ρ↑ − ρ↓. The total number of unpaired electrons

Ns =
∫
drρs =

∫
drρ↑(r)︸ ︷︷ ︸
N↑

−
∫
drρ↓(r)︸ ︷︷ ︸
N↓

(2.33)

is then associated with a total spin S = ~
2 |Ns|, yielding a multiplicity of 2

~S+ 1 = |Ns|+ 1. The
corresponding magnetic moment of the electronic system, consisting of spin-1

2 particles with an
electron spin g-factor ge ≈ −2, is given by

µs = |µs| = |ge|
S

~
µB ≈ |Ns|µB (2.34)

in units of the Bohr magneton µB = e~
2me

. To some extent, even ferro- and antiferromagnetic
configurations can be mimicked within this picture of collinear spin. A simple way of quantifying
the overall spin alignment of parts of a system is to compare the difference between |Ns| =∣∣∣N↑ −N↓∣∣∣ and ∣∣∣N↑∣∣∣ − ∣∣∣N↓∣∣∣. The spatial extent of the spin can also be quantified in more
detail by projections of the Kohn-Sham levels in both spin channels onto those obtained for
parts of the whole system. In gas surface dynamics, this has been made use of to monitor
the spin transition of an incident atom73,74. In Chapter 7, this will be extended accordingly to
the present case of a molecule instead of a single atom. Furthermore, a charge decomposition
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2.5. Exchange-Correlation Functionals

of the spin density according to an “atoms in molecules” approach75 has allowed to apply a
form of (spin-) constrained DFT for the construction of potential energy surfaces for O2 on
the (111) surface of aluminum.47,76,77 Altogether, apart from improvements of the energetics,
spin-polarized DFT can thus also provide additional physical insights for the system under
investigation.
While the exchange contribution vHEG

x can even be given analytically, values for the remain-
ing correlation part vHEG

c were determined numerically by Ceperly and Alder using quantum
Monte Carlo calculations.78 Different parametrizations of this data due to work by Perdew and
Zunger (PZ-LDA)79 and Perdew and Wang (PW-LDA)80 have led to the LDA and LSDA im-
plementations found in most present DFT computer codes. Despite its simplicity, it has been
very successful in particular for the description of structural and elastic properties of both bulk
systems and surfaces.81
For small molecules and their adsorption on surfaces, semi-local functionals employing an

exchange-correlation potential also depending on the local gradient of the density

EGGA
xc [ρ] =

∫
dr ρ(r) vGGA

xc (ρ(r),∇rρ(r)) . (2.35)

have been found to perform much better, improving the description of adsorption energies in
particular.82 In 1991, the first incarnation of this so-called generalized gradient approximation
(GGA) without any empirical parameters was proposed by Perdew and Wang (PW91)83,84 and
has been simplified by Perdew, Burke and Ernzerhof (PBE)85,86 later on. Furthermore, mod-
ifications have been proposed in a comment to the original work (now known as revPBE)87,88
and in a separate study by Hammer, Hansen and Nørskov aiming to particularly improve ad-
sorption energetics of small molecules on surfaces (resulting in RPBE).89 Analogously to the
LDA, spin-polarized versions of these functionals (for collinear treatment of spin) have been
developed alongside.
Further systematic improvement of the exchange-correlation functional is difficult and hence

can be seen as one of the drawbacks of density-functional theory. On the other hand, systemat-
ically improvable wave function based theories cannot be straightforwardly applied to periodic
systems and suffer from poor scaling with system size.90,91 Similarly, the computational de-
mands of many-body techniques like the random phase approximation (RPA) currently calls
for additional simplifications92 when applied to adsorption systems or restrict the size of the
latter.93,94 Lack of forces further limits the possible application to dynamics at present.
But also non-local functionals have been proposed during the last years,95–102 particularly

motivated by the desire to capture van-der-Waals contributions to chemical binding (hence
also referred to as vdW-DF), e.g. for large, organic molecules on surfaces. Due the high
computational effort initial, non-self-consistent applications were focused on such systems.95,96
Recent algorithmic improvements have made evaluations of their performance for a broader
range of systems subject of current research.103
Finally, non-local effects of exchange and correlation in the electron-electron interaction have

also been added a posteriori “on top of DFT” via computationally appealing more or less semi-
empirical schemes (DFT-D, DFT+vdW).104–106 This has shown to improve the description of
adsorption (of organic molecules) over semi-local functionals, but rather in structural than
energetic properties.107,108 For small molecules (O2 on Al(111)) an improvement could not yet
be verified.109
Altogether, DFT-GGA has served as a “work-horse” for the present and many other surface

studies in the past decades. Certainly, going beyond the accuracy of GGAs would be desirable,
but more accurate electronic structure theory proves to be extremely computationally challeng-
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2. Density-Functional Theory

ing when a large number of evaluations is required like in the context of dynamics. Not focusing
on the influence of the employed exchange-correlation functional, all density functional calcu-
lations in the present study have been carried out using the PBE functional, which is expected
to be a reasonable, sufficiently accurate compromise for the present study. At this point, it is
important to emphasize that all concepts which are developed within the scope of this work do
not rely on a particular choice of Exc. In fact, they can be easily applied to energetics obtained
with a “divine” density-functional, should it be obtained in the future, or even yet another
electronic structure method allowing to calculate total energies for adsorption systems.

2.6. Periodic Systems
In a perfect solid, the external potential of the electronic problem in Eq. (2.3) is periodic. The
corresponding Hamiltonian He hence commutes with translation operators Tai ,

[He, Tai ] = 0 i ∈ 1, 2, 3 , (2.36)

which are defined by their effect on (real space) wave functions

TLφ(r) = 〈r |TL|φ〉 = φ(r +L) . (2.37)

L is a lattice vector

L = n1a1 + n2a2 + n3a3 (n1, n2, n3) ∈ N3 , (2.38)

where ai, i ∈ {1, 2, 3} are the primitive lattice vectors defining the periodicity.
The translational symmetry allows to classify the electronic Eigenstates by good quantum

numbers k. As stated in Bloch’s famous theorem,110 the latter can be written as so-called
Bloch waves

φkb(r) = ukb · eikr , (2.39)

consisting of a lattice periodic function ukb and a plane wave eikr with k inside the first Brillouin
zoneiv and additional quantum numbers called band indices b. Due to its periodicity, ukb can
be written in form of a Fourier series, resulting in

φkb =
∑
G

ckbG ei(k+G)r , (2.40)

where G are reciprocal lattice vectors. For each k, the discrete set of plane waves {ei(k+G)r}kG
forms an orthogonal basis set for functions with the lattice periodicity expressed in Eq. (2.37).
More precisely, since k belongs to the first Brillouin zone and is hence only a fraction of a
reciprocal lattice vector G, this even holds for the union set ⋃k{ei(k+G)r}kG, yielding∫

dr e−i(k′+G′)r · ei(k+G)r = 2π δGG′ δ(k − k′) . (2.41)

Equation (2.40) is very appealing for numerical calculations on a computer: Electronic states
and other quantities can simply be represented as vectors of their expansion coefficients CkbG

iv The definition of ukb makes consideration of k′ outside the first Brillouin zone pointless: It can always be
replaced by k = k′ +G inside the latter with the lattice periodic part eiGr absorbed into ukb.
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given on (regular) grids – without any further approximations due to the discreteness. The
Kohn-Sham equations Eqs. (2.25) thus become matrix equations, which, thanks to the orthog-
onality, have the simple form:

∑
G′

(
~2

2me
(k +G)2 + ṽeff(G−G′)

)
ckbG′ = εkbckbG′ , (2.42)

where ṽeff is the Fourier transform of the effective potential. In particular, the kinetic energy
operator is diagonal, i.e. just a multiplication. Fourier transformation of Eq. (2.40) yields
coefficients of an equivalent real space representation in which the same holds for the effective
potential. Fortunately, performing such discrete Fourier transforms to switch between repre-
sentations is a well developed numerical technique, scaling favorably with O(NFFT log(NFFT))
when carried out in form of a so-called fast Fourier transform.v
Obviously, a representation in form of Eq. (2.40) must be finite on a computer, i.e. only

coefficients below a certain cut off, which is conveniently given in form of an energy, can be
considered

~2

2me
(k +G)2 ≤ Ecut . (2.43)

The size of this cut off energy Ecut required for numerically converged results thus determines
the efficiency of the approach. Squaring the orbitals to obtain the charge density according to
Eq. (2.20) results in a representation equivalent to Eq. (2.40) which in principle requires even
twice as many coefficients in each direction. In practice, however, a grid which is smaller than
one corresponding to 4Ecut is used, as the corresponding large wave vector components of the
density are typically not of predominant importance.
Unfortunately, the single-particle states of valence electrons oscillate strongly in regions close

to the nuclei in order to be preserve orthogonality with respect to the core states, thus re-
sulting in rather large values for Ecut. With increasing mass of the elements, this problem
becomes more and more severe, so that transition metals could not be economically treated.
The problem can be remedied by introducing so-called pseudopotentials.111,112 Within a frozen
core approximation, only valence electrons, which are typically most important for the descrip-
tion of chemical bonding, are treated explicitly. Apart from reducing the number of electrons,
this paves the way for replacing the Coulomb potentials, which determine the electron-nuclear
interaction in Eq. (2.4c), by suitable “soft” potentials. These pseudopotentials are constructed
to reproduce corresponding all-electron results for the scattering properties of single-particle
states of spherical atoms outside a certain cut off radius rc. Inside however, the aforementioned
strong oscillations are suppressed, thus reducing the required Ecut. The resulting pseudo-atom
replacements in Eq. (2.4c) typically make the external potential in the Kohn-Sham equations
non-local111 which however can be dealt with rather efficiently in a plane wave framework.113
This construction also allows to incorporate relativistic effects as captured by scalar relativistic
extensions to the atomic Schrödinger equation, which also become more and more important
with increasing nuclear mass.114
In the early days pseudopotentials always were constructed to be norm-conserving, i.e. the

norm of the pseudo-atomic states was always enforced to be the same as the one of their corre-
sponding all-electron counterparts.115,116 Consequently, the soft part inside the pseudoization
sphere given by rc was always constrained to yield the same amount of charge as given by the

v See e.g. http://www.fftw.org for a free implementation and further reading on FFTs in general.
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Figure 2.1.: Schematic representation of a 3× 3 supercell of the primitive Pd(100) surface unit
cell with an O2 molecule modeled by a slab of five layers which are separated by vacuum
along the z direction. The supercell is indicated by the solid black lines. Two images in each
direction are shown.
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latter. Lifting this constraint lead to the construction of so-called ultrasoft pseudopotentials
(USPs),117,118 which allows significant further reduction of the cut off energy required to rep-
resent the single-particle Kohn-Sham states of the pseudoelectrons, in particular for transition
metals. At the same time, a generalized orthonormality in the sense of a non-canonical scalar
product is introduced for the latter, which has to be kept in mind e.g. when defining projection
operations119,120 (also see Section 2.5 and Section 7.3.2). The missing charge is reintroduced
by so-called augmentation charges Q, which are also part of the pseudopotential. They are
strictly localized in the regions around the cores and can be “harder” than the “ultrasoft”
pseudo-atomic states, which is why a representation on an even finer grid than the on used
for the pseudo charge density (within a double grid technique121) can be highly advisable. Of
course, it is beneficial (if not even mandatory) to exploit the reduction of the computational
burden offered by the USPs for this work. Nevertheless, a proper description of light elements
of the second row of the periodic table of elements still requires a rather large cut off energy. It
is thus not surprising that many gas-surface dynamical studies have been focused on hydrogen
so far.
Unfortunately, the plane wave expansion given by Eq. (2.40) still contains the continuous

index k. Practice shows however that the Brillouin zone (with associated volume VBZ) can be
sampled quite efficiently by means of discrete and finite k-point grids122,123, i.e. by introducing
the approximation

1
VBZ

∫
BZ
dk ≈ 1

(2π)3

∑
k

wk , (2.44)

Since real space symmetry directly translates into reciprocal space, only k-points from the
irreducible part of the Brillouin zone with symmetry-induced weights wk need to be calculated
explicitly. Every periodic Hamiltonian, thus fulfilling Eq. (2.36), also possesses the so-called
time reversal symmetry

E(k) = E(−k) . (2.45)
This is usually exploited in order to only calculate half number of k-points on the aforemen-
tioned equally spaced grid k-point grids, conveniently reducing the computational effort by a
factor of two.
When it comes to surfaces, the three-dimensional periodicity assumed so far is broken in one

direction. Despite Wolfgang Pauli’s famous quote
“God made the bulk; surfaces were invented by the devil.”

this not a reason for despair after all the formalism which has been introduced so far: Surfaces
can still be treated efficiently within the so-called supercell approach shown schematically in
Fig. 2.1. Slabs of sufficient thickness are separated by sufficient amounts of vacuum, which is
traditionally chosen to be along the z-axis and supposed to be large enough to decouple adja-
cent copies. Unfortunately, computational effort is spent also to describe these regions due the
basis set expansion given by Eq. (2.40), although a single k-point along this direction provides
sufficient sampling of the (ideally) two-dimensional Brillouin zone. On the other hand, the
truly periodic treatment in lateral directions ensures a proper description of the correspond-
ing band structure, which is of particular importance for metallic surfaces and description of
adsorption thereon.82 To model adsorption of individual molecules, lateral interactions need to
be sufficiently decoupled by also choosing appropriate cell sizes in these directions as indicated
in Fig. 2.1.
For more, also particularly technical details about the plane wave approach, the interested

reader is referred to the excellent review by Payne and coworkers.124
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2.7. Finding the Ground State

As already indicated in Section 2.3, the self-consistent solution for the Kohn-Sham equations (cf
Section 2.3.2) and thus the ground state of the quantum mechanical system is typically obtained
iteratively. This self-consistency cycle is usually initialized with a superposition of atomic
(pseudo) charge densities defining the initial single-particle Hamiltonian of Eq. (2.25). The
latter are obtained from the numerical solution of the spherical (pseudo) atoms, preferentially
based on the same exchange-correlation functional.vi
Probably the most straightforward way to self-consistency is given by a simple density mixing

strategy

1. Solve the Kohn-Sham equations (cf Section 2.3.2) for the given input density ρin. As
indicated in Section 2.6 for a plane wave basis set (cf Eq. (2.42)), this translates into a
matrix diagonalization problem.

2. Calculate new output density ρout according to Eq. (2.20).

3. Stop if ρin and ρout are in “sufficiently good agreement”, which can be measured according
to different criteria. Otherwise, obtain a new input density by forming a mixture of ρin

and ρout and restart.

Obviously, the last step is the eponym of this strategy, which is necessary in order to avoid too
drastic changes in the Eigenstates from iteration to iteration and hence stabilize and accelerate
the approach of self-consistency. Apart from simple linear mixing, i.e. (1 − α)ρin + αρout,
also more sophisticated and effective mixing schemes have been developed.125–129 Still, only
a cumbersome trial and error procedure of adjusting mixing parameters can ensure to reach
self-consistency for particularly “nasty” systems.
Due to the large number of basis functions and hence enormous matrix sizes conventional

matrix diagonalization cannot be used for the first step in a plane wave basis set, In fact, the
vast majority of the Kohn-Sham states obtained thereby would not even be useful because they
would describe unoccupied states. In their seminal work in the middle of the 80s,130 Car and
Parinello (CP) recast the electronic minimization problem into a dynamical one. This allowed
to adapt hitherto matured techniques and computational infrastructure for (classical) molec-
ular dynamics (MD, cf Chapter 3). The corresponding CPMD algorithm thus even allows to
treat the dynamics of both electrons and nuclei on equal footing and does not rely on matrix
diagonalization. Another approach was introduced by Teter and coworkers, targeting (even)
larger systems.131 Applying conjugate gradient optimization techniques,132 which in principle
guarantee convergence, directly to the Kohn-Sham energy functional to be minimized, it has
been termed direct minimization later on.124 Relying on that functional, it is to be clearly dis-
tinguished from orbital free DFT and thus avoids the problem of finding good approximations
for the kinetic energy part of the interacting electrons in the Hohenberg-Kohn functional (cf
Section 2.3). In the middle of the 90s, Kresse and Furthmüller demonstrated that a combina-
tion of density mixing with an iterative diagonalization technique yields a highly efficient and
powerful scheme.133,134 Only a tiny fraction of the Kohn-Sham states are calculated, naturally

viHere, the initial radial potential is typically taken according to some physically reasonable analytical expression
in order to construct the initial Hamiltonian. Any of the algorithms sketched out in the following can be
used to achieve self-consistency, but typically a very simple form of density mixing is sufficient for this rather
simple problem.
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focusing on those with the lowest energies that are to be occupied by electrons. Not surpris-
ingly, this scheme has been adopted and is even used by default in many plane wave DFT
codes.
Without further ado, metallic systems pose a (severe) challenge to each of these approaches.

Because unoccupied levels are not clearly separated from occupied ones by a band gap, al-
gorithms might get stuck by repeatedly occupying and unoccupying states around the Fermi
energy εF – resulting in large changes in the density. Such oscillations back and forth without
getting any closer to the ground state are also known as charge sloshing. Already very early
in the 80s, Fu and Ho135 introduced an idea to significantly improve the convergence of the
self-consistency cycle for metals. It can be nicely formulated136 by introducing a local density
of states (LDOS) including a broadening function δ̃ with a width σ

ρ̃LDOS(ε, r) =
n∑
i=1

1
σ
δ̃

(
ε− εi
σ

)
|ϕi(r)|2 , (2.46)

which yields an equally broadened density of states (DOS)

ρ̃DOS(ε) =
∫
dr ρ̃LDOS(ε, r) =

n∑
i=1

1
σ
δ̃

(
ε− εi
σ

)
(2.47)

and an electron density

ρ̃(r) =
εF∫
−∞

dε ρ̃LDOS(ε, r) =
n∑
i=1

εF−εi
σ∫

−∞

dε̃ δ̃ (ε̃)

︸ ︷︷ ︸
≡fi

|ϕi(r)|2 (2.48)

with occupation factors fi. Obviously, for δ̃ = δ the aforementioned single-particle electron
density ρ(r) given Eq. (2.20) and a corresponding “δ-discrete” DOS ρDOS(ε) are reobtained. If ρ̃
instead of ρ is used in the self-consistency cycle, drastic changes in the density due to the charge
sloshing described before are smoothened out – thus stabilizing the convergence. Moreover,
because the remaining error in self-consistency appears more strongly in derivatives of the total
energy, this might be the only way to obtain properly converged forces that are suitable for ab
initio molecular dynamics. An energy functional that is consistent with Eqs. (2.46) to (2.48)
is obtained when also the so-called band energy term in Eq. (2.27), ∑n

i=1 εi =
∫ εF
−∞ ρDOS(ε), is

modified accordingly in addition:

εF∫
−∞

dε ε ρ̃DOS(ε) =
n∑
i=1

εF−εi
σ∫

−∞

dε̃ δ̃ (ε̃)

︸ ︷︷ ︸
=fi

− σ
n∑
i=1

−
εF−εi
σ∫

−∞

dε̃ ε̃ δ̃ (ε̃)


︸ ︷︷ ︸

≡Si

(2.49)

As already pointed out by Gillan137 the corresponding “smeared” functional is equivalent to the
Mermin functional138, which provides a nonzero temperature generalization of the Hohenberg-
Kohn functional given in Eq. (2.16), if the occupation factors fi are taken from a Fermi-Dirac
distribution. σ thus corresponds to a temperature. The first moments of the broadening func-
tion δ̃ in the second term of Eq. (2.49), {Si}i, are entropy contributions to this free energy
functional. In general and also in this work, the heated electronic system (not in equilib-
rium with the nuclei) is not of interest – only its positive effect to stabilize convergence as a
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numerical trick. Apart from “Fermi smearing” generalized broadening functions δ̃ have been
proposed.135,139–142 Some of them yield an error only in higher orders of the generalized tem-
perature σ when using correction formulae for the energy to estimate σ → 0, i.e. the desired
value of the Hohenberg-Kohn functional. They are thus more efficient to correct for smearing.
Forces usually cannot be easily corrected,143 which is why σ should always be kept as small as
possible just to still facilitate convergence.
While fractional occupancies are not incorporated at all into the direct minimization scheme

by Teter and coworkers described above, the density mixing scheme by Kresse and Furthmüller
greatly benefits from or even needs to rely on this finite temperature treatment for metallic
systems. However, in addition to the mixing parameters, the smearing width is another pa-
rameter that needs to be treated with care: If chosen too large, it can even lead to convergence
to a wrong electronic ground state. Quite in contrast, the so-called ensemble DFT scheme pro-
posed by Marzari and coworkers141,142,144 directly targets the free energy functional discussed
in the previous paragraph and thus also explicitly minimizes the latter with respect to the
occupancy factors. It can be seen as a sophisticated generalization of direct minimization for
metals which carries over the robustness of the former including guaranteed convergence even
for small smearing widths. Unfortunately, its underlying algorithm is computationally much
more expensive compared to the aforementioned density mixing.

2.8. The CASTEP Code

The Castep code145,146 is a modern implementation of density-functional theory using plane
waves as a basis set together with pseudopotentials as described in the previous section and
hence particularly suited for the treatment of periodic systems.
The code structure is schematically illustrated in Fig. 2.2, where contributions by the author

of this thesis (mainly due to engagement in other projects107,108) are indicated accordingly.
Paradigms of modern software design and engineering have been used during its development,
which nowadays inevitably include ideas and concepts of object-oriented programing as much
as possible within the employed programing language Fortran 95. The resulting clean and well
commented code thus avoids unnecessary duplications, allowing and stimulating code reusabil-
ity as well as simplifying maintainability and extendability – in particular when multiple devel-
opers are involved.vii In fact, this code is a complete rewrite of an earlier software package of
the same name, initially developed by Mike Payne as “Cambridge Ab-initio Serial Total Energy
Program”, the complete rewrite of which has been stimulated and influenced by interests in
commercial marketing by the company accelrys.viii
The layers indicated in Fig. 2.2 provide abstraction barriers and therefore “hide” low-level

(“Utility”) modules like Fourier transformations, input/output or parallelism as much as possi-
ble from the high-level algorithms tackling the actual physical problems. Thanks to the hierar-
chy, this functionality can be exchanged rather easily, e.g. allowing to switch between different
implementations of Fourier transformations or plug in effectively non-parallel communication.

vii Unfortunately, this aspect is often overlooked in science, resulting in poorly written codes which might be
reusable by the original author at best. This can have severe implications on the continuity of research in a
world where the complexity of software is growing steadily – to some extent induced by the ongoing trend of
increasing parallelization.

viii More precisely, Castep is an important part of the “Materials Studio” software package from ac-
celrys, see http://accelrys.com/products/materials-studio/quantum-and-catalysis-software.html,
which becomes increasingly popular and wide-spread in industry.
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Figure 2.2.: Modular structure of the CASTEP code, grouped into the three abstraction levels
“Utility”, “Fundamental” and “Functional”. Contributions by the author are highlighted by
bold letters.
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In the middle (“Fundamental”) abstraction layer, typical data structures together with rather
generic methods operating thereon are provided. They are made use of in high-level (“Func-
tional”) modules in particular for the actual self-consistent solution of the Kohn-Sham equations
(cf Eq. (2.25)), for which several minimization algorithms are implemented. This includes di-
rect minimization124,131 ensemble DFT142,144) as well as density mixing133,134 (cf Section 2.7).
Thanks to the aforementioned design philosophy, the code structure closely resembles the un-
derlying mathematical expressions and formulae,145 which greatly simplifies their application
in practical tasks like simple (single point) total energy as well as e.g. molecular dynamics or
phonon calculations. The same holds for post-processing utilities or special-purpose applica-
tions like the perturbative approach for electron-hole pairs in Chapter 7 and its corresponding
implementation described in more detail in Appendix C.
Different levels of parallelism are available as well, which is particularly important due to the

fact that more computational power is nowadays provided through massively parallel computer
architectures rather than increased single processor performance. Message passing as provided
by the MPI standard147 forms the basic communication infrastructure for all parallelism. The
availability of MPI implementations on practically all supercomputers currently in use ensures
high portability of the Castep code. Apart from simple parallelization over symmetry reduced
k-points, which requires hardly any communication during the solution of the individual cor-
responding Kohn-Sham problems and hence scales perfectly with the number of CPUs, the
plane wave coefficients of a single k-point can be parallelized as well. For large supercells and
concomitantly smaller Brillouin zones, resulting in (sampling with) fewer k-points and reduced
grid spacings, this becomes increasingly important. However, it leads to a parallelization of
matrix operations, which require an intense amount of communication. Even with state-of-the-
art networking infrastructure, the scaling is limited to about a hundred CPU cores. A lot of the
calculations in this work have been carried out at this limit, often suffering from shortcomings
of bleeding edge technology. Only very recently, an intermediary layer of parallelism was in-
troduced, parallelizing certain operations on bands rather than plane wave coefficients,148 but
unfortunately too late to be of benefit for this work.
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Dissipation of energy in any kind of physical system is by definition a dynamical process. If the
dynamics of chemical reactions take place on a single potential energy surface (cf Section 2.2)
and the involved nuclei are “sufficiently heavy”, a classical treatment of the latter is certainly a
very good starting point. This chapter is therefore devoted to provide a short overview on the
extremely powerful technique of molecular dynamics (MD),i which follows the spirit of Richard
Feynman’s famous quote

If we were to name the most powerful assumption of all, which leads one on and
on in an attempt to understand life, it is that all things are made of atoms, and
that everything that living things do can be understood in terms of the jigglings and
wigglings of atoms.

For a more detailed treatment, the reader is refered to the (respective chapters in) the excellent
books by Frenkel and Smit149 or Marx and Hutter.150

3.1. Equations of Motion

Within the Born-Oppenheimer approximation, which was described in Section 2.2, the full
quantum mechanical electron-nuclear state separates into a direct product (cf Eq. (2.9)). If
the probability amplitudes described by the wave function that represents the nuclear part are
“sufficiently” localized, their interference and hence quantum effects like e.g. tunneling are
negligible. The latter typically decays exponentially with the nuclear mass, so that a classical
description becomes usually adequate for nuclei with masses heavier than hydrogen.ii This
has e.g been confirmed for the dynamics of N2 molecules on a Ru(0001) surface by practical
calculations.151
As can e.g. be demonstrated by virtue of Ehrenfest’s theorem, the nuclear Hamilton operator

(cf Eq. (2.10)) goes over to a classical Hamilton function

Hcl
N(R,P) = T cl

N (P) + V cl
N (R) , (3.1)

of positions R = {RI}I and P = {PI}I associated with each of the N nuclei when described

i As nicely explained by Wikipedia (http://en.wikipedia.org/wiki/Molecules), the word “molecule” refers
to a “extremely minute particle”, hence implying the second part of the wave-particle duality. In contrast, a
time dependent quantum mechanical treatment of the nuclei (as wave functions) hence is usually refered to
as quantum dynamics.

ii For free molecules in gas phase, a simple estimate is also provided by the de Broglie wavelength λ = h
p
≈

12.8
√

E
(meV)

m
(u)Å, where h is Planck’s constant, p, E and m the momentum, energy and mass, respectively, of

the classical particle. However, for the present purposes of reactions on surfaces, properties of bound states
are certainly involved, so that estimates for free particles are misleading.
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3. Molecular Dynamics

as point-like classical particles. The kinetic energy T cl
N (P) and potential energy V cl

N (R),

T cl
N (P) =

N∑
I=1

P I

2MI
(3.2a)

V cl
N (R) = V cl

NN(R) + V cl
e (R) , (3.2b)

are the classical analogues of TN and VNN+Ve, as given by Eq. (2.4d) and Eqs. (2.4e) and (2.11),
respectively. The quantum mechanical complexity of the electron-nuclear interaction is now
hidden in V cl

N (R), after the electronic degrees of freedom have been “integrated out” according
to Eq. (2.11). A few examples for approximations for the latter are detailed in the following
Section 3.2.
For transformations to other coordinate systems, the Lagrange formalism can be more conve-

nient – a fact that is exploited in Section 6.1. The Legendre transform in velocities Ṙ = {ṘI}I
and conjugated momenta P = {P I}I relates the Hamiltonian Hcl

N(R,P) to the corresponding
Lagrangian L(R, Ṙ)

Hcl
N(R,P) =

N∑
I=1

ṘI · P I − LN(R, Ṙ) . (3.3)

Variational minimization of the latter yields the Euler-Lagrange equations

−∇RIV (R) = F I = mI · R̈I , (3.4)

which are Newton’s famous equations of motion. However, from a computational point of view,
their pendants obtained within the Hamilton formalism

ṘI =∇P IHcl
N = P I

MI
(3.5a)

Ṗ I = −∇RIHcl
N = −∇RIV cl

N (3.5b)

are typically more convenient: For the system of first order ordinary differential equations
(ODEs) given by Eqs. (3.5) rather than the (equivalent) system of second order ODEs in
Eq. (3.4), there is a variety of well understood numerical algorithms which allow efficient solu-
tions on a computer. A few examples are described in more detail in Section 3.3.
Since molecular dynamics is often used in order to obtain statistical properties, sampling of

phase space distributions other than the microcanonical described by Eqs. (3.5) can be desirable.
One possibility to achieve that without sacrificing continuous dynamics is by extending those
equations of motion. For the canonical ensemble (NVT), this was done correctly for the first
time by Nosé152–154 and later extended by Hoover155 as well as Martyna and coworkers,156
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finally resulting in a so-called Nosé-Hoover chain (of length L):

ṘI = P I

MI
(3.6a)

Ṗ I = −∇RIV cl
N (R) − P I

pη1

Q1
(3.6b)

η̇l = pηl
Ql

, l ∈ {1, . . . , L} (3.6c)

ṗη1 =
[
N∑
I=1

P 2
I

MI
− 3NkBT

]
− pη1

pη2

Q2
(3.6d)

ṗηl =
[
p2
ηl−1

Ql−1
− kBT

]
− pηl

pηl+1

Ql+1
, l ∈ {2, . . . , L} (3.6e)

ṗηL =
[
p2
ηL−1

QL−1
− kBT

]
(3.6f)

The L auxiliary variables ηl with associated momenta pηl are the so-called thermostat variables.
Similar extensions to Eqs. (3.5) called barostats can also be constructed in order to sample the
isobaric ensemble (NPE), as introduced by Parrinello and Rahman.157,158 In the literature, in-
dividual trajectories generated by such extended dynamics are very often also ascribed physical
reality, which does not have any theoretical justification. For thermostats, this will be discussed
more extensively within the context of energy dissipation in Section 8.5 of Chapter 8.

3.2. Interaction Potentials
As described in the previous section (cf Eq. (3.2b)), the influence of the electronic structure
with all its quantum mechanical complexity on the interaction between the nuclei is hidden
in V cl

N (R), An exact analytic representation of the latter is generally impossible. A realistic
description of a physical system within a molecular dynamics simulation therefore strongly
depends on how well the complexity of this many-body problem is captured by the actual
choice for this interatomic potential V cl

N (R). In the following, a few popular choices for the
latter, which are particularly relevant for this thesis, are described.

3.2.1. Pair Potentials
The contribution of V cl

NN(R) to V cl
N (R) in Eqs. (3.2) is by definition a sum of pair potentials

– the Coulomb potentials according to Eq. (2.4e). However, in general, this does not hold for
V cl

e (R), resulting in

V cl
N (R) ≈ 1

2
∑
A,B

V pair
AB (RA,RB) . (3.7)

to be a generally crude but probably simplest choice for V cl
N (R) for more than two atoms.

For (partly) periodic systems like bulk and surfaces, this sum is typically evaluated for a
single unit cell within periodic boundary conditions (cf Section 2.6). To save computational
effort, a cut-off radius Rcut is employed

V pair/cut(RAB) =
{
V pair(RAB) , ‖RAB‖2 < Rcut

0 , ‖RAB‖2 ≥ Rcut
. (3.8)
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Figure 3.1.: a) Lennard-Jones and b) Morse potentials. Distances and energies are conveniently
given in the usual dimensionless units as indicated in the axis labels.

This avoids the computation of pair interactions with negligible contributions – assuming a
sufficiently strong decay of the underlying pair potential with distance. If this is not the case,
methods like Ewald summation or particle mesh approaches can be used to efficiently deal with
the long range part.149
One of the earliest but still very popular functional forms was proposed in 1924 by Lennard-

Jones (in a similar form)159

V LJ
AB(RAB) = 4εAB

[(
σAB
RAB

)12
−
(
σAB
RAB

)6
]

, (3.9)

where RAB denotes the distance between two atoms A and B. Forces are given by

FLJ
AB(RAB) = −∂V

LJ
AB(RAB)
∂RAB

= −4εAB
RAB

[(
12 σAB
RAB

)12
−
(

6 σAB
RAB

)6
]

(3.10)

The equilibrium bond distance, where V LJ
AB has its minimum, is given by R0

AB = 6√2σAB
and the bond strength or well depth is described by εAB as indicated in the plot shown in
Fig. 3.1a, thus illustrating the meaning of the two parameters σAB and εAB. A famous choice
for the latter is σAr

AB = 120kBK and εAr
AB = 3.4Å,iii which quite successfully describe correlation

functions of liquid Argon as was shown in one of the first molecular dynamics simulations.160
The dominating van-der-Waals bonds in this system are captured rather well by the sum
of R−6 pair terms contained in the Lennard-Jones potential. For that reason, many more
complicated approximations for V cl

N (R) that are in use for the description of biological systems,
like e.g. proteins,iv contain contributions from Lennard-Jones potentials. Likewise, as already
indicated in Section 2.5, within modern semi-empirical DFT-D approaches, Born-Oppenheimer
potential energy surfaces are augmented by similar sums of pair potentials containing R−6

terms. They are supposed to capture otherwise not included long-range parts due to van-
der-Waals interactions, where parameters are either fixed104,105 or obtained directly from the

iii See http://www.sklogwiki.org/SklogWiki/index.php/Argon for more details and an overview about other
choices for σAr

AB and εAr
AB .

iv In the bio-community they are commonly referred to as “force-fields”.
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3.2. Interaction Potentials

electronic structure of the system under investigation.106,107 However, often parameters are
only available for interactions between atoms of type A (εA, σA) and B (εB, σB) seperately.
Then, the parameters for the interaction between two atoms of types A and B (εAB, σAB) are
very commonly devised according to completely empircial mixing rules employing geometric
and arithmetic means:

εAB = √εAεB (3.11a)

σAB = σA + σB
2 (3.11b)

Attempts were also made to parametrize generalized versions of Lennard-Jones potentials for
an improved pair potential description of metals.161 Due to the particular importance for this
thesis, it is worth noting that also the peculiarities of phonons at surfaces have first been
extensively investigated by Allen and coworkers based on a Lennard-Jones potential162–169 as
detailed in Chapter 4.
Another still very popular pair potential is the one proposed by Morse170

V Morse
AB (RAB) = D0

AB

[
1− exp

(
−αAB(RAB −R0

AB)
)]2
−D0

AB

= D0
AB

[
exp

(
−2αAB(RAB −R0

AB)
)
−

2 exp
(
−αAB(RAB −R0

AB)
)]

,

(3.12)

which also (like the Lennard-Jones potential) only depends on the distance RAB between two
atoms A and B. Of course, the constant shift D0

AB in the first expression is not of any physical
relevance and hence is often also simply dropped. Forces are given by

FMorse
AB (RAB) = −∂V

Morse
AB (RAB)
∂RAB

= −2D0
ABαAB

[
exp

(
−2αAB(RAB −R0

AB)
)
−

exp
(
−αAB(RAB −R0

AB)
)] (3.13)

The parameters D0
AB and R0

AB describe the well depth and equilibrium bond length, respec-
tively, as shown by the plot in Fig. 3.1b. α is related to the vibrational properties which Morse
originally tried to model for diatomic molecules with this choice of the potential:170 The force
constant is given by k = 2α2D0

AB. Indeed, nowadays with parameters determined by first-prin-
ciples calculations, a Morse potential can describe covalently bound simple diatomic systems
rather well. The interaction of single atoms on a fixed site on a surface can be modeled to some
extent by combination of (two) Morse potentials (cf Appendix C). Along these lines, it is quite
self-evident that also the first attempts to model the interaction of diatomics on surfaces were
essentially based on a decomposition into pair contributions described by Morse potentials –
with the lateral corrugation however being very difficult to capture properly. A more detailed
discussion of the corresponding so-called LEPS and EDIM potentials can be found at the be-
ginning of Chapter 6. Finally, also an application to metals has been reported,171 long before
more quantitative alternatives became tractable, like the one detailed in the next section.

3.2.2. Embedded Atom Method
While the metal-adsorbate interaction is very difficult or perhaps even impossible to describe
at a first-principles level of accuracy by simple potential forms – hence deserving special at-
tention in Chapter 6, more successful semi-empirical attempts exist for “bare” metals. Lacking

29
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tractable alternatives for the computational resources available at the time, simple pair po-
tentials like those described in the previous section have been (ab-)used initially according to
Eq. (3.7).162–169,171 However, when it comes to elastic properties, pair potentials are generally
insufficient due to the delocalized, many-body character of the chemical binding in metals.172,173
This can be rationalized by the so-called bond order (BO) conservation principle, stating that
the total amount of bond strength is typically conserved for different coordinations and hence
must be shared differently for the individual bonds.174 Obviously, this cannot be fulfilled by
construction with a sum of pair potentials according to Eq. (3.7).
With the embedded atom method (EAM),172,175 the Finnis Sinclair potential,173 the effective

medium theory (EMT)176,177 or the glue model178 – just to name a few – different attempts
have been made to address this problem, which all add a many-body correction to a basic pair
potential description. Probably the most widespread179–181 and therefore straightforward choice
for the purposes detailed in Part IIIv is the EAM. It has its foundations in the aforedescribed
density-functional theory (cf Section 2.3). As first discussed by Stott and Zaremba,182 the
Hohenberg-Kohn theorem can be generalized to also yield the (electronic) energy of an impurity
in a solid

Eimp
e = Fimp

[
ρhost

]
, (3.14)

where Fimp is a functional of the electron density of the unperturbed host ρhost. It is to be dis-
tinguished from the Hohenberg-Kohn functional FHK (cf Eq. (2.16)),vi but for a given impurity
type and position it is universal with its exact form unknown just like the latter. Now, each
atom of a solid can be seen as an impurity in the host electron density of all the other atoms.
This quasiatom concept182 motivates the following ansatz for an interatomic potential172,175

V cl
N (R) ≈ V EAM(R) =

∑
I

V EAM
I (R)

=
∑
I

[1
2V

EAM,pair
I (R) + FEAM

(
ρ̄EAM
I (R)

)]
,

(3.15)

where I denotes a summation over atoms.vii The pair potential contribution,

V EAM,pair
I =

∑
J 6=I

V EAM,pair (RIJ) , (3.16)

with RIJ denoting the distance between atoms I and J , is motivated by the electrostatic
interaction V cl

NN(R) (cf Eqs. (3.2) in Section 3.2.1). FEAM is the so-called embedding function,
motivated by Eq. (3.14) and supposed to capture the quantum mechanical many-body nature
of the “embedding” of each atom into the host. In the spirit of the local density approximation
of density-functional theory (cf Eq. (2.30) in Section 2.5), it only depends on the background
electron density ρ̄I at the site of the (quasi-)atom I, for which this is to be taken as contribution
in Eq. (3.15). Thus the latter is given by

ρ̄EAM
I =

∑
J 6=I

ρEAMRIJ , (3.17)

v More precisely, its modified successor (MEAM) as detailed below is employed therein.
vi For example, it is not variational with respect to the host electron density,175 which however is of no practical

concern for what follows.
vii It is interesting to note that also state-of-the-art high-dimensional interatomic potentials typically use such

an atomic decomposition of the energy.183,184
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where ρEAM are atomic electron densities. To turn the embedded atom method into an in-
teratomic potential in practice, originally different functional forms have been proposed and
used for V EAM,pair, FEAM and ρEAM(R), where the latter is typically taken to be spherically
symmetric. Parameters in these forms have then been related to physical properties for which
experimental data was available and fitted to reproduce the latter. Increasing feasibility and ac-
curacy of first-principles calculations have allowed to avoid this detour by adjusting parameters
directly in order to match calculated reference forces.185 Within this force matching procedure,
to accommodate a much larger amount of data – exploiting the inherent flexibility and ambigu-
ities of V EAM,pair, FEAM and ρEAM(R) – more general, numerical forms have been introduced.
The actual fitting procedure thus becomes a much bigger effort and challenge in turn, as nicely
exemplified by the work of Brommer and coworkers186 whose potfit code is specifically dedicated
to these purposes.viii
In contrast, in the modified embedding atom method (MEAM), more stringent forms for the

pair potential, embedding function and density are used. The effort for a parametrization from
first principle calculations is therefore significantly reduced, as e.g. discussed by van Beurden
and coworkers.187,188 The MEAM was originally developed by Baskes to also properly capture
covalent bonding in materials like silicon189,190 by trying to put in more physical insights into
the aforementioned underlying functions. Later, the modification has also been formulated
and proven useful for metals and in particular improved the description of metal surfaces.191
This introduces several canonical parameters capturing material specific properties, marked
accordingly in the formulae that follow, thus simplifying recognition and reference. For the
embedding function, a form which has already proven to be reasonable within the EAM is
chosen:

FMEAM (ρ̄I) = AE0
ρ̄I
ρ0

ln
(
ρ̄I
ρ0

)
(3.18)

A is a scaling parameter and E0 is the cohesive energy of the bulk material. ρ0 depends on the
reference structure of the latter by its nearest neighbor coordination number Z0 and hence is
12 for a fcc crystal. The background electron density is given by

ρ̄I = ρ̄
(0)
I G(ΓI) , (3.19)

Originally, the function G was taken to be G(Γ) =
√

1 + Γ.ix Other forms, G(Γ) = exp(Γ
2 ) or

G(Γ) = 2 (1 + exp(−Γ))−1, have been used and discussed as well, but no clear improvements
were found.192

ΓI =
3∑

k=1
t(k) ρ̄

(k)
I

ρ̄
(0)
I

(3.20)

is supposed to capture a directional dependance of the latter by means of the partial densities
ρ̄

(k)
I . The concomitant better description of directed chemical bonds represents the main phys-

ical insight and hence ascribed improvement of the MEAM. When the weights t(k) are set to

viii The resulting potfit code is available under GPL from http://www.itap.physik.uni-stuttgart.de/∼imd/
potfit.

ix The square root bares the risk of imaginary values for the background electronic density if some the weight
parameters t(k) below in Eq. (3.20) are negative.
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zero, the background electron density becomes spherical again (as will become clear from what
follows), and hence the EAM is recovered. The partial densities are given by

ρ̄
(0)
I =

∑
J 6=I

SIJρ
(0) (RIJ) (3.21a)

(
ρ̄

(1)
I

)2
=

3∑
α=1

∑
J 6=I

SIJρ
(1) (RIJ) RIJα

RIJ

2

(3.21b)

(
ρ̄

(2)
I

)2
=

3∑
α=1

3∑
β=1

∑
J 6=I

SIJ · ρ(2) (RIJ) · RIJαRIJβ
R2
IJ

2

−

1
3

∑
J 6=I

SIJ · ρ(2) (RIJ)

2 (3.21c)

(
ρ̄

(3)
I

)2
=

3∑
α=1

3∑
β=1

3∑
γ=1

∑
J 6=I

SIJ · ρ(3) (RIJ) · RIJαRIJβ RIJγ
R3
IJ

2

(3.21d)

In more recent versions of the MEAM, the expression for ρ̄(3)
I (Eq. (3.21d)) has been modified

to193

(˜̄
ρ

(3)
I

)2
=
(
ρ̄

(3)
I

)2
− 3

5

∑
J 6=I

SIJ · ρ(3) (RIJ) · RIJα
RIJ

2

. (3.22)

Here, the atomic electron densities ρ(k) are physically motivated taken as exponentially decaying

ρ(k)(r) = exp
(
β(k)

(
r

R0 − 1
))

, k ∈ {0, 1, 2, 3} , (3.23)

introducing the decay parameters β(k) and the nearest neighbor distance R0. Similar to
Eq. (3.7), SIJ in Eqs. (3.21) encapsulate a cut off function fc and a screening function con-
struction SIKJ and CIKJ as introduced by Baskes in a slight revision of the theory:194

SIJ = fc

(
Rc −RIJ

∆R

)
·

∏
K/∈{I,J}

S̄IKJ (3.24a)

SIKJ = fc

(
CIKJ − Cmin
Cmax − Cmin

)
(3.24b)

CIKJ = 1 + 2 R
2
IJR

2
IK +R2

IJR
2
KJ −R4

IJ

R4
IJ −

(
R2
IK −R2

KJ

)2 (3.24c)

fc(x) =


1 , x ≥ 1[
1− (1− x)4] , 0 < x ≤ 1

0 , x ≤ 0
(3.24d)

Typical values are Rc = 4Å for the cut off radius and ∆R = 0.1Å for the cut off region, though
they can be made element specific during parametrization. In the original formulation,194
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dimensionless parameters Cmax and Cmin, which are for the ellipses measuring the “direct line
of sight” between two atoms when determining the screening, are taken to be 2.8 and 2.0,
respectively. The sums in Eqs. (3.21) thus become limited to nearest neighbors and remain
computationally tractable. Restriction to nearest neighbors is also implicitly included in the
construction of the pair potential. While in the EAM, there is a certain ambiguity what to put
into the pair potential on the one hand and the embedding function and background density on
the other, a clear prescription is given for the former in the MEAM. First, usually the so-called
“universal equation of state” as proposed by Rosé195 is employed for the energy per atom in the
bulk reference structure already mentioned in the context of the embedding function Eq. (3.18):

V Rosé(R) = −E0 [1 + a∗(R)] e−a∗(R) , (3.25)

Here,

a∗(R) = α

(
R

R0
− 1

)
(3.26)

introduces

α =
√

9BΩ
E0

, (3.27)

where B and Ω are the bulk modulus and atomic (i.e. primitive cell) volume, respectively – the
parameters E0 and R0 have already been explained above (cf Eq. (3.18) and Eq. (3.23)). When
only nearest neighbors are considered, equating V Rosé as given by Eq. (3.25) and V MEAM yields

V MEAM,pair (RIJ) = SIJ ·
2
Z0

[
V Rosé (RIJ)− FMEAM (ρ̄I)

]
. (3.28)

for the pair potential. As already indicated before (cf Eq. (3.18)), Z0 is the nearest neighbor
coordination number of the reference structure. The latter is considered to be symmetric, which
is the reason for the prefactor in Eq. (3.28) – dividing out identical terms V MEAM,pair

I in the
MEAM analogue of Eq. (3.15)). Extension to second nearest neighbors as discussed by Lee
and Baskes196 require to modify this expression. In addition, in that case, it turned out to be
beneficial to also make the screening parameter Cmin (cf Eq. (3.24b)) materials specific.197
Obviously, the interatomic potential defined by Eqs. (3.18) to (3.20), (3.21a) to (3.21d),

(3.23), (3.24a) to (3.24d), (3.25), (3.26) and (3.28) is already quite complex per se. Its imple-
mentation from scratch, also including forces which as required for most practical applications
like molecular dynamics simulations, is thus a rather time consuming task, also requiring care-
ful testing in the end. Therefore, the implementation by Greg Wagner,198 which is available as
part of the Lammps code (cf Section 3.4), is used in Part III.
From the many applications of the EAM and MEAM, highly successful calculations of mate-

rial specific phonons,199 also and in particular for metal surfaces,200–202 deserve special attention
within the scope of this thesis. Extensions to more than one atom type have also been dis-
cussed, in particular for alloys,191 but also for the treatment of adsorbates.188 Transferability
to a proper description of the dissociation of an adsorbate is certainly limited by the amount
of quantum mechanics built into the method and hence does not constitute a state-of-the-art
treatment. Therefore, the MEAM will not be used for description of multi-component systems
within this work.
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3.2.3. Potentials with ab-initio Quality

Even if parametrized from first-principles calculations, semi-empirical potentials generally show
limited transferability and hence accuracy outside a “regime of trust” for which the parameters
were obtained. The underlying functional form of the former often poses an unsurmountable
limit, systematically not being able to capture with the desired accuracy the underlying quan-
tum mechanical complexity of V cl

N (R). In the current context, the interaction of diatomics
with a surface poses a particular challenge, as a potential must be able to properly capture
the strong corrugation of the latter and the breaking and making of chemical bonds during
the dissociation of the former. Trying to obtain “the accuracy of quantum mechanics with-
out the electrons”,184 more general and flexible functional forms are the subject of current
research.183,184 One of these are neural networks as also discussed and further developed in this
context in Chapter 6. Obviously, the more degrees of freedom are supposed to be described
with the aforementioned quantum mechanical accuracy, the more difficult and challenging the
construction of these “modern” potentials becomes. The availability of typically several ten
thousands of reference data sets is a prerequisite, even for simple bulk systems consisting of
a single atomic species.203–206 For more computationally demanding surface calculations also
involving several elements (as it is the case within the present work), a successful applicability
of these methods at reasonable computational cost without reducing the number of degrees of
freedom is therefore yet to be demonstrated.
A pragmatic way that avoids most of the aforementioned problems is to directly evaluate

V cl
N (R) by ab initio calculations “on-the-fly” during a molecular dynamics simulation (AIMD).

First steps into this direction have already been taken in 1985, when Car and Parrinello re-
formulated the many-body Hamiltonian introduced by Eq. (2.3) in Section 2.1. They recast
the latter into an effective Lagrangian treating both electronic and nuclear degrees of freedom
on an equal footing within the Born-Oppenheimer approximation and employing density-func-
tional theory for the electrons (cf Chapter 2).130,207 In fact, it was even the computational
experience with molecular dynamics obtained in the years before which made the treatment
of the electronic part tractable, thus greatly stimulating the development modern electronic
structure techniques. While being enormously successful and still frequently used for systems
with a gap between occupied and unoccupied states, metals pose a severe challenge for Car-
Parrinello molecular dynamics (CPMD): In contrast to what is nowadays usually referred to
as ab initio molecular dynamics (AIMD), there are no electronic self-consistency cycles during
the propagation ensuring that each step is based on the electronic ground state. This tremen-
dously reduces the computational burden but tends to drift away the electronic system from
the Born-Oppenheimer surface for systems without a gap. Along those lines, some strategies
have been devised over the recent years to make AIMD less computationally demanding, none
of which has yet been shown to work for metallic systems however.208–211

Aiming at an ab initio quality modeling, in this work, a mixed strategy is pursued instead
– carefully considering the desired purposes: In Part II, a neural network based potential is
developed and parametrized using a large number of DFT calculations for O2 on a frozen
Pd(100) surface. Afterwards, running a plethora of molecular dynamics trajectories thus comes
at low computational cost and hence allows to obtain reliable statistics for the initial encounter
of the molecule with the surface. For the subsequent dynamics close to the surface, in Part III,
the increased dimensionality of the problem when considering energy dissipation into realistic
phonons of an extended substrate required to base the development of an embedding scheme
on ab initio molecular dynamics.
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3.3. Integrators
In order to obtain a numerical solution of the Hamiltonian equations of motion given by
Eqs. (3.5) for certain initial conditions {(RI ,P I)(t = t0)}I , they need to be discretized in
time. The corresponding numerical algorithms are typically referred to as integrators when
used in this context.

3.3.1. The Verlet Algorithm
The basic idea for the Verlet algorithm212 is a simple Taylor expansion in the time step ∆t:

RI (t+ ∆t) = RI (t) + P I (t)
MI

∆t + 1
2
F I (t)
MI

∆t2 + 1
6
...
RI (t) ∆t3 + O

(
∆t4

)
(3.29a)

RI (t−∆t) = RI (t) − P I (t)
MI

∆t + 1
2
F I (t)
MI

∆t2 − 1
6
...
RI (t) ∆t3 + O

(
∆t4

)
(3.29b)

Adding Eqs. (3.29a) and (3.29b) then yields

RI (t+ ∆t) = 2RI (t) − RI (t−∆t) + F I (t)
MI

∆t2 + O
(
∆t4

)
, (3.30)

which has the nice property of being exact up to fourth order in ∆t without third order terms
appearing explicitly. Neither do the momenta (or equivalently velocities, cf Eq. (3.5b)), which
can be obtained up to second order according to

P I = MI
RI (t+ ∆t) +RI (t−∆t)

2∆t + O
(
∆t2

)
. (3.31)

In order to estimate the positions RI (t0 −∆t) required in the first step, Eq. (3.29b) can be
used with P I(t0), dropping the (usually unknown) third order term. Swope and coworkers
have shown that Eq. (3.30) can be recast into into the mathematically equivalent but numer-
ically advantageous form commonly referred to as velocity Verlet213, which is hence nowadays
typically used rather than the original formulation:

RI (t+ ∆t) = RI (t) + P I (t)
MI

∆t + 1
2
F I (t)
MI

∆t2 + O
(
∆t4

)
(3.32a)

P I (t+ ∆t) = P I (t) + F I (t) + F I (t+ ∆t)
2 ∆t + O

(
∆t2

)
, (3.32b)

The standard implementation of Eqs. (3.32) is according to the following algorithm for a step
starting at time t with known positions and momenta RI(t) and P I(t), respectively, advancing
the time by ∆t:

1. Intermediary update of momenta:

P I

(
t+ ∆t

2

)
= P I (t) + 1

2F I (t) ∆t (3.33a)

2. Final update of positions:

RI (∆t) = RI (t) +
P I

(
t+ ∆t

2

)
MI

∆t (3.33b)
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3. Calculation of forces at final positions:

F I (t+ ∆t) = −∇RIV cl
N ({RI (t+ ∆t)}I) (3.33c)

4. Final update of momenta:

P I (t+ ∆t) = P I

(
t+ ∆t

2

)
+ 1

2F I (t+ ∆t) ∆t (3.33d)

Afterwards, positions and momenta as well as forces are thus known at time t+ ∆t.
Because the velocity Verlet integrator is symplectic,149 it in principle yields for excellent

conservation of the energy according to the Hamiltonian given by Eq. (3.1),x allowing to con-
veniently monitor the accuracy of the integration. Of course, this only holds if the time step
∆t is not too large and forces are sufficiently accurate, which can be a problem if an ana-
lytic representation for the latter is not available – like typically in case of ab initio molecular
dynamics.

3.3.2. The Bulirsch-Stoer Method
The key feature of the method proposed by Bulirsch and Stoer214 for the integration of ordinary
differential equations is that it aims for extremely large time steps ∆t, that would never yield
accurate solutions with e.g. the Verlet algorithm presented in the previous section. In brief,
such a step starting at time t with known positions and momenta RI(t) and P I(t), respectively,
is attempted in the following way:

1. The time step ∆t is equally divided into S substeps ∆τS = ∆t
S , which are used to carry

out an approximate integration according to the modified midpoint method132

rsI =


RI(t) , s = 0

r0
I + ∆τS

p0
I

MI
, s = 1

rs−2
I + 2 ∆τS

ps−1
I
MI

, s ∈ {2, . . . , S}

(3.34a)

psI =


P I(t) , s = 0

p0
I − ∆τS∇RIV cl

N
(
{r0

I}I
)

, s = 1

ps−2
I − 2 ∆τS∇RIV cl

N

(
{rs−1

I }I
)

, s ∈ {2, . . . , S}

, (3.34b)

finally resulting in estimates for RI(t+ ∆t) and P I(t+ ∆t)

RS
I (t+ ∆t) = 1

2

[
rSI + rS−1

I + ∆τS
pSI
MI

]
(3.35a)

P S
I (t+ ∆t) = 1

2
[
pSI + pS−1

I − ∆τS∇RIV cl
N

(
{rSI }I

)]
. (3.35b)

The number of substeps can be increased according to the following sequence

Sk = 2, 4, 6, 8, 10, 12, 14, 16, . . . , [Sk = 2k], . . . (3.36)

x More precisely, of a Hamiltonian which is slightly perturbed from the original one.
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2. RS
I (t + ∆t) and P S

I (t + ∆t) are interpolated as a function of substep size, allowing to
obtain a so-called Richardson extrapolation to R∞I (t+∆t) and P∞I (t+∆t), i.e. infinitely
small substep size, together with an error estimate. Bulirsch and Stoer have originally
proposed to use rational functions for this step,215 but polynomials can be more efficient
for “smooth” problems.132 In either case, only powers of t2S need to be used, because one
nice property of the integration according to the modified midpoint method used in the
previous step is that it can be shown to be an even function.132

3. Each time after the previous two steps have been completed, a decision must be made
based on the error estimate whether to further increase the number of substeps according
to Eq. (3.36), or, if the latter is already considered to be large enough, the (total) time
step ∆t itself ought to be reduced.

For ab initio molecular dynamics, this procedure bears the risk of a large number of “unused”
computationally expensive force evaluations, in particular as their numerical uncertainty if not
being analytic introduces an additional complicating element. This can outweigh potential
gains due to large step sizes ∆t, so that the velocity Verlet algorithm described in the previous
section is typically a safer and more efficient choice.

3.3.3. The Liouville Operator Approach

When extended equations of motion like the Nosé-Hoover chains for continuous sampling of
the canonical ensemble given by Eqs. (3.6) are considered, time derivatives of the momenta
typically depend on the momenta themselves (cf Eqs. (3.6b), (3.6d) and (3.6e)). Using the
integrators which have been described so far, this has first been dealt with by iterative solution
of the momenta equations in order to obtain “self-consistency” during every time step.156 For-
tunately, this rather inconvenient procedure can be avoided by a very elegant and extremely
beneficial application of the Liouville operator formalism as first proposed by Martyna and
coworkers.216,217

Formally, the solution Γ(t) = (Γα(t))α of any system of first order ordinary differential
equations can be written with the help of an exponential operator as

Γα(t) = exp(iLΓ t) Γα(0) , (3.37)

where the operator LΓ is defined according to

Γ̇α =

∑
β

Γ̇β
∂

∂Γβ


︸ ︷︷ ︸

Γα

= iLΓ Γα .

(3.38)

In the context of molecular dynamics, it is important to emphasize that the equations of motion
represented by Γ̇ enter into this definition.
In the simple case of Hamilton’s equation of motion for the microcanonical ensemble (cf

Eqs. (3.5)), iLΓ becomes the Liouville operator corresponding to the Hamiltonian given by
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Eq. (3.1).

iL =
N∑
I=1

[
ṘI · ∇RI + Ṗ I · ∇P I

]

=
N∑
I=1

[∇P IH · ∇RI −∇RIH · ∇P I ]

=
N∑
I=1

P I

MI
· ∇RI︸ ︷︷ ︸

≡ iL1

−
N∑
I=1

F I · ∇P I︸ ︷︷ ︸
≡ iL2

(3.39)

When the analogue of the initially introduced exponential operator is now approximated by a
so-called Trotter factorization using the operators L1 and L2 as defined in Eq. (3.39)

exp (iL∆t) = exp
(
iL2

∆t
2

)
︸ ︷︷ ︸

≡O1

exp (iL1∆t)︸ ︷︷ ︸
≡O2

exp
(
iL2

∆t
2

)
︸ ︷︷ ︸

≡O1

+ O(∆t3) , (3.40)

the velocity Verlet integrator can be obtained: Sequential application of the exponential op-
erators O1, O2 and O1 defined in Eq. (3.40) yields Eqs. (3.33a), (3.33b) and (3.33d) from the
update steps 1, 2 and 4, respectively, described in Section 3.3.1.xi
As already indicated initially, this technique can also be applied in the same way to e.g. the

equations of motion for Nosé-Hoover chains (cf Eqs. (3.6)) greatly simplifying their numerical
solution. A symmetric Trotter factorization ensures the symplecticity of the obtained integrator,
which in fact can be translated directly into computer code from the sequential application of
the exponential operators. Examples for factorizations and resulting discretizations can be
found in the work by Martyna and coworkers.216,217

3.4. Practical Aspects and Implementations
Within ab initio molecular dynamics as described in the previous section, the electronic struc-
ture part to obtain the forces dominates the computational cost and hence limits the the system
sizes to about 1000 atoms at present (depending on available computational resources). There-
fore, molecular dynamics implementations that typically come with first-principles codes are
not very sophisticated. When it comes to molecular dynamics with (semi-) empirical potentials
however, calculation of individual force components according to the corresponding analytic
forms usually do not comprise the most expensive part. For pair potentials (and more compli-
cated potentials building on top of them) rather the iteration over pairs as indicated in Eq. (3.7)
leads to a formal O(N2) scaling with system size (for N � 1000) which becomes the bottleneck.
As already indicated in Section 3.2, the introduction of a cut off distance (cf Eq. (3.8)) zeros out
many contributions which hence do not need to be considered during the iteration. This can be
achieved by iterating over so-called neighbor lists instead, which only contain its the neighbors
closer than a certain distance for each atom. This brings down the scaling to essentially O(N).
Of course, neighbor list generation still scales as O(N2). As initially proposed by Verlet,212

xi Here the identity exp
(
c ∂
∂x

)
f(x) = f(x + c) is useful to be kept in mind. The force update according to

Eq. (3.33c) in the third step is of course implied by Eq. (3.33d)
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the introduction of a so-called skin distance on top of the cut off distance allows to avoid the
necessity of neighbor list rebuilds during every time step, thus still leading to a net gain in
performance.
The advent of massively parallel computers has had a particularly tremendous impact on

molecular dynamics simulations. As discussed by Plimpton218, the latter can be parallelized
very efficiently based on atom, force and spatial decomposition.xii The availability of cheap
graphic cards equipped with graphics processing units (GPUs) due the wide public popularity
of more and more realistic computer games has thus led to the “GPU-revolution”: Thanks to
slight adaptations of the algorithms accounting for the specific technical properties of these
devices,219–223 MD simulations, which have required computing clusters before, can now be
performed on desktop computers. Apart from MD codes specifically developed for these pur-
poses like e.g. HOOMD-blue,222 the corresponding functionality has also found its way more
and more into most of the “large” and popular MD codes focused on biological systems, like
e.g. GROMACS or NAMD.
The Lammps code, a modern MD code written in C++,218 on the other hand does not only

include force fields for such systems, but also numerous specimens from materials science like
EAM type potentials described in Section 3.2.2.198 This is one of the reasons why it has been
chosen as a starting point for the extensions and applications presented in Part III.xiii Further-
more, its overall design employs object orientation to allow for great and simple both maintain-
ability and extendability. Several different algorithms for the generation of neighbor lists are
conveniently provided this way,218 as well as parallelization based on spatial decomposition218
relying on MPI for communication.147 GPU-based parallelism is also available for some parts,
but still in its infancy – and neither required nor used for the present work. Numerical parts, like
the interaction potentials in particular, are implemented according to a procedural paradigm
in plain C, allowing not to sacrifice numerical efficiency.

xii This holds for MD based on semi-empirical potentials – parallelization of the dominating ab initio part within
AIMD is an issue for itself, strongly depending on the intrinsic properties of the employed first-principles
technique.

xiii Licensed under GPL and available from http://lammps.sandia.gov.
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4. Phonons

On a macroscopic scale, the Wiedemann-Franz lawi empirically connects thermal and electrical
conductivity of metals. However, when the electronic system is not forcibly driven significantly
out of equilibrium, e.g. by laser irradiation, on the atomic scale the involvement of phonons in
heat conduction cannot be denied even for metallic systems. Their importance in gas-surface
dynamics is hence an ongoing debate,224 as most contemporary, commonly used models (like
the one used in Part II) do not incorporate phonons at all or in a very approximative way
at most. This will be detailed in Part III, together with results of accurate, first-principles
simulations using a newly developed computational methodology. The goal of this chapter is
therefore to briefly recapture essential aspects of phonons and their specifics at surfaces. More
detailed presentations of the bulk related parts (i.e. in particular Section 4.1) can be found in
any textbook about solid state physics.225

4.1. The Harmonic Solid

Just like for vibrations of finite systems (i.e. molecules or clusters), the starting point for lattice
dynamics and hence the description of phonons is a Taylor expansion up to second order of
the interatomic potential (cf Chapter 3) of the (infinite) solid around the equilibrium positions
R0 = {R0

I}I of the nuclei in the lattice:

V cl
N (R) = V cl

N

∣∣∣
R0

+
∑
I

3∑
α=1

∂V cl
N

∂RIα

∣∣∣∣∣
R0

(
RIα −R0

Iα

)
︸ ︷︷ ︸

= 0

+ 1
2
∑
I,J

3∑
α=1

3∑
β=1

(
RIα −R0

Iα

) ∂2V cl
N

∂RIα∂RJβ

∣∣∣∣∣
R0︸ ︷︷ ︸

≡ΦIαJβ

(
RJβ −R0

Jβ

)

+ O
(∥∥∥RI −R0

I

∥∥∥
2

3
)

(4.1)

Here, nuclei are enumerated by I and J and individual Cartesian components by α and β.
Obviously, the first order term vanishes, as forces F I (R0) = −∇V cl

N RI
at the equilibrium

positions are zero. When terminating the expansion given by Eq. (4.1) after the second order
term, the resulting harmonic solid

V cl
N (R)− V cl

N (R0) ≈ V harmsol(R) = 1
2
∑
I,J

(
RJ −R0

J

)†
ΦIJ

(
RI −R0

I

)
(4.2)

i See e.g. http://en.wikipedia.org/wiki/Wiedemann-Franz_law.
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4. Phonons

is held together by the eponymous term.ii The symmetric force constant matrix Φ (and the
positive semi-definite form associated therewith) naturally defines a pair potential, which, how-
ever, in contrast to the potentials discussed in the previous chapter (cf Section 3.2.1), involves
the full vectorial character of the displacement vectors U I = RI −R0

I and not only their ab-
solute value. Splitting sums over atoms into those within a central primitive unit cell (here
and in the following indicated by a tilde over the index) and their equivalent periodic images
translated by lattice vectors (cf Eq. (2.38) in Section 2.6) leads to

V harmsol(U) = 1
2

cell∑
Ĩ,J̃

images∑
LĨLJ̃

3∑
α=1

3∑
β=1

[
UJ̃β

(
LJ̃
)]∗

ΦĨαJ̃β

(
LĨ ,LJ̃

)
UĨα

(
LĨ
)

, (4.3)

where U = {U I}I = {U Ĩα}Ĩα. Consequently, Newton’s equations of motion (cf Eq. (3.4)) read
as follows:

MĨ ÜĨα
(
LĨ
)

= −
cell∑
J̃

images∑
LJ̃

3∑
β=1

ΦĨαJ̃β

(
LĨ ,LJ̃

)
UJ̃β

(
LJ̃
)

(4.4)

An ansatz for solutions for the displacements in Eq. (4.4) is a plane wave with wave vector
q and (angular) frequency ω(q):

UĨα
(
LĨ , t; q

)
= 1√

M Ĩ

A(q) ûĨα(q) ei(q·LĨ −ω(q)t) , ûĨα(q) ∈ C . (4.5)

A(q) is a real valued amplitude and ûĨα(q) the component α of atom Ĩ in the aforementioned
primitive unit cell of a 3Ncell-dimensional complex-valued unit vector, where Ncell denotes the
total number of atoms in that cell. Of course, physical solutions are only the real or the
imaginary part of UĨα

(
LĨ , q

)
given by Eq. (4.5). Similar to Bloch states (cf Section 2.6), q-

values outside the first Brillouin zone can be folded back to equivalent counterparts inside the
latter which describe the same physical displacement wave. Inserting Eq. (4.5) into Eq. (4.4)
leads to

ω2(q) ûĨα(q) =
cell∑
J̃

3∑
β=1

DĨαJ̃β(q) ûJ̃β(q) , (4.6)

where the dynamical matrix has been defined as

DĨαJ̃β(q) =
images∑
LĨLJ̃

1√
MĨMJ̃

ΦĨαJ̃β

(
LĨ ,LJ̃

)
eiq(LJ̃−LĨ)

=
images∑
L

1√
MĨMJ̃

ΦĨαJ̃β (0,L) eiqL
(4.7)

ii Adding higher order terms obviously captures more and more “many-body” effects, but also gets more and
more difficult in computational practice. Nevertheless, it has been proposed only recently to construct
systematically improvable interatomic potentials.226
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More precisely, the formulation after the first equality sign gets obvious when inserting Eq. (4.5)
into Eq. (4.3) yielding the contribution of a single mode q to the potential energy:

V harmsol(q) = 1
2

cell∑
Ĩ,J̃

3∑
α=1

3∑
β=1

[
ûĨα(q)

]∗
images∑
LĨLJ̃

1√
MĨMJ̃

ΦĨαJ̃β

(
LĨ ,LJ̃

)
eiq(LJ̃−LĨ)

 ûJ̃β(q)A2(q)

= 1
2 A2(q)

cell∑
Ĩ,J̃

3∑
α=1

3∑
β=1

[
ûĨα(q)

]∗
DĨαJ̃β(q) ûJ̃β(q)

(4.8)

To keep this energy contribution real-valued and hence physical, the complex conjugation al-
ready foresightedly included in Eqs. (4.2) and (4.3) leads to differences of lattice vectors in
the exponential. Since these are lattice vectors again, the second equality sign just implies a
different way of summing over the latter.
For every q, Eq. (4.6) is an eigenvalue equation for the dynamical matrix as given by Eq. (4.7),

with 3Ncell different solutions. These solutions are called phonons – deferred from a quantum
mechanical description of lattice dynamics where they appear as excitations treated as quasi-
particles. The orthonormal system of Eigenvectors {

(
ûĨα

)
(q, b)}b with corresponding Eigenval-

ues {ω2(q, b)}b, where b ∈ 1, . . . , Ncell is the phonon band index, describe displacement patterns
inside the unit cell and angular frequencies of the lattice distortion waves, respectively. Ob-
viously, it follows directly from Eq. (4.7) that the dynamical matrix is hermitian in the atom
indices,

DJ̃βĨα(q) =
images∑
L

1√
MĨMJ̃

ΦJ̃βĨα (L,0)︸ ︷︷ ︸
=ΦĨαJ̃β(0,L)

e−iqL =
[
DĨαJ̃β(q)

]∗
, (4.9)

keeping in mind that the force constant matrix is symmetric and the lattice vector L turns into
its negative when switching the indices of the atoms. The Eigenvalues {ω2(q, b)}b thus are real,
and, as the potential energy is expanded around a minimum, also non-negative, this makes their
square roots {ω(q, b)}b well defined physical oscillation frequencies. For q = 0, Eigenvectors
are real as well, since according to Eq. (4.7) the dynamical matrix entirely consists of real-
valued elements. Furthermore, another immediate consequence of Eq. (4.7) is the relation of
dynamical matrices at q and −q:

DĨαJ̃β(−q) =
[
DĨαJ̃β(q)

]∗
. (4.10)

Insertion into the complex conjugated version of Eq. (4.6) yields

ω2(q, b)
[
ûĨα(q, b)

]∗ =
cell∑
J̃

3∑
β=1

DĨαJ̃β(−q)
[
ûJ̃β(q, b)

]∗
, (4.11)

i.e. the Eigenvectors at −q are identical to those at q, ω2(−q, b) = ω2(q, b), with corresponding
Eigenvectors being the complex conjugates of each other

(
ûĨα

)
(−q, b) =

[(
ûĨα

)
(q, b)

]∗.iii More

iii This is similar to the time reversal symmetry of a Hamiltonian of periodic systems as given Eq. (2.45) in
Section 2.6.
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symmetry properties of the dynamical matrix have been extensively discussed in the review by
Maradudin and Vosko.227
Similar to normal modes in non-periodic systems, the linearity of Eq. (4.6) allows to describe

more complex displacement patterns by superposition of these solutions, which individually
can be seen as “Fourier modes”. In fact, a macroscopic solid practically allows for infinitely
large wave lengths λ = 2π

‖q‖2
and thus leads to continuous q. The ansatz given by Eq. (4.5) thus

becomes a (reciprocal space) component of a regular spatial Fourier integral transformation,
which can be constructed as the continuum limit of discrete Fourier transforms in infinitely
large supercells. Any displacement pattern can be represented by the latter, as will be detailed
and made use of in Section 10.1 in order to devise a phonon projection scheme.
For different band indices b, ω(q, b) (as a function of q) along paths through the Brillouin

zone defines the dispersion relation of different branches of the phonon spectrum, which are
typically measured in neutron scattering experiments.iv The corresponding phonon density of
states (i.e. number of phonon modes per volume) both of each branch and total are given
by counting the respective number of phonons with a particular frequency ω(q, b) within the
Brillouin zone:

ρphon(ω) =
∑
b

ρphon(ω, b) =
∑
b

1
(2π)3

∫
BZ
dq δ(ω − ω(q, b)) (4.12)

Nowadays, dynamical matrices and hence accurate dispersion relations can be calculated – at
best from first-principles as detailed in the following (cf Section 4.2). Otherwise, ω(q, b) needs
to be approximated, like e.g. in the Debye model.225 Here, all phonon branches are replaced
by a total of three (acoustic) counterparts, each with linear dispersion

ω(q, b) = cb ‖q‖2 , b ∈ {1, 2, 3} , (4.13)

where the cb are a priori unknown phase and (due to the linearity also) group velocities. This
is a good approximation for the description of isotropic crystals with a mono-atomic basis in
the limit of long wave lengths. The cb then correspond to the dispersion of the one longitudinal
and two transversal acoustic phonon branches, cl and ct, respectively. Furthermore, in integrals
over phonon modes, the Brillouin zone is replaced by a simple sphere in reciprocal space with
radius qD, so that insertion of Eq. (4.13) into Eq. (4.12) leads to

ρDebye
phon (ω) =


3

2π2
ω2

c3 = 9Ncell
Vcell

ω2

ω3
D

, ω ≤ ωD

0 , ω > ωD
. (4.14)

Here, the effective velocity of sound

1
c3 = 1

3

3∑
b=1

1
c3
b

(4.15)

has been defined as an average over the aforementioned (one longitudinal and two transversal)
acoustic phonon branches. Furthermore, the cut off at the Debye frequency ωD assures that
Eq. (4.14) yields the right number of phonon modes, i.e. three times the number of atoms in
the unit cell Ncell, per unit cell volume Vcell

3Ncell
Vcell

=
∫ ωD

0
ρDebye

phon (ω) = 1
2π2

ω3
D
c3 = q3

D
2π2 . (4.16)

iv See e.g. http://www.neutron.anl.gov.
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4.1. The Harmonic Solid

This defining equation for ωD has already been used in Eq. (4.14) in order to simplify the
non-vanishing part of the expression for the phonon density of states within the Debye model.
Obviously, according to Eq. (4.16), the Debye wave vector qD is completely defined by geometric
properties of the unit cell of the crystal. Therefore, in order to obtain the best Debye model
“closest” to a given phonon dispersion or density of states (e.g. calculated from first principles,
vide infra), c must be obtained by fitting Eq. (4.13) or Eq. (4.14), respectively, to the former.
The latter is usually more convenient, but both yields ωD or equivalently the Debye temperature
ΘD:

kBΘD = ~ωD = ~cqD (4.17)

By measuring (e.g.) specific heats or elastic constants of a material, ΘD and thus the only
unknown parameter of the Debye model can also be obtained experimentally. As detailed in
Chapter 8 of Part III, this simple model is commonly used to “guess characteristic frequencies”
appearing as parameters in simple models for energy dissipation employed within the context
of gas-surface dynamics. Apart from using Debye frequencies directly, the average frequency of
the Debye spectrum (cf Eq. (4.14))

ω̄D = Vcell
3Ncell

ωD∫
0

dω ω ρDebye
phon (ω) = 3

4ωD (4.18)

is sometimes used instead.
To go beyond the harmonic solid as described by Eqs. (4.2) and (4.3), spectral densities

Eq. (4.12) can also be obtained from extensive molecular dynamics simulations (cf Section 3.2)
employing interatomic potentials which go beyond the former, like e.g. pair or embedded
atom method potentials described in Section 3.2.1 or Section 3.2.2 respectively. As a standard
theoretical tool, the velocity autocorrelation function (VACF)

CVAC(t) = lim
τ→∞

1
τ

τ∫
0

dt′ U̇(t′) · U̇(t′ + t) (4.19)

is used to obtain such a DOS by Fourier transform over the time domain

ρVAC
phon(ω) = lim

τ→∞

+τ∫
−τ

dtCVAC(t) eiωt (4.20)

No additional information about the (harmonic) phonon modes is required. On the other hand,
displacement patterns are not obtained as straightforwardly as in form of the Eigenvectors
ûĨα(q, b) by the solution of Eq. (4.6), though accessible in principle via spatial Fourier transfor-
mation. Typically, frequency shifts as obtainable by comparison of harmonic and anharmonic
density of states are of most prominent interest. However, recently, within the scope of thermal
transport in materials, Eigenvectors have obtained a lot of attention as well: Population of
phonon modes according to a Boltzmann distribution allows to minimizev inconvenient ther-
malization efforts in molecular dynamics simulations228–231 typically required otherwise when
using thermostats (cf Sections 3.1 and 8.5). In practice, Eqs. (4.19) and (4.20) are evaluated

v or even avoid when within the validity range of the harmonic approximation
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4. Phonons

based on velocity fields of the displacements from molecular dynamics trajectories. Discrete
time steps of these trajectories (cf Section 3.3) naturally lead to discrete sums instead of inte-
grals. Furthermore, convergence of the sampling of initial conditions over an infinitely long time
interval in Eq. (4.19) can result in total integration times of the aforementioned trajectories
that is computationally very expensive if not prohibitive.

4.2. Phonons from First-Principles

Since extended ab initio molecular dynamics simulations (cf Section 3.2.3) which are long
enough to reliably obtain phonons according to Eqs. (4.19) and (4.20) are computationally very
intensive, first-principles methods typically aim at solving the Eigenvalue problem of lattice
dynamics of the harmonic solid as given by Eq. (4.6). In that case, obtaining the second
derivatives of the total energy (cf Eq. (4.1)) is the task at hand.
One possible route to address this challenge is by determining elements of the force con-

stant matrix Φ numerically, which has also been termed the direct method – implying finite
displacements of atoms. However, using the primitive cell as simulation cell within the usually
employed periodic boundary conditions for first-principles modeling of bulk materials (cf Sec-
tion 2.6), displacements are repeated accordingly throughout the entire solid. This corresponds
to phonons (in potentially different branches) with infinite wave lengths λ and hence zero wave
vector ‖q‖2 = 2π

λ i.e. the Γ point at the center of the Brillouin zone. Going to N1 ×N2 ×N3
supercells allows for possible displacement patterns describing phonons at points

q(n1, n2, n3) =
3∑
i=1

[
ni
Ni
− 1

2

]
bi , (n1, n2, n3) ∈

3∏
i=1
{0, . . . , Ni − 1} (4.21)

in the (original) Brillouin zone, where the bi denote the corresponding reciprocal lattice vec-
tors.vi Equivalently, these points fulfill the condition

|exp (2πi q(n1, n2, n3) · [N1a1 +N2a2 +N3a3])| = 1 , (4.22)

where a1, a2 and a3 are the primitive lattice vectors. By increasing the size of the supercell,
phonons throughout the entire Brillouin zone can thus be sampled more and more accurately.
If the displacement pattern and hence the normalized displacement Eigenvector û(q; b) for

a certain phonon wave vector q and branch b (cf Eq. (4.6)) are known e.g. due to symmetry
reasons, Eq. (4.8) simplifies to

V harmsol(q; b) = 1
2ω

2(q; b)A2(q; b) . (4.23)

Fitting a parabola to the results of total energy calculations obtained for different displacement
amplitudes A(q; b) along û(q; b), then allows to obtain the corresponding phonon frequencies
ω(q; b). Before sufficiently accurate forces could be obtained, this was the first variant of the
direct method which has been used in the context of first-principles calculations.232 Because of
the required knowledge about the phonon displacement Eigenvector it is commonly referred to
as frozen-phonon approach, which also hints at its limited general applicability.

vi These phonons can be realized in different branches at the Γ point of the Brillouin zone of the supercell and
can be folded back to the (original) Brillouin zone of the primitive cell accordingly.
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4.2. Phonons from First-Principles

Nowadays, elements of the force constant matrix can be calculated directly using difference
quotients obtained from finite displacements around the equilibrium crystal geometry according
to (cf Eq. (4.1))

ΦIαJβ = ∂FJβ
∂RIα

≈ FJβ
uIα

. (4.24)

As in most first-principles codes for periodic systems, the numerical convergence of forces FJβ =
∂V cl

N
∂RJβ

is typically worse by an order of magnitude compared to total energies (cf Section 5.3),
care must still be taken when choosing the size of these displacements: When too small, a
better description of the harmonic regime can be annihilated by the limited accuracy of the
forces, while when too large, one might already be outside that regime. In principle, the ensuing
diagonalization of the dynamical matrix given by Eq. (4.7) yields both phonon displacement
patterns and frequencies – without the requirement of any a priori knowledge about the system.
However, as already indicated in the second to last paragraph, the periodic boundary conditions
limit the distance between atoms which are displaced independently according to the size of
the employed supercells. If the elements of the force constant decay to zero as a function
of atomic distance RIJ = ‖RI −RJ‖2 between atoms I and J , then this systematic error
in the practical evaluation of Eq. (4.24) can be neglected for sufficiently large supercells. Of
course, this is system dependent and hence convergence needs to be checked with respect to
supercell size. Frank and coworkers, who reported the first application of this incarnation of
the direct method in a first-principles context,233 could indeed observe such a behavior for the
bulk alkali metals which were the subject of their study: Rather small supercells allowing for
“independent” fifth nearest neighbors turned out to be sufficient. This can be attributed to an
efficient screening of elastic deformations in metallic systems, in contrast to semi-conductors and
insulators as also predicted by the nearsightedness principle introduced by Walter Kohn.234,235
Phonon calculations via finite displacements thus are very suitable in the present context.
In general, as already pointed out by Kresse and coworkers,236 the practical evaluation of

Eq. (4.24) within supercells always implicitly includes a summation over periodic images of the
latter, which therefore have been termed cumulant force constants

Φcum
ĨαJ̃β

(
LĨ ,LJ̃

)
=

supercell
images∑
LS

ΦĨαJ̃β

(
LĨ ,LJ̃ +LS

)
(4.25)

by Parlinski and coworkers in the following.237 Their work also provides a formal framework to
include symmetry when obtaining Φcum from calculated forces. This can not only reduce the
number of required displacement calculations substantially, but also remedy violations of the
symmetry due to the aforementioned limited numerical accuracy of the latter.vii Based on the
cumulant force constants as given by Eq. (4.25), an approximate dynamical matrix is defined
as

Dcum
ĨαJ̃β

(q) =

extended
supercell∑

L

wL√
MĨMJ̃

Φcum
ĨαJ̃β

(0,L) eiq·L . (4.26)

vii More precisely, by virtue of a singular value decomposition, an optimal fit for the cumulant force constant
matrix to the calculated force field data is obtained, as the symmetry-independent elements of the former
are typically overdetermined by the latter.
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Special care needs to be taken in order to guarantee the Hermicity of Dcum
ĨαJ̃β

: An extended
supercell is constructed which ensures that the central atoms are embedded into an environment
with the correct local symmetry, i.e. periodic images at the surface of the former might have
to be added. The summation then only runs over “original” lattice vectors L of the primitive
cell within this extended supercell, with weight factors wL ≤ 1 properly compensating for the
added atoms. Comparison of Eqs. (4.25) and (4.26) with Eq. (4.7) for the exact dynamical
matrix confirms that Dcum

ĨαJ̃β
is identical to DĨαJ̃β, for those q fulfilling Eq. (4.22), i.e. those

phonons the wave vectors of which are commensurate and hence representable with the chosen
supercell. Altogether, the Parlinski method represents the present state-of-the-art within the
direct method, and can simply be understood as a clever form of “Fourier interpolation” of
the dynamical matrix between exact q according to the underlying first-principles calculations.
Of course, the faster the aforementioned decay of elements of the force constant matrix with
distance, the smaller will be the difference between the former as well as the dynamical matrix
and their cumulant counterparts.
Nevertheless, it should be briefly noted that some inherent systematic problems of the direct

approach still remain: The splitting of longitudinal and transversal optical modes at the Γ
point (LO/TO-splitting) in polar materials (implying a basis consisting of more than one atom)
cannot be obtained directly, as supercells cannot describe the correct boundary conditions for
the associated macroscopic electric field. Parlinski and coworkers proposed to remedy this
by adding so-called “non-analytical” terms to the dynamical matrix for q = 0,238 requiring
additional parameters characterizing dielectric properties of the material obtained separately by
linear response theory.239 In fact, as only recently pointed out by Wang and coworkers, it is also
possible (and even apparently more accurate) to enrich the force constants by a corresponding
real-space contribution capturing the long range electrostatic interaction.240 On the other hand,
to avoid these problems entirely, density-functional perturbation theory (DFPT) as developed
by Baroni and coworkers241,242 can also be used to calculate the dynamical matrix directly.
But in contrast to the various flavors of the direct method, DFPT obviously cannot be used
when the interaction between atoms in the crystal is described with a classical force field
model.viii Therefore, and since metallic systems do not suffer from these difficulties, in the
present work, the Parlinski method will be used throughout as the method of choice in order
to solve Eq. (4.6).

4.3. Surface Phonons

When it comes to surfaces, the three-dimensional periodicity of the bulk solid is broken, and
the Brillouin zone thus becomes two-dimensional. In this context, the notation convention is
to label high symmetry points within the latter by the same symbol as their bulk counterparts
plus adding a bar on top. Already in 1887 Lord Rayleigh could show using elastic continuum
theory, i.e. assuming large wave lengths compared to the interatomic spacings in the crystal,
that phonons with smaller frequencies than found in bulk exist at the surface, with their
displacement patterns including components along the surface normal.244 With the advent of
helium atom scattering (HAS) in the 1970s as an experimental technique in surface science,

viii Furthermore, the DFPT implementation in the Castep code by Keith Refson243 currently does neither feature
gapless systems nor ultrasoft pseudopotentials, and is hence not applicable to the current purposes, i.e. the
desired calculations of surface phonons (cf Section 4.3) of Pd(100) and their implications for the dissociation
dynamics of O2.
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4.3. Surface Phonons

Nthick =  Nthin + Nfill layers

thick slabthin slab
Nthin layers

layer Nthin

layer [Nthin 
/2] + 1

layer [Nthin 
/2]

layer 1

layer Nthick

layer [Nthin 
/2]

layer 1

layer [Nthin 
/2] + Nfill

layer [Nthin 
/2] + 1

layer [Nthin 
/2] + Nfill + 1

Figure 4.1.: Schematic illustration of the slab filling approach as typically used in first-principles
calculations of surface phonons in order to reduce the computational burden: First, force
constants for a thin slab (left) consisting of Nthin layers are obtained. Then, the Eigenvalue
problem of lattice dynamics (cf Eq. (4.6)) is solved for a slab with Nfill layers inserted in
the middle, whose dynamical matrix (cf Eq. (4.7)) is constructed by adding additional force
constants which are taken to be bulk-like. This yields a total of Nthick = Nthin +Nfill layers
(right) and implicitly assumes that the thin slab was thick enough for this to make physical
sense. Here, [x] denotes the floor function, i.e. the largest integer smaller than x.

lattice dynamics of surfaces became a hot topic, but it took until 1981 until the first surface
phonon spectra including the aforementioned Rayleigh modes could be measured with HAS
for the insulator surface of LiF(100) by Toennies and coworkers.245,246 Only two years later,
the same group also published corresponding data for Ag(111) – the first metal surface.247
Meanwhile also energy electron loss spectroscopy (EELS) allows to resolve surface phonons248
– a technique whose improved high resolution descendant (HREELS) has also been applied for
according measurements on Pd(100) by Chen and Kesmodel,249 which still form the reference
data for this surface.
Theoretical and computational efforts into this direction had already been stimulated before.

Low-energy electron diffraction (LEED) experiments raised questions about structural and
dynamical properties of crystal surfaces. Long before modern electronic structure methods
were available and hence the special electronic properties of surfaces could be theoretically
studied, de Wette and coworkers used Lennard-Jones potentials Section 3.2.1 for interatomic
interactions. By carrying out both lattice dynamics and molecular dynamics simulations with
the latter (cf Section 4.1) – tremendously challenging on the super computers available at
the time due to the summation over neighbors which need to be carried out (cf Eq. (3.7)) –
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they could provide a (first) theoretical perspective on properties like surface relaxation, mean
square amplitudes of vibration of surface atoms or surface vibrational density of states.163–165 It
is important to emphasize that they introduced and established slabs (cf Section 2.6) to model
surfaces in their pioneering work.162–169 In such a slab model, for each (two-dimensional) phonon
wave vector q in the surface Brillouin zone, the continua of bulk bands of a “real” semi-infinite
crystal is approximated by the discrete number of 3Nlayers branches due to the finite number of
layers Nlayers in the former (cf Section 4.1).ix This makes the slab thickness a very important
convergence parameter – in particular when studying surface phonons, rather thick slabs are
required to describe the latter correctly (or even at all!). Therein, surface phonon modes are
using the calculated displacement Eigenvectors (cf Eq. (4.6)). If the vibrational weight in the
surface layers at the top and the bottom of the slab exceeds a certain threshold S

surface
layers∑
Ĩ

3∑
α=1

∣∣ûĨα(q, b)
∣∣2 ≥ S (4.27)

the corresponding mode with phonon wave vector q and band index b (cf Section 4.1) is classified
as surface phonon mode. Of course, in Eq. (4.27) the displacement Eigenvector ûĨα(q, b) is
assumed to be properly normalized

Ncell∑
Ĩ=1

3∑
α=1

∣∣ûĨα(q, b)
∣∣2 = 1 . (4.28)

The number of surface layers to consider and the size of the threshold S are not sharply
defined. Heid and Bohnen have e.g. used the first two layers and S = 20 % in their work,250
which provides a physically reasonable description.
De Wette and coworkers also introduced the notation to label and enumerate surface phonon

modes by Si, which is still commonly used nowadays. Apart from the aforementioned “tra-
ditional” Rayleigh mode S1 with out-of-surface-plane polarization close to the Γ̄-point, they
also “discovered” surface phonon modes at boundaries of the Brillouin zone162 as well as even
within the bulk bands.166 Their thorough theoretical analysis could also rationalize the latter
and still provides the framework for the treatment of surface phonons until today.168 Further-
more, within their Lennard-Jones based model, they also discussed different low index surfaces
of the corresponding crystals169 and the effect of adsorbate layers with different masses,167
which, with proper choice of the parameters, might provide a reasonable description for the
corresponding noble gas systems (cf Section 3.2.1).
Obviously, the simplicity of this model for the interatomic interactions limits the ability to

describe other, “more realistic” materials. While the simple analytic form of the Lennard-Jones
potential (cf Eqs. (3.9) and (3.10)) is computationally appealing, as a central force potential it is
unable to capture the full vectorial nature of the pair potential given by Eq. (4.2) which makes
up the harmonic solid. This systematic shortcoming and its significance in particular for metals
and their surfaces has been pointed out already very early by Musser and Rieder.251 It can be
remedied by using interatomic potentials that account for the many-body character of the
chemical binding in metals, like e.g. those resulting from the embedded atom method (EAM)
and its modified descendant (MEAM) described in Section 3.2.2. Indeed, for the present system,

ix The indices of atoms inside the supercell, Ĩ and J̃ in Section 4.1, are hence conveniently decomposed into a
layer index and a “remainder” uniquely denoting the lateral position.168
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the surface phonon spectrum of Pd(100) could be modeled by Chulkov and coworkers in quite
good agreement with the aforementioned experimental data249 by using a home-made EAM
potential.252 But also for surfaces a first-principle description of the interatomic interactions
has become possible in order to treat their vibrational properties. Typically, density-functional
theory in the local density approximation (LDA, cf Section 2.5) is used, as it is commonly
considered to provide a slightly better description of elastic properties of clean surface compared
to gradient corrected exchange-correlation functionals.253 Combined with DFPT for the actual
lattice dynamics part, this represents the current “state of the art”.254–256 In order to ease
the computational burden of dealing with thick slabs, the concept of “slab filling”, which is
schematically depicted in Fig. 4.1 has proven extremely useful in this context.257 The force
constants of Nfill inner layers of a thick(er) slab are taken from computationally less expensive
bulk calculationsx or by repeating those of the inner layers of a thinner slab, thus “filling” the
Nthin layers of a thin slab, for which actual ab initio calculations have been performed, yielding
the force constant matrix for a slab with a total of Nthick = Nthin + Nfill layers in the end. In
principle, “slab filling” can also be used together with the Parlinski flavor of the direct method,
since a DFPT treatment is not mandatory for metallic systems, as detailed in Section 4.2 –
though it certainly adds more complexity to the calculation of forces for the displacements.
More details, both about the “early” experimental and theoretical aspects about surface

phonons can be found in the book of the same title edited by Kress and de Wette.258 In addition,
for more recent methodological aspects including first-principles calculations as well as results
for individual surfaces the reader is referred (e.g.) to the excellent review articles by Fritsch
and Schröder257 as well as Heid and Bohnen.250 While the former addresses semiconductors,
the latter is particularly interesting in the context of this thesis as it focuses on metal surfaces.
Very recent advances are detailed in the work by Benedek and coworkers.259

4.4. Implementations
Exploiting the respective technical infrastructure of the underlying electronic structure code,
it is not surprising that implementations of DFPT (cf Section 4.2) are typically tightly in-
tegrated into the former (Castep, Vasp, PWscf, . . . ). Unfortunately, the same also holds
for several implementations of the direct method which also enable phonon calculations for
classical force fields as required in Part III. The stand-alone code PHON by Dario Alfè260 is
hence a noteworthy exception written in Fortran 90. Conveniently employing and extending
the high-level infrastructure provided by the Atomic Simulation Environment (ASE), for the
phonon calculations carried out in the aforementioned part of this thesis, the phonopy-codexi
by Atsushi Togo261 has been used and coupled to both Castep (cf Section 2.8) and Lammps
(cf Section 3.4). In contrast to PHON, this coupling has been greatly simplified by the for-
mer. Furthermore, phonopy fully implements the Parlinski method237 and provides proper
handling for all symmetry space groups via an external C library. Building thereon, the code
was extended to allow for a treatment of surface phonons using the slab filling as described in
Section 4.3.

x Of course, the corresponding matrix elements have to be transformed properly when changing the lattice
basis from the primitive bulk to primitive unit cell of the slab modeling the surface.

xi Licensed under GPL and hence freely available from http://phonopy.sf.net.

51

http://www.castep.org
http://cms.mpi.univie.ac.at/vasp
http://www.pwscf.org
https://wiki.fysik.dtu.dk/ase
http://phonopy.sourceforge.net
http://www.castep.org
http://lammps.sandia.gov
http://phonopy.sourceforge.net
http://www.gnu.org/licenses/gpl.html
http://phonopy.sf.net
http://phonopy.sf.net




Part II.

Gas-Surface Dynamics of Oxygen on a
Frozen Pd(100) Surface
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5. DFT Reference Calculations

A plethora of previous work has shown that the semi--local exchange-correlation functionals
proposed by Perdew, Burke and Enzerhof (PBE)85,86 as well as by Hammer, Hansen and
Nørskov (RPBE)89 provide a substantial if not even mandatory improvement over the local
density approximation (LDA)79,80 for both the description of the O2 molecule48,76 and the
interaction of oxygen with palladium surfaces,12,15,16,262–264 i.e. they yield results in good
agreement with a lot of available experimental data. As already discussed in Section 2.5,
lacking readily available alternatives providing comparable quality at the same computational
price, PBE serves as a “work-horse” for the present study. The goal of this chapter is thus to
establish a reliable computational setup used throughout the rest of this work based on the
plane-wave pseudopotential code Castep(cf Section 2.8), comparing against highly accurate
data, either available from the literature or obtained in this context from more computationally
expensive first-principles calculations. All of the numbers reported in the following have been
carefully checked for convergence with respect to the relevant technical parameters (see e.g.
Chapter 2), in the same fashion as documented extensively (also using the Castep code) by
McNellis.265 Along the lines of this whole thesis to focus on methodological aspects, a similarly
extensive account is not repeated here, but rather the particular (much bigger) challenges faced
for the present system are pointed out.

5.1. Palladium Bulk and Surfaces

In 1978, King and Manchester carried out high-precision X-ray diffraction experiments,266 pro-
viding the most accurate values for the lattice constant of clean bulk palladium in its natural
face-centered cubic (fcc) phase: At 5.9 K, the lowest temperature which could be considered,
it is (3.8782± 0.0001)Å. This has been extrapolated to 3.8779Å at absolute zero by Giri and
Mitra267. The value given in Table 5.1 can thus be taken as a reliable experimental reference,
differing slightly from other such values which have found their way into the literature.15,253,268
Table 5.1 also shows that the reference values obtained from highly accurate all-electron cal-

Exp.266,269 PBE263 PBE253 PBE262 PBE (CL) PBE (OTF)

a0,Pd (Å) 3.88 3.94 3.95 3.95 3.93 3.99
B0,Pd (Mbar) 1.95 1.63 1.63 1.57 1.74 1.63

Table 5.1.: Comparison of bulk lattice constant a0,Pd and modulus B0,Pd of palladium. Exper-
imental data has been rounded to the second digit which is beyond measurement uncertainty
in both cases. Values from all-electron calculations using the PBE exchange-correlation func-
tional carried out by Todorova263, DaSilva253 and Zhang262, serve as reference for those cal-
culated with the Castep code within the present work using two different pseudopotentials
(CL and OTF) as detailed in the text.
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5. DFT Reference Calculations

culations (neglecting corrections for the zero point energy),253,262,263 overestimates the exper-
imental value, thus following the well-known trend of PBE to underbind, i.e. overcorrecting
the overbinding obtained by LDA for many materials.253 Using a cut off energy Ecut = 350 eV,
a 12 × 12 × 12 Monkhorst-Pack grid together with a simple Gaussian smearing (employing a
width of 0.1 eV) for the Brillouin zone sampling of the electronic states (cf Sections 2.6 and 2.7),
those values are fairly well reproduced by both ultrasoft pseudopotentials from the Cambridge
library (CL) and the ones produced by the so-called “on-the-fly” pseudopotential generator
(OTF).i Standard settings for the sizes of the grids on which the (pseudo-)charge density and
the augmentation charges are represented have been verified to yield converged results. The
same holds for the bulk modulus also given in Table 5.1: The experimental value extrapolated
to absolute zero269,270, is underestimated by PBE, which is again nicely reproduced within the
present computational setup.
On a technical note, values for both the equilibrium lattice constant a0,Pd and the bulk

modulus B0,Pd obtained by both unit cell optimization and fitting Murnaghan’s equation of
state271

∆E(V ) = E(V )− E(V0) = B0V

B′0

[
1

B′0 − 1

(
V0
V

B′0
)

+ 1
]
− B0V0
B′0 − 1 (5.1)

to total energies are in perfect agreement. Of course, this is to be expected from a proper
implementation of the stress tensor which unit cell optimization relies on272 – conveniently
calculated analytically at negligible computational cost within Castep. For computational
efficiency, the primitive unit cell of the fcc crystal is used, as it only contains a single atom. Its
lattice vectors

(
aprim

1 aprim
2 aprim

3

)
, written in the matrix form according to common crystallo-

graphic conventions, are related to those of the conventional cubic unit cell with edge length a
(aconv

1 aconv
2 aconv

3 ), which contains four atoms, according to

(aconv
1 aconv

2 aconv
3 ) = a · 13×3 =

−1 1 1
1 −1 1
1 1 −1


︸ ︷︷ ︸

≡M

·
(
aprim

1 aprim
2 aprim

3

)
(5.2a)

⇐⇒(
aprim

1 aprim
2 aprim

3

)
= 1

2 ·

0 1 1
1 0 1
1 1 0


︸ ︷︷ ︸
≡M−1

· (aconv
1 aconv

2 aconv
3 ) . (5.2b)

With

V conv/prim = a
conv/prim
1 · aconv/prim

2 × aconv/prim
3 (5.3)

the total energies E(V ) to fit Eq. (5.1) to thus become EPBE(V prim(a)), where

V conv
(0) = a3

(0) = 4V prim
(0) . (5.4)

iWithout going into any details, the built-in default settings of the “on-the-fly” pseudopotential gener-
ator for palladium from Castep 4.0 were used here, which are abbreviated in the generation string
1|2.4|5|7|15|50:425s0.1,4d9.9[] which is explained in detail in the documentation of the former. Also
see the footnote in Section 5.4.
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5.1. Palladium Bulk and Surfaces

The equilibrium volume of the unit cell V0 = V prim
0 , the bulk modulus B0 as well as its partial

derivative with respect to pressure B′0 = ∂B
∂p

∣∣∣
V0

are the obvious fit parameters.ii

When moving beyond the frozen surface approximation in Part III, elastic properties of the
solid come into focus. Therefore, results of phonon calculations, both all-electron using the
FHI-aims codeiii and with Castep for the aforementioned pseudopotentials all based on PBE,
are presented in Fig. 5.1. The direct method (cf Section 4.2) has been employed using supercells
containing 32 atoms, consisting of 2·13×3 the conventional or equivalently 2·M times the prim-
itive unit cell at the respective equilibrium lattice constants given in Table 5.1, where M has
been defined in Eqs. (5.2). The cubic and hence more compact shape of these supercells yields a
size convergence that is advantageous compared to multiples of the rhombohedral primitive cell
of the fcc lattice as given by Eq. (5.2b). Thanks to the exploitation of symmetry as proposed
by Parlinski and coworkers,237 only a single atom needed to be displaced along one direction.
A displacement distance d = 0.1Å has proven to be a good compromise, both small enough to
stay within the harmonic regime and yet large enough to yield forces beyond numerical noise
after reducing the smearing and tightening the electronic convergence (cf Section 2.7). Both
the phonon band structure and density of states shown in Fig. 5.1a and Fig. 5.1b, respectively,
are obtained based on the implementation available within phonopy after loosely interfacing
with both Castep and FHI-aims (cf Section 4.4)iv Differences in the curves in Fig. 5.1 can
thus be reliably traced back to the underlying all-electron and pseudopotential force calcula-
tions, which would not have been possible with results from the literature.277–279 Along the
path through the Brillouin zone indicated in the inset of Fig. 5.1a, experimental data for the
phonon dispersion was obtained by Miiller and Brockhouse using neutron scattering (lowest
investigated temperature: 120 K)273,274 The former is defined by the reciprocal lattice vectors

(b1b2b3) = 2π
a
·

−1 1 1
1 −1 1
1 1 −1


︸ ︷︷ ︸

≡M

(5.5)

with

aprim
i · bprim

j = δij , i, j ∈ {1, 2, 3} . (5.6)

The all-electron PBE reference slightly underestimates that data in particular at the boundaries
of the Brillouin zone. This is very accurately reproduced by the PBE(OTF) pseudopotential,
while PBE(CL) is accidentally closer to experiment – which is not surprising when considering
the bulk moduli given in Table 5.1. In fact, based on an all-electron generalization of density
functional perturbation theory (DFPT, cf Section 4.2) to the full-potential linear muffin-tin-
orbital (LMTO) method,280 Takezawa and coworkers have compared LDA and PBE phonon

iiIt is interesting to point out that Murnaghan himself has not given Eq. (5.1) directly. Instead, the basic idea
for its derivation, see e.g.

http://en.wikipedia.org/wiki/Birch-Murnaghan_equation_of_state,
to expand the bulk modulus up to second order in pressure B(p) = B0 +B′0p+O(p2) can be traced back to
his work.

iiiDefault settings at the “light” level turn out to yield converged results. As expected, the optimized lattice
constant perfectly reproduces the all-electron values previously reported in the literature (Table 5.1).

ivIt is worth noting at this place that the author of this thesis has contributed a convenient front end to phonopy
and the FHI-aims code called “phonopy-FHI-aims”, which also simplified the present calculations.
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Figure 5.1.: a) Phonon dispersion of bulk palladium along the path in the Brillouin zone
indicated in the inset. At the lower axis, special points are labeled according to common
notation and given together with their fractional coordinates with respect to the primitive
vectors of the reciprocal lattice b1, b2, b3, which are defined in Eqs. (5.5) and (5.6). Labels at
the upper axis show the corresponding absolute coordinates in reciprocal space with respect to
the Cartesian coordinate system defined by qx, qy, qz. Parametrizations of the path segments
are given below, employing the usual crystallographic notation to indicate directions (with
respect to the conventional unit cell of the face-centered cubic lattice). b) Phonon density
of states corresponding to the phonon dispersions in a) (thick lines), together with fits to a
Debye model (thin lines) and resulting Debye temperatures ΘD,Pd obtained therefrom. Areas
under the curves are equal to three times one atom in the primitive cell, since the densities
of states have been divided by the volumes V prim

0 = 1
4a

3
0 of the latter (cf Section 4.1),

resulting from the respective lattice constants a0 given in Table 5.1 Results from all-electron
calculations using FHI-aims (PBE, gray) are compared against Castep calculations with two
different pseudopotentials (PBE (CL) and PBE (OTF) in green and blue, respectively) and
experimental data (red). The latter is taken from the work of Miiller and Brockhouse273,274
in case of the dispersion. Debye temperatures were obtained by Rajput275 as well as Veal
and Rayne.276
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5.1. Palladium Bulk and Surfaces

PBE263 PBE253 PBE262 PBE (CL) PBE (OTF)

σ100
Pd (J m−2) 1.33 1.55 1.61 1.45
σ111

Pd (J m−2) 1.15 1.33 1.39 1.47 1.30

Table 5.2.: Surface energies of Pd(100) and Pd(111). PBE reference data from all-electron
calculations of Todorova263, DaSilva253 and Zhang262 are compared to those calculated with
the Castep code within the present work using two different pseudopotentials (CL and OTF)
as detailed in the text.

band structures for bulk palladium and found that the former are in better agreement with
the experimental data.278 Such good agreement has also been found in other studies relying
on LDA.277,279 However, as already indicated in the beginning of this section, the description
of oxygen adsorption demands to go beyond the former within this context. Turning to the
phonon density of states shown in Fig. 5.1b, by fitting the first quarter of the first principles
curves to Eq. (4.14) the “closest” Debye models have been obtained – as already sketched out in
Section 4.1. This fraction has been chosen and verified to nicely cover the linear regime of the
dispersion of all three phonon branches shown in Fig. 5.1a). where the essential assumption of
the Debye model is thus fulfilled. The resulting Debye temperatures ΘD,Pd agree reasonably well
with those that have been obtained from experiments: The ultrasonic elasticity measurements
by Rayne resulted in (275± 8) K.269 Similarly, calorimetry carried out by Hoare and Yates281 as
well as Veal and Rayne275 have led to (274± 3) K and, slightly more accurate, (273.6± 1.4) K,
respectively.
Finally, it is noted in passing that a comparison of the electronic density of states in the

energy range of the valence electrons with one obtained from an all electron calculation263 also
yields excellent agreement, which is important with respect to Chapter 7.
Turning to surfaces, surface energies σ100

Pd and σ111
Pd are given in Table 5.2 for both Pd(100)

and Pd(111) as a sensitive indicator for the quality of their description. They are calculated
according to the commonly applied strategy

σ = 1
2A

(
Eslab −

Nslab
Nbulk

· Ebulk

)
, (5.7)

where Eslab and Ebulk are total energies from a slab (cf Section 2.6) and a comparable bulk
calculation, and the factor Nslab

Nbulk
scales both to the same number of atoms used in the former.

In a plane wave calculation, using simulation cells of the same size and thus the same basis set
is recommended, as it provides a beneficial cancellation of numerical errors. The factor of 1

2
accounts for the fact that the surfaces come in pairs in the slab calculations. A is the surface
area of the slabs used in the calculations: A100 =

(
a100)2 = 1

2 (a0)2 and A111 =
√

3
2
(
a111)2 =

√
3

4 (a0)2 for (100) and (111) surfaces of fcc crystals with surface lattice constants a100 = a111 =
√

2
2 a0, respectively. The initial interlayer distances of truncated bulk, d100 = 1

2a0 and d111 =√
2
3a

111 = 1√
3a0, were relaxed with the Broyden-Fletcher-Goldfarb-Shanno algorithm132 as

implemented in the Castep code.272 The PBE (CL) and PBE (OTF) values presented in
Table 5.2 have been obtained based on 1 × 1 slabs of the surface unit cell (i.e. one atom per
layer), consisting of 5 layers and a vacuum distance > 10Å corresponding to six interlayer
distances d100 and d111 for the respective surface. 12× 12× 1 Monkhorst-Pack grids have been
used together with further reduced smearing in order to obtain sufficiently converged forces

59

http://www.castep.org
http://www.castep.org


5. DFT Reference Calculations

for the relaxation. The negligible changes are in good agreement with low energy electron
diffraction (LEED) experiments282–284 and also nicely reproduce those obtained within the
all-electron calculations253,263 from which the corresponding surface energies are mentioned in
Table 5.2. Once more, Table 5.2 shows that both pseudopotentials (CL and OTF) used in this
work not only reproduce the right energetic ordering, i.e. attribute the Pd(111) to be more
stable than the more open Pd(100) surface, but also yield a fair quantitative agreement with
the all-electron calculations. In fact, in case of Pd(100) the disagreement of the former are even
within the scatter of the latter values Todorova263, Da Silva and coworkers253 and Zhang262.

5.2. O2 Molecule

Table 5.3 summarizes properties of the oxygen molecule and their DFT-PBE description which
are of particular relevance for the present thesis. More extensive collections of reference values
can be found in the work by Behler76 and Carbogno109. However, the most exact all-electron
PBE reference values presented in Table 5.3 were obtained with the FHI-aims code, using a
basis set of numerically tabulated atom-centered orbitals from the really_tight collection
from the FHI-aims “workshop version” of 2009,285 and hence cannot be found in either of
those collections. The Castep values are calculated as “molecule in a box”, based on ultrasoft
pseudopotentials for oxygen from the aforementioned sources (CL and OTF),v that require a cut
off energy of 400 eV and 500 eV, respectively. The grid size for the (ultrasoft pseudo-)charge
density needs to be increased so that the expansion coefficients of all squared plane waves
are described exactly (cf Section 2.6), which also makes the calculations considerably more
expensive. Beyond that, further enlargement of the grid used to represent the augmentation
charges does not have a significant effect on the calculated values. The boxes were tested to be
sufficiently large to suppress any interaction of images through the inherent periodic boundary
conditions, consequently sampling the negligible dispersion of electronic states only via a single
k-point. On the contrary, the FHI-aims calculations are truly aperiodic thanks to the atom-
centered basis set. In order to more adequately describe the spin triplet of the ground state
(3Σ−g ) of the O2 molecule within PBE, spin-polarized calculations are required with a fixed
number of two excess electrons in one of the spin channels. (Ns = 2, cf Section 2.5)
As shown in Table 5.3, the pseudopotential calculations nicely reproduce the equilibrium

bond length d0,O2 and the vibrational frequency of the stretch mode ω0,O2 in the harmonic
approximation from the all-electron PBE calculations, which are also in good agreement with
the experimental data.288
However, they perform worse for energetic properties: The binding energy Eb,O2 is closer to

the one obtained in experiments, but only due to fortuitous canceling of errors with opposite
sign, induced by both the PBE exchange-correlation functional and the pseudopotentials. On
the other hand, for ∆Et→s

O2
, both of these errors add up, so that the Castep values are even

further away from the spectroscopically measured value for the energy difference between the
ground state of the O2 molecule and its first electronically excited state.287 They are denoted
by 3Σ−g and 1∆g, respectively, reflecting their triplet and singlet electronic spin configurations.
Therefore, ∆Et→s

O2
is also referred to as singlet-triplet gap.

Since the spin is quenched for adsorbed oxygen (see below in Section 5.3) due to the metal

vAs before, the latter were generated with the “on-the-fly” pseudopotential generator using the de-
fault settings for oxygen built into Castep 4.0, compactly encoded in the generation string
2|1.3|5|7|15|20:21(qc=7.5)[] which is not addressed in detail here.
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5.2. O2 Molecule

Exp.286–288 PBE48,76 PBE PBE (CL) PBE (OTF)

d0,O2 (Å) 1.21 1.22 1.22 1.24 1.22
Eb,O2 (eV) 5.12 6.10 6.23 5.64 5.90
ω0,O2 (meV) 196 189 193 194 196
∆Et→s

O2
(eV) 0.98 1.14 1.15 1.26 1.22

Table 5.3.: Comparison of the equilibrium bond length d0,O2 , binding energy Eb,O2 (without
zero point energy corrections), (harmonic) vibrational frequency ω0,O2 and singlet-triplet
gap ∆Et→s

O2
of O2. Experimental reference data286–288 is compared against results from all-

electron calculations (PBE) and those obtained with Castep calculations using two different
pseudopotentials (PBE,CL and PBE,OTF). The former were done by Behler48,76 and, aiming
at even tighter convergence with FHI-aims, like the Castep calculations as part of this work
as detailed in the text.

surface acting as “spin bath”, a spin transition must occur during the dynamics of the adsorption
process. ∆Et→s

O2
is thus an important quantity for the description of the two two diabatic

potential energy surfaces corresponding to triplet and singlet states of O2 at the starting point
of the dynamics. The non-adiabaticity of that spin transition has been discussed extensively
on Al(111)48–50,76 and will also be picked up for the Pd(100) surface in Chapters 6 and 7. In
the former work, it has also been reasoned that ∆Et→s

O2
is best described by

∆Et→s
O2 ≈ E

sp
O2
− Ensp

O2
(5.8)

within density-functional theory with PBE as approximate exchange-correlation functional.
Here Esp

O2
and Ensp

O2
are the total energies of an O2 molecule from a non-spin polarized and

spin polarized calculation, respectively. This “recipe” has also been adopted for the values for
∆Et→s

O2
calculated within this work as given in Table 5.3.

On an important technical note, special care must be taken for the calculations of Ensp
O2

with
Castep: Though traditionally recommended for systems with a gap between occupied and
unoccupied states, like e.g. (small) molecules, using direct minimization131 to obtain self-con-
sistency leads to a different electronic ground state than that obtained by other electronic mini-
mization schemes, which allow for fractional occupancies naturally occurring when introducing
smearing according to a generalized finite temperature (cf Section 2.7): Already at a smearing
width of 0.1 eV, the total energy estimate for zero smearing obtained by density mixing (DM)133
is about 0.5 eV lower. Unfortunately, though not surprising, no mixing settings could be found
for this scheme to yield self-consistent solutions for smearing widths � 0.1 eV, which would be
required for reliable results with negligible error due to smearing.vi Fortunately, ensemble DFT
(EDFT)142,144 reliably allows to obtain total energies for the PBE ground state of non- spin
polarized O2 even for a smearing width of 1× 10−3 eV, used to calculate the values for ∆Et→s

O2
given in Table 5.3 according to Eq. (5.8). The reason behind the aforementioned significant
energy difference is that, as indicated above, only within both DM and EDFT the frontier levels

viIn case of FHI-aims, adjusting the mixing settings still allows density mixing, which is the only electronic
minimization scheme currently available in this code, to converge for such appropriately reduced smearing.
The much smaller basis set apparently leaves much less room for oscillations which prevent convergence
within the same electronic minimization scheme in Castep.
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Figure 5.2.: a) Adsorption sites of a atomic oxygen on the Pd(100) surface.
b) to e) 1×1 to 4×4 overlayer structure of oxygen adsorbed in the hollow site, corresponding
to coverages Θ of 1 ML to 1/16 ML, respectively. The unit cells for each structure are indicated
by the black squares.

corresponding to the 2π∗ orbitals of the oxygen molecule can each be half occupied. This has
been found in agreement with previous work,48–50,76 and is crucial for a DFT-PBE description
to better mimic the 1∆g singlet state as argued therein.
Improving the agreement between the all-electron and the pseudopotential calculations for

the energetic quantities in Table 5.3 would require to construct a replacement pseudopotential,
which outperforms the two which have been used here (CL and OTF) and possesses similarly
low computational demands. Before turning to such a non-trivial, time-consuming endeavor
right away, it is first checked how the errors of the present pseudopotentials propagates to the
description of the interaction of oxygen with the Pd(100) surface. This is, after all, of central
interest for the present work, and detailed in the next section.

5.3. Pd-O Interaction
Now, combining both pseudopotentials from both sets (CL and OTF, see previous sections),
adsorption energies Eads have been calculated for various coverages Θ with respect to an O2
molecule to be dissociated according to

Eads(site,Θ) = E100
O@Pd(site,Θ)−

[
E100

Pd (Θ) + 1
2EO2

]
. (5.9)

Here, EO2 is the total energy of an isolated oxygen molecule in gas phase in its spin triplet
ground state (cf Section 5.2). E100

O@Pd(site,Θ) and E100
Pd are the total energies of geometry

optimized slab calculations of oxygen adsorbed at a particular surface site and a clean Pd(100)
surface, respectively, using the surface unit cell of the periodic overlayer structure induced by
the coverage Θ in order to minimize the computational effort. This is illustrated in Fig. 5.2
for the high-symmetry adsorption sites (hollow, bridge, top, cf Fig. 5.2a) and coverages with
corresponding unit cells (1 × 1 to 4 × 4, Figs. 5.2b to 5.2e) considered in this work, where
one monolayer (ML) of coverage is defined by the 1 × 1 overlayer structure. Obviously, these
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(1× 1)-O (2× 2)-O (3× 3)-O (4× 4)-O
Eads(site,Θ) 1 ML 1/4 ML 1/9 ML 1/16 ML
hollow
PBE16,262 −0.34 −1.35 −1.25
PBE −1.11
PBE,CL −0.27 −1.35 −1.27 −1.23
PBE,OTF −0.04 −1.18 −0.94
bridge
PBE16,262 −0.38 −0.96 −1.02
PBE −0.90
PBE,CL −0.23 −0.87 −0.90 −0.91
PBE,OTF +0.07 −0.70 −0.94
top
PBE +0.23
PBE,CL +0.77 +0.34 +0.32 +0.33
PBE,OTF +1.03 +0.42 +0.56

Table 5.4.: Oxygen adsorption energies on Pd(100) for different coverages Θ given in fractions
of a monolayer (ML), where 1 ML is defined by the 1×1 overlayer structure. Results from all-
electron calculations from Zhang16,262 and those selectively carried out within this work for
Θ = 1/9 ML using FHI-aims, are compared against Castep calculations with two different
pseudopotentials (PBE,CL and PBE,OTF) as detailed in the text.

calculations get more expensive with decreasing coverage as the unit cells become larger. The
sign in Eq. (5.9) has been chosen such that for negative values the combined system of oxygen
on the Pd(100) surface is energetically favored over the two separate systems, indicating an
exothermic reaction with accompanying release of binding or chemisorption energy.
For the results presented in Table 5.4, all calculations have been carried out without spin

polarization based on the more accurate and computationally demanding technical parameters
found to be required for O2 and the same k-point sampling as for the clean surfaces – both
detailed in the previous sections. In order to obtain forces which are accurate enough for the
relaxations, the smearing width and the electronic convergence accuracy need to be slightly
reduced. Five-layer slabs with oxygen adsorbed on one side where used. Lacking a dipole
correction as proposed by Neugebauer and Scheffler289 to compensate for artificial adsorbate
induced electrostatic interactions between adjacent slabs through the vacuum of the employed
supercells (cf Section 2.6) also slabs consisting of seven layers with oxygen adsorbed on both
sides were tested in case of the Castep calculations. The dipole is clearly visible in the elec-
trostatic potentials averaged along the surface normal, but work functions extracted therefrom
are in very good agreement with all-electron calculations including the aforementioned dipole
correction.290 No significant difference for the resulting adsorption energies have been found
within the accuracy of the numerical convergence, which is estimated to be about ±50 meV
within both given pseudopotentials. Again, using a basis set from the really_tight settings
and without going into more technical details, the values obtained within the FHI-aims all-
electron calculations have been verified to be converged by an order of magnitude better and
can thus be considered as the most accurate reference. Due their high computational cost
and aiming at the low coverage limit, they have only been carried out for the 3 × 3 overlayer
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structures, for which the lateral interactions between periodic images are already negligible.
Altogether, Table 5.4 shows the agreement between the pseudopotential and all-electron

calculations to be quite good, with the CL potentials performing slightly better. It is thus the
choice for all subsequent Castep calculations for the present system.
Using the CL potential and the computational settings thus established here, the energy

difference between oxygen adsorbed on bridge and hollow sites was found to yield the barrier
for oxygen diffusing from one to another another hollow site via the bridge site. Mapping the
potential energy surface to obtain a minimum energy path, the bridge site was confirmed to be
the transition state – just as expected also by symmetry arguments.
Furthermore, motivated by experiments of Rocca and coworkers,17–19 also oxygen located at

several sites below the surface has been studied. Following the same trend as observed for other
transition metal surfaces including the Pd(111),11 corresponding absorption energies (defined
in complete analogy to Eq. (5.9)) all show absorption to be endothermic due to the distortions
of the lattice closely around the subsurface oxygen needed to maintain bond distances of about
2Å. These are found to be similar to those reported by Todorova and coworkers for the Pd(111)
surface.14
For the dynamics of oxygen dissociation and hence the remainder of this work, energetics

(and forces) of arbitrary configurations of an O2 molecule above the Pd(100) surface are the
key quantity of interest. For a few selected highly symmetric such configurationsvii further
comparisons have been performed, resulting in similarly good agreement between the CL pseu-
dopotential and all-electron calculations290 as before.
However, as detailed in Section 5.2, in general these calculations have to be spin polar-

ized. This brings up a deficiency of the PBE functional (cf Section 2.5) to properly describe
the paramagnetic ground state of bulk palladium which has first been discussed in the mag-
netism community only recently.279,291,292 “Spin-polarized PBE-Pd”, as obtained from bulk
calculations otherwise identical to those described in Section 5.1, is ferromagnetic, favored by
∆EPBE

Pd ≈ 5 meV and and with a magnetic moment of µPBE
Pd ≈ 0.4µB per atom according to

all-electron calculations.291,292 This is “correctly” reproduced by the CL pseudopotential, albeit
with a larger energetic preference (∆EPBE,CL

Pd = 35 meV and µPBE,CL
Pd = 0.48µB). In the context

of this work, these aforementioned values have also been confirmed by other all-electron calcu-
lations, and in addition it has been verified that RPBE unfortunately performs even slightly
worse.290 The corresponding “spin polarized equilibrium lattice constant” only differs by a few
mÅ from the non-spin polarized case. In slab calculations, the magnetic moment ranges from
0.4µB to 0.5µB, slightly decreased for atoms in the surface layer, increasing towards bulk-like
layers at the center of the slab. Recalculating the adsorption energies with Castep using the
CL pseudopotentials for the 3× 3 case based on spin polarized slabs, which are most relevant
for this work (cf Chapter 6), revealed that they only differ within the numerical uncertainty
estimated above. Consequently, although the aforementioned deficiency certainly leads to a
qualitatively wrong physical description on the small meV energy scales important for mag-
netic properties, a good description of chemical dynamics can still be expected.
However, the artificial PBE-induced ferromagnetism severely complicates achieving self-con-

sistency at all and always converge to comparable ground states (cf Section 2.7). Within density
mixing, the latter can be helped by putting non-zero local spin densities (formed by scaling
the atomic charge densities accordingly in both spin channels) onto individual atoms during
initialization. For an O2 molecule far away from the surface it is even imperative, as it is

viiowing to the urge to keep the computational burden for the WIEN2k code as small as possible
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Figure 5.3.: a) Changes of the total energy ∆E and b) maximum force component ‖F I‖∞ on
any atom I as a function of the number of self-consistent field (SCF) cycles. c) Total time
of the calculation. The vertical dashed lines indicate the (maximum) number of SCF cycles
after which the electronic minimization scheme was switched from density mixing (DM) to
ensemble DFT (EDFT), because the electronic convergence criteria (hmm in a) and hmm in
b), indicated by the horizontal dotted lines) have not been met by the former. These tight
values had to be chosen for ab initio molecular dynamics in the remainder of this work in
order to ensure energy conservation over several picoseconds (cf Chapter 9 and Chapter 10).
Note that the few EDFT iterations take almost the same time those using DM, as illustrated
by the horizontal dotted line in c). For details and further discussion see text.

described in its “spin-polarized” singlet state otherwise.47,50 For arbitrary configurations on a
large scale as required to map a potential energy surface (cf Chapter 6) or ab initio molecular
dynamics (cf Chapter 9 and Chapter 10), also its superior computational demands make it the
clear favorite. Unfortunately, self-consistency cannot be achieved for numerous configurations
– despite increase of smearing to unphysically large values (cf Section 5.2) and testing of a vari-
ety of mixing settings, for which an overall optimal choice of parameters simply does not exist.
Picking up the trail of Marzari and coworkers, who were also targeting dynamics involving
metal surfaces,142,293 brings up ensemble DFT as an interesting alternative for the electronic
minimization that guarantees convergence also at reasonably small smearing (cf Section 2.7).
However, its Castep implementation does not enable the aforementioned crucial local spin
density initialization and poses prohibitive large computational demands for the present appli-
cation if used for entire self-consistency cycles on a large scale. Of course, the “best of both
worlds” can be combined as follows:
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1. Use density mixing (DM) including the desired initialization of local spin densities around
atoms for a maximum number of NDM

SCF self-consistency iterations.

2. If self-consistency has not been achieved, switch to ensemble DFT (EDFT), the Kohn-
Sham orbitals (and resulting charge and spin density) obtained so far.

The performance of this hybrid scheme (DM/EDFT), after the Castep code was extended
accordingly by the author of this thesis, is illustrated for NDM

SCF = 70 in Fig. 5.3, Though
conceptually trivial – it can be seen as a somewhat extended and enhanced initialization of
EDFT in particular for spin polarized systems – it is important to emphasize that these changes
have proven essential for further parts of this work (typically using values for NDM

SCF between
60 and 70). Its application and concomitant improvement for other systems shows its general
value.

5.4. Conclusions and Outlook
Altogether, the ultrasoft pseudopotentials from the Cambridge library (CL) perform better than
their counterparts from the “on-the-fly” pseudopotential generator of the Castep code (OTF)
for the application that this work focuses on:viii Not only do they yield results much closer
to the all-electron reference calculations for the adsorption energies presented in the previous
subsection, but they also come at computational price that still allows to study dynamics with
the available resources.
Furthermore, the preceding subsections have also shown a remarkable spread in the properties

obtained from all-electron calculations. Though not suffering from approximations beyond
the exchange-correlation functional in principle, apparently it has not always been possible
to afford proper convergence in computational practice – at least in those days when the
calculations were performed – or other convergence behavior (e.g. only in relative energetics)
was of relevance for these studies. Resulting deviations can even come close to those achieved
with the pseudopotentials favored here.
Notwithstanding, the pseudopotential approximation has to be seen critically. This holds in

particular in the context of new first-principles based methods like the perturbative approach in
Chapter 7 to calculate electron-hole pair spectra, which therefore also includes a corresponding
discussion.
Finally, as detailed in the following, the focus of this work has not been devoted to pseudopo-

tential optimization – also keeping the advent of further developed, highly efficient all-electron
methods and corresponding implementations, like e.g. FHI-aims285,294, in mind, which show
good scaling on the massively parallel computer platforms of the future. Consequently, the
computational setup established within the PBE-CL slab calculations for the interaction of
oxygen with the Pd(100) surface is used as basis for a “sufficiently accurate” first-principles

viiiIt is important to note that the built-in OTF default settings employed here have been re-
vised within Castep versions >4.0, which this work has been started with. Again with-
out going into any details, the new default generation strings for the former (sill valid
in the currently latest version 5.5) are 2|1.0|1.3|0.7|13|16|18|20:21(qc=7) for oxygen and
3|2.0|2.0|1.5|10|12|13|40U:50U:41:42(qc=5.5)5s0.05 for palladium. The resulting ultrasoft pseudopo-
tentials are harder (i.e. have smaller pseudoization radii) than those employed here, and in case of palladium
also pseudoize the semi-core states (i.e. 4s24p64d105s0.05 instead of 4d9.95s0.1). Better agreement with all-
electron calculations can thus be expected. However, the compromise between speed and accuracy will not
be improved over the one offered by the pseudopotentials employed in the remainder of this work.
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5.4. Conclusions and Outlook

methodology in the remainder of this work. Deviations therefrom will be specified and discussed
in place. Also and in particular for the ab initio molecular dynamics in the following chapters,
the DM/EDFT “hybrid” electronic minimization scheme turns out to be crucial. Without it,
forces that are accurate enough to ensure a proper conservation of motion integrals (like e.g.
energy in the microcanonical ensemble) could not have been obtained reliably.
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Before molecules from the gas phase can undergo reactions on surfaces they first have to get in
contact with the latter. From a theoretical point of view, one is faced with a Maxwell-Boltz-
mann distribution of the former which immediately brings up the problem of statistics. The
impingement of molecules onto the surface thus occurs with randomly distributed initial molec-
ular orientation and lateral position, facing the corrugation of the surface potential. To obtain
quantities which can be compared to measured data even if obtained from molecular beam
experiments, where the initial velocity (both its absolute value and direction) are rather well
defined, averaging over a huge number of impingement events is usually necessary. Therefore,
a discussion of gas-surface dynamics must inevitably consider statistical aspects.
The strength of scattering theories is to directly include these aspects into the analytical

expressions which typically provide access to “final state” properties. Indeed, surface scattering
experiments have been successfully modeled with such approaches.295 However, details of the
gas-surface interaction are only considered by (though few) effective parameters, which can
be adjusted to fit experimental data. Not only is this rather dissatisfying from an ab initio
perspective, but in fact too many details of the interaction might be lost in the description
of molecules which are not “quickly reflected” from the surface. A generalization to chemical
reactions on the surface (like e.g. dissociation) hence is difficult if not yet impossible,296 and
scattering theories are consequently not further considered here.
Rather, nowadays standard theoretical tool for capturing reaction probabilities on the atomic

scale is employed: Individual impingement events are “trajectorized”, following the time evo-
lution of the reacting molecule via molecular dynamics (MD). Within the Born-Oppenheimer
approximation, both classical mechanics and quantum dynamics can be used for the nuclei.297
The former has been questioned in the context of gas-surface dynamics on metal surfaces both
by experiments29,30 and theory,44–47,298–300 but an electronically adiabatic description of the
adsorbate-substrate interaction has nevertheless always formed the starting point and an im-
portant reference for extended investigations. Therefore, non-adiabatic electron dynamics are
neglected here in a first step as well.
The key challenge is to obtain a realistic description of the aforementioned interaction po-

tential between molecule and surface – even for small adsorbates like diatomics. Qualitative
ideas about dissociation on surfaces have already been discussed in the pioneering work by
Lennard-Jones from 1932.20 Still, only in the 1970s, when McCreery and Wolken adapted a
semi-empirical parametrization based on Morse potentials according to the London-Eyring-
Polanyi-Sato (LEPS) recipe, a quantitative treatment became possible.301–305 As LEPS has its
origin in the description of molecules, it is not surprising that the advent of semi-empirical
descriptions of metals according to the effective medium theory (EMT)176 or the (related) em-
bedded atom method (EAM) in the 1980s175,181 have stimulated applications306 or triggered
adaptations to gas-surface dynamics called embedded diatomics in molecules (EDIM).307–309
When ab initio techniques started to become available in the 1990s also for the treatment

of adsorption on metallic surfaces, attempts have been made to adjust the parameters in the
popular LEPS model according to the latter.310–315 However, it has soon been realized that
such “simple” semi-empirical parametrizations are generally not flexible enough to capture
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the quantum mechanical complexity of bond formation with the surface and bond breaking
within the adsorbate. On the other hand, each calculated trajectory requires a huge number of
evaluations of the interaction potential, which was far too computationally expensive even for
computationally most accessible systems with molecular hydrogen as adsorbate. Fortunately,
the Born-Oppenheimer approximation allows to decouple the dynamics from the expensive first-
principles calculations: Within a so-called “divide-and-conquer” strategy, first a representation
of the potential energy surface describing the adsorbate-substrate interaction is obtained whose
evaluation comes at a much lower computational cost. Then, in a second step, extensive
dynamical calculations can be carried out. Apart from its computational advantages, the
availability of a plethora of experimental data let first such ab initio studies of dynamics focus
on H2, in particular on copper surfaces. As nicely reviewed by Darling and Holloway,297 only
two or three degrees of freedom of the interaction potential had been included for computational
convenience, with the nuclei of the hydrogen atoms being treated both classically and quantum
mechanically.
The first six-dimensional treatment based on a first-principles description of the adsorbate-

substrate interaction on a frozen surface within a “divide-and-conquer” approach has been
presented by Groß and coworkers for H2 on Pd(100).316–320 These studies showed that “dimen-
sionality matters”. Reducing the number of degrees of freedom in the phase space underlying
the dynamics neglects “important parts” so that dramatically wrong results for statistical prop-
erties can be extracted out of it.82 For example, reaction rates cannot be obtained reliably out
of static considerations as typically done by means of transition state theory for reactions on a
surface.3,8 Facing the six-dimensional problem is hence an absolute necessity and can be more
important than a quantum mechanical treatment of the nuclei – even in case of hydrogen.22
Consequently, now the accurate representation of the “full-dimensional” (within the frozen

surface approximation) adsorbate-substrate interaction became the key concern. The analytical
expressions that had first been chosen by Groß and coworkers316–320 even contained artificial
symmetries and showed significant deviations from the underlying first-principles data. The lat-
ter also held for the six-dimensional potential energy surface constructed by Kroes and cowork-
ers to model H2 on copper.312,313,321 The corrugation reducing procedure (CRP), originally
sketched out by Kresse322 and further developed by Busnengo and coworkers,323,324 provides
a robust interpolation technique, that has been frequently and successfully applied to model
six-dimensional potential energy surfaces of various systems in gas-surface dynamics.325–329
Key idea of the CRP is to reduce the corrugation of the six-dimensional PES of a diatomic
by first subtracting a three-dimensional PES of both its constituent atoms to smoothen the
target of the interpolation. However, for a spin-polarized system like the present (O2 has a
triplet ground state when it is far way from the surface), this might be less effective than for
a non-spin-polarized system like H2. Furthermore, the CRP typically requires a rather large
number of ab initio data points on regular grids to be computed. In contrast, a modified Shep-
ard (MS) interpolation works with irregularly spaced points along prominent reaction paths
and has proven successful for the description of reaction dynamics in gas phase.330 It has been
adapted to gas-surface dynamics,331–333 but its dependance on second derivatives of the PES
has limited its applications:334,335 In most periodic first-principles codes, these Hessians can
only be calculated numerically and hence are computationally very expensive. A recent com-
parison to the CRP has shown that some scattering properties can be obtained at a similar
quality but based on less ab initio input data – if the interpolation is “steered” accordingly.335
Therefore, it might be possible to tackle higher dimensional systems with MS interpolation.
The quality of the results will strongly depend on the statistical observable, since the shape of
the interpolated potential is much worse compared to the CRP. Another alternative in form
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of a tight binding model has hitherto only been applied to one system, O2 on Pt(111),336,337
because despite the physical insights incorporated therein, the number of parameters and con-
comitant fitting effort is enormous. Neural networks on the other hand do not incorporate any
physical properties of the system, but offer a large flexibility to describe PESs. Accordingly,
accurate models could be obtained with modest effort, not only for systems with H2,338–341 but
also with the computationally more demanding O2 as an adsorbate.47,48,50,298,299,342
Apart from these state-of-the-art approaches aiming for an ab initio quality description of

the interaction potential, simpler and accordingly significantly less accurate parametrizations
are still in wide-spread use today: For NO on Au(111), a model primarily addressing the
validity of the Born-Oppenheimer approximation36,37,39 relies on combinations of simple Morse
potentials. For oxygen on palladium surfaces, similar Morse potential constructions have relied
on parameters from unrealistically small cluster models of the surface343,344 or even only a
few numbers of empirical data.345,346 More promising is the recently proposed flexible periodic
(FP) LEPS model. It introduces additional physically motivated parameters to the original
LEPS prescription. With less calculated data points as input than the CRP model used as
reference, it allows to improve the interpolation quality significantly over the former. However,
the difference to the latter is still quite notable.347,348
Going beyond the frozen surface approximation and keeping an ab initio quality model for

the potential proves to be a severe challenge, as the interpolation problem becomes increasingly
difficult with each degree of freedom that is added. Recent work has combined a many-body
expansion with a neural network treatment and demonstrated a successful description of PESs
of simple gas-phase systems with directed, short-ranged bonds.349 For bulk systems consisting
of a single element, high-dimensional interatomic potentials could also be constructed based on
neural networks thanks to a representation of first-principles input data via generalized symme-
try functions.183,350,351 However, even for “simple” systems, the amount of data that is required
for an accurate description is enormous.204–206,351 Lately, an extensive overview about attempts
to fit potential energy surfaces by neural networks has been given by Handley and Popelier.352
Promising progress in this direction has also been achieved only very recently with a slightly
different approach: By combining Gaussian processes with a sophisticated transformation of
atomic coordinates, so-called Gaussian approximation potentials (GAPs) were demonstrated
to provide “the accuracy of quantum mechanics, without the electrons” with a significantly
reduced amount of first-principles input data.184 GAPs for both non-metallic and metallic, but
only single-element bulk systems have been introduced so far. Consequently, it is at present
unclear at present whether gas-surface dynamical problems, including multiple elements and
a large corrugation of the adsorbate-substrate potential, can be successfully tackled with this
method.
Giving up the idea of interpolation altogether, one of the “drosophilas” of gas-surface dynam-

ics, H2 on palladium surfaces, has recently been subject of AIMD i.e. evaluating the gas-surface
interaction potential “on-the-fly” for each classical trajectory.25,353–356 Even for this computa-
tionally very appealing system and with deliberately reduced accuracy for the description of the
electronic structure, only on the order of a hundred trajectories could be obtained for selected
initial conditions (i.e. impingement energies, angles, vibrations, rotations etc.). Whether this
provides a sufficient amount of statistics depends on the intrinsic complexity of the observables
and general properties of the interaction potential of the system – and is thus unclear a priori.
Of course, previous studies employing state-of-the-art techniques within the frozen surface ap-
proximation allow for an extensive statistical sampling and hence are of great help to focus on
interesting aspects. Guided accordingly, pioneering AIMD studies were therefore able to show
that substrate mobility (within the limitations of the employed periodic boundary conditions)
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can be very important for the dissociation dynamics even for very light molecules such as H2.
The still limited statistics might be improved by the steady increase of computational power
and further improvements in first-principles codes. In addition, several acceleration schemes
for AIMD have been recently developed, which however unfortunately do not work for metallic
systems,210 rely on reduced integration accuracy due to less converged forces,208,209 or are tai-
lored for statistical sampling in equilibrium situations only.357 Therefore, it has to be seen how
quickly the amount of trajectories accessible within AIMD can be increased by the necessary
several orders of magnitude.
Accordingly, with the dynamics of the present system not having been subject to first-prin-

ciples theoretical modeling before, a direct AIMD treatment is not a prudent choice. Rather,
a “divide-and-conquer” strategy is chosen, using an efficient state-of-the-art interpolation tech-
nique like neural networks mentioned above to obtain a six-dimensional interaction potential
with ab initio quality. This provides a first impression of the dynamics of the system for ar-
bitrary observables, based on reliable statistical sampling. In principle, the resulting PES can
also be “reused” for a quantum mechanical treatment of the nuclei, but is not considered to be
necessary for the present system: For a “heavy” diatomic adsorbate (compared to H2) like N2
on Ru(0001), van Harrevelt and coworkers have found that a quantum mechanical treatment
of the nuclei has negligible effects on the reaction rates. Instead, substrate mobility is a crucial
aspect and certainly to be addressed in a further step discussed in more detail in Chapter 8.
This chapter begins with an introduction of the relevant theoretical aspects in Section 6.1.

Although the underlying physics are essential to what follows, very much to the author’s own
surprise a concise presentation is hard (if at all) to find in the literature of the field. After briefly
presenting the relevant details about neural networks, particular focus is on a coordinate trans-
formation scheme. This is crucial to face the rather challenging six-dimensional interpolation
problem, correctly incorporating and exploiting the translational and fourfold symmetry of the
frozen Pd(100) surface during its interaction with the O2 molecule. Transferability to other
low-index surfaces of both fcc and bcc crystals is demonstrated in Appendix A. Thereafter, in
Section 6.3, technical details on the neural network interpolation of the potential energy for
the present system and subsequent MD runs are described, followed by the resulting statisti-
cal properties obtained therewith. Apart from the (initial) sticking of the molecules, this also
includes the identification of entrance channels for dissociation.

6.1. Theory

6.1.1. Coordinate Systems

Apart from Cartesian coordinates, a center of mass centered spherical coordinate system is
very convenient for the description of the dynamics of a diatomic molecule above a (frozen)
surface. Both are illustrated in Fig. 6.1. The latter quite naturally allows to depict and follow
dissociation pathways due to the interaction with the surface potential, which has been done
traditionally301,302 in terms of so-called elbow-plots. This will also be adapted for the present
system (vide infra).
Here and in the following, the origin is located in the surface plane on a top site. The

diatomic consists of two atoms A and B with masses mA and mB, respectively, and has a total
mass M = mA +mB. A molecular configuration is given by Cartesian coordinates

Rcart = RA ⊕RB = (XA, YA, ZA)⊕ (XB, YB, ZB) (6.1)
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Figure 6.1.: Illustration of convenient coordinate systems used for the description of six-dimen-
sional dynamics of diatomics on (frozen) surfaces. Position and orientation of the molecule
can be equivalently described by standard Cartesian coordinates Rcart = (XA, YA, ZA) ⊕
(XB, YB, ZB) or center of mass centered spherical coordinates Rsph = (X,Y, Z, d, ϑ, ϕ). The
origin is located in the surface plane on a top site.

of the two atoms A and B or the equivalent spherical description

Rsph = (X,Y, Z, d, ϑ, ϕ) (6.2)

with center of mass coordinates R = (X,Y, Z), internuclear distance d, polar angle ϑ,i and
azimuth angle ϕ. Accordingly, the transformation R6 → R6 : Rcart 7→ Rsph from the former
to the latter is

X = mA
M

XA + mB
M

XB (6.3a)

Y = mA
M

YA + mB
M

YB (6.3b)

Z = mA
M

ZA + mB
M

ZB (6.3c)

d =
√

(XB −XA)2 + (YB − YA)2 + (ZB − ZA)2 ≡
√
d2
‖ + d2

⊥ (6.3d)

ϑ = arccos
(
d⊥
d

)
(6.3e)

ϕ = arccos
(
XB −XA

d‖

)
= arcsin

(
YB − YA

d‖

)
. (6.3f)

Of course, Eq. (6.3f) is only valid for d‖ 6= 0, which is equivalent to ϑ 6= 0. In other words, for
a diatomic molecule with its molecular axis perpendicular to the surface, an azimuth angle is
not defined. The reverse transformation R6 → R6 : Rcart 7→ Rsph of Eq. (6.3) reads as follows:

i ϑ is also commonly referred to as zenith or inclination angle.
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XA = X − mB

M
d sin(ϑ) cos(ϕ) (6.4a)

YA = Y − mB

M
d sin(ϑ) sin(ϕ) (6.4b)

ZA = Z − mB

M
d cos(ϑ) (6.4c)

XB = X + mA

M
d sin(ϑ) cos(ϕ) (6.4d)

YB = Y + mA

M
d sin(ϑ) sin(ϕ) (6.4e)

ZB = Z + mA

M
d cos(ϑ) . (6.4f)

Finally, for a homonuclear diatomic withmA = mB = m as considered here, Eqs. (6.3) and (6.4)
do simplify accordingly by inserting mA

M = mB
M = 1

2 .

6.1.2. Equations of Motion
The Born-Oppenheimer approximation and the assumption of classical nuclei leads to dynamics
given by classical mechanics. From a computational point of view, the Hamiltonian formalism
(i.e. as a system of first order differential equations) is preferable because excellent methods
exist for their numerical solution. In Cartesian coordinates, with the momenta

PA = mAṘA (6.5a)
PB = mBṘB , (6.5b)

the classical Hamiltonian is given by

Hcart = PA
2mA

+ PB
2mB

+ V cart
6D (Rcart) . (6.6)

This leads to the usual equations of motion

ṘA = PA
mA

(6.7a)

ṘB = PB
mB

(6.7b)

ṖA = −∇RAV
cart

6D (Rcart) (6.7c)
ṖB = −∇RBV

cart
6D (Rcart) . (6.7d)

In order to transform to the center of mass centered spherical coordinates described in Sec-
tion 6.1.1 the respective conjugate momenta need to be obtained. Applying the transformation
Eq. (6.4) to the Lagrangian corresponding to Eq. (6.6) yields

P = (PX , PY , PZ) = M(Ẋ, Ẏ , Ż) = MṘ (6.8a)

pd = µḋ (6.8b)
pϑ = µd2ϑ̇ (6.8c)
pϕ = µd2 sin(ϑ)2ϕ̇ . (6.8d)
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Here the reduced mass µ = mAmB
mA+mB = mAmB

M has been introduced, which simplifies to µhomo =
m2

2m = 1
2m for a homonuclear diatomic molecule. The resulting Hamiltonian is

Hsph = P

2M + 1
2µ

(
p2
d + 1

d2 p
2
ϑ + 1

d2 sin(ϑ)p
2
ϕ

)
(6.9)

V sph
6D (R, d, ϑ, ϕ) . (6.10)

The equations of motion in this coordinate system keep their usual form, since the transforma-
tion given by Eq. (6.3) is canonical – as can be easily verified.

Ṙ = 1
M
R (6.11a)

ḋ = 1
µ
pd (6.11b)

ϑ̇ = 1
µd2 pϑ (6.11c)

ϕ̇ = 1
µd2 sin(ϑ)2 pϕ (6.11d)

Ṗ = −∇RV sph
6D (R, d, ϑ, ϕ) (6.11e)

ṗd = − ∂

∂d
V sph

6D (R, d, ϑ, ϕ) + 1
µ

1
d3 p

2
ϑ + 1

µ

1
d3 sin(ϑ)2 p

2
ϕ (6.11f)

ṗϑ = − ∂

∂ϑ
V sph(R, d, ϑ, ϕ) + 1

µ

cos(ϑ)
d2 sin(ϑ)3 p

2
ϕ (6.11g)

ṗϕ = − ∂

∂ϕ
V sph

6D (R, d, ϑ, ϕ) . (6.11h)

Equations (6.7) and Eqs. (6.11) nicely underline the advantages of a “divide-and-conquer”
approach: The dynamics of the nuclei given by these equations due to the classical Hamiltonians
in Eqs. (6.6) and (6.9) can be completely decoupled from ab initio evaluations of the potential
energy surface (PES) given by the adsorbate-substrate interaction within the frozen surface
approximation V6D, either in the Cartesian or spherical formulation, V cart

6D in Eq. (6.7) or V sph
6D

in Eqs. (6.7) and (6.11), respectively. Obtaining an accurate interpolation of the latter, which
allows fast evaluation during the dynamics, is now the task at hands. To face this challenge
of high-dimensional interpolation for the six molecular degrees of freedom, neural networks are
employed as a sophisticated and efficient interpolation technique.

6.1.3. Neural Networks
Artificial neural networks have been inspired by neuroscience. They consist of a network of
nodes (also called perceptrons), which is trying to mimic the way how biological neurons (e.g.
in the brain) process information: As soon as incoming connections exceed a certain threshold,
a node “fires” on all its outgoing links to other nodes it is connected with. For the representa-
tion of PESs, the subclass of certain topologies called multi-layer feed-forward networks have
proven to be very beneficial as nicely summarized in a recent review article by by Handley and
Popelier.352
A particular example of this kind of neural network is shown in Fig. 6.2. In general, they

consist of an input layer, one or more hidden layers and an output layer, each containing N0, Nl

75



6. Statistical Properties

w 01
1

bias

input
layer

hidden layer output
layer

w 11
2

w 21
2

w 31
2

w 11
1

y1
2=V fsa

NN

f a
2°∑

Q1=y1
0

Q2=y2
0

y2
1

f a
1°∑

y1
1

f a
1°∑

w 03
1 w 03

2

w 23
1

w 21
1

y3
1

f a
1°∑

w 13
1

Figure 6.2.: Schematic illustration of a neural network with L = 1 hidden layer, N0 = 2 nodes
in the input, N1 = 3 in the hidden and N2 = 1 node in the output layer whose values are
denoted by y(l)

j for l ∈ {0, 1, 2} and j ∈ 1, . . . , Nl. Together with the bias this results in a
total of 13 weights w(l)

ij for l ∈ {1, 2}, i ∈ {0, . . . , Nl−1} and j ∈ {1, . . . , Nl}, which are to be
obtained by neural network training. For details see text.

for l ∈ {1, . . . , L} and NL+1 = 1 nodes, respectively, where L is the number of hidden layers.
The values of the nodes in the input layer, represented by a vectorQ = (Q1, . . . , QN0), denotes a
molecular configuration, for which the (therefore single) node in the output layer then gives the
interpolated value V NN

6D (Q) of the PES. Each node i in layer l− 1 only has forward connections
to nodes j in layer l (resulting in the name of this subclass), where now and in the following
l ∈ {1, . . . , L + 1}. These connections are associated with weights w(l)

ij . In addition, bias
weights w(l)

0k with k ∈ {1, . . . , Nl} further extend the flexibility. Activation functions f (l)
a (also

termed ’squashing’ functions in mathematical literature) model the aforementioned “firing” in
a smoothened way: In each node, they map the summed input weights in a monotonic way to
a certain output interval, typically [0; 1]. Different types of activation functions can be used in
different layers. In the following, a hyperbolic tangent f (l)

a (x) = tanh(x) for l ∈ {1, . . . , L}ii and

ii More precisely, f (l)
a (x) = a tanh(bx), with recommended values358 for the parameters a = 1.7159 and b = 2

3 ,
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a linear function f (L+1)
a (x) = x, are used throughout in the hidden layers and output layer and

denoted by t and l, respectively – the latter conveniently allows unrestricted output values for
V NN

6D . Sticking to a common notation convention,76,77,338,339,342,358 the topology of a particular
neural network is then denoted by {N0−. . .−NL+1

(∏L
l=1 t

)
l} The following recursion formula

gives the value y(l)
j of the j-th node in layer l for l ∈ {1, . . . , L+ 1}

y
(l)
j = w

(l)
0j + f (l)

a

Nl−1∑
i=1

w
(l)
ij y

(l−1)
i

 , j > 1 , (6.12)

where y(0)
j = Qj are the input values and y

(L+1)
1 = V NN

6D the interpolated PES in the output
layer. Accordingly, the explicit structure of the simple {2 − 3 − 1 tl} network with only one
hidden layer (L = 1) shown in Fig. 6.2 is given by

V NN
6D = f (2)

a

w(2)
01 +

N1=3∑
j=1

w
(1)
j1 f

(1)
a

w(1)
0j +

N0=2∑
i=1

w
(1)
ij Qi

 , (6.13)

where f (1)
a and f (2)

a are the aforementioned hyperbolic tangent and linear functions, respectively.
For “well-suited” (but arbitrary) activation functions, neural networks with at least a single

hidden layer and a sufficiently large number of nodes N1 therein are so-called universal approxi-
mators. Mathematically rigid proofs have been given by both Cybenko359 as well as Hornik and
coworkers,360 – the work of the latter including a bigger class of functions to be approximated
than the former. For the present purposes, this means that any kind of physical PESiii can
in principle be described exactly by a neural network. Compared to other interpolation ap-
proaches, this is an extremely valuable property, which by far does not hold for e.g. commonly
employed spline interpolation techniques. The latter might lack the flexibility to properly ac-
count for the strong corrugation exhibited by PESs of a typical gas-surface dynamics problems.
As a neural network like the one illustrated in Fig. 6.2 is described by a composition of func-
tions, for differentiable activation functions f (l)

a for l ∈ {1, . . . , L+1} the interpolation function
corresponding to Eq. (6.13) is differentiable both with respect to its inputs Q = (Q1, . . . , QN0)
and weights w(l)

ij . In fact, analytical derivatives ∂V NN
6D

∂Qi
for i ∈ {1, . . . , N0} can be calculated

easily,358 so that forces which are exactly consistent with the interpolated V NN
6D are obtained,

allowing to ensure excellent energy conservation in molecular dynamics.iv
In practice, for an database of calculated (ab initio) data points {(Q, V6D(Q))}Q, the quite

non-trivial task of neural network training or learning has to be carried out first: For a particular
topology, an optimal set of weights needs to be determined, starting from random values. To
do so, the database is usually first split into a training and a test set. Then, examples, i.e.
elements from the training set, are presented to the neural network. Iteratively (in so-called

is used for l ∈ {1, . . . , L}.
iii Natura non facit saltus: A function representing a PES of any physical system should even be differentiable.

This mathematically “nice” property already limits the class of functions to be approximated.
iv Quite in contrast, in ab initio molecular dynamics, forces obtained “on-the-fly” alongside with potential ener-

gies are much less numerically converged than the latter. Obtaining “sufficiently conservative” forces requires
a numerical effort that is usually not afforded, resulting in comparably poor energy conservation during mi-
crocanonical MD trajectories. Current (unconfirmed) hope is that this error vanishes when averaging over
trajectories.361

77



6. Statistical Properties

epochs) the weights are adjusted to minimize a cost function. Here, the root mean square error

RMSE =
√∑

Q

(
V6D(Q)− V NN

6D (Q)
)2 (6.14)

is conveniently used for the latter, where V6D(Q) are input energies and V NN
6D (Q) the corre-

sponding neural network output given by the current set of weights, and the sum is over all
molecular configurations Q in the training set. In order to monitor the transferability of the fit
to data which is not directly targeted by the cost function, Eq. (6.14) is concomitantly evaluated
for the test set as well. Typically, this RMSE of the test set does not decrease any more after a
certain number of epochs, since further improvements of the fitting quality can only be obtained
at the cost of transferability, which is commonly referred to as overfitting. Obviously, this is the
optimal point to terminate the learning procedure. In principle, any algorithm for non-linear
fitting problems is suitable for the weight adjustment – potentially exploiting the fact that even
derivatives with respect to the latter are available as indicated above. However, according to
previous experiences, an extended adaptive Kalman filter358 has proven particularly useful for
this purpose when fitting potential energy surfaces.76,183,339,358,362
Unfortunately, it is unclear a priori for which topology training might yield the result with

best interpolation quality. For a given database, several topologies hence need to be tested
and compared. In regions of the PES for which different fits yield most different results, the
database needs to be extended accordingly, starting the whole training process all over again.
This is iterated until a satisfactory interpolation has been obtained at last.
For more details on neural networks and their application to interpolation of potential energy

surfaces, the reader is primarily referred to Sönke Lorenz’s PhD thesis,358 but also the one by
Jörg Behler76 as well as corresponding publications.338,339,342 This section only provides a brief
overview about those aspects which are directly relevant for this thesis in the following.

6.1.4. Symmetry Adapted Coordinates
6.1.4.1. Neural Network Input

As detailed in the previous sections, neural networks are a mere mathematical interpolation
tool that do not incorporate any available physical properties of the target function. On a
frozen surface, symmetry is certainly one such property to take into account: First and most
important, unphysical outcomes of observables might be obtained during the dynamics if the
underlying PES does not have the correct symmetry. Furthermore, a proper account of the
latter should also simplify the interpolation procedure itself and increase its accuracy, since it
limits the freedom of the interpolation function. Unfortunately, such a symmetry constraint
cannot be enforced during neural network training directly. In that respect, the high flexibility
of neural networks can also become a curse, since obtaining a fit which (accidentally) obeys the
right symmetry properties gets infinitesimally unlikely.
The symmetry of a (100) surface is illustrated in Fig. 6.3: In addition to the two-dimensional

translational symmetry of the fcc(100) surface lattice, point group symmetry at the high sym-
metry sites (fourfold on top and hollow sites, twofold on bridge sites) leads to a symmetry
irreducible wedge of triangular shape whose vertices are formed by the latter. When the O2
molecule is added (as an isolated, non-periodic “perturbation”), the symmetry operations of the
pure surface allow to produce symmetry equivalent molecular configurations. Additionally, for
a homonuclear diatomic like O2, there is the exchange symmetry of its two constituent atoms A
and B: Swapping their coordinates must leave the total energy of the system invariant. Inside
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top: fourfold bridge: twofold

hollow: fourfold

a1

a2

irreducible wedge

a) b)

c) d)

top bridge hollow

Figure 6.3.: Symmetry and irreducible wedge of a fcc(100) surface: Top and hollow sites have
fourfold symmetry, as shown in a) and c), respectively. In contrast, b) illustrates the twofold
symmetry of bridge sites. This results in an irreducible wedge of triangular shape indicated
in d), together with the primitive vectors a1 and a2 of the surface lattice.
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the irreducible wedge, only the latter is left, whereas at the boundaries, each molecular config-
uration is equivalent to many others due to point group symmetry of the surface. This holds
in particular at the vertices (less so at the edges), making them particularly and interesting
candidates for which actual ab initio calculations most efficiently should be carried out first.
Of course, the most straightforward way to account for symmetry of calculated molecular

configurations is by manually applying the symmetry operations to the former, using their
proper representations in the respective coordinate systems (cf Section 6.1.1). In several inter-
polation strategies, most prominently the corrugation-reducing procedure,323,324 or a Shepard
method330–333 such an unfolding is intrinsically required to ensure the right symmetry properties
of the analytical interpolation functions. However, in contrast to finite systems, translational
symmetry renders the symmetry group (denumerable) infinite, which can lead to problems if
not taken special care of in the lateral coordinates333 – unless the dynamics are artificially
constrained to the “unfolded range”. In case of dynamical trapping on the surface, this range
can be rather large. Hence, the database of calculated configurations has to be “flooded” with
symmetry equivalent replicas, easily increasing its size by factors typically between 10 and 100.
As Ludwig and Vlachos have noted,340 this quickly increases the training time of the neural
network by orders of magnitude. More severely, this does enforce symmetry here in general:
Arbitrary (i.e. non-calculated) molecular configurations which ought to be equivalent by sym-
metry can still yield different neural network interpolated total energies. Therefore, this brute
force unfolding is not a viable option in this context.
On the contrary, the interpolation could also be restricted to the irreducible wedge only.

Then, any arbitrary molecular configuration outside the latter has to be explicitly folded back
first by applying the corresponding symmetry operation (translation composed with proper or
improper rotation and/or swapping of constituent atoms of the diatomic). The lateral period-
icity is practically filtered out before the interpolation step. Therefore, this simple approach is
particularly appealing for the transfer of interpolation techniques which originally have been
developed to treat non-periodic (gas-phase) systems to gas-surface dynamics, like in case of the
modified Shepard interpolation by Crespos and coworkers.331,332 It his can be quite cumbersome
to implement, however, and requires a large number of comparison operations which typically
become a computational bottleneck during the dynamics, as they have to be performed for
each MD step. Even worse, symmetry can no longer automatically induce the right values of
energy and forces at the boundaries of the irreducible wedge, as has been extensively discussed
by Abufager and coworkers.333 For these reasons, this approach is not followed here.
A more elaborate concept is to prefix the actual interpolation step by a coordinate trans-

formation that is more abstract than the simple backfolding discussed before. The actual
interpolation could then be carried out in symmetry “filtered” (i.e. adapted or constrained)
coordinates, but would automatically have the correct symmetry properties. An interpolated
PES would then be evaluated according to

V6D ≈ V NN
6D (Q(Rcart,Rsph)) (6.15)

Most straightforward, a symmetry reduced lateral position could be defined by giving the dis-
tances to the closest translationally equivalent vertices of the symmetry irreducible wedge.
As Behler and coworkers have already discussed and illustrated,342 this minimum distance
convention leads to kinks in the distances when the reference vertices change, destroying differ-
entiability – similar to what happens within the back-folding strategy described before. Proper
differentiability is necessary to obtain well-defined forces from the PES for the ensuing MD
simulations.
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Within their work concerning O2 on Al(111),47,48,298,299 Behler and coworkers have proposed
a way to incorporate the symmetry based on a generalized triangulation for fcc(111) surfaces.342
The basic idea is to “measure” generalized distances to the vertices of the symmetry irreducible
wedge by a triple of three numbers, which are obtained via what is termed symmetry functions
by the authors. They are formed by a single periodic function of the lateral surface coordinates
(R2 → R), which is shifted to the three vertices of the symmetry irreducible wedge of the
(111) surface Essentially, this function is a differentiable alternative to the (using a minimum
distance convention) periodically placed circles – avoiding the problems mentioned before. It
is based on some of the first odd terms of a Fourier series defined by the lattice vectors of the
surface with expansion coefficients of absolute value one. The idea to use such first terms of
Fourier series expansions is not all new in the context of six-dimensional PESs in gas-surface
dynamics.312–318,320,322–324 However, it is important to emphasize that they are supposed to
serve merely as a tool for the incorporation of symmetry, not limiting the flexibility of the
actual interpolation function within the symmetry constraint. Quite in contrast, in previous
interpolation attempts the expansion coefficients have been parameters which needed to be
determined within the respective fitting procedures.312–315,320,323,324 Accordingly, even when
fcc(100) surfaces had been addressed, the corresponding expressions were not directly useful
for the present purposes.
The same holds for the pioneering methodological work by Lorenz and coworkers,338,339

which constitutes the first neural network interpolation for a six-dimensional PES in gas-surface
dynamics. Although they have also addressed a homonuclear diatomic on a fcc(100) surface (H2
on Pd(100)), unfortunately their neural network input allowed for the same “artificial features”
(i.e. unphysical properties) which had also been present in the reference PES.316–318 Therefore,
the approach by Behler and coworkers demonstrated for homonuclear diatomics on fcc(111)
surfaces342 is clearly superior. Unluckily, they do neither discuss how to generally construct
their symmetry functions nor give explicit expressions for the latter for other surfaces. Closer
inspection reveals that the claimed “straightforward” generalizability is not that straightforward
after all: In fact, the vertices of the irreducible wedge of the fcc(111) surface are the top, fcc and
hcp hollow sites, which all have the same threefold (point group) symmetry. In that respect,
this surface is simpler than the present (100) surface where only two of the three vertices of
the irreducible wedge, top and hollow, have the full fourfold symmetry, whereas the bridge site
is only twofold (cf Fig. 6.3). This has to be kept in mind and further complicates an adaption
of their approach.
Within their extended neural network interpolation scheme and focusing on H2 on Cu(111),

Ludwig and Vlachos also rely on a transformation of lateral coordinates based on the first few
terms of a Fourier series to account for translational symmetry of the surface.340,341 These terms
are different compared to those used by Behler and coworkers342 and exchange symmetry of the
two hydrogen atoms is not included at all. Yet again, infelicitously, no helpful methodological
insights for the present system could be gained.
In principle, the coordinate transformations tailored for high-dimensional neural network

interpolation,183 which were published in full detail only very recently,350 could (now) be
adapted, but they were shown not be efficient for lower dimensional problems even when a
plethora of reference data is available.350 The multi-component nature of the present system
together with the strong corrugation of the adsorbate-substrate potential pose an additional
challenge. This makes a a proper, specifically optimized coordinate transformation scheme for
the six molecular coordinates along the lines of previous work (still) much more desirable if not
imperative for the present problem – as future work might show.
Altogether, a suitable scheme to perform symmetry adapted neural network interpolation of
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molecular configurations 
inequivalent by symmetry

Qcart = {Rcart} / ~cart

´

Qsph = {Rsph} / ~sph

symmetry 
adapted

coordinates

{Q} µ      Rn
differentiable

1 :1

?

Figure 6.4.: Schematic illustration of a function which uniquely transforms molecular configu-
rations as contained in the quotient spaces Qcart = {Rcart}/ ∼cart or Qsph = {Rsph}/ ∼sph

to symmetry adapted coordinates {(Q1, . . . , Qn)} ⊂ Rn. In the present context this re-
quired to obtain input values for the neural network interpolation of the PES according to
Eq. (6.15). Differentiability is mandatory to allow for subsequent molecular dynamics runs
(cf Eq. (6.23)).

the six-dimensional PES for a homonuclear diatomic on fcc(100) surfaces does not exist and
hence needs to be developed. Its importance should not be underestimated: The way how sam-
pled data from a high-dimensional PES is presented to the interpolation scheme might even
be more important than the sophistication of the interpolation scheme itself, as very recent
work has shown.183,184 In fact, recent work has exemplified how dramatically wrong a neural
network interpolation can become due to a misconstructed coordinate transformation. The sys-
tematically wrong description of the underlying physical system was reflected by a reduction
of the heuristically observed interpolation quality by two orders of magnitude.350 What follows
has been inspired by the pioneering work by Behler and coworkers,342 but starts by phrasing
the problem in proper mathematical terms first – as illustrated in Fig. 6.4: A differentiable
(coordinate) transformation is required that uniquely maps elements of the quotient spaces
Qcart = {Rcart}/ ∼cart or Qsph = {Rsph}/ ∼sph to tuples of real numbers. The equivalence
relations ∼sph or ∼cart are defined via the respective representations of the symmetry group of
the adsorbate-substrate system: Two molecular configurations are considered to be equivalent
if there is a symmetry operation that allows to transform one to the other. Consequently,
different elements of the quotient spaces are only those molecular configurations which cannot
be further related by symmetry. The two transformations given by Eqs. (6.3) and (6.4) also
induce a bijection between the two quotient spaces such that they can be used equivalently and
exchangeably as starting point for the construction of the required coordinate transformation.
Injectivity is crucial to avoid unphysical ambiguities: Molecular configurations which are not
equivalent by symmetry must in principle be allowed to have different potential energies. Fi-
nally, as has already been indicated before, differentiability is required to obtain well-defined
forces for molecular dynamics to be performed on the interpolated PES. Such a coordinate
transformation is constructed in the following as systematically as possible, carefully verifying
the desired properties.
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Figure 6.5.: Contour plots of the coordinate transformations a) gfcc100
1 and b) gfcc100

2 as defined
by Eq. (6.17) for lateral coordinates (x, y) given in units of the surface lattice constant a100

fcc .
The spacing of the contour lines is 1

8 .

6.1.4.2. Coordinate Transformation

Since the lateral position of the adsorbate is subject to the full surface induced part of the
symmetry of the problem, the construction of symmetry reduced coordinates is started here.
The key idea is to represent the whole discrete but infinite set [(x0, y0)] of symmetry equivalents
of a single point (x0, y0) on the surface by the intersection of inverse images of two functions
gfcc100

1 and gfcc100
2 , R2 → R with appropriate periodicity and symmetry, in the following way:

[(x0, y0)] =
[
gfcc100

1

]−1 (
gfcc100

1 (x0, y0)
)
∩
[
gfcc100

2

]−1 (
gfcc100

2 (x0, y0)
)

=
{

(x, y)
∣∣∣∣∣ g

fcc100
1 (x, y) = gfcc100

1 (x0, y0) ∧
gfcc100

2 (x, y) = gfcc100
2 (x0, y0)

}
⊂ R2

(6.16)

This is shown graphically in Figs. 6.6a to 6.6d for several example points with coordinates
(x0, y0) inside the irreducible wedge. By giving the two contour values gfcc100

1 (x0, y0) and
gfcc100

2 (x0, y0), the intersection points of the corresponding plotted contour lines obviously yield
the equivalence class [(x0, y0)]. Instead of a triangulation with generalized distances mentioned
above, this “biangulation” is thus completely sufficient to describe symmetry equivalent points
on the surface. The following terms of the (two-dimensional) Fourier series induced by the
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Figure 6.6.: Examples for symmetry equivalent lateral coordinates given in units of the surface
lattice constant a100

fcc . In a) to d), for different points (x0, y0) in the indicated triangular
irreducible wedge (thick green circle), the respective equivalents are the intersection points
(thin green circles) of contour lines of gfcc100

1 (blue) and gfcc100
2 (red) as defined by Eqs. (6.17)

(cf Eq. (6.16)). Contour values are given by gfcc100
1 (x0, y0) and gfcc100

2 (x0, y0), respectively.
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surface lattice are a both convenient and appropriate choice for gfcc100
1 and gfcc100

2 :

gfcc100
1 (x, y) = 1

4
[
cos

(
Gfcc100

01 ·
( x
y
))

+ cos
(
Gfcc100

10 ·
( x
y
))]

+ 1
2

= 1
4

[
cos

(
2π
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fcc
x

)
+ cos

(
2π
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fcc
y

)]
+ 1

2

(6.17a)

gfcc100
2 (x, y) = 1

4
[
cos

(
Gfcc100

11 ·
( x
y
))

+ cos
(
Gfcc100

11̄ ·
( x
y
))]

+ 1
2

= 1
4

[
cos

(
2π
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fcc
x

)
· cos

(
2π
a100

fcc
y

)]
+ 1

2 .
(6.17b)

Equation (6.17a) and Eq. (6.17b) are plotted in Figs. 6.5a and 6.5b, respectively, as contour
lines. Here, the common choice of primitive lattice vectors,

afcc100
1 = a100

fcc

(
1
0

)
(6.18a)

afcc100
2 = a100

fcc

(
0
1

)
, (6.18b)

has been assumed, with a100
fcc denoting the surface lattice constant. The corresponding primitive

vectors of the corresponding reciprocal lattice,

bfcc100
1 = 2π

a100
fcc

(
1
0

)
(6.19a)

bfcc100
2 = 2π

a100
fcc

(
0
1

)
, (6.19b)

then define reciprocal lattice vectors

Gfcc100
ij = ibfcc100

1 + jbfcc100
2 (6.20)

used in the aforementioned Fourier series. Following the usual crystallographic convention, a
bar over an index number indicates a minus sign.
With both the translational and point group symmetry of lateral degrees of freedom properly

incorporated in gfcc100
1 and gfcc100

2 , the following transformation from the physical coordinate
systems introduced in Section 6.1.1 could now be chosen to represent an entire class of symmetry
equivalent molecular configurations:

Q̃1 = gfcc100
1 (XA, YA) (6.21a)

Q̃2 = gfcc100
2 (XA, YA) (6.21b)

Q̃3 = gfcc100
1 (XB, YB) (6.21c)

Q̃4 = gfcc100
2 (XB, YB) (6.21d)

Q̃5 = ZA (6.21e)

Q̃6 = ZB (6.21f)

Q̃7 = d . (6.21g)
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Figure 6.7.: Accidental degeneracies in symmetry adapted coordinates. Obviously, the
two molecular configurations Rcart

a = (0Å, u · a100
fcc , 2Å, 0Å, (1− u) · a100

fcc , 2Å) and Rcart
b =

(0Å, u · a100
fcc , 2Å, u · a100

fcc , 0Å, 2Å), where u = (2 +
√

2)−1, illustrated in a) and b) together
with their lateral coordinate transformations gfcc100

1 and gfcc100
2 (cf Eq. (6.17)), respectively,

are not equivalent by symmetry. The transformed coordinates Q̃ as given by Eq. (6.21), how-
ever, do not allow to distinguish between both configurations. Thanks to proper inclusion of
(symmetry adapted) center of mass coordinates (Q5, Q6, Q7) in Q as defined in Eq. (6.22),
this undesired degeneracy is broken. For the numbers shown a realistic value of the surface
lattice constant of Pd(100)a100

fcc = (
√

2)−1 · 3.96Å, has been used – emphasizing the relevance
of the problem for accessible bond lengths d of the O2 molecule.
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The internuclear distance d needed to be added here as Q̃7 because placing two atoms A and
B with heights above the surface given by Q̃5 and Q̃6, respectively, on any of the set of symme-
try equivalent lateral positions encoded in (Q̃1, Q̃2, Q̃3, Q̃4) leaves this undefined otherwise (cf
Fig. 6.6). Hence, Eq. (6.21) maps the six physical degrees of freedom to a seven-dimensional vec-
tor Q̃ = (Q̃1, . . . , Q̃7) of redundant symmetry reduced coordinates. Ludwig and Vlachos have
used an analogous transformation for the neural network input within their PES interpolations
of H2 on Cu(111) and Pt(111), properly adjusted to the symmetry of fcc(111) surfaces.340,341
Unfortunately, both in their case and here, this has several disadvantages and problems:

1. Far the worst for the reasons explained above, Q̃ is obviously not invariant when swapping
atoms A and B, i.e. exchange symmetry is not incorporated.

2. Equations (6.21) introduce additional symmetry when both atoms of the diatomic are
located on symmetry equivalent lateral positions, i.e. Q̃1 = Q̃3 and Q̃3, Q̃4: As illustrated
in Fig. 6.7, nonequivalent molecular configurations are mapped to the same Q̃, so that
the injectivity of the desired transformation illustrated in Fig. 6.4 is violated. Only very
recently, Groß has shown how severely such an accidental symmetry in the underlying
PES can affect the sticking coefficient calculated therewith: The latter is falsified by more
than a factor of two for certain incidence energies.363 Of course, depending on the kind
of degeneracy and its importance for particular entrance channels this cannot easily be
generalized, i.e. the systematic error may even be be larger for other systems.

3. The neural network interpolation quality has been found empirically to largely benefit
when a physically motivated decay of corrugation with increasing distance towards the
surface is directly incorporated into the transformed lateral coordinates. This is com-
pletely in line with experiences of Lorenz, Behler and coworkers.338,339,342

All of these shortcomings of Eqs. (6.21) are taken care of by the following transformation to
symmetry adapted coordinates Q = (Q̃1, Q̃9):

Q1 = 1
2
[
f(ZA) · gfcc100

1 (XA, YA) + f(ZB) · gfcc100
1 (XB, YB)

]
(6.22a)

Q2 = f(ZA) · gfcc100
1 (XA, YA) · f(ZB) · gfcc100

1 (XB, YB) (6.22b)

Q3 = 1
2
[
f(ZA) · gfcc100

2 (XA, YA) + f(ZB) · gfcc100
2 (XB, YB)

]
(6.22c)

Q4 = f(ZA) · gfcc100
2 (XA, YA) · f(ZB) · gfcc100

2 (XB, YB) (6.22d)

Q5 = f(Z) · gfcc100
1 (X,Y ) (6.22e)

Q6 = f(Z) · gfcc100
2 (X,Y ) (6.22f)

Q7 = f(Z) (6.22g)
Q8 = d (6.22h)

Q9 = cos(ϑ)2 , (6.22i)

where f(x) = exp(−1
2x) like in previous work338,339,342 takes care of damping the sensitiv-

ity to corrugation of the surface potential to be interpolated for increasing distances from
the surface. Exchange symmetry has been included by symmetrizing (Q̃1, Q̃3) and (Q̃2, Q̃4)
to (Q1, Q2) and (Q3, Q4), respectively. The same could have been done with (Q̃3, Q̃6), but
Q8 = Q̃7 together with Q9 already fully include the distances of both atoms from the surface
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invariant under exchange symmetry in a much simpler way. Accordingly, the six-dimensional
vector Q6 = (Q1, Q2, Q3, Q4, Q8, Q9) already constitutes a better and simpler (since lower di-
mensional) map than Q̃ from Eqs. (6.21). However, properly symmetry transformed center
of mass coordinates (Q5, Q6, Q7) need to be added in order to resolve the injectivity problem
described before as illustrated in Fig. 6.7. Thus, Eq. (6.22) constitutes the desired map with
the properties sketched out in Fig. 6.4. Unfortunately, a proper mathematical prove is not
trivial. Obviously, Q is differentiable with respect to both Cartesian and spherical coordinates.
An inverse transformation for Eqs. (6.22) cannot be easily constructed. It could be useful in
practice but is not necessary here as only forward evaluations are required to evaluate energies
and forces of the PES to be interpolated. Hence, injectivity on the quotient spaces Qcart or
Qsph is difficult to show. Therefore, this has been verified only numerically by calculating Q
for a very large number of sets of points representing different symmetry classes, i.e. elements
of the quotient spaces. No duplicates of Q or indications thereof have been found.v
One reason why this received so much attention is that transformations, which do not have

the desired properties, can easily go unnoticed during neural network training and evaluations.
As mentioned before, this appears to be the case in the work of Ludwig and Vlachos340,341 –
with unknown consequences for statistical properties obtained therewith. On the other hand,
Behler and coworkers did even observe a significantly better interpolation quality only after
adding transformed center of mass coordinates according to their “symmetry functions”.342
They did not analyze the reasons though, which in fact can also be related to a “restoration
of injectivity” of their map. Hence, a correct description of the physical system – apart from
being desirable from a theoretical point of view – may even yield practical benefits, too.
Generalization to heteronuclear diatomics is simple: In Eqs. (6.22), only the symmetrization

of (Q1, Q2, Q3, Q4) needs to be removed, i.e. they simply can be replaced by the raw values
of gfcc100

1 (x, y) and gfcc100
2 (x, y) for both atoms. Obviously, the only surface specific part of

Eqs. (6.22) are the lateral coordinate transformations gfcc100
1 (x, y) and gfcc100

2 (x, y). Since the
idea behind them is not triangulation, only two of them are required for each atom. Instead
of eleven “symmetry functions” which have been used by Behler and coworkers in their work
for fcc(111) surfaces,342 only a nine-dimensional input vector for the neural network is required
here. This diminishes the number of weights quite considerably (cf Section 6.1.3), reducing the
complexity of NN training and accelerating its evaluation. Further improvement along these
lines brings up the mathematically challenging question whether a coordinate transformation
can be constructed with properties as sketched out in Fig. 6.4, but whose image is embedded in
a Rn with dimension n < 9, and if so what might be the smallest n possible. Within the scope
of this thesis, this question remains unanswered. Even if perhaps not yet the optimal choice,
Eqs. (6.22) can easily be used for other surfaces if proper replacements for Eqs. (6.17) can
be found. In principle, only two proper linearly independent truncations of the corresponding
Fourier series with the right symmetry properties are required. Indeed, stimulated by ongoing
work,52 such truncations are given in Appendix A for each of the low-index surfaces ((100),
(110), (111)) of fcc and bcc crystalsvi – with reciprocal lattice vectors Gij among i, j ∈ {0, 1, 2}
in each case. Their constructions have been guided and hence greatly simplified by intersection
plots equivalent to Figs. 6.5 and 6.6, which are included in Appendix A as well. These plots

v Applying the implicit function theorem might a starting point, but only locally for an environment around a
point. Accordingly, the numerical treatment might even be the best way to address global injectivity from a
mathematical point of view.

vi Even a fcc(111) surface with “artificial” six-fold symmetry, tailored for PESs with practically degenerate
energies on fcc and hcp hollow sites, is included.
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allow to check adherence to the right lateral (i.e translational and point group) symmetry of
the underlying surface “at a glance”, which is then automatically carried forward to the more
complicated resulting total transformation based on Eqs. (6.22).
Altogether, the transformation to symmetry adapted coordinates is completely independent

of the interpolation scheme which is employed, i.e. other methods might benefit thereof as well.
For a concise comparison of different interpolation methods currently in use in gas-surface
dynamics, which addresses both accuracy and efficiency, this should be taken into account.
Such a comparison, albeit very desirable, is still missing.

6.1.4.3. Forces

For the molecular dynamics trajectories calculated in the following, forces, i.e. derivatives
of the interpolated potential energy surface with respect to the (physical) coordinates of the
adsorbateRph ∈ {Rcart,Rsph}, are needed. According to Eq. (6.15), they are given analytically
by application of the chain rule

∇RphV6D ≈∇QV NN
6D ·

∂(Q1, . . . , Q9)
∂(Rph

1 , . . . , Rph
6 )

, (6.23)

where the Jacobian of the symmetry adapted coordinates Q with respect to the physical coor-
dinates R is required.vii

6.2. Technical Details
6.2.1. DFT Calculations
In generalization of the adsorption energies given by Eq. (5.9) discussed in Section 5.3, the
interaction potential V6D for selected molecular configurations is calculated according to

V6D(Rph) =
[
E100

O2@Pd(Rph)−
(
E100

Pd + EO2

)]
, (6.24)

where all terms on the right-hand side are obtained from corresponding DFT calculations. The
sign has been chosen such that for negative values the combined system of both oxygen atoms in
contact with the Pd(100) surface is more energetically favorable than the two separate systems,
i.e. an (isolated) O2 molecule in gas phase and the clean metal surface. It hence indicates an
exothermic reaction with accompanying release of (binding or chemisorption) energy.
Based on the computational setup established in Chapter 5, 3× 3 slabs of the primitive unit

cell of the Pd(100) surface consisting of five layers and a vacuum distance of 15Å (cf Section 2.6)
are used for the evaluation of V6D. Spin polarized calculations with the exchange-correlation
functional due to Perdew, Burke and Ernzerhof (PBE)85,86 for about 3500 configurations have
been performed, heavily relying on the DM/EDFT hybrid scheme for electronic minimization
described in Section 5.3 and reusing charge densities and wave functions from those close by
wherever possible. The latter proved to be of particular importance in the vicinity of the
spin transition from the O2 triplet to a singlet state, which will be discussed in more detail in
Chapter 7.

vii In principle, this Jacobian can also be obtained by automatic differentiation (see e.g.
http://www.autodiff.org) as commonly employed in computer algebra systems. Within the present
approach, the respective derivatives could be easily written down and were quickly coded explicitly.
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The generation of the DFT data was started with a systematic mapping of configurations as
a function of (Z, d) over different lateral high-symmetry sites {Xi, Yi}i in the irreducible wedge
of the surface unit cell and for different angular orientations {ϕi, ϑi}i. The corresponding 33
elbow plots are shown in Appendix B.1 of Appendix B. Consistent with the lack of long range
dispersive interactions in the PBE functional (cf Section 2.5), for Z > 5Å, corrugation has
been found to be below the numerical uncertainties of the underlying DFT calculations (cf
Section 5.3), resulting in V6D(X,Y, Z > 5Å, d, ϑ, ϕ) ≈ VO2(d). The database has thus been
extended by further values for Z > 5Å from the calculated binding energy VO2(d) of a free
oxygen molecule in the gas phase.
With increasing knowledge about the PES as obtained from dynamics on different neural

network interpolations (vide infra) more configurations have been added also in lateral and
angular directions at particular heights and intermolecular distances {Zi, di}i, which the for-
mer showed to be frequently visited. These are listed in detail within the (X,Y ) and (ϕ, ϑ)
contour plots, i.e. other, less frequently considered two-dimensional cuts through V6D(Rph),
in Appendix B.2 and Appendix B.3 of Appendix B, respectively. Consistent with the results
from Section 5.3, no indications for subsurface oxygen were found to be of relevance for the
energy regime of interest here. In order to ensure that the neural network interpolation thus
reliably yields Z > 0Å in the trajectories, highly repulsive values V max

6D (Z = 0Å) = 5 eV were
finally added to the database – consistent with the damping according to Eq. (6.25) discussed
in Eq. (6.25). The calculation of precise values from DFT (typically showing exponentially
increasing energies towards Z = 0Å) would have required a significant computational effort,
and would only have complicated the interpolation procedure, but not have changed the actual
dynamics. A similar procedure was applied for d ≤ 1.0Å as well, which also typically yields
exponentially increasing energies. In the end, the input data set for the interpolation finally
consists of more than 6000 values for V6D(Rph) altogether.

6.2.2. Neural Network Interpolation
Along the lines of previous work47,342 neural network training (cf Section 6.1.3) has been simpli-
fied by limiting highly repulsive energies to V6D(Rph) ≤ V max

6D = 5 eV, which is still much larger
than the energy range of interest for the ensuing molecular dynamics trajectories discussed
below. The input data has thus been preprocessed through a damping function

V damped
6D (V6D) =


V6D for V6D ≤ V thresh

6D ,

V max
6D −∆ · exp

[
−(V6D−V thresh

6D )
∆

]
for V6D > V thresh

6D ,
(6.25)

where ∆ =
(
V max

6D − V thresh
6D

)
. For the present system, the threshold energy has been set to

V thresh
6D = 4 eV. In contrast to the “cutoff function” used before47,342 the one given by Eq. (6.25)

is also properly differentiable at the onset of the damping at V thresh
6D – ensuring conceptually

consistent forces.
Using the adaptive extended Kalman filter (EKF) algorithm including the modifications de-

scribed introduced by Lorenz and coworkers339 for neural network training, the sensitivity is
further focused on the most relevant parts of the PES, where also the validity of the frozen sur-
face approximation is least impaired, by assigning training weights to the input data according
to

ωtrain(Z, d, V damped
6D ) =

{
1.0 if d < 0.99Å or Z = 0Å
ωZ(Z) · ωV (V damped

6D ) otherwise
, (6.26a)
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where

ωZ(Z) =



500 if Z ≤ 0.5Å
1000 if 0.5Å < Z ≤ 1.0Å
2000 if 1.0Å < Z ≤ 1.5Å
2500 if 1.5Å < Z ≤ 2.0Å
3000 if 2.0Å < Z ≤ 2.5Å
4000 if 2.5Å < Z ≤ 3.5Å
5000 if Z > 3.5Å

(6.26b)

and

ωV (V damped
6D ) =



1
20 if V damped

6D > 4.0 eV
1
10 if 1.5 eV ≤ V damped

6D ≤ 4.0 eV
1
5 if 1.0 eV ≤ V damped

6D < 1.5 eV
1
2 if 0.5 eV ≤ V damped

6D < 1.0 eV
1 otherwise

. (6.26c)

Several values for the parameters of the forgetting schedule employed within the EKF, which
help to avoid early trapping in local minima during neural network training, have been tried.
The best fit quality has been obtained with λ(0) = 0.98 and λ0 = 0.99670 for the present
system, using the same notation as in the aforementioned work. Hyperbolic tangents were used
as activation functions (cf Section 6.1.3). Between 1 % to 2 % of each input data set have first
been randomly selected for the test set. Over 20 neural networks with different topologies have
then been trained in each case, focusing on two and three hidden layers with different numbers
of nodes. Training has been stopped after 150 epochs as the error of both training and test set
did not decrease significantly any more and overfitting was not yet observed.
Unfortunately, in contrast to O2 on Al(111), a good reproduction of the DFT data could not

be primarily focused on a well-defined barrier region rather far away from the surface.48,76 When
focusing on a rather benign quantity like the initial sticking coefficient, which is dominantly
decided by the passing through and being reflected at the barrier in such a region, this a
perfectly viable strategy. Instead, when the results of much less benign, more detailed statistical
quantities like lateral and angular distributions (cf Section 6.3.2) are to be trusted, a much more
careful global verification of the quality of the obtained PES is required. In addition to the
global mean average deviations (MADs) and root mean square errors (RMSEs), the latter
has thus been carefully monitored by numerous two-dimensional (d, Z), (X,Y ) and (ϑ, ϕ) cuts
through the obtained neural network fits, including information about the errors of individual
data points as exemplified by Fig. 6.8, Fig. 6.9 and Fig. 6.10 and collected in Appendix B for the
best fit that has finally been obtained. Together with the evaluation of MADs and RMSEs for
selected regions, this has enabled the selective iterative improvement indicated in Section 6.2.1
before by performing DFT calculations for specific points as needed.
The aforementioned finally obtained best fit is based on a neural network with a {9−29−29−

29− 1tttl} topology. The RMSE for relevant energies is less than 20 meV. Regions which turn
out to be particularly important for the dynamics (vide infra) are typically even better described
as illustrated in the contours plots shown in Fig. 6.8, Fig. 6.9 and Fig. 6.10 – in comparison
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Figure 6.8.: Two-dimensional (Z, d) cuts through the six-dimensional PES for X = 0.5a100
Pd ,

Y = 0.5a100
Pd , ϑ = 90° and ϕ = 0° as indicated by the inset. a) Contouring is based on

a two-dimensional interpolation with thin plate splines.364 Only the indicated (calculated)
points from the NN data base in this particular cut plane are used and matched exactly by
the resulting interpolation spline. b) The continuous description underlying the contouring is
based on the best six-dimensional NN fit (using all of the several thousands of configurations
in the training set) as detailed in the text. For each of the points of the whole NN input data
set which are in the cutting plane the respective errors of the NN description is illustrated
by the marker size. The spacing of the contour lines is 0.25 eV in both cases.

with “simple” spline interpolation viii in the two respective dimensions. As indicated before, a
comprehensive account of the fitting quality is given in Appendix B. Results presented below
in Section 6.3 have also been recalculated for a different, slightly worse interpolation, but no
significant changes were found.

6.2.3. Molecular Dynamics Simulations

The MD simulations relied on a Bulirsh-Stoer integrator as described in Section 3.3.2 for the
classical equations of motion in their spherical formulation in Eq. (6.11). A large number of
trajectories can this way be reliably obtained based on the neural network interpolated V6D
with negligible computational effort. The Jacobian of the coordinate transformation has been
carefully checked against numerical derivatives using simple finite differences in order to ensure
analytically correct forces according to Eq. (6.23). Numerical difficulties due to singularities for
sin(ϑ) → 0 have not been encountered. The integration accuracy has been adjusted to ensure
energy conservation within 5 meV even for the longest trajectories.

viii So-called thin plate splines364 have been employed, a Fortran 77 implementation of which is freely available
through (e.g.) http://gams.nist.gov/serve.cgi/Module/CMLIB/LOTPS/838

92

http://gams.nist.gov/serve.cgi/Module/CMLIB/LOTPS/838
http://gams.nist.gov/serve.cgi/Module/CMLIB/LOTPS/838


6.2. Technical Details

0.00 0.25 0.50 0.75 1.00

X (a 100Pd )

0.00

0.25

0.50

0.75

1.00

Y
(a
10
0

P
d
)

a)

-1
.0

0.0
1.0

1.0

calculated

unfolded

0.00 0.25 0.50 0.75 1.00

X (a 100Pd )

b)

-1.0

0.0

1.
0

1.
0

< 10 meV

< 50 meV

< 100 meV

> 100 meV

¡1:5

¡1:0

¡0:5

+0:0

+0:5

+1:0

V
N
N

6D
(e
V
)

X

Y

Figure 6.9.: Two-dimensional (X,Y ) cuts through the six-dimensional PES for Z = 1.5Å,
d = 1.3Å, ϑ = 90° and ϕ = 0° as indicated by the inset. a) and b) have been obtained
by two-dimensional spline and six-dimensional NN fit as detailed in the caption of Fig. 6.8.
Symmetry equivalent configurations in the NN data set have been unfolded for the former
to fill the whole cut plane.
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Figure 6.10.: Two-dimensional (ϑ, ϕ) cuts through the six-dimensional PES for X = 0.5a100
Pd ,

Y = 0.5a100
Pd , Z = 1.5Å and d = 1.3Å. a) and b) have been obtained in the same fashion as

detailed in Fig. 6.8 and Fig. 6.9.
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Initial conditions are chosen such that trajectories start at Z0 = 6Å above the surface,
corresponding to a free O2 molecule as described in Section 6.2.1 at its equilibrium bond length
d0 (cf Section 5.2). Any classical representation of the zero point energy is neglected, i.e.
molecules do not initially rotate or vibrate. For different initial kinetic energies Ei, lateral
positions (X0, Y0) in the surface unit cell and angular orientations (ϑ0, ϕ0) are sampled using
a conventional Monte Carlo procedure based on a uniform distribution U , thus resulting in
random values to be drawn from the distribution

f(X0, Y0, ϑ0, ϕ0) = U(X0) U(Y0) |sin(ϑ0)|U(ϑ0) U(ϕ0) . (6.27)

Here, equal distribution of molecular configurations on the unit sphere S2
0(ϑ0, ϕ0) in R3 accord-

ing to

U(S2
0) dS2

0 = |sin(ϑ0)|U(ϑ0)U(ϕ0) , (6.28)

has been properly taken into account.ix Focusing on normal incidence, the initial momentum
is completely defined, with the only non-zero component given by

PZ = MŻ =
√

2MEi ≈ 311
√
M

u

√
Ei

meV 10−23 u m s−1 (6.29)

Equally, since Ż = ŻA = ŻB,

PA = mA(0, 0, Ż) (6.30a)
PB = mB(0, 0, Ż) , (6.30b)

where 1
2M = mA = mB = mO ≈ 16 u, with mO denoting the atomic mass of oxygen.

6.3. Results and Discussion
6.3.1. Initial Sticking
Figure 6.11 shows the first-principles ab initio sticking coefficient S0(Ei) as a function of initial
kinetic energy Ei, obtained from classical dynamics on the previously obtained adiabatic six-
dimensional PES. For each value of Ei, 2000 trajectories were first calculated, and one of the
following possibilities was considered for their individual outcomes:

1. A trajectory is counted as dissociative sticking event when the O2 bond length d is
stretched beyond 2.4Å, i.e. twice the gas-phase distance, and the associated velocity
component ḋ is still positive. This is a rather conservative criterion, as some variation of
the critical bond distance has shown to have no effect on the sticking curve.

ixThe reader is reminded that the surface element

dS2
0 =

∣∣∣∣∂er,0
∂ϑ0

× ∂er,0
∂ϕ0

∣∣∣∣ dϑ0 dϕ0 = |sin(ϑ0) er,0| dϑ0 dϕ0

is defined based on the radial unit vector in spherical coordinates

er,0 = (sin(ϑ0) cos(ϕ0), sin(ϑ0) sin(ϕ0), cos(ϑ0)) .
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Figure 6.11.: Initial sticking coefficient S0 for O2 on Pd(100) based on trajectory calculations on
the six-dimensional PES developed within this chapter. The scarce experimental data from
Chang and Thiel365 as well as Rocca and coworkers366 is also plotted (with realistic error
bars) for comparison. As detailed in the text, only dissociative sticking has been observed.

2. A molecule is counted as reflected when its center of mass reaches the initial starting
distance of 6Å with a positive velocity component Ż. The results were equally found to
be insensitive to reasonable variations of this criterion.

3. Should a trajectory neither have yielded dissociation or reflection after 6 ps, it is counted
as trapped. This maximum integration time has to be treated with particular care: On
the one hand, if chosen too long, trajectories will become systematically wrong due to the
neglect of energy transfer to the frozen surface. On the other, if too short, slow passages
around early barriers might not be properly captured. Fortunately, for the present system,
dissociation or reflection is obtained within 2 ps for more than 99.995 % of the trajectories.
even for lowest initial kinetic energy of 25 meV that has been considered.

The statistical convergence of the curve shown in Fig. 6.11 was verified by doubling the number
of trajectories thereafter.
Considering the scarcity of the of available experimental data,365,366 the theoretical curve

agrees excellently. This has to be seen in light of e.g. the preceding work on O2 at Al(111),
where a similarly calculated S0 deviated by up to two orders of magnitude in particular for
lowest incidence energies as discussed in more detail in Chapter 7. For that system, experiment
and theory could only be reconciled by assuming a strongly non-adiabatic spin transition of
the oxygen molecule.47–50,183,299 In turn, the present results indicate that the latter is not
necessarily a general effect during dissociative adsorption of O2 on metal surfaces. This is
further corroborated by other indications based on the results obtained in Section 7.3.2 in the
context of electron-hole pair excitations in the substrate. In fact, only recently, an adiabatic

95



6. Statistical Properties

description has also been found to yield good agreement with experimental data for the sticking
of O2 on Ag(111) as well.52 The dominant role of non-adiabatic effects might thus indeed be
limited to the adsorption dynamics of O2 on surfaces of simple metals like aluminum.
The aforementioned “quick decision” about the outcome of a trajectory after 2 ps already in-

dicates that the obtained dissociative sticking occurs directly, i.e. without preceding trapping
in a so-called precursor state. This is in agreement with results from recent molecular beam
experiments for O2 on Pd(100): Initial sticking was observed to be depending on coverage,
but independent of surface temperature, which contradicts a precursor dominated mechanism
at least for temperatures higher than 273 K considered in that study.17 Quite in contrast, for
the (111) surfaces of both palladium and platinum, an indirect, precursor related mechanism
has been proposed based on the measured decrease of S0 for low incidence energies, which is
similar to what has been obtained in Fig. 6.11, and results from high-resolution energy loss
spectroscopy (EELS).367–369 There, this decrease is a dynamical result of the so-called steering
effect:316,320,363 Inspection of individual trajectories shows that faster molecules do not have
the time to find a path leading to dissociation within the surface potential, and thus are simply
reflected before.x This will be further corroborated in Section 6.3.2. It has also been observed
in dynamical simulations for O2 on Pt(111) based on a high-dimensional PES, albeit for molec-
ular trapping instead.337 In addition to adsorbed oxygen atoms, HREELS measurements for O2
adsorbed on Pd(100) at 80 K also indicate the presence of molecular oxygen,370–372 which could
act as a potential precursor state in the dynamics. In fact, the elbow plot shown in Fig. 6.8 also
shows a shallow local minimum indicative for such a state. Vibrational frequencies calculated
in this minimum based on both the interpolated PES and DFT directly yield indeed excellent
agreement with the measure energy loss peak at 90 meV.370–372 Of course, the frozen surface
approximation might artificially limit the importance of a precursor dominated dissociation
mechanism. However, the fact that a sticking curve very similar to the measured one for O2
on Pd(111) can be obtained without invoking the latter might also stimulate a closer reexami-
nation of the conclusions reached for that system based on a state-of-the-art high-dimensional
dynamical model like the present one.

6.3.2. Entrance Channels

In order to characterize the entrance channels to dissociation, phase space distributions caused
by the adsorption dynamics at various heights above the surface have been extracted. Since
these are less benign than the simple initial sticking coefficient, more extensive sampling is
required. Thanks to the negligible computational cost of the trajectory calculations on the
interpolated PES, 1, 000, 000 trajectories could be integrated easily.
Starting with proper randomly distributed initial conditions in X, Y , ϑ and ϕ as detailed in

Section 6.2.3 and an initial kinetic energy of Ei = 50 meV, (i.e. still thermal molecules in the
high-energy Boltzmann tail), Fig. 6.12 shows the resulting distributions in these coordinates
at Z = 1.5Å during their initial encounter with the surface. As verified in Section 6.3.3, the
frozen surface approximation can still be trusted there.
First of all, all plots in Fig. 6.12 show the corresponding perfect fourfold symmetry of the

(frozen) Pd(100) surface – as to be expected due to proper incorporation of symmetry into the
PES according to Section 6.1.4. The distributions clearly peak at X = Y = 0.5a100

Pd together
with ϑ = 90° and ϕ = 0°, i.e. oxygen molecules centered above the hollow site with their

x Eventually, for even higher incidence energies (not shown in Fig. 6.11), sticking increases again.
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Figure 6.12.: Probability distributions of a) (X,Y ) and b) (ϑ, ϕ) coordinates during the initial
encounter of O2 molecules with the Pd(100) surface at a height Z = 1.5Å above the latter.
Results were obtained from extensive phase space sampling by 1, 000, 000 MD trajectories and
were slightly broadened by two-dimensional Gaussians, whose widths were carefully chosen
to about three times the spacing of the plotting grid.

molecular axis oriented parallel to the surface along a [100] direction. According to Fig. 6.11 in
Section 6.3.1 essentially all of the molecules stick dissociatively for the selected initial kinetic
energy. Therefore, second, and more importantly, the aforementioned configuration is revealed
as the dominant entrance channel for dissociation. This can be easily understood by returning
to the properties of the underlying PES: Figure 6.9 and Fig. 6.10 clearly reflect the properties
of the obtained distributions. Qualitatively identical distributions have also been obtained for
several values of Ei in a range between 25 meV to 400 meV. Their absolute magnitude is reduced
with increasing Ei in the same way as the initial sticking coefficient plotted in Fig. 6.11. This
clearly corroborates what has already been invoked before in Section 6.3.1: The O2 molecules
are thus less efficiently steered into the dominant entrance channel identified here.

6.3.3. Surface Mobility
Finally, the influence of surface mobility has been investigated based on a few AIMD trajectories
that were obtained based on the same computational setup as described in Section 6.2.1 within
the microcanonical ensemble. The implementation of the velocity Verlet algorithm available
within Castep was used for the time integration with a time step of 2.5 fs (cf Chapter 3).
Energy conservation within a few meV could only be achieved by again heavily relying on the
DM/EDFT electronic minimization scheme described in Section 5.3. The AIMD trajectories
are started from Z(t = 0 fs) = 6Å above the surface like in the frozen surface description based
on the interpolated potential energy surface, and the initial velocity of Ż = 5.5Åps−1 of the O2
molecule is perpendicular to the surface (cf Section 6.2.3). The latter corresponds to an initial
kinetic energy of Ei = 50 meV according to Eq. (6.29) as before for the analysis presented in
Section 6.3.2, while the palladium atoms in the slab forming the surface are initially at rest.
As illustrated by Fig. 6.13 for one of these trajectories, the resulting displacements of the
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Figure 6.13.: a) Center of mass distance Z(t) of an oxygen molecule from the surface with its
molecular axis oriented parallel to the surface and centered above the hollow site (as shown
in the inset below). b) Absolute values of displacements of the palladium atoms UI(t) in
the top layer of the surface. Atoms are numbered as indicated by the inset. Starting from
Z(t = 0 fs) = 6Å above the surface the first 500 fs of the trajectory are not shown. The
O2 molecule moves with constant initial velocity Ż(t = 0 fs) = 5.5Åps−1 during that time
corresponding to an initial kinetic energy Ei = 50 meV according to Eq. (6.29). As no energy
has thus been transferred to the surface atoms, no deviation from their initial equilibrium
positions can be observed meanwhile.

palladium atoms in the top layer of the surface set in rather late during the initial encounter
with the O2 molecule, and do not exceed 0.1Å even when the latter is at a height of Z = 1.5Å.
Qualitatively identical results have been obtained for the other AIMD trajectories as well. The
steering into the dominant entrance channel identified before according to the statistics obtained
in Section 6.3.2 is thus very unlikely affected by the neglected surface mobility. However, as
discussed in further detail in Part III, the latter becomes crucial for the ensuing dissipative
dissociation dynamics on the surface. Even in the rather small 3× 3 simulation cell used here,
Fig. 6.13 shows significantly larger displacements for t > 700 fs.

Since the frozen surface description based on an interpolated PES is computationally very
appealing, an extension by a suitable “energy sink” that mimics the influence of the substrate
on the adsorbate dynamics would be very interesting. Adding a friction term depending linearly
on the velocity, which appears in several models in the literature, very often even only with a
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scalar friction coefficient (cf Chapter 8), is a very simple and straightforward ansatz to do so.

FAIMD
I = F 6D

I + F fric
I

= −∇RIV6D + ηfric
I ṘI

for I ∈ {A,B} (6.31)

Fitting attempts for the friction tensors ηfric
I using the available data for the forces from the

neural network fit F 6D
I , the velocities of both oxygen atoms ṘI (I ∈ {A,B}) and the FAIMD

I

target force from the AIMD trajectories starting from identical initial conditions have turned
out to be a hopeless endeavor: Huge deviations larger than 1 eVÅ−1 remain between the
left-hand side of Eq. (6.31) and its right-hand side. Probably not surprising considering the
generalized Langevin equations (GLEs) approach described in Section 8.1, the influence of
the complex many-body system constituted by the metal surface (without even considering
potential electronic non-adiabatic effects) cannot be condensed into simple friction tensors for
the description of individual trajectories. Whether this prevails also on a statistical level, i.e.
for observables which are (sufficiently) averaged over the fine grained microscopic details of the
time evolution of the system is topic of current research.

6.4. Summary and Outlook

A first-principles based statistical treatment of the initial adsorption dynamics has been carried
out according to a “divide and conquer” strategy relying on the Born-Oppenheimer approxima-
tion. In this step, the substrate has been kept frozen, resulting in a six-dimensional potential
energy surface (PES).
Neural networks (NN) have been used as a very adaptive mathematical tool to obtain a

continuous PES model from DFT data calculated for over 3000 molecular configurations above
the surface including the strong corrugation of the latter. For an accurate NN-PES based on
this rather small input data set with less than 46 members (which would be the number of
points on a regular cubic with only four points per direction), the development of a proper
symmetry adapted coordinate transformation turned out to be an essential key challenge. The
resulting scheme has even been generalized to other low-index surfaces in Appendix A and
already allowed to obtain another high-quality NN-PES for O2 on Ag(111).52 It is not tied
to neural networks and therefore can also allow to overcome problems encountered with other
interpolation schemes, e.g. the modified Sheppard method, in future applications.
The initial sticking coefficient S0 for O2 on Pd(100) was calculated based on classical dy-

namics on the aforementioned adiabatic NN-PES and shows good agreement with presently
available sparse experimental data. An extensive sampling of phase space revealed that the
oxygen molecules are steered into a single entrance channel that dominates the dissociation
dynamics: Predominantly, the latter thus occurs with the molecular axis parallel to the sur-
face, along a [100] direction and centered over the fourfold hollow site. As picked up below this
will greatly simplify further investigations in the remainder of this work. Comparison with ab
initio molecular dynamics trajectories verifies that substrate motion is still negligible during
this initial steering and that a simple friction model cannot mimic the influence of the latter
on the ensuing adsorbate dynamics.
Finally, the obtained NN-PES opens perspectives for interesting future dynamical studies

for this system – in particular in light of the intriguing recent results of experiments by Rocca
and coworkers with beams of rotationally polarized oxygen molecules impinging on a Pd(100)
surface.17–19 They have observed that so-called helicopters and cartwheels, i.e. rotationally
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excited O2 molecules with their molecular axis aligned perpendicular and parallel to the sur-
face, respectively, yield different initial sticking and seem to form adsorbed species of different
reactivity towards CO oxidation. Although obviously strongly indicating a dynamical cause, at
the moment, however, no conclusive explanation can be offered based on the present theoretical
model. Further experimental data, which is currently under way, might help “steering” further
theoretical efforts in order to elucidate the previous observations.
Building upon the firm background of a dominant entrance channel for dissociation the goal of

the remaining parts of this thesis is to investigate different energy dissipation channels in detail,
accurately qualifying their importance for the dissociation dynamics. In Chapter 7, the role of
electron-hole pair excitations is estimated based on trajectories from the here obtained NN-PES,
benefiting greatly from the knowledge about their individual statistical relevance. Thereafter in
Part III, details and trends of the interplay of adsorbate and phonon dynamics come into focus.
First discussed therein are simple extensions to a six-dimensional PES, which would certainly
be desirable given the thus enabled statistical treatment at very modest computational cost
(once the PES is obtained). However and along the lines of the failure of the simple friction
model, it turns out that for molecules which are significantly heavier than H2 and have a more
complicated electronic structure, a more accurate reference within the spirit of first-principles
modeling is required. In the end, the results obtained in this chapter are simply used to define
realistic initial conditions “closer to the surface” from where a detailed dynamical treatment
including substrate mobility is started.
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Figure 7.1.: Schematic illustration of electron-
hole pair excitation during the impingement
of a gas particle on a metal surface. An elec-
tron is excited from an occupied state be-
low the Fermi level εF to an unoccupied state
above, resulting in an excited state commonly
referred to as electron-hole (e-h) pair.

Notwithstanding all the efforts detailed in the
previous chapter to obtain a quantum me-
chanical, i.e. high-quality, description of the
(initial) interaction of O2 molecules with a
frozen Pd(100) surface, the obtained potential
energy surface (PES) and all concomitant re-
sults are still based on the Born-Oppenheimer
approximation (BOA) combined with a clas-
sical treatment of the nuclei. (cf Section 2.2
in Part I).
This second approximation is usually

not considered to be severe in gas-surface
dynamics.22 Even for H2, with its de Broglie
wave-length considerably smaller than that of
O2, a quantum mechanical description of the
nuclei (within the BOA) has only very lim-
ited influence on the dynamics on the very
same320 or the (111) low-index surface of
palladium.373 For heavier atoms like e.g. ni-
trogen, a similar treatment has confirmed tunneling to have negligible influence on the reaction
rate of N2 molecules on a (stepped) Ru(0001) surface – the quality of the interpolation of the
Born-Oppenheimer PES having in fact a much bigger influence on the latter.151 Accordingly,
there is no obvious necessity to deal with the complete electron-nuclear wave function, funda-
mental time-dependent properties of which are a topic of present active research even yet from
a theoretical point of view.71,374

However, the validity of the BOA in particular for dynamics on metal surfaces has been
lively discussed for quite a long time. As for example Tully30–35,38,39 (but also many others)
have frequently pointed out, the lack of a band gap in metallic systems should allow electronic
excitations (i.e. electron-hole pairs) of arbitrarily low energies to easily couple with the nuclear
motion a particle impinging from the gas phase. This is depicted schematically in Fig. 7.1.
On the other hand, recent comparisons to experimental data for hydrogen375 but also nitrogen
molecules44 on metallic surfaces indicate that electronically adiabatic descriptions provided
within the BOA (i.e. neglecting any electronic excitations) seem to work extremely well in those
cases. The reader is referred to more references in a very recent mini-review by Luntz.376 It is
worth pointing out that a high-dimensional description of the nuclear motion of the impinging
adsorbate has been found to be significantly more important than the effect of electron-hole
pair excitations44 – even though the description of the latter in that work has been criticized
to lack the necessary accuracy.45,46 Here, high-dimensional means the inclusion of all adsorbate
degrees of freedom on a frozen substrate surface into an interpolated ab initio PES governing
the dynamics, i.e. a state-of-the-art model as used in Chapter 6.
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7. Electronic Non-Adiabaticity

7.0.1. Non-adiabaticity due to Adsorbate Degrees of Freedom

Quite in contrast, when using such a description for O2 on Al(111), even one of the simplest
statistical properties characterizing the dynamics is not properly described: Six-dimensional
adiabatic dynamics on PESs obtained with the PBE and RPBE exchange-correlation function-
als yield an initial sticking which is several orders of magnitude higher compared to experiment,
at least for low energies.47,48 Proposing a highly non-adiabatic transition from the spin-triplet
state of the free O2 molecule in the gas phase to the singlet (“quenched” spin) state when ad-
sorbed on the surface has allowed to reconcile DFT-based PESs with the experimental data.47,48
This can further be improved by actually allowing for transitions between a singlet and a triplet
potential energy surface49,50 obtained within constrained DFT77 according to “surface hopping”
within the “fewest switches” algorithm originally proposed by Tully.377 Therefore, not account-
ing for excitations of the electronic degrees of freedom of the substrate in those models seems
to be reasonable – in this respect similar to the other systems mentioned before. It is “only”
the spin degrees of freedom of the adsorbate which apparently are responsible for the strongly
non-adiabatic behavior.
For the present system, the situation is quite different. The sticking curve presented in

Section 6.3.1 is in excellent agreement at least with the sparse experimental data. This can
be rationalized by considering the two coupling mechanisms that have been discussed for the
non-adiabatic spin transition of O2 on Al(111): Spin-orbit coupling and tunneling of elec-
trons between substrate and adsorbate. The former has been estimated to be to weak for that
system.50 However, it scales with mass, getting significantly stronger when heavier elements are
involved. In fact, from small cluster systems in the gas phase, spin-orbit coupling is well known
to strongly relax the “spin-forbiddeness” of reactions like oxygen dissociation.51 When going
from a finite to an infinite size system like a surface, spin-orbit coupling is therefore expected to
favor increased adiabaticity for O2 on Pd(100) compared to Al(111). As to the second mecha-
nism, tunneling of two electrons effectively allows to perform the spin-transition from singlet to
triplet within the continuum of states provided by the metal surface. Hence the latter acts as a
“spin bath”, quenching the spin during adsorption.47,109 The probability for electron tunneling
is generally proportional to the density of states (DOS) close to the Fermi level at the sur-
face. The latter is extraordinary high in case of Pd(100),40–43,378 which is not surprising, since
bulk palladium is even close to fulfill Stoner’s criterion for band ferromagnetism.225 Therefore,
spin transition due to tunneling, which is already perceived as the more dominant mechanism
in case of O2 on Al(111), should be even more efficient on Pd(100) compared to the simple
metal. In fact, for this system, it should be even among the highest of all transition metals.
Altogether, for the present system, both mechanisms are expected to be significantly enhanced.
This rationalizes the aforementioned good agreement of the adiabatic dynamics presented in
Chapter 6 with the experimental data a posteriori and hence gives no indications requiring to
specially account for of adsorbate induced non-adiabaticity.

7.0.2. Non-adiabaticity due to Substrate Degrees of Freedom

Nevertheless, precisely the large number of states close to the Fermi level could also facili-
tate very efficient electron-hole pair excitations. Their role in the adsorption dynamics of the
present system might not be visible for a rather benign quantity like sticking or might even
simply be hidden due to fortuitous error cancelation e.g. with the underlying DFT energetics.
From the perspective of energy dissipation, however, they might be very important. Within
this perspective, the primary focus of this chapter is to obtain a reasonable estimate of the
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energy dissipated to electron-hole pairs. Most importantly, this will allow to judge the relative
importance of the electronic energy dissipation channel for the total amount of chemisorption
energy of about 2.6 eV to be dissipated and allow to address further channels if necessary.
Looking for a suitable possibility to obtain this estimate, several approaches reported in the

literature have to be ruled out however: The time-dependent Newns–Anderson model devel-
oped of Mizielinski and coworkers has never been applied to other adsorbates than (atomic)
hydrogen.379–382 Even if parametrized based on DFT in the same way as in that work, it bears
the risk of relying upon a too approximate description of the electronic structure for the semi--
quantitative estimate desired here. Very accurate “direct” ab initio simulation of electron-hole
pair excitations within time-dependent (TD-) DFT and Ehrenfest dynamics for the nuclei have
only been applied to hydrogen atoms impinging on the (111) surface of aluminum.74,383,384 The
computational settings used have been very much at the “convergence limit”, resulting neverthe-
less in reasonable agreement with available experimental data from so-called “chemi-currents”
experiments.28 However, even with such settings the run-times for the dynamics were about
a year. Within current abilities of both hardware and available codes,385 the computationally
much more demanding present system hence cannot (yet) be treated this way. Contrarily,
the computational effort of approaches based on electronic friction theory32,386–388 depends on
the way how friction coefficients are calculated. One study already mentioned uses the local
density friction approximation (LDFA), and hence can easily afford an according incorporation
into six-dimensional dynamical studies of diatomics interacting with rigid surfaces.44 This has
been criticized to not be sufficiently accurate.45,46 Indeed, more accurate calculations of elec-
tronic friction coefficients are possible389 and have proven very successful for the description
of electronic damping of adsorbate vibrational motion.390 They have never been used so far
together with a high-dimensional adsorbate-substrate PES of ab initio quality though.300,391
More severely, already first applications within a forced oscillator model (FOM) for the elec-
trons of the substrate have revealed the proper description of spin transitions as an intrinsic
shortcoming of electronic friction theory.73,392 This, of course, makes any method based on the
latter highly problematic when trying to describe the dissociation of oxygen molecules.i
Recently, a new approach based on (“simple”) perturbation theory applied to a TD-DFT

framework has been proposed by Timmer and Kratzer.393 It does not suffer from any troubles
with spin, as the authors have demonstrated convincingly, both through theoretical considera-
tions and good agreement with the full TD-DFT data for hydrogen atoms on Al(111) already
mentioned above.383 In fact, the scheme even allows to use separate non-spin-polarized cal-
culations to describe the electronic structure of the substrate, while treating the interaction
with the adsorbate fully spin-polarized. Hence, for the present system this paves the way for
an ideal (if not even unique) workaround against the artificial ferromagnetism of the substrate
within the description with the PBE exchange-correlation functional. Computationally very
appealing is the fact that only ground state DFT calculations are required, so that a lot of
electronic structure data already generated during the calculations performed for the previous
chapter can conveniently be reused directly.ii For these reasons, this approach is considered

i Also the simple pragmatic workaround (fixing the total spin of the DFT simulation cell) proposed by Trail
and coworkers73 might not be easily applicable to the present system: In a spin-polarized description with
the PBE exchange-correlation functional, the latter attributes artificial ferromagnetism to the palladium
substrate.

ii Of course, this imposes certain storage demands: Calculations for the previous chapters were focused on total
energies only. Hence the several terabytes of accompanying electronic structure data would otherwise simply
have been deleted.
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to be the method of choice for the present system to obtain the aforementioned reasonable
estimate for energy dissipation into electron-hole pairs.
This chapter is structured as follows: First, a recapitulation of the theory developed by Tim-

mer and Kratzer393 is given, enriched by some clarifications and more detailed definitions. It is
compared to electronic friction theory where of relevance, to (also mathematically) emphasize
the aforementioned problems of the latter for the present system. Then, details about an im-
proved implementation created independently within the present work are described, allowing
to efficiently treat more numerically demanding systems like oxygen on palladium. As previous
work has mainly been focused on purely one-dimensional trajectories (of mono-atomic adsor-
bates), the generalization to curved trajectories (of multi-atomic adsorbates) is pointed out.
Finally, results for O2 on Pd(100) are presented and discussed in comparison to experimental
work, together with conclusions about the importance of electron hole pair excitation for the
dissipation of the chemisorption energy.

7.1. Theory

7.1.1. Trajectories

The starting point for the following derivation is a classical trajectory Q(t) of a particle (a
single atom or a molecule consisting of N atoms) from the gas phase impinging on the metal
surface. In general, Q is a 3N dimensional vector of Cartesian coordinates of the atoms, which
might be replaced by a suitable reaction coordinate description. It is assumed that the particle
collides with the surface and is reflected, which is commonly referred to as a “full round trip”.
Consequently, for very small and very large times t the particle is assumed to be infinitely
far away from the surface. This is meant in a physical sense such that the particle-surface
interaction vanishes. As originally proposed by Timmer and Kratzer,393 energy loss due to
interaction with the surface is neglected for the trajectory in the following. Accordingly, a rigid
surface, not allowing for any phonon excitations, is considered and energy dissipation into the
electronic degrees of freedom of the surface is assumed to be sufficiently small not to change the
trajectory significantly. If the latter is true (vide infra), these are reasonable approximations
for the aforementioned present purposes.

7.1.2. Time-Dependent Perturbation Theory

Thanks to the Runge-Gross theorem,68 the time dependent electronic many-body problem can
be mapped onto an effective single particle Hamiltonian

hσ(t) = te + vσTD,eff(t) , (7.1)

where te is the kinetic energy contribution and the time-dependent effective potential (cf
Eq. (2.29)) is given by

vσTD,eff(t) = vσTD,H(t) + vσTD,xc(t) + vTD,ext(t) . (7.2)

σ denotes collinear spin in two different channels within the framework of spin density-functional
theory (cf Section 2.5),72 and in general the same (or a compatible) notation as in Part I is used.
vσext describes the electron-ion interaction and explicitly depends on time due to the motion
of the impinging particle along its trajectory Q(t). The dependence of the Hartree potential
vσH and exchange-correlation potential vσxc on the time-dependent density ρ(r, t) is dropped in
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order to simplify readability.iii At the “beginning” and the “end” of the full round trip, the
(stationary) potential

vσTD,eff(t) t→±∞−−−−−−−−−−−→
‖Q(t→±∞)‖2→∞

vσeff; non−int (7.3)

describes vanishing particle-surface interaction as mentioned before yielding a (time-independent)
Hamiltonian

hσ(t) t→±∞−−−−→ te + vσeff; non−int ≡ hσ(0) (7.4)

So far, no approximations have been made. However, to obtain a scheme that is more
computationally tractable than the direct TD-DFT approach used (e.g.) by Lindenblatt and
coworkers,74,383,384 the time-dependent effective potential is now approximated by its coun-
terparts in a “series of snapshots” of respective separate non-time-dependent ground state
problems along the considered trajectory Q(t) as described by non-time-dependent DFT (cf
Section 2.3),

vσTD,eff(t) ≈ vH(Q(t)) + vσxc(Q(t)) + vext(Q(t)) ≡ vσ(Q(t)) + vσeff; non−int︸ ︷︷ ︸
≡vσeff(Q(t))

, (7.5)

with the interaction part of the approximated effective potential vσ(t) vanishing at the bound-
aries of the considered trajectory

vσ(t) t→±∞−−−−−−−−−−−→
‖Q(t→±∞)‖2→∞

0 . (7.6)

Following the arguments of Timmer and Kratzer,393 the concomitant neglect of deviations
from the instantaneous ground state charge density can only be justified for systems where the
densities associated with excited electrons and holes are small compared to the overall charge
density. If emission of light or electrons during the adsorption of O2 molecules had ever been
reported in experiments for the present system, such a justification would certainly be difficult.
From a theoretical point of view, this can of course be confirmed a posteriori if the calculated
electron-hole pair spectra are sufficiently small (vide infra).
Equations (7.4) and (7.5) define an approximation for Eq. (7.1),

hσ(t) ≈ h(0) + vσ(Q(t)) , (7.7)

which is a quantum mechanical textbook example for a starting point of time-dependent per-
turbation theory:53 The unperturbed Hamiltonian h(0) gets acted on by a (implicitly) time-
(and spin-) dependent perturbation potential vσ(Q(t)). This potential might not be small, but
should only be non-zero, cf Eq. (7.6), during a short time interval, given by the time of “intense
interaction” (collision) of the impinging particle with the surface. As detailed by Timmer and
Kratzer,393 this motivates a perturbative treatment. Up to first order, the transition rate pij
for an excitation within one spin channel σ from an occupied state |εσi 〉 into an unoccupied

iii Real space representations of vσTD,eff(t) and its contributions will simply be denoted by vσTD,eff(r, t) and so
on, as already used in Eqs. (2.26) and Eq. (2.29) within Part I. The kinetic energy contribution in Eq. (7.1)
is given by te = − ~2

2me
∇2

r in real space (cf Eqs. (2.26)).
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state |εσj 〉 (i.e. i 6= j), which belong to the part of h(0) that describes the (clean) surface, is
given by

pσij(t) = 1
i~
〈εσj |vσ(Q(t))|εσi 〉 exp

(
i

~
(εσj − εσi ) t

)
. (7.8)

States associated with the impinging particle (spanning the other part of the Hilbert space
which h(0) acts on) are not considered here as the electron-hole pair excitations to be described
are supposed to be located within the substrate. For closer contact with actual calculations,
discrete sets of initial and final substrate states rather than continuous band structures are
denoted by indeces i and j, respectively, in the following. In practice, these indeces hence
encapsulate k-point and band indices of the Kohn-Sham states of the clean surface (cf Eq. (2.39)
in Section 2.6).

7.1.3. Electron-Hole Pair Spectra

The excitation spectrum for a complete round trip is obtained accordingly from Eq. (7.8) by
integrating over time and summing over allowed transitions:

P̃ σ
ex(~ω) =

∑
ij

∣∣∣∣∣∣
+∞∫
−∞

dt pij(t)

∣∣∣∣∣∣
2

δ
(
~ω − (εσj − εσi )

)
. (7.9)

Here ~ω are positive and non-zero excitation energies. Furthermore, here and in the following,
for these kind of sums over transitions appropriate weight factors (depending on symmetry) for
the k-point part of the indices i and j are implicitly considered.
Integrating Eq. (7.9) by parts leads to

+∞∫
−∞

dt pσij(t) =
[
− 1
εσj − εσi

〈
εσj | vσ | εσi

〉
exp

(
i

~
(εσj − εσi ) t

)]t→+∞

t→−∞︸ ︷︷ ︸
=0

+ 1
εσj − εσi

+∞∫
−∞

dt

〈
εσj

∣∣∣∣ dvσdt
∣∣∣∣ εσi 〉 exp

(
i

~
(εσj − εσi ) t

)
︸ ︷︷ ︸

=λσij

.

(7.10)

The boundary term vanishes due to the properties of the interaction potential vσ as given by
Eq. (7.6). Reinserting the result of Eq. (7.10) back into Eq. (7.9) gives

P̃ σ
ex(~ω) =

∑
ij

∣∣∣∣∣ λσij
εσj − εσi

∣∣∣∣∣
2

δ
(
~ω − (εσj − εσi )

)
. (7.11)

Here the “dressed” (transition) matrix elements

λσij =
+∞∫
−∞

dt
〈
εσj |∇Qvσ(Q(t)) | εσi

〉
· Q̇(t) · exp

(
i

~
(εσj − εσi ) t

)
(7.12)

have been defined, which is one of the key ingredients to be calculated.
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Generalization to Finite Temperatures

Up to now, only occupations of substrate states corresponding to zero temperature have been
considered in Eqs. (7.8), (7.9) and (7.11). Generalization to finite electronic temperatures is
easily possible by introducing Fermi occupation factors

f(ε) = 1
exp

(
ε−εF
kBT

)
+ 1

. (7.13)

Not allowing for de-excitations of “thermally smeared” electrons, Eq. (7.11) then gets extended
to the following expression for the electron-hole pair spectrum:

P σ
ex(~ω) =

∑
ij

∣∣∣∣∣ λij
εσj − εσi

∣∣∣∣∣
2

δ
(
~ω − (εσj − εσi )

)
︸ ︷︷ ︸

P̃ σ
ex(~ω)

[
f (εσi )− f

(
εσj

)]
θ (~ω) . (7.14)

Individual spectra for electrons and holes can be obtained consistently by considering respective
transitions only relative to the Fermi level,

P σ
ex,el(~ω) =

∑
ij

∣∣∣∣∣ λij
εσj − εσi

∣∣∣∣∣
2

δ
(
~ω − (εσj − εF)

) [
f (εσi )− f

(
εσj

)]
θ (~ω) , (7.15a)

P σ
ex,ho(~ω) =

∑
ij

∣∣∣∣∣ λij
εσj − εσi

∣∣∣∣∣
2

δ (~ω − (εσi − εF))
[
f (εσi )− f

(
εσj

)]
θ (−~ω) , (7.15b)

where, as before, the excitation energies ~ω are positive and non-zero. As pointed out by
Timmer and Kratzer393 Eqs. (7.14), (7.15a) and (7.15b) stay mathematically well defined even
for |εj − εi| → 0. Nevertheless, numerical evaluations have difficulties in these regions, which
is why they are omitted in plots of calculated spectra (vide infra).

7.1.4. Comparison to Electronic Friction Theory

When electronic friction theory386–388 is combined with the forced oscillator model73,392 in-
troducing further approximations to obtain excitation spectra,394,395 the equations directly
comparable to Eqs. (7.15a) and (7.15b) read as follows when adapted to the present notation:

P σ
FOM; el(~ω) = 1

π~

εσF∫
−∞

dε

∣∣∣∣λσfric(εσF + ~ω − ε)
(εF + ~ω)− ε

∣∣∣∣2 [f(ε)− f(εσF + ~ω)] θ (~ω) (7.16a)

P σ
FOM; ho(~ω) = 1

π~

+∞∫
εσF

dε

∣∣∣∣∣λσfric(ε− εσF + ~ω)
ε− (εσF + ~ω)

∣∣∣∣∣
2

[f(εσF + ~ω)− f(ε)] θ (−~ω) , (7.16b)

with

λσfric(ε) =
∞∫
−∞

dt
√
ησ(Q(t)) Q̇(t) exp

(
i

~
εt

)
(7.17)
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based on the electronic friction coefficient

ησ(Q(t)) = π~
∑
ij

∣∣∣∣〈εσj (t)
∣∣∣∣dvσeff(Q(t))

dQ

∣∣∣∣ εσi (t)
〉∣∣∣∣2 δ(εσj (t)− εσF) δ(εσi (t)− εσF) . (7.18)

For the sake of simplicity and better readability but without loss of generality, a one-dimensional
description via a reaction coordinate Q(t) is employed here.
Comparing Eq. (7.12) and Eqs. (7.17) and (7.18), the key ingredient to be calculated for both

theories is obviously very similar: Matrix elements of the type

〈
εσj (t)

∣∣∣∣dvσeff(Q(t))
dQ

∣∣∣∣ εσi (t)
〉

with vσeff(Q(t)) as defined in Eq. (7.5).iv In fact, due to the energy difference entering λσfric in
Eqs. (7.16) can also be understood as representing matrix elements for electronic transitions
corresponding to λσij . Their dependance on the electronic structure is less direct, i.e. “only” due
to the forced oscillator model connected to the electronic friction coefficient ησ. Additionally,
it is important to note, that instantaneous Eigenstates |εσi (t)〉, |εσj (t)〉 are used to obtain the
latter. Obviously, the present theory can be modified in a straightforward way to use instanta-
neous Eigenstates as well in Eq. (7.12). This has also been termed Gunnarsson-Schönhammer
(GS)-like perturbation theory,396 inspired by work of the eponyms.397 However, this leads to
conceptual issues with shifts of Eigenvalues in the DFT calculations at different points of a
trajectory and technical problems with (relative) phase shifts of the instantaneous Eigenstates.
The latter are obtained only up to an arbitrary unitary transformation, which can be dealt with
via a mapping scheme in practice. However, experiences of Timmer and Kratzer have shown
that (GS)-like perturbation theory leads to unphysical results.396 Therefore, this approach is
not followed here any further.
Apart from that, the main difference between the present and electronic friction theory

comes from the fact that squared moduli of the (respective) matrix elements appear before the
time integration is carried out in Eqs. (7.17) and (7.18). As discussed extensively by Timmer
and Kratzer,393 this is the reason why Eqs. (7.12), (7.14), (7.15a) and (7.15b) also remain
mathematically well defined even in case of an adiabatic spin transition: According to the
underlying density-functional theory and corresponding practical calculations, the spin popu-
lation assigned to the impinging adsorbate typically (at least for hydrogen atoms impinging
on different substrates)73,74,383,384,392,393 is proportional to

√
|Q(t)−Q0| around the transition

point Q0. This leads to a
(√
|Q(t)−Q0|

)−1
singularity of dvσeff(Q(t))

dQ , for which the aforemen-
tioned main difference is of crucial (mathematical) importance. Nevertheless, in the spirit of
mimicking non-adiabatic dynamics, different attempts (based on introduction of a “local” mag-
netic field or simply constraining total spin of the simulation cell along the same lines as Trail
and coworkers73,392) have already been investigated to smoothen the spin transition within the
present theory.396

iv The fact that the constant part vσeff; non−int (cf Eq. (7.5)) is not subtracted here obviously does not matter for
the derivatives in Eq. (7.12) and Eq. (7.18).
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7.1.5. Dissipated Energy
Finally, the energy dissipated into electron-hole pair excitations, which is of key interest here,
is obtained as energy-weighted integral over the excitation spectrum Eq. (7.14):

E σ
eh =

+∞∫
0

dε εP σ
ex(ε) . (7.19)

(7.20)

Again, a comparable expression is also obtained within electronic friction theory,

E σ
eh; fric =

∫
Q
dQ ησ =

τ→+∞∫
τ→−∞

dt ησ(Q(t)) Q̇(t) , (7.21)

which additionally would allow to “measure” the dissipated energy for only a part of the consid-
ered trajectory Q(t). However, with friction theory not being (directly) applicable, Eq. (7.19)
should serve well for providing the desired estimate of energy dissipated into electron-hole pairs.

7.2. Implementation
7.2.1. Trajectory Description: Reaction Coordinate
In previous work, typically strictly one dimensional trajectories Q(t) along the surface normal
(conventionally the z-axis) have been considered by studying adsorption of mono-atomic adsor-
bates with perpendicular impingement over high symmetry sites.73,74,383,384,392–395 The motion
of multi-atomic incoming particles (like the homo-nuclear diatomic molecule O2) is in contrast
less likely to be reducible to a single spatial dimension. To keep the input of the present imple-
mentation scalar, an effectively one-dimensional description of coordinates and velocities, i.e.
a suitable reaction coordinate Q, is employed. A canonical choice is the arc length associated
with a given trajectory Q(t):

Q(t) =
∫ t

τ
dτ ‖∆Q(τ)‖2 (7.22)

However, in case of negligible changes of relative coordinates within the adsorbate, Eq. (7.22)
does not provide immediately obvious physically meaningful information about the trajectory of
an adsorbate as it scales with the number of atoms of the latter. For a stiff diatomic molecule
like O2 such dominantly rigid motion is rather common unless considering large vibrational
excitations e.g. during scattering at high kinetic energies. Therefore, it is interesting to note
that Eq. (7.12) and all its descendants obviously remain invariant if trajectories are described
by scaled and shifted coordinates and consistent velocities

Q(t) −→ Q̃(t) ≡ Q0 + αQ(t) (7.23a)

Q̇(t) −→ ˙̃Q(t) ≡ α Q̇(t) . (7.23b)

When α = 1√
Nads

for an adsorbate consisting of Nads atoms, the corresponding arc length Q̃(t)
then conveniently corresponds to the absolute distance traveled by the center of mass of the
adsorbate (or likewise any of its constituents). Furthermore, the reaction coordinate description
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also allows to include motion of the substrate atoms if the frozen surface approximation would
eventually be lifted.396 In practice, trajectories are typically obtained via molecular dynamics
on a (Born-Oppenheimer) potential energy surface (PES) based on an interpolation to DFT
energies – here as detailed in Chapter 6. This is computationally much less involved (once
the PES has been obtained) than anything related to the calculation of the required matrix
elements. Coordinates Q(t) and velocities Q̇(t) as a function of time can hence be easily
obtained on a rather dense grid. The thus induced discretization of the reaction coordinate Q
as given by Eq. (7.22) (potentially using the aforementioned transformation)

Q(tn) ≈
∑
ti≤tn
‖Q(ti+1)−Q(ti)‖2 (7.24)

is hence accordingly accurate. For the velocities Q̇ simple projections along directions of coor-
dinate differences,

Q̇(tn) ≈ Q(tn+1)−Q(tn)
‖Q(tn+1)−Q(tn)‖2

· Q̇(t) (7.25)

have been used in the following and found to be sufficiently accurate for present purposes. In
principle, higher order correction to the latter can be taken into account by also including the
influence of instantaneous accelerations Q̈∆t via the calculated forces.396 Due to the choice of
MD integrator, the discretization grid might neither be uniform nor contain the exact points
(but normally more and others) for which electronic structure data (allowing the calculation
of matrix elements) is explicitly available. This can be easily remedied via interpolation, since
reaction coordinate Q and velocity Q̇ typically vary rather smoothly with time. Therefore,
tn, Q(tn) and Q̇(tn) are expected to be given as input, allowing to relate and interpolate the
latter two as required for the evaluation of the time integrals defining λij in Eq. (7.12). The
trajectory input needs to end at the turning point (defining a half round trip), easily identified
for example by change of sign of the velocities Q̇.

7.2.2. Matrix Elements

The key computational challenge is the evaluation of the matrix elements occurring in Eq. (7.12)
along trajectories which are parametrized by reaction coordinates Q(t) as described in the
previous section. While the Hellmann-Feynman theorem (cf Eq. (2.12)) allows for a convenient
evaluation of parametric derivatives of the total energy (e.g. with respect to nuclear degrees
of freedom resulting in forces), a similarly straightforward procedure is no longer possible for
matrix elements〈

εσj

∣∣∣∣ dvσ(Q(t))
dt

∣∣∣∣ εσi 〉 =
〈
εσj |∇Qvσ(Q(t)) | εσi

〉
· Q̇(t)

=
[
∂

∂Q
vσij

]
(Q(t)) · Q̇(t)

‖Q̇(t)‖2
· Q̇(t)
‖Q̇(t)‖2︸ ︷︷ ︸

=1

· Q̇(t) ,
(7.26)

involving (a derivative of) the potential only. Also in density-functional perturbation the-
ory (DFPT),242,398 higher order derivatives of the total energy are the target quantity. In
those cases, the response of the density and wave functions need to be considered, leading
to a “plethora of new terms” which do not occur when the Hellmann-Feynman theorem is
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applicable.243 Therefore, the derivative of the potential appearing in Eq. (7.26) has to be eval-
uated numerically.
In the nowadays widely used theory of inelastic tunneling (IET), originally developed by

Lorente and Persson,119,399 the matrix elements ∂
∂Qv

σ
ij appearing in Eq. (7.26) are required

as well. This is not surprising, as one of the ingredients of the former is electronic friction
theory,386–388 whose similarities to the present approach have already been pointed out in the
previous section. In the rapidly growing IETS community,390,400–405 these matrix elements are
usually calculated with the original Vaspv implementation of Lorente and Persson:119,399

∂

∂Q
vσij ≈


0 k‖ , i 6= k‖ , j

∆εσi k‖ , i = k‖ , j , ni = nj

(εσi − εσj )
〈
εσj |∆εσi

〉
k‖ , i = k‖ , j , ni 6= nj

(7.27)

Here ni and k‖ , i are the explicit band index n and explicit components parallel to the surface
of the k-point index, respectively, of the (Bloch) state |εi〉 otherwise collectively denoted by i
as indicated before in Section 7.1.2 (see also Section 2.6, in particular Eq. (2.39)). Eq. (7.27)
is motivated by understanding ∂

∂Qv
σ
ij as the non-adiabatic couplings in the electronic system

due to the kinetic energy operator for the nuclei, which are neglected within the Born-Op-
penheimer approximation. They are given by Eq. (2.6) in Section 2.2 and discussed there in
more detail. A linear approximation in the displacements along Q yields Eq. (7.27), relating
∂
∂Qv

σ
ij approximately to first order changes in (Kohn-Sham) Eigenstates and Eigenvalues (as

indicated by ∆),vi which was originally proposed by Head-Gordon and Tully.31,406 The neglect
of inter-k-point transitions is detailed in the following paragraph as addressed by Trail and
coworkers.389 Obviously, Eq. (7.27) incorporates changes of the electronic structure along Q
and hence cannot be applied in the present context relying on unperturbed substrate states.
Accordingly, a convenient reuse of the aforementioned implementation, hence saving own te-
dious efforts if it was available, is not possible. A comparison to other approaches described in
the following, addressing both systematic and practical approximations inherent to this ansatz
might thus be interesting and important future work.
When applying electronic friction theory in the context of gas-surface dynamics, Trail and

coworkers have chosen a more direct way389 to obtain the required matrix elements

∂

∂Q
vσij ≈

〈
εσj

∣∣∣∣ ∆V (Q)
‖∆Q‖2

∣∣∣∣ εσi 〉 . (7.28)

Here derivatives of the potential are approximated by finite differences and overlaps mediated
by the such obtained field are calculated. When using periodic boundary conditions, apart from
the electronic states |εσi 〉 and

∣∣∣εσj 〉 also dvσ

dt = vσ
′ obviously has the periodicity of the employed

simulation cell. The matrix elements ∂
∂Qv

σ
ij can thus be written without any approximation in

v See http://cms.mpi.univie.ac.at/vasp.
vi In practice, the latter are obtained via finite differences, and proper care must be taken when using ultrasoft

pseudopotentials,119 and for potentially different phases of equivalent Eigenstates obtained from the different
DFT calculations used to obtain the finite differences.403
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the following (discrete) plane wave representation (cf Eq. (2.40) in Section 2.6):〈
εσj

∣∣∣vσ ′ ∣∣∣ εσi 〉 =
∑
Gi

∑
Gj

∑
Gv

∫
dr
(
c
σ kj nj
Gj

)∗
cσ ki niGi

vσ
′

Gv e−i(Gj+kj)r+i(Gi+ki)r+iGvr

=
∑
Gi

∑
Gj

∑
Gv

(
c
σ kj nj
Gj

)∗
cσ ki niGi

vσ
′

Gv 2πδ

(Gi −Gj +Gv)︸ ︷︷ ︸
lattice vector

−(ki − kj)


6= 0 , only if ki 6= kj

(7.29)

As before, ki and ni are the explicit k-point and band index, respectively, of the (Bloch) state
|εi〉 otherwise collectively denoted by i. The inequality sign holds strictly sinceGi−Gj+Gv is a
reciprocal lattice vector and ki and kj are out of the first Brillouin zone, only the center of which
within the common choice is a reciprocal lattice vector.vii Therefore, as Trail and coworkers
pointed out,389 only inter-, but no intra-k transitions contribute when considering ∂

∂Qv
σ
ij for

a periodic overlayer. They also proposed a way to obtain the corresponding matrix elements
for an isolated adatom according to a perturbation ansatz.389 For the rather small simulation
cells they used, this indeed makes a considerable difference. Timmer and Kratzer have used
(in the beginning) the same basic numerical evaluation given by Eq. (7.28), but within larger
periodic simulation cells,393 hence not taking such transitions into account. This is completely
in line with previous work e.g. within the approach of Lorente and coworkers as indicated
in the previous paragraph (see Eq. (7.27)), or the TD-DFT calculations by Lindenblatt and
coworkers.74,383,384)
Along those lines, in this work, only inter-k transitions are considered. For a general trajec-

tory Q(t), Eq. (7.26) is evaluated using the reaction coordinate description Q(t) via〈
εσj

∣∣∣∣ dvσ(Q(t))
dt

∣∣∣∣ εσi 〉 ≈ ∂

∂Q
Mσ
ij(Q) · Q̇(t) , (7.30)

where discretizations of Q and Q̇ are obtained using Eq. (7.24) and Eq. (7.25), respectively.
∂
∂QM

σ
ij(Q) is obtained by first calculating matrix elements

〈
εσj | vσeff(Q) | εσi

〉
directly at points

Q(tn) for which electronic structure data is available, which hence needs to be specified ac-
cordingly in the input. Afterwards, each matrix element is interpolated along Q and finally,
the analytical derivative of the interpolation gives ∂

∂QM
σ
ij(Q). According to Eq. (7.5), this also

leads to the required matrix elements ∂
∂Qv

σ
ij in the end, allowing evaluation at arbitrary Q(t)

as required in the time integrals defining λij in Eq. (7.12). The quality of the interpolation
can be easily checked by trying different one-dimensional interpolation schemes and calculating
electronic structure data for more points along the trajectory in order to increase the number of
explicitly available matrix elements. The crucial advantage of this strategy is that it allows for
efficient use of existing infrastructure in most plane wave codes, because the derivative of the
potential does not need to be constructed in a form which can be used for acting on the states
directly – contrary to Eq. (7.28). This is particularly useful (if not essential) when dealing with
non-local and/or ultrasoft pseudopotentials. Of course, the matrix elements calculated for all
Q(tn) have to be kept in memory first before the interpolation and its derivative are formed,
resulting in higher memory demands than for the other schemes. In fact, part of the initial

vii This can also be understood as conservation of crystal momentum.
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motivation for the application of the forced oscillator model in combination with electronic
friction theory has been to avoid this.73,392 At least nowadays, however, this can be efficiently
dealt with also by the virtue of (memory) parallelization (cf Appendix C.1.2). This might still
be technically inconvenient, but is no longer a conceptual problem.
After proposing these practical improvements to the original authors,407 they have been

gratefully accepted, stimulated a rewrite from scratch of their first implementation396 and
acknowledged in their latest study.394 They emphasize a performance improvement by about
a factor of three with their (not explicitly parallelized) implementation in the plane wave
code PWscf,407 part of the Quantum ESPRESSOviii suite of programs. Additionally, they
also report reduced numerical instabilities in the problematic regions of the spectra given by
Eqs. (7.14), (7.15a) and (7.15b) in Eq. (7.12) above and apparently did not encounter any
troubles with memory.
Meanwhile, the improved approach has already been implemented into the Castep code and

parallelized to efficiently calculate electron-hole pair spectra for several different trajectories for
the present system, which are presented in Section 7.3.1. Details about this implementation
are described in Appendix C.1 in Appendix C.

7.2.3. Tests

In order to test the present implementation, it was applied to the system originally studied
by Timmer and Kratzer: A half round trip of a hydrogen atom impinging on a top site on
Al(111).393 Compared to the present case, this system is rather benign, resulting in mod-
est computational effort to recalculate everything from scratch. This effort has been reduced
further by switching from norm-conserving pseudopotentials (as originally used) to ultrasoft
pseudopotentials. In principle, the loss of orthonormality of the numerical representation of the
substrate Kohn-Sham Eigenstates could lead to problems with the potential mediated overlaps
in Eq. (7.26). Therefore, the application to the H on Al(111) can also be seen as a prag-
matic test of this issue, before spending additional conceptual and/or implementation efforts.ix
Furthermore, valuable experiences with the numerical stability of the several numerical integra-
tion schemes in combination with the density of calculated matrix elements along a trajectory
and concomitant interpolation quality could be obtained. Details about the numerical inte-
gration in the present implementation are given in Appendix C.1.1 in Appendix C. Therein,
Appendix C.2 also illustrates extensively that the results of the original authors are excellently
reproduced – as to be expected from ab initio calculations when numerical errors are well con-
trolled and a straightforward application of the method with ultrasoft pseudopotentials does
not seem to be problematic in general. During this testing, the QAGS adaptive integrator has
been found to be numerically more stable than the direct (analytical) integration of the inter-
polation splines for the integrand in Eq. (7.12) employed by Timmer and Kratzer. (also see
Appendix C.1.1, in particular Eq. (C.1)) Thanks to the algorithmic improvements described
in Section 7.2.2 and parallelism, the evaluation of all properties given by Eqs. (7.14), (7.15a),
(7.15b) and (7.19) for the aforementioned system could be reduced from about a week within
the original implementation407 to a few hours. Therefore, after having gained trust in the
present efficient implementation, it is now applied to the computationally more demanding

viii Licensed under GPL and available from http://www.quantum-espresso.org.
ix Such efforts could go along the lines of special treatment with the S-operator as vaguely indicated by Lorente

and Persson119 or even include a PAW-like reconstruction of all-electron wave functions for the states following
Blöchl.408
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case of present interest: O2 on Pd(100).

7.3. Results and Discussion

7.3.1. Electron-Hole Pair Spectra and Dissipated Energies

Using the interpolated six-dimensional potential energy surface V6D presented in Chapter 6,
trajectories starting over four different high symmetry sites have been calculated. For each
trajectory, the starting point is at a center of mass distance of Z0 = 6Å above the surface,
where the adsorbate-substrate interaction vσ(Q) has already well decayed to essentially zero.
In all cases, the molecules are reflected, such that a half round trip as described in Section 7.1.1
can be consistently defined.
As already indicated initially in Section 7.0.2, electronic structure data obtained during the

interpolation of the six-dimensional potential energy surface could largely be reused. It has
been calculated for an increasing point density along the trajectories until resulting spectra did
not change significantly any more. Since ultrasoft pseudopotentials have been used throughout,
it has been verified first whether their effect on the resulting dissipated spectra and (even more
important) dissipated energies is as negligible for this system as for H on Al(111) detailed in
the Appendix C. As to be expected, a quantitative inspection shows that the overlap of the
Kohn-Sham states of the clean palladium surface is larger than in case of aluminum. There-
fore, for one trajectory, excitation spectra have been calculated based on non-spin polarized
electronic structure once obtained with the ultrasoft and once obtained with a norm-conserving
pseudopotential for the Pd atoms. The latter has been obtained with the internal “on-the-fly”
pseudopotential generator available within Castep. With reasonable efforts, a “good” poten-
tial could only be obtained by including the 4s and 4p semi-core states as valence resulting in
a total of 18 pseudized electrons. According to common practice the local component has been
put into the f -channel. Several pseudization radii rc and projector optimization settings have
been tested. Finally, pseudization radii rlocal

c = rnon−local
c = 2.1 Bohr for the local and non-

local components and rinner
c = rcore

c = 1.6 Bohr for the augmentation functions and pseudo-core
charge together with a suitable kinetic energy based projector optimization have been chosen
as best result.x This pseudopotential is harder than the otherwise employed ultrasoft poten-
tial and hence requires a plane wave cut off energy of 500 eV. It yields a lattice constant of
aNCPd−fcc = 3.92Å, slightly smaller than the one obtained with the latter (aNCPd−fcc = 3.93Å),
which has not been compensated for in the slab geometries. Of course, the trajectories them-
selves are artificial, as electronic structure data is obtained for a different Born-Oppenheimer
surface inconsistent with the one used for the motion of the nuclei. Nevertheless, this allows
to scrutinize the effect of ultrasoft pseudopotentials for the present purposes. While the shape
of the spectra is qualitatively very similar in both cases, resulting dissipated energies differ by
several millielectron volts in case of the norm-conserving pseudopotential (i.e. 20 % to 40 % for
the considered trajectory). Therefore, for the present system the initial concern hence appears
to be justified a posteriori and has to be kept in mind. Nevertheless, for the desired order of
magnitude estimate of energy dissipated into electron-hole pair excitations, this error margin
is still be sufficient without further ado.
In particular, when switching to the actual spin-polarized calculations, it turns out that the

x Corresponding “generation string” for the internal “on-the-fly” pseudopotential generator available within
Castep: 3|2.1|2.1|1.6|20|22|23|40N:50N:41N:42N(qc=6){5s0.05}[]
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Figure 7.2.: Electron-hole pair excitations for an O2 molecule starting at a height of 6Å above
a hollow site of the Pd(100) surface with the molecular axis oriented parallel to the latter
in X direction (cf inset). The initial kinetic energy is 50 meV corresponding to an initial
velocity Q̇(t = 0) = 5.5Å fs−1. a) Interaction potential of molecule and surface in the frozen
surface approximation V6D along the trajectory given by the reaction coordinate Q (left
axis). Black dots indicate points for which electronic structure data has been calculated and
employed for the determination of the spectra in c) and d). The black line indicates the
six-dimensional neural network interpolation used to obtain the trajectory shown in b) (solid
line, left axis) and (absolute value of) the corresponding velocity (dotted line, right axis).
Furthermore, the adiabatic spin transition of the oxygen molecule along the former is shown
in red (right axis) via projections of the spin density onto the two constituting oxygen atoms
OA and OB (dotted lines, shades of dark red) and their sum (solid line, light red). Projections
(calculated at points indicated by crosses) are based on the plane-wave implementation409,410
of the population analysis scheme due to Mulliken411 available in Castep. Lines are only to
guide the eye. c) Separate electron (right) and hole (left) spectra P σ

ex,el(~ω) and P σ
ex,ho(~ω)

according to Eqs. (7.15a) and (7.15b). d) Electron-hole pair spectrum P σ
ex(~ω) given by

Eq. (7.14) together with resulting dissipated energies according to Eq. (7.19) (rounded to full
meV). All spectra are for a half round trip with energies ~ω relative to the Fermi energy.
Both majority (↑, violet) and minority (↓, blue) spin channels are shown. For details see
text.
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Figure 7.3.: Electron-hole pair excitations for an O2 molecule starting at a height of 6Å above
a bridge site of the Pd(100) surface with the molecular axis oriented parallel to the latter
in X direction (cf inset). The initial kinetic energy is 50 meV corresponding to an initial
velocity Q̇(t = 0) = 5.5Å fs−1. For details see text and caption of Fig. 7.2, which contains
equivalent data to those shown here.

description of the substrate states is even more important: Dissipated energies can be larger
by several hundreds of millielectron volts (i.e. even several 100 % in relative terms) when the
unphysical electronic structure corresponding to a ferromagnetic substrate is used compared to
calculations with non-spin-polarized description of the latter. This holds in particular if changes
of the spin-density due to the adsorbate-substrate interaction along a trajectory are large.
Therefore, for all the results presented in the following, matrix elements have been evaluated
using the Kohn-Sham states of a non-spin polarized clean Pd(100) surface “cloned” into both
spin channels of the (spin-polarized) adsorption calculations including the O2 molecule. The fact
that only the derivative of the potential enters Eq. (7.12) can be seen as particular (additional)
virtue of the employed scheme for this specific system: It allows to exploit cancellation of
errors in differences (as already in case of the energetics) – quite in contrast to a conventional
treatment even within TD-DFT (should it become computationally tractable).
The results for the four considered trajectories of an oxygen molecule with an initial kinetic

energy of 50 meV, initially aligned parallel to the surface over hollow (h-para) and bridge (b-
para) site and perpendicular over hollow (h-perp) and top (t-perp) site are shown in Figures 7.2
to 7.5, respectively. Their corresponding reaction coordinatesQ and velocities Q̇ as a function of
time are depicted in Figs. 7.2b to 7.5b The excellent quality of the six-dimensional interpolation
of the (nuclear) frozen surface potentials V6D used to determine the latter is underscored (once
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Figure 7.4.: Electron-hole pair excitations for an O2 molecule starting at a height of 6Å above a
hollow site of the Pd(100) surface with the molecular axis oriented perpendicular to the latter.
The initial kinetic energy is 50 meV corresponding to an initial velocity Q̇(t = 0) = 5.5Å fs−1.
For details see text and caption of Fig. 7.2, which contains equivalent data to those shown
here.

more) by Figs. 7.2a to 7.5a: Energetics of points where the electronic structure data is used for
the calculation of matrix elements for the electron-hole pair spectra have not necessarily been
included in the training set of the neural network interpolation, but are matched extremely
well – except for highly repulsive areas not affecting the dynamics. The same subset of figures
also illustrates that the spin transition of the oxygen molecule in the adiabatic picture not only
depends on the penetration depth, but also strongly on lateral position and orientation. In
particular, only the two trajectories starting over the hollow site (h-para and h-perp) seem to
cross the spin transition point Q0 (cf Figs. 7.2a and 7.4a), resulting in a

√
Q−Q0-like decay

of the oxygen-projected spin density ρO
spin = ρO

↑ − ρO
↓ like in case of hydrogen described above

in Section 7.1.4. On the other hand, b-para reaches a minimum Z-height comparable to h-perp
(cf Figs. 7.3b and 7.4b), but the projected spin density on both oxygen atoms remains nearly
twice as large (cf Figs. 7.3b and 7.4b). In the plots of the separate spectra for electrons and
holes in Figs. 7.2c to 7.5c the range of ~ω ≤ 10 meV corresponding to the width of the employed
Fermi broadening in the electronic self-consistency has been omitted for numerical reasons –
as already indicated in Eq. (7.12), The same holds for the electron-hole pair spectra according
to Eq. (7.14), which are shown in Figs. 7.2d to 7.5d, together with the dissipated energies
consequently obtained using Eq. (7.19).
Turning to the energy dissipation in more detail, first of all it is important to note that Etot

eh
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Figure 7.5.: Electron-hole pair excitations for an O2 molecule starting at a height of 6Å above
a top site of the Pd(100) surface with the molecular axis oriented perpendicular to the latter.
The initial kinetic energy is 50 meV corresponding to an initial velocity Q̇(t = 0) = 5.5Å fs−1.
For details see text and caption of Fig. 7.2, which contains equivalent data to those shown
here.

does not exceed at most 5 % of the chemisorption energy of 2.6 eV for all trajectories considered
here. This apparently weak perturbation justifies the use of unperturbed trajectories and sub-
strate states a posteriori. According to the analysis presented in Section 6.3.2 the trajectory
h-para propagates into the main entrance channel for dissociation. Although it is reflected, it
can be considered of biggest statistical relevance in the context of energy dissipation. Among
the four trajectories considered here, the total dissipated energy of 80 meV per half round trip
is largest for this trajectory. Hereby, dissipation in the minorty spin channel (spin ↓) is signif-
icantly stronger, which will be discussed in more detail in Section 7.3.2. The absolute value
for the total dissipated energy is similar to what has been obtained for atomic hydrogenon
various substrates (and by various theoretical methods) impinging at an on-top site74,382,393.
This is remarkable, since Lindenblatt and co-workers have obtained an absolute value of about
one order of magnitude larger for the impingement of H on the chemically much more favored
fcc site on Al(111) by non-spin polarized TD-DFT calculations.384 The same general trend is
observed when comparing all the other trajectories with considerably less attractive interac-
tion potential V6D to h-para, resulting in correspondingly lower dissipated energies altogether.
However, comparing b-para and h-perp shows that also the orientation of the molecule matters:
Both trajectories result from a similarly repulsive interaction potential, but energy dissipation
to electron hole pairs is by a factor of four less for the latter. This constitutes an important
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confirmation of one of the key results of Juaristi and coworkers44 obtained within electronic
friction theory combined with LDFA for other systems including diatomics: The importance of
the “high” dimensionality of the molecule-substrate-interaction also prevails with the present
(more accurate) model of electron-hole pair excitations.
Finally, the velocity dependence has been tested for h-para by raising the initial kinetic

energy to 400 meV corresponding to a nearly tripled initial velocity of Q̇(t = 0) = 15Å fs−1.
The corresponding trajectory and spectra (not shown) do not change qualitatively. Energies
dissipated into electron-hole pairs are increased by around a factor of 1.3, resulting in a total of
about 100 meV. Hence this seems to a reasonable estimate for the “most interesting” trajectory
within a thermally accessible range of impinging molecules. There also remains a higher amount
of energy dissipation in the minority spin channel (spin ↓) at practically the same ratio as in
Fig. 7.2d. Compared to the results for N2 on W(110) based on electronic friction theory with
friction coefficients obtained from LDFA,44 the relative increase of the total dissipated energy
is much less. A similar increase of the incidence kinetic energy leads (on average) to a much
larger energy dissipation there, more similar to the increase of the initial kinetic energy. This
might indicate caution also when determining dissipated energies based on electronic friction
theory and LDFA – but of course a more extensive comparison would be required to solidify
this statement.

7.3.2. Spin Transition

Having a closer look at the electron-hole pair spectra for h-para as shown in Figs. 7.2c and 7.2d,
the already mentioned slight asymmetry between electrons and holes deserves further attention.
The fact that excitations are stronger in the spin minority channel (spin ↓) is particularly
interesting in light of the spin transition of the O2 molecule, which, according to Fig. 7.2a, is
complete in case of h-para. The same effect also seems to be present, albeit much weaker, for
h-perp – correlating with the aforementioned similar degree of spin transition in this case.
Timmer and Kratzer have obtained nothing comparable for the spectra of H on Al(111).393

Only the spectra for the same system in the work of Lindenblatt and Pehlke74 show something
along the same lines: Abundances of excited electrons and holes in the spin majority and
minority channel, respectively. However, since the TD-DFT based dynamics are intrinsically
non-adiabatic and the spectra are obtained a posteriori by relaxation back to the electronic
ground state, this is not surprising. It can be easily understood by propagation on excited
potential energy surfaces during the non-instantaneous spin transition. In contrast, the present
description is adiabatic, and transitions are evaluated based on unperturbed substrate states.
Nevertheless, a closer look at the electronic structure can provide further insights – in particular
for h-para because of its aforementioned large statistical relevance for adsorption.
The electronic structure of an O2 molecule including its appearance in a density-functional

theory picture of Kohn-Sham orbitals has been extensively discussed e.g. by Behler48,76 and
Carbogno.109 Briefly, from the highest Kohn-Sham orbitals, the 2σp and the doubly-degenerate
2πp are filled in both spin channels with six electrons in total. The also doubly-degenerate
2π∗p on the other hand is occupied by two electrons in the majority spin channel only, which is
spin ↑ in the present case, thus resulting in the spin-polarized “triplet” ground state within the
picture of Kohn-Sham DFT. In the present work, this picture is reproduced at the beginning
of a trajectory when the interaction with the substrate is negligible as illustrated in Fig. 7.6.
The 1s state of each oxygen atom is part of the frozen core of the pseudopotential, so that the
1σs and 1σ∗s orbitals of the oxygen molecule with the total of four paired electrons contained
therein do not appear explicitly in the present calculations. Furthermore, the 2σs and 2σ∗s are
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Figure 7.6.: Density of states including projections onto molecular orbitals of the O2 molecule
at the beginning (t = 0) of the h-para trajectory (cf Fig. 7.2) for both spin ↑ (majority spin
channel, upper panel) and spin ↓ (minority spin channel, lower panel). The projections have
been obtained according to Eq. (7.31) for |2σp〉 ⊗ {|↑〉 , |↓〉} (green), |2πp〉 ⊗ {|↑〉 , |↓〉} (blue)
and

∣∣∣2π∗p〉⊗ {|↑〉 , |↓〉} (red), and broadened by a Gaussian with a width of 0.3 eV. The total
density of states for a clean surface (as obtained from a non-spin polarized calculation) is
shown in gray and has been downscaled by a factor of 50. Filled states below the Fermi level
εF are indicated by the filled gray curve.

too low in energy and thus always filled with the “missing” four of the total of 16 electrons of
the O2 molecule. Consequently, they are not important for the spin transition discussed below
and hence not shown in Fig. 7.6.
The molecular levels along a trajectory with reaction coordinate Q can be identified via a

projected density of the states (PDOS). For an O2 state |ϕσO2
(Q)〉, the molecular PDOS is given

by

ρσϕO2
(ε;Q) =

∑
n

∣∣〈ϕσO2(Q)|εσn(Q)
〉∣∣2δ (ε− εn) , (7.31)

as first used by Lorente and Persson.119 They also emphasized that projecting onto molecular
states rather than those of the individual constituent atoms is obviously a better choice for a
detailed analysis of the electronic structure, when, like in the present case, the O2 molecule
strongly interacts with the surface. Completely consistent with the transitions for the calcu-
lation of electron-hole pair spectra (cf Section 7.1.2), Kohn-Sham states are used in order to
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Figure 7.7.: Comparison of spin transition and electron-hole pair excitations for the h-para
trajectory (cf Fig. 7.2). a) Number of states projected onto the 2π∗p orbital Nσ

2π∗p(Q) of the
oxygen molecule in an energy interval from εF to εF +0.4 eV as given by Eq. (7.36). b) Center
of the 2π∗pσ molecular projected density of states (PDOS) 〈εσ2π∗p(Q)〉 as given by Eq. (7.35).
The integration interval used for a) is indicated by the green shaded area. c) Spin projected
onto the O2 molecule using the molecular PDOS according to Eq. (7.33). To be compared
with Fig. 7.2a, which is based on atomic projections, showing that both yield an identical
description of the spin transition. d) Electron-hole pair excitations P σ

ex(~ω)(Q) given by
Eq. (7.14) as already shown in Fig. 7.2d, but zoomed in to a smaller interval of excitation
energies from 0.0 to 0.4 eV, identical to the integration interval used for a).
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7. Electronic Non-Adiabaticity

evaluate Eq. (7.31). This has been implemented by the author of this thesis as a post-pro-
cessing tool for Castep,xi and the corresponding code has already been carefully tested and
successfully used within another project.120,265
As already indicated in the next to last paragraph, the molecular PDOS analysis along the

h-para trajectory focuses on the orbitals∣∣ϕσO2

〉
∈
{
|2σp〉 , |2πp〉 ,

∣∣∣2π∗p〉}⊗ {|↑〉 , |↓〉} (7.32)

as shown in Fig. 7.6 for its beginning (t = 0). Using the molecular PDOSs, the projected spin
on the O2 molecule is straightforwardly defined as

S{ϕO2}(Q) = n↑{ϕO2}
(Q)− n↓{ϕO2}

(Q)

=
∑
ϕO2

∫ ∞
−∞

dε
[
f↑(ε;Q)ρ↑ϕO2

(ε;Q)− f↓(ε;Q)ρ↓ϕO2
(ε;Q)

]
,

(7.33)

where fσ(ε;Q) are occupation numbers which ensure to obtain proper electron numbers nσ{ϕO2}
(Q)

for σ ∈ {↑, ↓}. In this picture, it also turns out numerically that it is completely sufficient to
only consider filling of the projected 2π∗p orbital, i.e.

Stot = S{2π∗p} , (7.34)

where Stot considers projections onto all O2 states – as to be expected for a reasonable choice of
projections. S{2π∗p} is plotted in Fig. 7.7c and furthermore practically identical to its pendant
based on atomic projections as shown in Fig. 7.2a.
Consequently, for the comparison of the adiabatic spin transition of the O2 molecule along to

the calculated electron-hole pair excitations for the total h-para trajectory, which is illustrated
in Fig. 7.7, it is completely sufficient to focus on the 2π∗p orbital: Figure 7.7d zooms in from
Fig. 7.2d electron-hole pair excitations within an interval from 0 to 0.4 eV, which is just below
the location of the 2π∗p at the begin of the trajectory as illustrated by Fig. 7.7b. The latter plot
shows the center of the 2π∗pσ molecular PDOS, ρσ2π∗p(ε;Q), in both spin channels (i.e. σ ∈ {↑, ↓})
along the trajectory, as given by

〈εσ2π∗p〉(Q) =
∫ ∞
−∞

dε ε ρσ2π∗p(ε;Q) . (7.35)

This is a rough measure of the orbital position relative to the Fermi energy, not including the
width due to hybridization with the substrate states. Above Q = 2Å, ε↓2π∗p is above the Fermi
level while ε↑2π∗p is far below, thus leading to minority and majority spin channels as described
before. At about Q = 3.5Å, in the aforementioned energy interval (unoccupied!) substrate
states which overlap with 2π∗p become available in this spin channel as the width of that Kohn-
Sham orbital increases, while in the majority spin channel, a similar amount only becomes

xi As in practically all plane wave DFT codes, the Kohn-Sham orbitals of the individual free atoms are directly
available together with some form of corresponding population analysis – the latter being an adapted409,410
Mulliken411 analysis in case of the Castep code. As indicated before, the spin projections shown in Figs. 7.2a
to 7.5a are based thereon. In contrast, projections onto molecular orbitals according to Eq. (7.31) require
more efforts: Code must be written for its evaluation, and {

〈
ϕσO2 (Q)

∣∣} need to be calculated separately. This
is probably the reason why they are by far not as widespread in the literature, often resulting in questionable
electronic structure anaylses.
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7.3. Results and Discussion

available at Q = 2Å. The number of those projected states along the trajectory

Nσ
2π∗p(Q) =

∫ εF+0.4 eV

εF
dε ρσ2π∗p(ε;Q) (7.36)

is plotted in Fig. 7.7a. At this point, it is important to note that reducing the εF + 0.4 eV
integration range to 0.1 eV only leads to quantitative but not qualitative changes.
Altogether, stronger electron-hole pair excitations in the minority spin channel (cf Fig. 7.7d)

for excitation energies between 0 and 0.4 eV coincide with a larger amount of states that overlap
with the 2π∗p orbital of the O2 molecule. A tempting interpretation is therefore to see this as
a strong indication for an efficient compensation mechanism of the spin-density associated
with the adsorbate by the (forcibly non-spin polarized!) electronic structure of the substrate.
This goes by the assumption also inherent to the perturbative treatment for the electron-
hole pairs, namely that the electronic structure during the “real” spin transition does not
behave in a radically different fashion. In that case, this can also be seen as a confirmation
for efficient electron tunneling to the O2 molecule as hypothesized previously in Section 7.0.1 –
rationalizing and justifying an adiabatic description in turn. In order to finally exclude that it
is no remaining “artifact” of the artificial spin polarization of the substrate in the perturbation
potential vσ(Q(t)), a comparison to other transition metal surfaces (with lower density of states
at the Fermi level) would be interesting.

7.3.3. Indications from Experiments

Despite of all the uncertainties in the obtained electron-hole pair spectra, they are consistent
with experiments: Nienhaus and coworkers have not been able to successfully detect so-called
chemicurrents during O2 adsorption on polycrystalline palladium so far.412 Using Si-based
Schottky-diodes with a thin substrate metal film as second electrode as detectors, they could
measure very weak currents for the first time when exposing silver and copper films to beams
of atomic hydrogen and deuterium.27 According to current understanding, these currents are
generated due to creation of electron-hole pairs, and up to now, corresponding experiments
are the most direct way to measure the generation of the latter during chemical reactions
at surfaces. Using the same experimental setup, such chemicurrents have been successfully
detected for various other adsorbate-substrate combinations,28,413 among which in particular
O2 on polycrystalline silver is probably most important to mention here.414,415 This strongly
suggests that the calculated spectra and concomitant non-adiabatic energy dissipation estimate
are based on reasonable approximations for the present system.

7.3.4. Critical Assessment and Outlook

Apart from differences among different trajectories, the present perturbative approach certainly
comes with its own error bars. For H2 on Al(111), a comparison with TD-DFT results of Lin-
denblatt and coworkers,74,383,384 neglecting any errors of the latter which have been obtained
at (or perhaps even) below the numerical convergence limit, shows a pronounced underesti-
mation of the dissipated energy and highlights the importance of the treatment of spin.393,396
This is perfectly along the same lines as what has been observed in the present case when
(in a straightforward fashion) unperturbed substrate states have been taken from the artifi-
cially ferromagnetic palladium substrate as obtained within a PBE description. As already
indicated in Section 7.1.4, Timmer and Kratzer have investigated modifications and extensions
of their approach for H2 on Al(111): Employing a “GS-like” description and smoothening the
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spin transition to mimic a “more non-adiabatic” situation, they could obtain better agreement
with the aforementioned TD-DFT results.396 However, according to the arguments given in
Section 7.0.1, there is no reason why a strongly non-adiabatic spin transition should be ex-
pected for the present system. Even if the dissipated energy was wrong by a similar amount
as Timmer and Kratzer estimate in their case,393,396 be it due to choice of the trajectories
or the inherent approximations of the method, the importance for the dissipation of the to-
tal mount of chemisorption energy of ∼ 2.6 eV would still not be dominant – and this is, of
course, most important for the present thesis. In fact, Mizielinski and Bird have demonstrated
only very recently that the total amount of dissipated energy, quite in contrast to the actual
electron-hole pair spectra, is very robust when considering different orders in their perturba-
tion ansatz.395 However, based on the adsorbate velocity and combined with simple “model
electronic structure”, the latter is not directly comparable to the present approach.
Furthermore, the very low amount of energy dissipated into the electron-hole pairs observed

for this system seems to be perfectly in line not only with the experiments described in Sec-
tion 7.3.3, but also with trends observed in other recent studies beyond single atoms on metal
surfaces, no matter if the impinging diatomic carries a permanent dipole moment (HCl on
Al(111))416 or not (H2 on Cu(110), W2 on W(110)).44 Compared to the former, which employs
TD-DFT within Ehrenfest dynamics for the nuclei (considered to be state-of-the art in this
context),74,383,384 the latter study has been criticized45,46 for using electronic friction theory
with friction coefficients obtained from the local density friction approximation (LDFA).387,388
The reason for choosing LDFA was driven by its appealing simplicity and (nowadays) very light
computational cost for obtaining atomic friction coefficients (neglecting any correlations due
to the binding in the molecule). Nevertheless, the work by Juaristi and coworkers44 has shown
that apart from electronic matrix elements of the type given by ∂

∂Qv
σ
ij the velocity factors in

Eqs. (7.12) and (7.17), i.e. the present and electronic friction theory, certainly do become im-
portant in a statistical treatment. Along those lines, differences of about one order of magnitude
in the dissipated energies have also been observed here for the different trajectories studied.
Therefore, also in order to make closer contact to experiment, the next step after development
of a viable theory should be its application to more than a single trajectory. After a trivial mod-
ification of the present efficient implementation as described in Section 7.2, the aforementioned
matrix elements required to obtain the friction coefficient within electronic friction theory (cf
Eq. (7.18)) could be easily “produced on a large scale” when sampling a high-dimensional po-
tential energy surface. With the same techniques used to interpolate corresponding potential
energy surfaces (cf Chapter 6), the latter could then be represented continously and employed
in ensuing molecular dynamics simulations. The otherwise discarded electronic structure data
from the underlying DFT calculations would be put to good use this way – the challeng-
ing storage requirements typically in the order of terabytes can easily be mastered nowadays
thanks to the steady decrease of hard disk prices over the last years. Hence the aforementioned
criticism45,46 on the work by Juaristi and coworkers44 could be easily taken into account and
lifted in corresponding future applications. Of course, this goes under the assumption that also
techniques for high-dimensional interpolation get a more wide-spread use.
Finally, since the present state-of-the art treatment only considered non-reactive trajectories

on a frozen surface, the question arises how important non-adiabatic effects might be dur-
ing actual dissociation events involving a mobile substrate. Though having been addressed
in the literature,300,376 from an accurate first-principles point of view, a definite answer is yet
to be found. It might be provided by a TD-DFT description, as has been endeavored for a
few systems,74,416 perhaps even going beyond the approximation of classical nuclei.71 Unfor-
tunately, computational cost with available codes make this an extremely cumbersome effort
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– in particular if not crowned with significantly higher scientific insights than both more ap-
proximate but also more computationally tractable models. Very promising along those lines
is the so-called “independent-electron surface hopping” model proposed only very recently by
Shenvi and coworkers.38 Like TD-DFT, it can in principle capture both adsorbate and substrate
related non-adiabaticity. For the scattering of highly vibrationally excited NO on Au(111), non-
adiabatic transitions between different charge states of the molecules have been included when
evaluating energy dissipation to the substrate.36,37,39 Available experimental data, which has
already provided strong indications for the importance of electronically non-adiabatic effects
several years ago,29,30 could be nicely reproduced at least qualitatively. However, the under-
lying potential energy surfaces are based on extended Morse potentials and a simple nearest
neighbor harmonic potential for the substrate, both parametrized based on ab initio data.
Hence, a straightforward application to a dissociation problem with an accompanying release
of a high amount of chemisorption energy like in the present case is questionable due to the
limited transferability of the hitherto employed potentials. Given the results already obtained
for the present system, efforts for an according extension and application of the model might
hence better be spent for the gas-surface dynamics of different systems. Coming back to the
initial question of this paragraph, at least for the present system the experimental findings (or
better lack thereof) as described in Section 7.3.3 do provide valuable guidance for further mod-
eling: If non-adiabaticity was important during the dissociation of O2 molecules on Pd(100),
sizable chemicurrents should be detectable. Turning to a completely adiabatic description hence
appears to be a well justified approximation – at least for the present system.

7.4. Summary

After a thorough discussion of good reasons to neglect potential non-adiabaticity induced by the
spin transition O2 molecules undergo during adsorption on the Pd(100) surface, non-adiabatic
effects in form of electron-hole pair excitations of the substrate have been addressed. Due
to the exceptionally high density of states of palladium at the Fermi-level, the importance of
these excitations for the dissipation of the chemisorption energy has called for a state-of-the
art first-principles estimate.
Among approaches available in the literature, a very recent one based on time-dependent

perturbation theory in the adsorbate-substrate interaction potential has been chosen, allowing
to obtain such an estimate for the present system (with all its challenges) by reusing efficiently
results of the conventional ground state DFT calculations from Chapter 6.
Therefore, a very efficient parallel implementation has been done within the Castep code,

whose underlying algorithm has already been gratefully adopted by the original authors of the
theoretical of approach. Numerical accuracy has been verified by comparison to their reference
data, including straightforward general applicability to ultrasoft pseudopotentials. Results are
in perfect agreement, but can be obtained more than an order of magnitude faster than with the
original implementation. This allows a computationally efficient treatment of more demanding
systems like the present one. Furthermore, matrix elements which pose the key computational
challenge are very similar to those required within electronic friction theory, which is nowadays
applied to model a plethora of non-adiabatic phenomena. Therefore, further applications in
the future are straightforwardly envisioned.
Application to O2 on Pd(100) based on an adiabatic spin transition has shown that electron-

hole pair excitations play a negligible role for energy dissipation. Several reflected trajectories
on a frozen substrate, including one which can be considered statistically most representative
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according to the results of Section 6.3.2, yield less than 100 meV to be dissipated into this
channel during the initial encounter of the molecule with the surface. For other trajectories,
dissipated energies are up to two orders of magnitude less, confirming the importance of a
six-dimensional treatment also in this context. This rationalizes the lack of detectable chemi-
currents in unpublished attempts with polycrystalline palladium. Given the (initial) sticking
in the order of one (cf Section 6.3.1), these unsuccessful attempts allow in turn to consistently
rule out a significantly increased importance during actual dissociation.
A strong asymmetry between the two spin channels has been identified for the most sta-

tistically relevant trajectory, and compared to a thorough analysis of the electronic structure
changes related to the spin transition in the adiabatic picture. As expected, the latter is due to
a filling of the 2π∗p orbital of the oxygen molecule. Stronger electron-hole pair excitations are
present in the spin minority channel in an energy range where this orbital overlaps with the
substrate states during the course of the trajectory. This suggests tunneling of excited electrons
as an efficient mechanism for the quenching of the spin and justifies the adiabatic picture in
turn.
Most importantly, this shifts the focus of this thesis away from electronic to non-electronic

degrees of freedom in order to address energy dissipation. Therefore, detailed investigations of
phonon excitations are the topic of the following chapters in Part III.
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8. Energy Sinks “from the Shelf”: An
Overview

In the preceding Part II of this thesis, dynamical properties have been addressed, for which an
accurate modeling of the dissociation and the accompanying release of chemisorption energy
was not of central conceptual concern: As discussed in Chapter 6, steering of incident oxygen
molecules occurs at a distance above the surface where the interaction between adsorbate and
substrate is yet too weak to inflict considerable movement of the substrate atoms. Since the
precise details of how the two oxygen atoms on the surface reach the threshold distance beyond
which a trajectory is counted as stuck are not important, the initial sticking curve obtained in
Section 6.3.1 will hardly be affected by inclusion of substrate mobility. The same holds for the
major entrance channel for dissociative adsorption identified in Section 6.3.2. Furthermore, in
Chapter 7, non-adiabatic effects in form of electron-hole pair excitations have been addressed
using perturbation theory based on unperturbed trajectories on the frozen surface. Completely
in line with indications from experiments412 the concomitant energy loss has been estimated
as negligibly small compared to the total chemisorption energy of about 2.6 eV in the low
coverage regime (cf Section 5.3), justifying the perturbative treatment in turn. Obviously,
this also excludes electron-hole pair excitations as predominant energy dissipation channel and
strongly points at phonons to constitute the latter.
To estimate the implications thereof, at this point, it is instructive to consider a typical

velocity with which phonons propagate: A frequently quoted value for the speed of sound
in bulk palladium cPd

i is approximately 31Åps−1 at 290 K.417 Within the present theoretical
model, values at 0 K have been implicitly obtained from fitting Debye models to phonon density
of states as shown in Fig. 5.1 in Section 5.1 of Chapter 5. These effective velocities of sound
given by Eq. (4.15) in Section 4.1 of Chapter 4 range from 22Åps−1 to 23Åps−1 for the FHI-
aims all-electron and Castep pseudopotential calculations, respectively. They nicely agree
with approximately 20Åps−1 resulting from Eq. (4.15) when inserting the ultrasonic velocities
at 4 K, which Hsu and Leisure obtained for the crystallographic direction considered during
their measurements of elastic constants.270 Of course, this is not surprising, given the excellent
agreement of the calculated phonon dispersion with the experimental data from Miiller and
Brockhouse273 in the linear regime (cf Fig. 5.1), which for itself also accurately reproduces data
from earlier elasticity measurements.269 From the dynamics on the frozen surface in Part II,
the relevant time during which a dissociation event occurs, can be estimated to be (at least)
1 ps to 2 ps.ii With the lattice constant of palladium of about 3.9Å (cf Section 5.1) a phonon
wave packet travels more than 10 bulk lattice constants during this time. In an atomistic

iSee e.g. http://en.wikipedia.org/wiki/Palladium or http://www.webelements.com/palladium/physics.
html. Unfortunately, traces of the original value, which even appears to have been calculated based on an
unknown model,417 vanish in (at least here in Germany) unretrievable Soviet Russian literature.

ii This estimate is based on typical dissociative trajectories obtained in Chapter 6. According to the results from
Section 6.3.3, phonon excitations lacking in the frozen-surface dynamics are expected to set in noticeably
when center of mass distance of the oxygen to the Pd(100) surface is about 2Å. The time it typically takes
from then until complete dissociation is the time given above.
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Figure 8.1.: Zwanzig’s linear chain model for gas-surface dynamics.422 A single gas atom in-
teracts via an interaction potential V1X with a semi-infinite chain of harmonic oscillators
coupled by nearest neighbor force constants mω0 only.

simulation where this is supposed to be captured and unphysical reflections due to commonly
employed periodic boundary conditions or surface effects in finite-size cluster models are to be
avoided, models encompassing at least 30 surface lattice constants, i.e. 15 in each direction,
and more than 20 layers along a [100] direction then need to be considered. Although, as
indicated before, phonons are even quantitatively captured by the present level of theory, such
sizes are way too large for a direct dynamical treatment of the whole system within DFT, as
detailed in Section 8.3. In addition, the detailed electronic structure of such a large model might
not even provide additional insight for adsorbate-substrate systems like the present. Keeping
this in mind, the goal of this chapter is to critically review more effective (and approximate)
heat sink approaches found in the literature, which can be combined with an atomistic first-
principles modeling to reach a quantitative description of energy dissipation during dissociative
adsorption.iii

8.1. Generalized Langevin Equations
One of the earliest discussions of energy dissipation in gas-surface dynamics was given by
Zwanzig.422. He approximated the surface by a semi-infinite linear chain, only considering near-
est neighbor interactions with identical force constants between the one-dimensional harmonic
oscillators as illustrated in Fig. 8.1. With additional approximations concerning the interaction
of the single gas atom with the topmost surface atom, he could obtain analytical solutions for
classical trajectories in two limiting cases. Despite its simplicity, this model could rationalize
dynamical events like trapping and inelastic scattering.
Very general developments in non-equilibrium statistical mechanics led by (again) Zwanzig,423

Mori424 and Kubo425 conceived the idea of so-called Generalized Langevin Equations (GLEs),
which, in contrast to traditional phenomenological Langevin equations used e.g. to describe
Brownian Motion, had a rigorous theoretical justification. In these stochastic equations of
motion for macroscopic observables, the large number of microscopic degrees of freedom of
an interacting many-body system are captured by their elimination into well-defined effective

iii This excludes Billing’s semiclassical atomistic model due its intrinsic approximations concerning the adsorbate-
substrate interaction potential.418–421 Though being considered as current state of the art, Manson’s theory
of inelastic surface scattering is not considered either.295 Details about the adsorbate-substrate interaction
are only considered by effective parameters, and chemical reactions are not meant to be modeled.296
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primary
zone

secondary zone

Figure 8.2.: Primary and secondary zones for applications of generalized Langevin equations
(GLEs) in gas-surface dynamics. Atoms with coordinates RP within the former (dark gray)
are located within a certain area around the impingement point of the gas atoms (red) with
coordinates RX , which is taken to be of the usual circular shape (dashed green line) here.
The remaining atoms (light gray) belong to the secondary zone and their degrees of freedom
RQ are “integrated out” by the GLE formalism as described in the text.

statistical properties. This reduction of complexity of the underlying dynamical problem stim-
ulated Adelman and Doll to combine the GLE approach with Zwanzig’s original linear chain
model for the gas-surface dynamical systems.426,427 An extension to arbitrary but still har-
monic surface lattices succeeded,428 while ideas to go beyond the harmonic approximation by a
rather complicated transformation back to an effective but fictitious nearest neighbor collinear
harmonic chain model followed thereafter.429

In practice, however, the previous “simple” GLE formulation428,430–432 is still mostly used.
It divides the gas-surface system into gas atoms as well as substrate atoms in a primary and
secondary zone with coordinates RX = {RX}X , RP = {RP }P and RQ = {RQ}Q, and masses
{mX}X , {mP }P , {mQ}Q respectively, as illustrated in Fig. 8.2. The gas atoms interact accord-
ing to a potential VX(RX) to be specified – if more than a single gas atom is considered. The
primary zone is the impingement region of the gas atoms, in which the chemical interactions
between gas and surface atoms occur and which is assumed to be small. Atoms contained
therein hence directly interact with the gas atoms via an unknown potential VXP (RX ,RP ),
whereas the interactions among themselves are assumed to be harmonic according to force con-
stant matrices ΦPP and displacement coordinates UP = RP −R 0

P . Secondary zone atoms with
coordinates RQ are supposed to form the heat bath given by the surrounding bulk material, i.e.
the associated region is macroscopically large allowing to associate a certain temperature T . In-
teraction with the gas atoms is only considered by an effective background potential VXQ(RX)
which is conveniently absorbed into VX . All other interactions are those of the assumed har-
monic lattice and hence described by the symmetric force constant matrices ΦQP = ΦPQ and
ΦQQ and displacement coordinates UQ = RQ − R 0

Q. This leads to the following (classical)
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equations of motion:

mXR̈X = −∇RXVX(RX) − ∇RXVXP (RX ,RP ) (8.1a)

mP R̈P = −∇RP VXP (RX ,RP ) −
∑
Q

ΦPQUQ (8.1b)

mQR̈Q = −
∑
P

ΦQP UP −
∑
Q

ΦQQUQ (8.1c)

Following Adelman and Doll,428 by formally solving Eq. (8.1c) for the secondary atoms and
eliminating them from Eq. (8.1b) afterwards, Eqs. (8.1b) and (8.1c) can be recast into a gen-
eralized Langevin equation for the primary zone atoms only:

mXR̈X(t) = −∇RXVX(RX) − ∇RXVXP (RX ,RP ) (8.2a)

mP R̈P (t) = −∇RP VXP (RX ,RP )

−
∫ t

0
dτ mP ΓPP ′(t− τ)︸ ︷︷ ︸

friction kernel

ṘP ′(τ) + F r
P (t)︸ ︷︷ ︸

random force

(8.2b)

Equations (8.2) are in principle still exact in a stochastic sense, hiding the complexity of the
many-body system in the friction kernel ΓPP ′ , and the random force F r

P . The memory pro-
vided by the former in the friction integral is precisely what distinguishes GLEs from simple
Langevin equations and also obviously complicates their solution. ΓPP ′ and F r

P are well defined
but rather involved functions of the neglected secondary zone degrees of freedom and hence not
given here explicitly. One immediate consequence in combination with the assumed harmonic
lattice is that the probability distribution for the random force is Gaussian with a width re-
lated to the vibrational properties of the lattice. Furthermore, both Adelman and Doll428 and
Kantorovich432 – only very recently in a mathematically more rigorous way – have shown how
a manifestation of the fluctuation-dissipation theorem424,425 follows, relating friction kernel and
(probability distribution of the) random force:

ΓPP ′(t) = kBT 〈F r
P (t)F r

P ′
†(0)〉secondary zone

NV T (8.3)

Here kB is the Boltzmann constant, and in a consistent treatment the canonical average is
taken over the secondary zone only, as Kantorovich emphasized.432 Equation (8.3) ensures that
energy dissipation out of the primary zone described by the friction integral in Eq. (8.2b) is on
average balanced by a back-flow of energy, allowing to maintain or restore the secondary zone
(bath) temperature T in the primary zone.
The big advantage of the GLE approach is that only the “interesting” dynamics of gas phase

and primary zone atoms given by Eq. (8.2a) and Eq. (8.2b), respectively, need to be followed
explicitly, resulting in a greatly reduced number of coupled differential equations. This comes
at the prize that individual trajectories have lost their physical meaning, since the statistical
treatment of the bath gives rise to the discontinuous random force. Additionally, an exact
representation of the friction integral including all the memory contained therein would require
to evaluate the detailed dynamics of the bath and hence nullify the advantages of its statistical
treatment. Therefore, a suitable approximation for the friction kernel needs to be employed to
make the GLE approach in its original formulation tractable in practice.
The first to make practical use of the latter to model gas-surface dynamics of a realistic sys-

tem were Tully and coworkers.433 Still for Zwanzig’s original chain model, they employed a very
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simple approximation of the friction kernel in Eq. (8.2b) together with a few parameters chosen
to mimic the collision of He atoms with a tungsten surface, where the latter was represented
through a Debye phonon spectrum of bulk tungsten. By appropriate numerical evaluation of
the system of stochastic differential equations given by Eq. (8.2), they calculated about ten
thousand stochastic trajectories to obtain statistical quantities like (initial) sticking probabil-
ities and energy transfer. Hence, for the first fime in that work, they were probably to treat
energy dissipation in gas-surface dynamics atomistically in a materials-specific fashion at a very
simple semi-empirical level. Shortly after, Tully proposed more sophisticated and complicated
parametrizations for the friction kernel, specific to low index surfaces of fcc and bcc crystal.434
He incorporated some insight from the molecular dynamics studies of the corresponding sur-
faces of Lennard-Jones crystals by deWette and coworkers,165 which certainly belonged to the
most sophisticated theoretical work on surface vibrational properties at the time. Further ap-
plications followed, e.g. to surface diffusion,435 focusing on improved empirical potentials for
the gas-surface interaction,436–439 in particular of the well-known LEPS kind,301,302 but also
discussing simplified parametrizations of the friction kernel.440 Despite arguments against the
inconvenient numerical treatment of GLEs and in favor of simplified descriptions of energy
dissipation for example via simple (and entirely empirical) Langevin equations,441,442 finally
also electronic non-adiabaticity was tried to be captured by the friction integral within a GLE
description,32,443 and is still applied in very recent studies.300,391 Combination with the very
simple surface oscillator model444–446 as detailed in the next section is another reason why the
GLE approach is yet commonly invoked as convenient extension to frozen surface ab initio po-
tential energy surfaces in state-of-the-art work.447 The same holds for slightly more advanced
models in which a primary zone of about 80 surface atoms is coupled to bulk oscillators. Nearest
neighbor harmonic interactions among those atoms have been used with a single force constant
obtained from a fit to one high-symmetry direction of corresponding measured bulk phonon
dispersions. The interaction with the gas atoms are approximated by a sum of pair potentials
with a single global parameter fitted to ab initio data, hence neglecting any many-body effects
in the gas-surface interaction by construction.326,448
Interest in the evolving field of multiscale modeling gave a new impulse on the development

of both accurate and practical friction kernels. Cai and coworkers proposed a way how to
efficiently calculate the kernel numerically.449 The Green’s function molecular dynamics method
as proposed and implemented by Müser and coworkers also relies on integrating out harmonic
degrees of freedom in the spirit of the GLE approach and obtains the response of the bath system
by a numerical representation of the associated elastic Green’s functions.450–452 In contrast, E
took ideas from his absorbing boundary conditions framework, which aims at the minimization of
phonon reflections,453 and combined the latter with the GLE formulation to obtain approximate
GLEs with simpler integration kernels termed variational boundary conditions.454 Earlier work
by Moseler and coworkers was along the same lines, but more physically motivated by focusing
on energetic-particle solid collisions. They also proposed links to continuum mechanics in form
of elasticity theory.455 Only recently, Kantorovich432 revisited the basic theoretical formulation
of Adelman and Doll428,453 to correct the inconsistencies indicated in the preceding paragraph
above. Additionally, he could demonstrate that the same GLE as given by Eq. (8.2b) can still
be constructed even when primary zone atoms interact via any kind of anharmonic potential.
However, harmonicity is still required (at least in practice) for interactions among and with
secondary zone atoms forming the bath. In succeeding work456 he and his coworker could
demonstrate that for sufficiently short range interactions and some further approximations the
GLE description can be recast into so-called stochastic boundary conditions: Atoms within a
boundary layer of the primary zone with coordinates {RB}B and masses {mB}B are propagated
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according to even only a conventional Langevin equation

mBR̈B(t) = −
∑
P

ΦPB UB(t) −
∑
B

ΦBB UB(t) − mB γ ṘB(t) − F r
B(t) , (8.4)

while the remainder follows simple Newtonian dynamics. Force constant matrices ΦPB and
ΦBB as well as displacement coordinates UB are defined accordingly as before in the preced-
ing paragraphs. The simple friction coefficient γ is related to the width σ of the Gaussian
distribution of the random force F r

B by

σ = 2mB γ kBT

δt
. (8.5)

This is a result of approximations made for the friction integral, where a discrete time interval
δt has been introduced, which gets the meaning of the time step used in practical molecular
dynamics calculations.456,457
To summarize, the significant reduction of the bath degrees of freedom into a friction kernel

and a random force is of course appealing. It comes at the prize that individual trajectories
lose their physical meaning though still correct in stochastic sense even for systems which
are far away from thermal equilibrium. This is quite in contrast to thermostats discussed
in one of the following sections. For the present purposes, a priori it is unclear whether
the harmonic approximation made implicitly (at least for the bath and the coupling to it) in
GLEs is reasonable when the release of several electron Volts of chemisorption energy is to
be described. Finally, the GLE approach has not yet been employed within a framework of
realistic interactions at a first-principles level between gas and primary zone atoms and among
the latter.

8.2. Surface Oscillator
Starting with the dynamics of molecular hydrogen on surfaces, quantum mechanical treatment
both of electrons and ions demanded a reduction of the degrees of freedom. Therefore, the
frozen surface approximation resulting in a six-dimensional potential energy surfaces V 6D as
constructed and employed in Part II became quite popular and was conveniently justified by the
large mass mismatch of gas and surface atoms. Indeed, early “high-dimensional” studies based
on LEPS potentials and a harmonic oscillators for the substrate (the latter parameterized
based on Debye models of the bulk substrate) showed less than 10 % energy transfer to the
substrate,304 or negligible influence of surface temperature on sticking.438,439
Nevertheless, in order to have some ingredient in the model which can be claimed to represent

a certain surface temperature, the surface is taken to be rigid and represented by a harmonic
oscillator as illustrated in Fig. 8.3 – like an even simplified version of Zwanzig’s collinear chain
model Fig. 8.1. It is usually coupled to the previously constructed six-dimensional potential
V 6D in the following way:445,446,458–467

V 6D+SO(X,Y, Z, d, θ, ϕ) = V 6D(X,Y, Z − ZS, d, θ, ϕ) + 1
2mS ω

2
S Z

2
S (8.6)

Here, the spherical coordinates of a diatomic molecule X,Y, Z, d, θ, ϕ are defined in the same
way as in Section 6.1.1 of Chapter 6, ZS, mS and ωS are (displacement) coordinate, mass
and characteristic frequency of the surface oscillator, respectively. With Fig. 8.3 in mind,
the coupling to the Z distance (of the center of mass) of the molecule from the surface via
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Figure 8.3.: Schematic illustration of the one-dimensional surface oscillator model, for the usual
coupling along the surface normal leading to a rigid up and down-shift of the latter. Z is the
center of mass distance of the molecule with respect to the rest position of the surface, ZS
is the surface oscillator displacement coordinate, mS and ωS are the mass and characteristic
frequency parameters of the latter.

a shift of coordinates appears intuitively natural. In fact, in this form the surface oscillator
had already appeared even earlier in the literature in a study of gas-surface scattering.444
Yet, other couplings, for example perpendicular to specific reaction paths,468 including an
exponential decay with surface distance (termed modified surface oscillator)461 or finally even
three dimensional surface oscillators23,447

V 6D+SO3(RA,RB) = V 6D(RA −RS,RB −RS) + 1
2mSR

†
S Ω2

SRS (8.7)

have been proposed as well. In the latter case, the surface oscillator coordinates RS were
coupled to the Cartesian coordinates RA and RB of the two atoms of the diatomic, and the
frequency matrix ΩS was taken to be diagonal. Surface oscillator parameters, i.e. mass and
characteristic frequencies, are usually chosen based on the atomic masses of the surface atoms
and experimentally determined vibrational properties, e.g. the Debye frequency of the corre-
sponding bulk material. Changes in these parameters by orders of magnitude are usually found
not to have any significant influence on statistical properties (typically sticking or scattering
properties) that have been studied.23,447,461,466,467 To model energy flow from the surface into
the bulk, the surface oscillator degrees of freedom have been treated like the primary zone in
a traditional generalized Langevin equation (cf Section 8.1), which of course leads to further
parameters to be specified.445–447
In summary, there are two major approximations in the “somewhat suspect” surface oscil-

lator model, as Kroes nicely points out in his recent review:469 First, all substrate degrees of
freedom are reduced to a single (at best three-dimensional) harmonic oscillator, whose connec-
tion to the bulk is furthermore assumed to be describable by a generalized Langevin equation.
Second, the coupling to the gas-surface interaction as given by Eqs. (8.6) and (8.7) is chosen
intuitively convenient for a pre-existing potential energy surface obtained within the frozen
surface approximation, but is otherwise completely arbitrary. Both of these approximations
are hence not constructed systematically out of the (even classical) many-body Hamiltonian
of the interacting gas-surface system. The concomitant simplicity of the model might be the
reason for its insensitivity to the actual choice of parameters in many of the applications, and
the influence of surface temperature might indeed be captured qualitatively correct when form-
ing averages for statistical properties concerning sticking and scattering. However, it is highly
questionable, how much insight can be gained when as in the present case the energy release
during a single dissociation event is to be followed.
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8.3. ab initio Molecular Dynamics

The apparently simple and straightforward way to go beyond the simple surface oscillator
model described in the previous section is to include a mobile substrate. When using interac-
tion potentials between and among gas and surface atoms which are entirely empirical304 or
“empirically augmented” interpolated ab initio potentials obtained on a frozen surface.326,448
the corresponding molecular dynamics simulations are at least nowadays no longer a big com-
putational challenge. On the other hand, calculating the quantum mechanical interactions “on-
the-fly” during the dynamics from first-principles is commonly referred to as ab initio Molecular
Dynamics (AIMD) and by several orders of magnitude computationally more demanding.

In DFT codes based on plane waves (cf Section 2.6) the computational cost also strongly
depends on what element is used as adsorbate, due to the different plane-wave cut-offs that
are required. Hydrogen is a particular attractive choice, and hence it is not surprising that
this (on different substrates) has often been a convenient starting point for first-principles
based investigations in gas-surface dynamics employing new methodologies.74,316–318,383,384 The
AIMD studies of sticking and adsorbate dynamics by Groß and coworkers for H2 adsorption on
Pd(100)353,354 are yet another good example for this. However, even then the still enormous
computational burden required to jeopardize accuracy for speed, resulting in a computational
cost which is more than one order of magnitude less compared to the present system O2
on Pd(100). The current hope is inflicted inaccuracies do average out and hence statistical
quantities are not affected,361 though this is not guaranteed from a theoretical point of view.
Nevertheless, for that study it took more than a year to obtain 100 trajectories with a supercell
containing about 100 substrate atoms. This is of course nowhere close to what has been
estimated as required by considering phonon propagation in the introduction of this chapter
to avoid unphysical reflections at boundaries of the latter. However, for hydrogen, the same
arguments which have already been used in favor of the frozen substrate (cf Section 8.2), could
be invoked here as well: The large mass mismatch between adsorbate and surface atoms, should
result in a weak coupling and hence only mild excitation of substrate vibrations. Nevertheless,
this does not correct the physical quality of the model as far as the description of phonons is
concerned.

Altogether, for O2 at Pd(100), direct AIMD simulations in sufficiently large cells are im-
possible within present computational abilities. Apart from the fact that nearly three times
as much chemisorption energy is released compared to the dissociative adsorption of H2 on
the same surface, the mass ratio of oxygen and palladium atoms leads to the anticipation of
much stronger phonon excitations. This is further corroborated by earlier studies: During the
adsorption of atomic oxygen on Cu(100), modeled with an “empirically augmented” interpo-
lated frozen-surface ab initio potential, 8 eV are dissipated to a substrate of 80 copper atoms
in 1 ps.448 Scattering of O2 on Pt(111) leads to a transfer of on average 40 % of the initial
kinetic energy to substrate vibrations. In this work by Groß and coworkers, a tight-binding
Hamiltonian is used, which is parametrized based on DFT calculations, resulting in an effective
description of the Pt-O-interaction at the tight-binding level.337 It is interesting to note that
platinum atoms are even nearly twice as heavy as palladium atoms. Hence for the present
system, a method to properly account for phonon excitation is still to be found.
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MM

QM

cluster

Figure 8.4.: Schematic illustration of QM/MM embedding: In a region of interest, a cluster is
cut out and treated with higher, i.e. quantum mechanical (QM) accuracy. The remainder
of the model is treated with a simpler, less accurate and computationally less demanding
force field, also referred to as molecular mechanics (MM). Note that cluster sizes required to
yield a realistic band structure of a surface are enormous (i.e. several hundred to thousand
atoms). Therefore, QM/MM based embedding cannot be applied to the present system.

8.4. Embedding
The general idea of embedding is to subject only a certain region to an accurate and com-
putationally expensive quantum mechanical (QM) treatment (too expensive to apply to the
whole system), while the remainder of the simulated system is treated using less exact, but also
much cheaper so-called “molecular mechanics” (MM), hence the common acronym QM/MM.
The latter refers to a description by a less exact, but also much cheaper interatomic potential,
which does not consider the electronic degrees of freedom explicitly.
For the present system, the impingement region of the O2 molecule is the obvious choice

for the QM treatment, to describe the bond breaking and formation during the dissociation
reaction at high accuracy. This is illustrated schematically in Fig. 8.4. The designated QM
region then needs to be cut out to allow the separate treatment, i.e. an artificial cluster needs
to be constructed according to the geometrical criteria that define this region. However, for
metallic systems, this is a big problem, as the cluster does not have a metallic band structure
which plays a fundamentally important role for the accordingly delocalized adsorbate-substrate
interaction.82 This is the reason why periodic boundary conditions are commonly used for a
proper description of the metal-adsorbate binding – an excellent description of the band struc-
ture is naturally contained therein. Cluster sizes which are required to get in good agreement
to the periodic limit are so humongously large (several hundred to thousands atoms) that the
advantages of any embedding are annihilated.
Furthermore, the boundary region needs special care in order to achieve a good matching of

the two different theoretical descriptions. For molecular dynamics simulations, this is either
done directly on the level of forces or indirectly by constructing an embedding energy expression
from which forces then can then be derived. For the former, the following is quite common:

V
QM/MM

tot = V MM
sys + V QM

cluster − V
MM

cluster (8.8)

The potential energy of the whole system V MM
sys is corrected by the difference of the QM (higher

quality) and MM (lower quality) methods for the chosen embedding cluster. This is also referred
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to as ONIOM method.470 Since in principle, a hierarchy of methods with increasing quality can
be stacked within the scheme, the name reminds of the layered skin structure of an onion.
Both approaches are particularly popular in the biophysical community. To treat large

biomolecules in solution and include the effect of the environment, there is hardly any other
way than embedding. Cutting out clusters around reactive centers usually works very nicely
here, as bonds are predominantly covalent and hence very localized. Bonds which are cut when
forming the cluster are usually saturated by hydrogen atoms. Only recently, the effect of the
embedding error due to the boundary region gets investigated.471
In material science, an embedding scheme termed “learn on-the-fly” (LOTF) has only recently

been developed and applied to crack propagation in silicon.472–475 Again, due to the strong
covalent character of the bonds in bulk silicon, a description based on clusters with dangling
bonds properly terminated by hydrogen is very successful. On the other hand, for the reasons
outlined in the preceding paragraph, the situation is quite different for metallic systems. Three
recent reviews about applications of QM/MM schemes do not mention any in heterogeneous
metal catalysis.476–478 In fact, there is one attempt to apply ONIOM for hydrogen adsorption on
Li(110) surfaces. Clusters sizes up to about 50 atoms are employed without embedding, making
the obtained energetics highly questionable.479 Choly and coworkers have proposed another
QM/MM scheme for bulk metals which in the end arrives at the same energy expression like
for a (one-layered) ONIOM scheme (including the cluster treatment).480 This has been extended
by a buffer region by Liu and coworkers in order to reduce the embedding error.481 In both
cases, the embedded atom method is applied as lower quality method for the treatment of the
large bulk metal part.172,175,181 Still, it remains higly questionable (and unchecked), how large
the wrong to non-existing description of the metallic band structure in the embedding clusters
is in those two studies even for the investigated bulk properties.
A detailed overview about embedding techniques and their applications in particular in mate-

rials science can be found in the excellent and very recent review by Bernstein and coworkers.482
However, despite of the appeal that an embedding treatment might have for a problem involv-
ing a metallic substrate like the one under investigation here, no appropriate solution can be
found therein.

8.5. Thermostats

Originally, molecular dynamics has become popular as an appealing alternative to Monte Carlo
techniques, aiming at the calculation of partition functions for classical systems. Relying on
ergodicity, the calculation of time averages along MD trajectories instead of ensemble aver-
ages by solution of high-dimensional integrals becomes more and more favorable as system
size increases. However, moving through phase space according to trajectories given by New-
ton’s equations of motion corresponds to sampling (if ergodicity is fulfilled) the microcanonical
ensemble (NV E) only. Going beyond the latter is usually much more interesting – being con-
cerned about heat release and dissipation in the present context certainly favors the canonical
ensemble (NV T ). Of course, in principle a bath with a large number of additional degrees of
freedom could be included explicitly in the dynamics and would allow to keep a sub-part at
a consistently defined a temperature. However, depending on the computational cost of the
employed interaction potential, for most applications, the numerical effort for the integration
of motions simply gets too large. The GLE approach, as detailed in the preceding Section 8.1,
provides one way to deal with this problem, but assumes harmonic system-bath interactions
and leaves the friction kernel to be dealt with in practice. Focusing on the calculation of sta-
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tistical properties in thermodynamic equilibrium, so-called thermostats have been developed
alternatively – without making any a priori assumptions about the underlying interactions.
Andersen proposed to maintain a certain desired temperature in a molecular dynamics simu-

lation by redrawing particle velocities from the corresponding Maxwell-Boltzmann distribution
within certain time intervals. The latter are rationalized as collision with a fictitious heat
bath and determined by a Poisson process with prescribed frequency, resulting in a stochas-
tic thermostat.483 In contrast, the thermostat developed by Berendsen and coworkers provides
continuous dynamics via the introduction of a velocity dependent friction term into Newton’s
equations of motion. This is in fact motivated by a Langevin equation (cf Eq. (8.4)), whose
random force term gets dropped. The friction coefficient is constructed such that velocities are
globally rescaled to enforce the desired target temperature T .484 In a MD simulation of N par-
ticles with coordinates {RI}I∈{1, ... ,N}, the latter is usually obtained as so-called instantaneous
temperature based on the average kinetic Ēkin energy, which can be conveniently calculated:

3
2kBT = Ēkin = 1

2〈mIṘ
2
I〉I , I ∈ {1, . . . , N} (8.9)

Consequentially, the Berendsen thermostat practically aims at keeping 〈Ekin〉I constant. In
the canonical ensemble, however, this is supposed to fluctuate with a variance of 2

3N as can be
easily shown.149 As a result, the Berendsen thermostat does not describe the canonic ensemble
correctly – the smaller N is, the worse the description gets. This certainly is one of the reasons
why thermostats based on Nosé’s ideas are more popular nowadays: By considering an ex-
tended system with fictitious degrees of freedom, equations of motion can be constructed that
yield a canonical distribution for the original, physical variables, which is contained in the mi-
crocanonical distribution of the extended set of variables. Nosé originally achieved this via the
introduction of time rescaling in the physical system.152–154 Hoover provided a simplified refor-
mulation which does not require the somewhat awkward rescaling of time and its concomitant
inconveniences in practice.155 Unfortunately, he also demonstrated for a simple system like a
one-dimensional harmonic oscillator that the resulting dynamics are not ergodic.155 Therefore,
harmonic systems in general tend to suffer from poor sampling of the canonical ensemble when
molecular dynamics trajectories produced by this Nosé-Hoover thermostat are considered. A so-
lution was proposed by Martyna and coworkers.156 They showed that ergodicity is improved by
“thermostatting the thermostat” and hence arrived at what they termed Nosé-Hoover chains.
The equations of motion are

mIR̈I = −∇RIV ({RI′})−mI ṘI η̇1 , I ∈ {1, . . . , N} (8.10a)

Q1 η̈1 =
[
N∑
I=1

mIṘ
2
I − 3NkBT

]
−Q1 η̇1 η̇2 (8.10b)

Qi η̈i =
[
Qi−1 η̇

2
i−1 − kBT

]
−Qi η̇i η̇i+1 , i ∈ {2, . . . ,M − 1} (8.10c)

QM η̈M =
[
QM−1 η̇

2
M−1 − kBT

]
, (8.10d)

where the M additional, fictitious coordinates {ηi}i together with thermostat masses {Qi}i
have been introduced. As indicated before, the case of M = 1 is identical to what Hoover had
proposed originally It is interesting to note that the velocity dependent terms in Eqs. (8.10)
couple in a very similar way to the dynamics like in case of the Berendsen thermostat,484
thanks to the difference enforcing the instantaneous temperature in the “chain”, Eqs. (8.10b)
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to (8.10d). Equations (8.10) give rise to trajectories with a microcanonical distribution

f({RI}I , {ṘI}I , {ηi}i, {η̇i}i) ∝

exp
(
− 1
kBT

[
V ({RI}I) +

N∑
I=1

1
2mIṘ

2
I

])
︸ ︷︷ ︸

≡fc({RI}I ,{ṘI}I)

· exp
(
− 1
kBT

[
M∑
i=1

1
2Qi η̇

2
i

])
(8.11)

in the phase of the extended system, as can be proven by showing that Eq. (8.11) is stationary.156
As indicated before, the canonical distribution fc for the physical system is obviously con-
tained therein. Thanks to the coupling of the fictitious and the physical degrees of freedom
in Eqs. (8.10), each of the two factors in Eq. (8.11) can still vary during the course of the
dynamics. This results in the sampling of the canonical distribution of the physical system, if
the dynamics of the total system is (“sufficiently”) ergodic. Furthermore, along a trajectory,
the following quantity is conserved

H̃NHC({RI}I , {ṘI}I , {ηi}i, {η̇i}i) =

V ({RI}I) +
N∑
I=1

1
2mIṘ

2
I +

M∑
i=1

1
2Qi η̇

2
i + 3NkBT η1 +

M∑
i=2

kBT ηi (8.12)

Evidently, H̃ is not a Hamiltonian that generates the dynamics given by Eqs. (8.10). The
thermostat masses control the coupling strength to the fictitious bath. It can be shown that
the thermostat coordinates oscillate approximately with an average characteristic frequency

ωNHC =
√

3NkBT

Q1
=
√
kBT

Qi
, i ∈ {2, . . . ,M} . (8.13)

It is common practice to choose ωNHC according to vibrational properties of the physical sys-
tem, e.g. phonon frequencies.156 However, very often this choice is also guided by numerical
convenience when integrating Eqs. (8.10) and is hence completely arbitrary. Again, just like
in case of the surface oscillator described in Section 8.2, the bath is condensed into a single
parameter.
Finally, thermostats are still an active field of research and latest developments incorporate

both stochastic and velocity rescaling elements,485 again in contrast to the continuous dynam-
ics provided by the Nosé-Hoover based types. In any case, individual trajectories lose their
physical meaning. This is obvious when stochastic elements are involved, just like in the case
of (generalized) Langevin equations. In fact, without the systematic construction described in
Section 8.1, the latter are often considered as stochastic thermostats as well. On the other
hand, as Jellinek has pointed out as generalization of the Nosé-Hoover approach486

“[...] there are infinitely many different dynamics capable of mimicking the canonical
ensemble [...]”

By construction, same initial conditions can hence produce different deterministic continuous
trajectories, only supposed to yield the right ensemble properties as time averages, if there are
no problems due to ergodicity. The former are mere sampling tools, i.e. it is highly question-
able whether a real physical trajectory in the large statistical system is correctly described by
any of them. This has been seen as a chance to also capture properties of systems which are
not in thermal equilibrium by non-equilibrium molecular dynamics (NEMD) simulations,487–489
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as it is undoubtedly the case during an exothermic chemical reaction on a surface due to the
concomitant release of chemisorption energy. However, the whole construction targets thermal
equilibrium, quite in contrast to that of generalized Langevin equations (cf Section 8.1), which
is, following Kantorovich,456,457 a good argument in favor of stochastic boundary conditions
as described at the end of Section 8.1 for the present NEMD purposes. Nevertheless, “ther-
mostatting” a “boundary zone” to represent a heat bath and maintain a certain temperature is
quite common in practice, in particular in simulations of thermal conductivity.490 Quite so, it
has also been employed in studies of surface dynamics recently, in combination with ab initio
molecular dynamics (cf Section 8.3) – the latter becoming more feasible and popular in this
field as well.491,492

8.6. Summary
Altogether, none of the previously employed models does include a realistic surface phonon band
structure of the substrate and describes the adsorbate-substrate interaction at a first-princi-
ples level of theory. Therefore, it is not surprising that in his recent review Kroes considers an
accurate description of the energy dissipation to phonons as one of the key challenges in contem-
porary theoretical modeling of gas-surface dynamics.469 In particular, as discussed above, there
are strong arguments for phonons to constitute the predominant energy dissipation channel for
O2 dissociation on Pd(100) studied here. Recent gas-surface dynamical studies for several other
systems including electron-hole pair excitations on different levels of theory44,46,74,384,393,394,493
suggest that this might be rule rather than exception. Even for the scattering of highly vibra-
tionally excited NO molecules from a Au(111) surface, a system for which experiments have
suggested electronic non-adiabatic effects to be of major importance,29 Shenvi et al. have shown
only recently by state-of-the-art simulations that still a large fraction (more than 30 %) of the
energy dissipated into phonons.38 In general, when adsorbates heavier than hydrogen are in-
volved and chemisorption energies in the order of several electron volts are released, classical
theory obviously becomes more and more appropriate and trivially ascribes an increasing im-
portance to energy dissipation into phonons. A more accurate approach to describe the latter
hence seems to be highly desirable.
Therefore, in the following chapter, first a new embedding scheme termed ’QM/Me’ for

metallic substrates in general is developed. Its ensuing application then allows to model the
heat release (i.e. energy dissipation to phonons) during O2 dissociation on Pd(100) from the
highly desirable ab initio perspective – without the need for any parameters from experiment.
Contrary to all approaches described above, it neither requires any fundamental physical ap-
proximations beyond Born-Oppenheimer per se, nor does it imply dynamics in which individual
trajectories lose their physical meaning. In Chapter 9, these approaches are revisited in light
of the new model, and in Chapter 10, its hitherto unrivaled accuracy is made use of in order
to investigate the importance of two conceptually important aspects: The role of both sur-
face phonons and substrate anharmonicity during exothermic surface chemical reactions are
quantified on an first-principles basis for the first time.
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9. “QM/Me” - a Novel Embedding Approach
for Metallic Systems

As has been detailed in the previous chapter, there are no adequate “energy sinks from the
shelf” allowing to model the energy dissipation into phonons during the exothermic dissociative
adsorption of O2 on Pd(100) from a state-of-the-art first-principles perspective.
Despite the also for present purposes very appealing spatially motivated combination of

different levels of theory and concomitant accuracy, traditional “QuantumMechanics/Molecular
Mechanics” (QM/MM) based embedding treatments have never been successfully applied to
adsorption problems on Metals. Therefore, a new method allowing embedding for such systems
is the topic of this chapter – and consequently christened “QM/Me”. After details about its
construction have been laid out in Section 9.1, first results from its application to O2 dissociation
on Pd(100) are presented in Section 9.2, which are finally summarized thereafter in Section 9.3,
together with an outlook to a variety of straightforward further applications.

9.1. Embedding within Periodic Boundary Conditions
9.1.1. Embedding Ansatz
In order to keep a proper description of the adsorbate-substrate interaction during the adsorption,82
the following embedding ansatz employing periodic boundary conditions (PBCs) for the quan-
tum mechanical energies is proposed:

V QM/Me(R) = V Me(Rbath) +
[
EQM(Rslab ∪Rads)− EQM(Rslab)

]
︸ ︷︷ ︸

≡ V ∆QM(Rslab ∪Rads)

(9.1)

where the coordinate sets R, Rbath, Rslab and RX are defined as

Rads = {RX}X ∈{adsorbate atoms in embedding cell} (9.2a)
Rslab = {RM}M ∈{metal atoms in embedding cell} (9.2b)
Renv = {RM}M ∈{metal atoms in environment} (9.2c)
Rbath = {RM}M ∈ bath = Rslab ∪Renv (9.2d)
R = {RI}I ∈model = Rbath ∪RX . (9.2e)

Renv has been defined in addition conveniently collecting the coordinates of all the atoms in
the environment added due to the embedding. Both Eq. (9.1) and the definitions Eq. (9.2) are
illustrated in Fig. 9.1.
V QM is obtained from two quantum mechanical calculations within identical PBCs, defined

by the embedding cell, using density functional theory according to the previously employed
setup (cf Chapter 5). The associated region is the impingement area around the molecule, i.e.
the same supercell which could also have been used in a treatment via conventional ab initio
molecular dynamics as detailed in Section 8.3.
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Figure 9.1.: Schematic illustration of the novel QM/Me embedding scheme as defined in
Eq. (9.1) for the example of O2 adsorption on Pd(100). A possible embedding cell for the
periodic quantum mechanical calculations is indicated in blue. Palladium atoms (Rslab) and
an oxygen molecule (Rads) contained therein are shown in gray and red, respectively. In the
left part, a few additional palladium atoms in the environment (Renv) formed by the bath
(Rbath) are indicated in black. (Sets of respective coordinates given in parentheses are de-
fined by Eqs. (9.2).) Note that this image is only schematic, i.e. sizes of bath and embedding
cells employed in actual calculations differ from what is shown here. In the right, Hellman-
Feynman forces on the atoms in the embedding cell are visualized in green. Resulting force
differences F∆QM

I (Rslab ∪ Rads) according to Eq. (9.4) are shown in the bottom part. As
discussed in the text (in more detail in Section 9.1.2), they decay quickly with increasing
distance from the adsorbate.

V Me indicates an energy from an interatomic potential (cf Section 3.2) suitable for the de-
scription of metals, which should be computationally much less expensive compared to DFT
but nevertheless on par in its accuracy with the latter for bath atoms which are only slightly
distorted from their equilibrium lattice sites. Despite these low demands on transferability, a
seamless match is still required, which is achieved in this context by an adaption of the modified
embedded atom method (MEAM),189–191 as described in detail in the following Section 9.1.3.
Inside the supercell used for the periodic quantum mechanical calculations, the difference

term V ∆QM cancels elastic contributions provided on the DFT level for the metals atoms
Rslab, which are already taken care of by V Me, and thus acts as a correction that (e.g.) properly
captures the bond breaking constituting the “origin” of a concomitant energy release in course
of an exothermic chemical reaction. It properly extends the interatomic potential by adding
the missing contributions due to the adsorbate-substrate interaction and any direct interactions
between “multicomponent adsorbates” like e.g. an O2 molecule. Thanks to the description of
the latter on a quantum mechanical level, all the important many-body effects are included,
contrary to descriptions of even only monoatomic adsorbates with parametrized potentials in
the past.304,326,448

Obviously, V ∆QM has been motivated by the usual way how binding energies of adsorbates
on surfaces are calculated, as given by e.g. Eq. (5.9) or Eq. (6.24). In those cases, however, all
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energies are minimized individually with respect to the corresponding nuclear coordinates, and
a constant reference is used when energies of different configurations are compared (energy of
the O2 molecule in the two aforementioned cases). The latter could be introduced to V ∆QM

here as well, but evidently is of no importance for the dynamics discussed in the following.

Of course, Eq. (9.1) is based on the assumption that V ∆QM provides well-defined quantum
mechanical adsorbate-substrate and adsorbate-adsorbate interaction augmentations to V Me in
the sense that they are effectively localized around the adsorbates. In fact, on the level of
energies it is rather well known from DFT adsorption studies relying on the aforementioned
expressions, that in particular for small adsorbates like atoms or diatomics on metal surfaces
adsorption energies reach a constant value on a meV scale for moderately sized supercells and
corresponding rather small minimum distances between periodic images within the PBCs (3×3
supercells for the present system, see e.g. Section 5.3 or the work by Zhang and Reuter16). This
can be seen as a natural consequence of the nearsightedness principle234,235 which is particularly
effective due the efficient screening properties of metallic systems.494 The generalization to
arbitrary configurations implied by V ∆QM will be discussed in detail in Section 9.1.2, focusing
on the forces (vide infra) which are employed in the ensuing dynamics. Finally, for oxygen
adsorption on Pd(100), Zhang and Reuter have also observed that energy differences like those
in V ∆QM seem to cancel a part of the exchange-correlation error at least when comparing local
and semi-local functionals.16 Though by no means part of the original and primary goals of
the embedding ansatz proposed by Eq. (9.1) above, its overall description might thus even go
beyond the DFT level of accuracy originally to be expected should this trend prevail – but of
course also depending on the quality of V Me).

It is interesting to note that Eq. (9.1) bears similarities to the energy function used within
the ONIOM embedding approach470 as given by Eq. (8.8), but with the crucial difference that
the construction of clusters is avoided entirely, thus allowing to overcome the inapplicability
of the latter to metallic systems (cf Section 8.4). In addition, the embedding region is treated
twice at the same level of theory, each containing a different set of atoms, which is supposed to
suppress boundary effects and yields a many-body augmentation of an interatomic potential.
It might be interesting to explore whether the latter aspect could also be beneficially applied
to traditional cluster based embedding.

In order to make the above embedding ansatz become practical within (classical) molecular
dynamics simulations (MD), forces resulting from the potential energy given by Eq. (9.1) are
required (cf Chapter 3). Just like for the ONIOM scheme they are easily obtained according to

F
QM/Me
I (R) = FMe

I (Rbath) + F∆QM
I (Rslab ∪Rads) with I ∈ model , (9.3)

where the individual contributions are

FMe
I (Rbath) =

−∇RIV
Me(Rbath) if I ∈ bath

0 otherwise
(9.4a)
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and

F∆QM
I (Rslab ∪Rads) =



−∇RIEQM(Rslab ∪Rads) if I ∈ adsorbate atoms

−
[
∇RIE

QM(Rslab ∪Rads)

−∇RIE
QM(Rslab)

] if I ∈ metal atoms in environment

0 otherwise
(9.4b)

Using the flexible self-developed interface extension to the Lammps code, which is described in
detail in Appendix D.2, corresponding trajectories are easily obtained, triggering two Castep
calculations to evaluate both {−∇RIEQM(Rslab ∪ Rads)}I and {−∇RIEQM(Rslab)}I in each
MD step, whereas the remaining forces {−∇RIV Me(Rbath)}I are obtained analytically within
Lammps directly. Employing a velocity Verlet integrator (cf Section 3.3) with a time step
of 2.5 fs, the total energy is typically conserved by less than 1× 10−3 meV per atom for a
simulation containing 125,002 atoms when enforcing and assuring accurate force convergence
up to 5× 10−4 eVÅ−1 during the self-consistency cycles thanks to the DM/EDFT scheme
introduced in Section 5.3. Of course, this is to be expected since Eqs. (9.4) are the exact
derivatives of the potential energy contribution of the aforementioned total energy given by
Eq. (9.1) – as long as a correct implementation and proper handling of the accuracy of the
numerically determined force components is taken care of.
At last, concluding this introduction of QM/Me embedding, its two intrinsic principle sources

of embedding related errors are summarized:

1. The effective localization of the force differences resulting from V ∆QM.

2. The description of the bath according to the “cheaper” level theory given by V Me.

Both will be discussed individually in more detail in the following two subsections.
Evidently, the second error source is intrinsic to any kind of embedding technique. As

indicated before, in the present case, interatomic potentials should generally be able to describe
the expected small displacements from equilibrium positions in the bath outside the embedding
region rather accurately. “Force matching” the DFT description still requires some attention
as described in Section 9.1.3.
The first source of error one can, of course, be systematically controlled and monitored by

changing the size of the embedding region. As already indicated in Fig. 9.1 and detailed in
Section 9.1.2, the force differences resulting from V ∆QM decay rather quickly as a function of
distance (within the minimum image convention in PBCs) from the center of strong chemical
interaction. Errors due to unphysical reflections of phonon propagations at the cell boundaries
are thus avoided for moderately sized embedding supercells and do not have to be carefully
suppressed like e.g. in the absorbing boundary conditions approach (cf Section 8.1).449,453,454
As proclaimed before, this provides a huge conceptual advantage compared to conventional

ab initio molecular dynamics (cf Section 8.3). As long as the latter are not run routinely with
the same stringent convergence settings as single point calculations,25,363 resulting systematic
errors due to badly converged (numerical) forces must be seen with the same concern as the
two aforementioned sources of errors for the embedding. With the rather tight settings chosen
here as mentioned above and in the remainder of this work, it was not necessary to extend that
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Figure 9.2.: Decay of force differences obtained for QM/Me embedding with increasing distance
from the adsorbates. Results shown are for the snapshot displayed in Fig. 9.1, with equivalent
trends also found for all other time steps along the trajectory. Lines are only meant to guide
to the eye and are based on a fit of an exponential function. It it interesting to note that
the corresponding decay constant for the absolute values of F∆QM

I (green) is twice as large
as those for the other two “raw” forces (red and blue) from the periodic DFT calculations.

list accordingly. In addition, again the use of differences might provide some additional error
canceling which however has not yet been explored here.
Compared to other applications of traditional QM/MM-based embedding in materials science

0.1 meVÅ−1 can be taken as a typical “good” accuracy estimate for the embedding induced
force error.482 This can also be achieved in applications in the bio-community,471 but systematic
error estimates are not routinely included in most corresponding studies. Finally, when doing
“quantum mechanics without the electrons” for large systems, by using only recently developed
interatomic potentials based on sophisticated interpolation techniques (neural networks183 or
Gaussian processes184), hitherto reported force errors are even higher. 0.1 meVÅ−1 is thus
taken as a target and comparison value in the following two subsections.

9.1.2. Force Differences

The effective localization of the force differences arising from V ∆QM in Eq. (9.1) is crucial
for the QM/Me embedding scheme introduced in the previous section and has already been
visualized in Fig. 9.1 by force fields for a snapshot of a trajectory using a 6× 3 with four layers
embedding cell. In order to further quantify the anticipated “decay” from the center of strong
chemical interaction, i.e. the location of both oxygen atoms, Fig. 9.2 plots absolute values of
forces (and their differences) corresponding to the snapshot in the former figure. The distance
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Figure 9.3.: Forces and their differences (same coloring as in Fig. 9.2) along the entire trajectory
for atoms in the two bottommost layers of an 8 × 3 embedding cell with three layers as
indicated in the inset of the lower panel. For the force difference FI , maxima, averages
and minima are shown at each time step as well by the different shades of green. As to be
expected from Fig. 9.2, these differences on atoms in the third (bottommost) layer, which
are most distant from the two oxygen adsorbates, are much smaller compared to those in
the second one. Their maxima are nearly always smaller than 0.1 meVÅ−1, which is further
discussed in the text. It is expected that a reduction far below this value would have been
found in fourth layer if it had been included.

to the aforementioned center is defined according to

dmin
PdO = min

RI ∈RMe

min
RJ ∈RO

‖RI −RJ‖2 . (9.5)

Here, RMe includes all periodic images so that the definition of dmin
PdO is based on the minimum

image convention. As to be expected from the concept of nearsightedness due to the efficient
screening in metallic systems,234,235 exponential decay of the absolute values of the forces with
respect to dmin

PdO provides a reasonable fit. With the elastic contributions canceled and thus only
focusing on the chemical interaction between the Pd(100) surface and the two oxygen atoms
in the force differences, this decay is significantly faster and thus very beneficial for QM/Me
embedding. In this respect, Fig. 9.2 is representative, i.e. qualitatively identical results have
been obtained for a plethora of other snapshots as well.
In order to systematically check the decay for different embedding cells along entire trajecto-

ries, the size of the former has been selectively increased in x, y and z directions. This allows to
monitor the maximum absolute values of forces and their differences in these additional slices
or layers and compare their decay with those “already” included in the accordingly smaller
embedding cells. Building upon a 8 × 3 cell with three layers, which has come into particular
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Figure 9.4.: Same as Fig. 9.3, but for the y-slices most distant from the oxygen adsorbates in
an 8× 4 embedding cell with three layers as indicated in the inset of the lower panel. Again,
force differences in the fourth y-slice, which is most distant from the two oxygen adsorbates
along the entire trajectory, are significantly smaller than those in the third.

focus after first indications of the results presented in Section 9.2.3, Figure 9.3, Fig. 9.4 and
Fig. 9.5 show those quantities as a function of time based on the aforementioned embedding cell
itself as well as a three-layer 8×4 and a three-layer 10×3 counterpart, respectively. Of course,
as the slices are still “fairly close” to both oxygen atoms, distances according to Eq. (9.5) for
atoms contained therein vary quite significantly. Since “distance plots” like the one shown in
Fig. 9.2 are always based on the cuboid QM/Me embedding cells, which contain full neighbor
shells only up to certain values of dmin

PdO always smaller than the largest ones, the “layers and
slices” plots provide a good practical estimate of the embedding error due to force differences.
This can be compared against the “typical” criterion of 0.1 meVÅ−1 set out in Section 9.1.1.
According to these plots it can be expected to be fulfilled in a 8× 3 embedding cell with three
layers in both y and z directions. In x this is not the case at the end of the trajectory, but
this is not surprising due to the adsorbate motion detailed in Section 9.2.3 and, as extensively
discussed therein, this by no means affects the concomitant results.
Finally, it has to be noted that the system behaves very chaotically with respect to the

adsorbate dynamics. Trajectories resulting from the different embedding cells mentioned above
do still deviate after several hundred femtoseconds – without however the main results presented
in Section 9.2 being affected, as carefully discussed therein.

9.1.3. Bath Description

Following the spirit of embedding techniques, also for their extension to metallic systems pro-
posed above obviously a computationally cheaper method is required for the description of the
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Figure 9.5.: Same as Fig. 9.4, but for the x-slices initially most distant from the oxygen
adsorbates in a 10× 3 embedding cell with three layers as indicated in the inset of the lower
panel. Force differences in these slices only gain significant sizes as the oxygen adsorbates
move towards them as detailed in the remainder of this chapter (cf Section 9.2.3).

E0 R0 α A β(0) β(1) β(2) β(3) t(0) t(1) t(2) t(3)

Baskes191 3.91 2.75 6.43 1.01 4.98 2.2 6.0 2.2 1.0 2.34 1.34 4.48
Beurden187 3.68 2.80 6.24 1.0 5.28 4.07 4.93 2.18 1.0 2.27 6.22 3.68
this work 3.88 2.78 6.18 1.0 4.30 4.77 0.89 0.0 1.0 8.68 5.11 −10.93

Table 9.1.: Parameters for the optimized MEAM potential (MEAMopt) obtained in this work
by force matching DFT data as described in the text. Their meaning is explained in detail in
Section 3.2.2. Values obtained and used by Baskes191 as well as van Beurden and Kramer187
are shown for reference.

d12 d23 d34

PBE(CL) 1.948 1.970 1.965
MEAMopt 1.943 1.968 1.964

Table 9.2.: Comparison of interlayer distances dij between layers i and j of the Pd(100)
surface obtained from DFT-PBE(CL) (cf Section 5.1 and the optimized MEAM potential
(MEAMopt).
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Figure 9.6.: Force errors a) before and b) after optimization of the MEAM potential by force
matching. The former is based on the parametrization by Baskes191, which is given together
with the one constituting MEAMopt in Table 9.1.

environment, i.e. a large, bulk-like bath. At least for “low” substrate temperatures and perfect,
defect-free surfaces considered here the essential demand to mimic first-principles quality for
“small” displacements, with a realistic description of phonons in particular, can generally be met
by interatomic potentials that have been developed during the last decades (cf Section 3.2.2).i
Unfortunately, in order to seamlessly match the DFT description of the embedding region, none
can be “taken from the shelf” directly. The aforementioned requirements might also be ful-
filled by a harmonic potential according to Eq. (4.2), which is implicitly obtained from phonon
calculations. This has been done before starting from a bulk reference,36,434,448 thus lacking a
good description of surface phonon modes. The latter have been ascribed an important role
for the energy uptake,23 but are quite cumbersome to include within a corresponding harmonic
force field in the dynamics (cf Section 10.3 and Appendix D.4. Furthermore, given the amount
of energy to be dissipated, it is not clear a priori how important anharmonic couplings might
be. These aspects are investigated in great detail in Chapter 10. Here however, alternatives
which do not suffer from these limitations and are yet simple(r) to (re)parameterize are sought
out. Starting point for the latter process are snapshots taken from a O2 dissociation trajectory
obtained with conventional ab initio molecular dynamics, whose results will also be discussed in
the following (cf Section 9.2), recalculated with the adsorbate atoms deleted as in the previous
section.
Simple pair potentials, like most prominently the forms proposed by Lennard-Jones or Morse,

are not well suited to describe bulk metals or their surfaces at all. Instead, forms incorporat-
ing many-body effects have been proposed in the literature to account for the (non-covalent)
nature of metallic bonding. (cf Section 3.2). Indeed, simple rescaling of coordinates to account
for the difference between the PBE and experimental lattice constants used in the original
parametrization (together with other empirical data) of the embedded atom method (EAM)

iIt is interesting to note in this context that one possible future application of the QM/Me approach might be
to straightforwardly “correct” the description of interatomic potentials around defects.
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Figure 9.7.: Surface phonon dispersion of Pd(100) as obtained by DFT-PBE(CL) (cf Sec-
tion 5.1) and the optimized MEAM potential (MEAMopt). Modes whose vibrational weight
according to their displacement Eigenvector exceeds 20 % in the first two layers (cf Sec-
tion 4.3) were identified as surface modes and are indicated by the small black circles.
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potential for palladium175 already yields remarkable agreement. However, despite specialized
tools like the potfit code186 which have been developed over recent years, further systematic
optimization of the underlying pair potential, electron density and embedding functions (cf
Section 3.2.2) remains a rather complex fitting problem.495,496 Given the similarities of EAM
to other approaches like the effective medium theory176,177 or the glue model178 the same holds
for those as well.
On the other hand, the modified embedded atom method (MEAM) incorporates physical

properties of surfaces in its functional form, which is (thus) more rigorously defined – and relies
only on a rather modest set of parameters as detailed in Section 3.2.2. Force matching (cf Sec-
tion 3.2.2) via a least squares fit according to a Levenberg-Marquardt algorithm with adequately
imposed boundaries497 yields the desired improvement over previous parameterizations187,191 as
shown in Fig. 9.6.ii Nevertheless, the latter provided several useful starting values simplifying
the fitting procedure and are thus given together with the optimized parameters obtained here
in Table 9.1. For slabs with six and more layers, which are obviously of particular interest in
the present context, both surface relaxation and phonon dispersion, presented in Table 9.2 and
Fig. 9.7, respectively, are reasonably well reproduced compared to the DFT-PBE reference,
without having been actively incorporated into the fit. The surface phonon calculations have
been carried out by an extension of the direct method as detailed in Section 4.2, based on
a version of phonopy which has been modified accordingly by the author of this thesis (cf
Section 4.4). As to be expected from the bulk phonon calculations presented in Section 5.1,
laterally converged results are obtained based on 3× 3 multiples of the surface unit cell. Slabs
with eight layers then assure convergence with respect to the latter and are still “affordable”
for the finite displacement calculations within the first-principles reference. Using slab filling,
the dispersion for the 50 layer equivalents shown in Fig. 9.7 are then obtained. For what follows
in Chapter 10 it is important to emphasize that surface modes are reasonably well described –
meeting the demands formulated above.

9.2. Results and Discussion

The QM/Me implementation based on Lammps and Castep, which has already silently served
its purpose in the previous section, is employed to obtain the results presented in the following
as well. The Lammps code drives the MD integration via a newly developed interface, which
is described in full technical detail in Appendix D.2 of Appendix D. Given the experiences
concerning energy conservation from Section 9.1.1 trajectories are integrated according to the
velocity Verlet algorithm using a time step of 2.5 fs.
According to the error estimates discussed in Section 9.1.2, an (8×3) supercell of the surface

unit cell of the Pd(100) surface with three layers is used as embedding cell, which is described
with the same DFT setup based on Castep that has been described and used before in Chap-
ters 5 and 6 (> 10Å of vacuum, PBE, Ecut = 400 eV, equivalent of 2× 4× 1 k-points). Thanks
to the DM/EDFT scheme introduced in Section 5.3, very tight electronic convergence settings
can be maintained along entire trajectories, allowing to obtain extremely well converged forces

iiBased on the C routines by Manolis Lourakis, which are freely available under GPL from http://www.ics.
forth.gr/∼lourakis/levmar, and provide an excellent implementation of the Levenberg-Marquardt methods
including convex constraints as proposed by Fukushima and coworkers497 a rather general purpose command
line utility was written: It allows to perform the aforementioned optimization by coupling to the MEAM
implementation of Greg Wagner provided within the Lammps code using shell scripts and files.
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(5× 10−4 eVÅ−1), which are not routinely afforded in ab initio molecular dynamics for metallic
systems. This is of particular importance for the results presented in Sections 9.2.2 and 9.2.3
and will also be picked up again in Section 10.3 of the next chapter.
The extended surface and bulk forming the bath is described by the optimized MEAM

potential seamlessly matching the DFT data described in Section 9.1.3. Based on the simple
estimate in Chapter 8 using the speed of sound in bulk palladium plus a generous safety margin
(computational cost does not impose significant limitations here), a (50× 50) surface unit cell
with 50 layers, i.e. a total of 125,000 Pd atoms, is used for the bath. Periodic boundary
conditions are employed in lateral directions for convenience, but, as verified below, do not
restrict the propagation of excited phonons. For the sake of simplicity, the bath is initially
kept at 0 K. Interlayer distances of the topmost layers are thus relaxed to their equilibrium
values before the dynamics are started. In principal, also pre-equilibration to a particular
surface temperature is straightforward by using standard molecular dynamics techniques, and
would only require computationally inexpensive classical dynamics for the substrate. Future
applications might ideed exploit the intriguing possibility of the present approach to model the
former without any a priori simplifications.
Initial conditions are taken from the single entrance channel for dissociation identified in

Chapter 6 beyond the spin transition point when the O2 molecule is about 1.8Å away from the
surface with its molecular axis oriented parallel to the latter above a fourfold hollow site. This
safely allows to perform non-spin polarized calculations, reducing the computational cost of the
DFT part by a factor of two. As the entrance channel is very narrow (cf Chapter 6), trajectories
starting from these conditions can be expected to be of exceptionally large statistical relevance.
Still, the dominant fraction of the CPU time, i.e. more than 95 %, is spent for the DFT

force evaluations within the present computational setup including the efficient, state-of-the-
art implementation of both the MEAM force field and the MD integration based on neighbor
lists.218 If found to be necessary (vide infra), the bath size could thus be easily increased further
before the break-even point is reached (cf Appendix D.2).

9.2.1. Heat Dissipation

Since within the QM/Me approach the environment acting as bath is treated fully atomistically,
an unprecedented both realistic and detailed quantification of heat dissipation can be obtained
from a first-principles perspective. In contrast to all the “energy sinks from the shelf” described
in Chapter 8, no a priori simplifications are implied, and heat transfer can directly be monitored
by simply watching the dissemination of kinetic energy away from the impingement point of
the O2 molecule.
This is the origin of the chemical reaction which generates the heat by converting the 2.6 eV

chemisorption energy (cf Chapter 5) accordingly. Figure 9.8 shows that both oxygen atoms
equilibrate as expected while doing so, but are not yet fully in equilibrium with the bath after
1.5 ps, i.e. the end of the integration time that has been afforded for the trajectory: More than
75 meV still reside with each adsorbed oxygen atom, and the total kinetic energy of palladium
atoms still fluctuates around less than 1

2 · 2.6 eV = 1.3 eV as would be expected in thermal
equilibrium according to the equipartition theorem.
Focusing on the substrate, the kinetic energy that has left the embedding cell is of particular

interest, as it provides a quantitative a posteriori characterization of the importance of the
embedding itself. Figure 9.8 shows that after 1.5 ps only one fifth of the kinetic energy still
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Figure 9.8.: Total kinetic energy of all palladium atoms in the bath (thick gray line) as well
as those in the QM/Me embedding cell contained therein (thick blue line) as a function of
time. The area between these two curves is a measure for the dissipated heat. In addition,
the kinetic energy of the dissociating oxygen molecule is also shown (thin red line).

resides therein,

Ekin(Ṙslab; t)
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=
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ṘI∈Ṙslab
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2mPd Ṙ

2
I(t)

∣∣∣
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t=1.5 ps

,

(9.6a)

while about 80 %
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2mPd Ṙ

2
I(t)
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(9.6b)

of the total kinetic energy of all palladium atoms Ekin(Ṙslab; t)
∣∣∣
t=1.5 ps

≈ 0.9 eV has been trans-
ferred to “bath atoms” in the environment of the embedding cell. In other words, Eq. (9.6b)
and Fig. 9.8 quantify the inherent, systematic error for this representative trajectory when no
bath is included – like e.g. in conventional ab initio molecular dynamics, as all this energy
would have been erroneously reflected back into the simulation cell by the periodic boundary
conditions (cf Section 8.3). As the largely dominant fraction of the total atomistically resolved
heat cannot be correctly accounted for thereby, an even only qualitatively correct description
of the dissipation energetics thus forcibly demands to go beyond such conventional simulations.
Although the simple back-of-the-envelope calculation based on the speed of sound in bulk pal-
ladium made in Chapter 8 already hinted into this direction, this might in its quantification
yet still be a surprising and so much the more very important result.

155



9. “QM/Me” - a Novel Embedding Approach for Metallic Systems

Of course, it has been verified that the chosen bath size is large enough. boundaries of the
latter. It turns out that a cuboid region centered below the impingement point containing only
20 × 20 × 20 atoms already accommodates about 95 % of the total kinetic energy Ekin(Ṙbath)
defined as before through Eq. (9.6b) after 1.5 ps of simulation time. So the dissipation dynamics
with the (50× 50× 50)-atom bath chosen before certainly does not suffer from any lack of size
convergence as far as the latter is concerned. Since the DFT calculations largely dominate the
computational cost as already indicated before, no significant amount of CPU time has been
wasted by the inclusion of this “safety margin” (also see Appendix D.2). On the other hand,
due to the correspondingly finer sampling of reciprocal space, this provides an excellent starting
point for the detailed phonon excitation analysis presented in Chapter 10.

9.2.2. Comparison with “Energy Sinks from the Shelf”

As QM/Me embedding does not imply any a priori simplifications for the dissipation dynamics,
the results presented in the previous section can be seen as a reference which sets the benchmark
for the more approximate “energy sinks from the shelf” described in Chapter 8.
Before turning to the results of the corresponding comparison shown in Fig. 9.9, several issues

need to be clarified first in order ascertain proper comparability. Of course, the initial positions
and momenta of the nuclei were all chosen to be exactly the same as for QM/Me before.
But, after all, in very chaotic systems with large Lyapunov coefficients like the present one,iii
numerically integrated trajectories can easily diverge from the “real” deterministic path149 for
mere technical reasons:

1. The surface oscillator (SO) could in principle have been coupled to the frozen surface
potential energy surface obtained in Chapter 6 based on neural network interpolation
(NN-PES) in the usual way23,447 given by Eq. (8.6) or Eq. (8.7) in Section 8.2. However,
the latter has never been trained for regions of large interatomic distances beyond the
dissociation threshold on the surface, as this was never part of the original purpose de-
tailed in that chapter. The accuracy of the finally obtained fit is thus highly uncertain
in those areas. For that reason, a three-dimensional surface oscillator as described by
Eq. (8.7) has been implemented into Lammps as detailed in Appendix D.3. This allows
to employ the exact same MD integration infrastructure within Lammps (most notably
velocity Verlet213 instead of Bulirsch-Stoer214 used for the dynamics on the NN-PES, cf
Section 3.3) as for the QM/Me results.

2. Of course, also the implementations of the Langevin and Nosé-Hoover chains (NHC)
thermostats (cf Sections 8.1 and 8.5) available in Lammps make use of that infrastruc-
ture.iv More precisely, the latter includes its own integrator based on the Liouville oper-
ator approach following Tuckerman and coworkers216,217 as described in Section 3.3.3 in
Part I. Both implementations have been thoroughly checked before their application in
the present context by running dynamics with the optimized MEAM potential obtained
before (cf Section 9.1.3), carefully monitoring the conservation of the respective conserved

iiiNot evaluated quantitatively like e.g. in the work by Martyna and coworkers,156 but experiences collected
“along the way” already with the dynamics on the frozen surface have clearly revealed their chaotic character,
which is well-known for other gas-surface dynamics systems as well.

iv See http://lammps.sandia.gov/doc/fix_langevin.html and http://lammps.sandia.gov/doc/fix_nh.
html, respectively.
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quantity.v

3. Forces are always obtained on-the-fly from Castep calculations with identical computa-
tional settings via the same coupling interface (cf Appendix D.2) for the same slab that
has been used as embedding cell in Section 9.2.1 before. As already described in the be-
ginning of this section, the former are “very conservative”, i.e. very close to the “exact”
derivatives of the DFT total energies, thanks to the tight electronic minimization enabled
by the DM/EDFT scheme introduced in Section 5.3. Together with the small time step
for the trajectory integration, not only excellent energy conservation is obtained, but also
“very numerically deterministic” trajectories: By starting from slightly different numer-
ically converged electronic ground states for identical initial positions and momenta of
the nuclei, it has been verified that resulting trajectories even after 2 ps (800 integration
steps) only differ insignificantly for the comparisons presented in the following. This is
also holds for and is exemplified further by the results in Section 10.3 of the ensuing
chapter.

Altogether, the effect of different energy sinks can thus be properly distinguished and compared.
In order to make this comparison as fair as possible, the frequency parameters have been

chosen according to the Debye frequency ωD
2π = 5.82 THz obtained from the calculations of

the bulk phonon spectra in Section 5.1 (Castep PBE-CL value). Though usually based on
empirical data, the common practice for the surface oscillator465,468 to use the average frequency
of the Debye spectrum ω̄D = 3

4ωD (cf Eq. (4.18)) together with the atomic mass of a surface
atom was then followed.vi With thermostats set to T = 0.1 K, which aims to reproduce the
non-pre-equilibrated bath used for QM/Me embedding before and is still numerically stable,
all required parameters are then defined. The trajectory calculations have also been repeated
with the resulting frequency parameters varied by a factor of two in both directions, but
indeed, as has been observed for other systems before no qualitative differences were found
thereby.23,24,465 On the one hand, this insensitivity of the results with respect to the actual
values of the parameters can be seen as comforting reassurance not to worry too much about
the latter, on the other, it might already indicate the limited power of those models to capture
the actual physics.
For the two thermostat approaches (Langevin and NHC) it is more important how many

atoms are subject to the corresponding modified equations of motion. Of course, in the spirit
of stochastic boundary conditions (cf Section 8.1) it appears to be most reasonable and in order
to avoid any interference with the periodic boundaries of the underlying DFT calculations in
lateral directions it is most straightforward only to abuse the latter for atoms in the bottommost
layer. Thanks to the MD infrastructure provided by Lammps, trajectories with such mixed
simple Newtonian and thermostat enriched equations of motions are straightforward to obtain.
In order to judge the ability of the “energy sinks from the shelf” to mimic the dissipation

dynamics of QM/Me reference, Fig. 9.9 shows the kinetic energy of both oxygen atoms EO2
kin as

vHere it is important to note that a patch by Aidan Thompson from April 7th, 2010, see http://lammps.
sandia.gov/bug2010.html, was applied. Among other things, it updated the equations of motion for Nosé-
Hoover chains according to the formulation given by of Shinoda and coworkers,498 resulting in a transparent
implementation of the state-of-the-art integrator mentioned above. Having not yet been part of the last official
release version of Lammps at the time, particularly careful testing procedures thus became mandatory.

viMore precisely, mS = mPd and Φij = mPd ω̄
2
D δij ≈ 5.31 eVÅ−2

δij were used as input parameters for the self-
written Lammps extension implementing the surface oscillator (cf Appendix D.3). The damping parameters of
the Lammps implementations of the Nosé-Hoover chains and Langevin thermostatsiv were set to 2π

ω̄D
≈ 0.2 ps.
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Figure 9.9.: Energy dissipation as described by “energy sinks from the shelf” compared with
QM/Me. Dissipated energies for a) the surface oscillator b) the Langevin thermostat and
c) Nosé-Hoover chains as given by Eq. (9.9), Eq. (9.11) and Eq. (9.10), respectively, are
shown (thick orange, green and blue lines, respectively). The corresponding kinetic energies
of the two oxygen atoms are plotted as well (thin orange, green and blue lines, respectively).
In addition, the QM/Me references are shown in each plot as well: The dissipated energy
defined by Eq. (9.7) (thick gray lines) and the kinetic energy of the oxygen atoms (thin gray
lines), which is identical to the one plotted in Fig. 9.8.
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in Fig. 9.8 and the dissipated energies which have been removed from the quantum mechanically
treated region. Kinetic energies including the latter as before in Fig. 9.8) show different amounts
of fluctuations due to the different complexity of the models and are thus more difficult to
compare. However, it is important to keep in mind that this region needs to be included in
order to fulfill the total energy balance of the approximately 2.6 eV of chemisorption energy
that is freed and conserved in the respective extended systems. For QM/Me embedding, the
dissipated energy can be defined as

E
QM/Me
diss (t) = Eenv(t) − Eenv(0) , (9.7)

where

Eenv(t) = V MEAMopt(Rbath; t) − EQM(Rslab; t)

= Etot(t) − Ekin(Rads; t) − Ekin(Rslab; t) − EQM(Rslab ∪Rads; t) ,
(9.8)

to avoid problems with counting potential energy contributions between the embedding cell and
the rest of the bath on the level of the optimized MEAM potential. In Eq. (9.8), Etot(t) de-
notes the (conserved) total energy along the trajectory, whereas EQM(Rslab; t) and EQM(Rslab∪
Rads; t) are the energies resulting from the quantum mechanical calculations within the embed-
ding as introduced in Eq. (9.1).
For the surface oscillator it is simply given by the total energy of the added oscillator degrees

of freedom (cf Eq. (8.7))

ESO
diss(t) = 1

2mSṘ
2
S(t) + 1

2mSR
†
S(t)ΩSRS(t) . (9.9)

Thanks to the conserved quantity in the NHC formalism as given by Eq. (8.12), an equiva-
lent definition involving only the additional dynamic variables {ηi}i=1,...,M introduced by the
thermostat provides the dissipated energy:

ENHC
diss (t) =

M∑
i=1

1
2Qi η̇

2
i + 3NkBT η1 +

M∑
i=2

kBT ηi (9.10)

The influence of the length of the Nosé-Hoover chains has been tested and values beyond
M = 3, for which results are shown in Fig. 9.9, have been found not to influence the trajectories.
Finally, the energy changes due to the friction and random forces imposed by the Langevin
thermostat (cf Eqs. (8.2)) are simply kept track of along MD time steps ∆t and thus provide
the corresponding dissipated energy

ELangevin
diss (t) =

∑
I

[
F fric
I (t) + F rand

I (t)︸ ︷︷ ︸
FLangevin
I (t)

]
· ṘI(t) ·∆t − ELangevin

diss (t−∆t) (9.11)

starting from ELangevin
diss (0) = 0.

Apart from the surface oscillator, the dissipated energies of both the Langevin and NHC
thermostats are in quite good agreement with QM/Me. The same also holds for the “cooling
down” of the oxygen atoms as illustrated by their kinetic energy. With the physically motivated
choice of parameters, but unfortunately also others within a certain range as detailed above,
these two energy sinks are indeed able to suck energy out of simulation cell in a “realistic”
fashion. On the one hand, this can be seen as a promising numerical validation in a realistic
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system for the approximations leading to the stochastic boundary conditions as constructed
out of the generalized Langevin approach (GLE) approach (Section 8.1) by Kantorovich and
Rompotis.456 On the other, apart from being standing on better theoretical grounds, they
hardly seem to provide any practical advantages over the abuse of NHC in this respect.
In contrast, even within quite a range around physically motivated parameters, the three

additional degrees of freedom of the simple surface oscillator provide a very poor description
of the energy dissipation. Obviously, the lack of mobility of the surface atoms imposes quite a
severe limitation in this respect. Altogether, optimistically, the combination of SO and GLE
termed “generalized Langevin oscillator” (GLO)444 might thus be advocated as a reasonable
choice for augmenting a frozen surface potential – in particular for brief adsorbate-substrate
interactions like e.g. during scattering. However, the results of the following section and
Chapter 10 will make it clear why it has not been considered worthwhile to extend the Lammps
implementation of the surface oscillator accordingly and include the GLO approach in the
comparison presented here.

9.2.3. Hot Adatoms

After the apparent success of the thermostats to mimic the “global” energy uptake of the
solid compared to the QM/Me reference, focus is now shifted quite naturally to less benign
quantities involving dynamical properties of the adsorbates. Unfortunately, this brings the
immediate disillusion.
The motion of the two oxygen adatom fragments immediately after the dissociation of their

parent O2 molecule is characterized by an increasing distance along the former’s molecular
axis as illustrated by Fig. 9.10. Interpretations of experimental data (vide infra) have indicated
such a phenomenon before499,500 and have thus coined the term “hot adatom motion” to clearly
distinguish the latter from thermal diffusion. In addition to the comparison presented in the
previous section, also results from simulations with no energy uptake by the substrate (frozen
surface) or only within the periodic boundary conditions of the simulated slab (AIMD) are
included. Again, proper comparability of the resulting trajectories is ascertained in the same
fashion as detailed before.
Obviously, the adsorbate motion is significantly influenced by the description of the substrate

and its abilities to dissipate energy. Considering the latter, deviations from the QM/Me refer-
ence might not be surprising for the two models newly added here, but come rather unexpected
for those using the Langevin and Nosé-Hoover chains (NHC) thermostats. In those cases, both
oxygen adatoms are unlikely to make yet another jump to a neighboring fourfold hollow site
after the integration time afforded here. Since this is the equilibrium adsorption site with re-
spect to which the chemisorption energy of about 2.6 eV for the dissociative adsorption of O2
on Pd(100) is calculated and the bridge-hollow diffusion barrier on the frozen surface amounts
to approximately 300 meV (cf Section 5.3), the residual average kinetic energy of the oxygen
atoms during the last steps of the trajectory as shown in Fig. 9.9 is probably not sufficient.
However, this hints at an important practical advancement of QM/Me embedding for more

extensive applications like e.g. the collection of statistics: Similar to what has already been
proposed by Tully within his stochastic trajectory approach based on a Langevin model,434 an
embedding region could be defined around each adsorbate and follow its motion dynamically.
As soon as these “hot zones”, which according to Section 9.1.2 could each be much smaller
than the single embedding region used here, do no longer overlap, the embedding is continued
based on them. The present implementation is already flexible enough to treat multiple em-
bedding regions even concurrently (cf Appendix D.2), but fully automatic determination would
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Figure 9.10.: Separation distance of oxygen atoms on the Pd(100) surface following dissociation
of O2 resulting from different energy sinks as detailed in the text.

require some further attention. Due to the typically non-linear scaling of the underlying DFT
calculations with respect to supercell size, the computational cost can be reduced accordingly.
What is even more important in the present context is that this allows to further check the
influence of the embedding region for the observed adsorbate motion: After all, a distance of
four surface lattice constants is the maximum distance within the lateral periodic boundary
conditions of the quantum mechanically treated region, for which, however, according to the
work by Zhang and Reuter16 substrate mediated oxygen-oxygen interactions are expected to
have largely vanished. Indeed, such a continuation of the QM/Me trajectory after about 500 ps
(based on two 3 × 3 supercells with 3 layers centered around each oxygen atom), reproduces
the original trajectory fairly well. No further increase of the separation distance is observed in
particular. Potential unphysical substrate mediated oxygen-oxygen interactions through peri-
odic images have been systematically suppressed thereby as the two supercells are completely
independent on the DFT level and only still coupled via the substrate motion described on the
level of the optimized MEAM potential. This provides further trust in both the embedding
approach and the resulting hot adatom separation distance.
Of course, given the chaotic behavior of the present system, trajectories will differ for other

initial conditions than the ones focused on here. but as already emphasized at the beginning of
this section, these initial conditions are of exceptional statistical relevance. Groß on the other
hand did perform statistics for H2 dissociation on Pd(100) based on about 100 trajectories for
hot adatom dynamics,354 but relying on conventional AIMD. Given the smaller mass of the
former adsorbate, limitations of the former should also be less severe than for O2 due to the
expected concomitant less intense energy transfer. According to Groß, the calculated average H2
separation distances thus provide an upper limit for hot adatom motion of heavier adsorbates
as they couple more strongly to the substrate, resulting in more rapid energy dissipation.
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However, this argument does not consider that the latter might also free a much higher amount
of chemisorption energy: E.g. EH2→2H(ads)

chem ≈ 1.0 eV, vs EO2→2O(ads)
chem ≈ 2.6 eV for adsorption on

Pd(100). Of course, the present data lacks statistical averaging and does (thus) not confute
that argument for the present system. Still, it does show that (at least) for heavier adsorbates
trajectories can yield a radically different separation distance when phonon propagation and
concomitant energy uptake are included properly like in QM/Me embedding. Therefore, it yet
remains to be seen if this trend is “washed out” by statistics and whether that upper boundary
estimate does indeed prevail.
In fact, for oxygen there is also some experimental data available which can provide important

benchmarks for dynamical first-principles calculations like those presented here – similar to
what static properties (i.e. lattice constants etc.) have served for during the last three decades.
Pair distance distributions have been counted by scanning tunneling microscopy (STM) in
ultra-high vacuum (UHV) experiments “right after” dissociation, i.e. following exposure and
adsorption of O2 introduced into the UHV chamber as background gas. In contrast to hydrogen,
oxygen adatoms are much simpler to detect by almost any established surface science technique.
For O2 on Al(111), extraordinarily large distances of over 14 surface lattice constants have been
observed,500,501 but are more likely to be related to be the result of a “cannon-ball” abstraction
mechanism according to current theoretical understanding (cf Chapter 7). Later, apart from
simple metals, much smaller pair separations peaking at two surface lattice constants were
observed for O2 on Pt(111), i.e. on another fcc(111) surface of a member (like palladium) of
the platinum group metals.502 More open fcc(100) surfaces, which provide a straight minimum
energy path between multiple highest coordinated equilibrium adsorption sites (via bridge sites),
have only been studied for the coinage metals silver503,504 and copper505,506 up to now. Larger
peak distances of seven and fourteen surface lattice constants have been observed for the oxygen
adatoms in the first case, while the latter has yielded only two, similar to Pt(111). For the
present system, no such STM experiments have been carried out so far. Notwithstanding, hot
adatoms have been invoked as one possible explanation for the formation of a metastable c(2×2)
ordered phase of adsorbed oxygen on Pd(100) under “extreme conditions”, i.e. high pressure
and low surface temperature, by Chang and Thiel.365,499,507 Altogether, the separation distance
obtained here by QM/Me is similar to those obtained by experiments for similar surfaces. For
Pd(100), it confirms previous assumptions, and might even be seen as a first prediction of the
outcome of corresponding STM experiments.
Finally, it has to be emphasized that the implications for modeling the kinetics of chemi-

cal reactions on surfaces are much deeper – with obvious consequences e.g. for heterogeneous
catalysis. Relying on the Markov approximation, present state-of-the-art first-principles kinetic
Monte Carlo (1p-kMC) simulations7–10 treat adsorption and diffusion as two decoupled, sta-
tistically unrelated elementary processes. The rate for the latter, i.e. the diffusion of oxygen
adatoms from one equilibrium binding site to another, is obtained based on transition state the-
ory by the corresponding diffusion barrier alone, which is given by the energy difference between
bridge and hollow sites of about 300 meV, cf Chapter 5). As in the present case this yields a time
scale of microseconds, the inclusion of memory of the dissociation event as achieved through the
present QM/Me simulations can obviously lead to changes of six orders of magnitude in time.
Reactions with neighboring CO molecules might even yield “hot chemistry”, somewhere “be-
tween” the Eley-Rideal and Langmuir-Hinshelwood mechanisms (i.e. reactants directly reacting
with adsorbates from the gas phase versus surface mediated reactions of adsorbates), that are
conventionally used to depict heterogeneous catalysis in textbooks.1,2 Furthermore, also the
implications for the “mere” detailed arrangement of adsorbates with increasing coverage might
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be crucial for many surface functionalities. Given the aforementioned experimental indications
for the present system, Liu and Evans have thus enriched some of their kMC modeling for the
formation and ordering of oxygen adlayers by a hot adatom process, with a crude rate estimate
based on available empirical data.508 On the way to first-principles based multiscale modeling,
the present approach thus paves the way to investigate the effect of the enormous amounts
of heat released by exothermic elementary reaction steps on the atomistic scale, and obtain
kinetic parameters to be incorporated into more coarse-grained simulations.

9.3. Summary

In this chapter, a new embedding technique termed “QM/Me” has been developed in order
to overcome the inapplicability of conventional QM/MM embedding to metallic systems. The
adsorbate-adsorbate and adsorbate-substrate interactions are described entirely on a quantum
mechanical level within periodic boundary conditions, taking the metallic band structure and
its crucial importance for the binding fully into account. Past attempts based on parametrized
pair potentials are of much inferior accuracy as they miss the flexibility and many-body effects
naturally included in here by the proper description of the electronic structure. A huge bulk-like
bath of substrate atoms is described by the modified embedded atom method (MEAM), which
has been adapted to seamlessly match the DFT description and implicitly includes anharmonic
effects. QM/Me thus provides several conceptual advantages over previous approaches that
have been used to model “energy sinks” (cf Chapter 8): For example, suppression of unphysical
phonon reflections due to artificial boundary effects as e.g. proposed in the absorbing bound-
ary conditions approach is not necessary. Contrary to generalized Langevin equations and
thermostats, no statistical elements are introduced on a conceptual level, so that classical tra-
jectories do not lose their physical meaning, as long as Newton’s equations of motions capture
the essential physics of the system under investigation. This certainly is only of mild concern
for any adsorbates heavier than hydrogen, like the present showcase system O2 on Pd(100).
Errors specifically introduced due to the embedding were demonstrated to be very small

because of the effective localization within the scheme. Recently developed direct high-dimen-
sional interpolation attempts (cf Section 3.2.3) appear to perform worse or at best comparable
for systems with “only” covalent interactions according to what has been reported in the liter-
ature until now. In fact, using the ab initio based embedding part of QM/Me might become
a very interesting and successful starting point for such approaches in the future – extending
their applicability to the description of more complicated potential energy surfaces like e.g.
those typically encountered in gas-surface dynamics. Altogether, there are no approximations
which cannot be well controlled in practice – beyond those for the description of the electronic
structure which are not in the focus of the present study.
The scheme can be easily implemented using existing classical molecular dynamics (also

providing a “metal potential”) and quantum mechanical codes, since the at present dominating
cost of the quantum mechanical force calculations allows for an efficient coupling by casting
instructions into simple (shell) scripts and realizing data exchange via files. According to the
present experiences, the computational cost is less than twice that of conventional ab initio
molecular dynamics simulations for the same system, allowing to treat any system which is
treatable with the former nowadays. Combinations with ideas from the literature to accelerate
those dynamics (cf Section 3.2.3) are straightforward in principle, but might demand more
sophisticated implementations (i.e. direct integration) of the coupling, resulting in an even
broader range of applicability. To make the coupling as seamless as possible from a systematical
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point of view, an according adjustment of the “metal potential” is typically required. More
sophisticated approaches than the one employed here can certainly be used to improve the
description of the bath even further. Finally, embedding regions which dynamically follow a
“hot zone” can be introduced, which is nastier from a technical point of view, but conceptually
straightforward.
A QM/Me embedded simulation for O2 dissociation on Pd(100) shows that the great majority

of the energy freed during that exothermic chemical reaction is dissipated out of the embedding
cell before the two adsorbate atoms have fully equilibrated with the substrate. Accordingly,
within conventional ab initio molecular dynamics (AIMD), where typically simulation cells of
the same size as the embedding cells used here are used for the description of the total system,
are not reliable to capture energy dissipation to substrate phonons. Although “energy sinks
from the shelf” more sophisticated than a simple surface oscillator (cf Chapter 8) can indeed
successfully augment AIMD to mimic the energy drain, their effect on the adsorbate dynamics
can still be enormous. This holds in particular for “hot adatom motion”, for which strong
indications are predicted for the present system according to QM/Me – in good agreement
with experimental data from STM experiments for O2 dissociation on other metal surfaces.
On a broader scope, this prediction has ground-shaking consequences for microkinetic models
of heterogeneous catalysis: The Markov approximation, which forms one of the foundations
of coarse-grained microkinetic models is thus substantially questioned from a first-principles
perspective.
Future applications of QM/Me gas-surface dynamics might in particular encompass an un-

precedented realistic modeling of surface temperature. This could elucidate its role e.g. during
O2 dissociation on Ag(100), which might be crucial to reconcile theoretical modeling328 and
experimental observations.503,504 Since the atomistic details of the redistribution of energy are
of crucial importance not only for heterogeneous catalysis, but also for the rapidly-growing
field of basic energy research, further applications of QM/Me can facilitate to gain fundamen-
tal insights also there. Finally, also studies of static properties might benefit, for example
long-ranged elastic effects at interfaces in general or even around bulk defects.
Having established a new technique with unpreceded accuracy, this now allows to system-

atically scrutinize approximations of previous attempts to account for energy dissipation (as
detailed in Chapter 8) from a first-principles point of view. In particular, the role of surface
phonons and the harmonic approximation for the solid are investigated in the following chapter
– continuously showcased for O2 on Pd(100).
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In the previous chapter the QM/Me embedding approach has been introduced and applied to
gas-surface dynamics in order to model energy dissipation during exothermic chemical reactions
into phononic degrees of freedom of a metal surface.
In principal, there are now two main routes that could be followed: First, this scheme could be

taken and used to accumulate statistics by calculating many trajectories. Of course, this is more
a (and quite substantial) computational rather than an actual scientific challenge. Nevertheless,
similar to what Groß has shown only recently relying on conventional ab initio molecular dy-
namics for H2 dissociation on Pd(100), this can yield e.g. averaged atomic separation distances
for the hot oxygen adatoms observed here, which could be compared to corresponding data
from STM experiments. Since the few such studies, which have obtained distance distributions
of equilibrated adatoms “right after” dissociation of a diatomic, have all been done for oxygen
dissociation500–506, this might allow for a much closer comparison than the one based on the
calculations for H2.354 It would still involve a different substrate, however, as no experimental
data is available for O2 on Pd(100). In addition, the present system is also computationally
much more demanding than the system addressed by Groß, because of the presence of oxygen
and the related notoriously bad electronic convergence behavior (cf Section 5.3). Following a
common recipe, this could be addressed by decreasing the accuracy below the standard used
for single point DFT calculations and reducing the computational cost accordingly. In this ap-
proach is then argued that the reduced convergence does average out and might even provide
further entropy to the sampling of phase space, hence not affecting the statistical quantities
in a way to be concerned about.361 However, to the best of the author’s knowledge there are
not yet any deeper theoretical arguments relating numerical errors concerning the integration
of MD trajectories to systematic problems of statisical sampling. Therefore, it remains to be
seen in the future, when more efficient algorithms and implementations of electronic structure
codes as well as increased computational power will allow to obtain accurately converged ab
initio MD trajectories more routinely, whether such an argument prevails.
Second, a systematic, quantitative analysis of the phonon excitations for the obtained trajec-

tories could be worked out. Due to the large number of degrees of freedom which are treated
explicitly on the level of the semi-empirical interatomic potential, the QM/Me Hamiltonian
incorporates a realistic “phononic fine structure” of that bath (cf Section 9.1.3). It is only this
what lays the foundations for such an analysis which could provide important information about
the details of the energy dissipation into the dominant dissipation channel (cf Chapter 7). For
the first time, the QM/Me approach thus provides the unique opportunity to obtain valuable
input for more coarse grained theoretical models like scattering theories relying on assump-
tions about concomitant phonon excitations295 or ultimately to include energy dissipation into
kinetic Monte Carlo models in heterogeneous catalysis.3
With the focus on the physics of energy dissipation, this thesis centers on the second route.

Correspondingly, this chapter starts with the development of a projection scheme which is
suitable for instantaneous application at each time step along trajectories – without the need
for any averaging over time. Its application allows subsequently to address and unravel the
importance of surface phonons for the energy dissipation. Finally, the validity of the harmonic
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approximation for the substrate is investigated by comparing to dynamics obtained with the
best possible harmonic force field implicitly obtained from phonon calculations. This thesis
thus concludes with an important, pioneering first principles perspective on a commonly used
starting point for other models (cf Sections 8.1 and 8.2).

10.1. Projection onto Phonon Modes

The large embedding supercells with which the QM/Me Hamiltonian allows to follow the dy-
namics of chemical reactions on surfaces implicitly provide an accurate description of the under-
lying phonons. Therefore, in principle, trajectories propagated according to this Hamiltonian
should enable a detailed analysis which phonon modes are excited during an exothermic chem-
ical reaction on the surface. For finite systems like molecules or clusters, a projection onto
harmonic Eigenmodes for a molecular dynamics trajectory is mathematically well defined and
simple to carry out. In periodic systems on the other hand, for every phonon wave vector q the
solution of the corresponding Eigenvalue problem given by the dynamical matrix (cf Eq. (4.6)
in Section 4.1) yields a corresponding Eigensystem of phonon modes, i.e. uncountably many in
total. Therefore, such an identification of excited phonon modes is all but trivial.
Recently, research on atomistic details of thermal transport has attracted a lot of interest,

triggered by e.g. industrial interest in thermal coatings. At least in non-metallic materials the
former is dominated by phononic contributions and characterized by phonon relaxation times
in a scattering picture. Since molecular dynamics is the obvious computational tool to follow
the phonon dynamics, a mode decomposition along a corresponding trajectory is required here
as well in order to “measure” the decay of individual phonon modes. McGaughey and Kaviany
have given509 and used510,511 a formula for the monatomic primitive cell of their Lennard-Jones
model crystals, based on phonon Eigenvectors and a spatial Fourier transformation. Employing
more sophisticated potentials for more complicated systems, Henry and Chen have made use
thereof.512–514 Their primitive cell contains more than one atom, just like the slab models of
Pd(100) do in the present case (cf Section 2.6 and Section 4.3). Nevertheless, they do not
comment on any modifications. Apart from that, unfortunately neither the original, nor the
following work gives a clear derivation (or an according reference) on how this formula has been
obtained – despite its fundamental importance for all the ensuing analyses building thereon.
Perhaps it is for this reason that Estreicher and coworkers do not refer to McGaughey’s and

Kaviany’s original work509 when calculating vibrational lifetimes of impurities in Si515,516 and
their consequences for thermal conductivities in the same material.229–231,517 Instead, they only
indicate a transformation of nuclear coordinates to the normal modes of the system in their
employed supercell description, without going into detail.229,516 As indicated in Section 4.2,
the modes at the Γ-point of the supercell, do naturally contain information about non-Γ-
point modes in the larger Brillouin zones of smaller cells. In addition, the dynamical matrix
(cf Eq. (4.7)) is a real symmetric matrix at Γ and hence so must be its Eigenvectors, which
perfectly fits with the entirely real-valued phonon description focusing on frequency space that
Estreicher and coworkers employ in their work.229–231,515–517 However, in order to make contact
with phonon dispersion relation and thus identify modes by their actual phonon wave vector,
a back-folding operation of the Γ-point modes in the small Brillouin zone of the supercell into
the larger Brillouin zones of the underlying smaller cells would be required, which might not
be entirely straightforward. A more severe limitation is due to the fact that the dynamical
matrix of the supercell needs to be obtained and diagonalized, which is avoided in usual lattice
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dynamics calculations (cf Section 4.2).i For supercells containing on the order of at most a
thousand atoms, this might still be possible, though computationally rather involved when
symmetry is not exploited while setting up displacements for the direct method. However,
when dealing with supercells containing two orders of magnitude more atoms as is easily the
case in embedding situations like the present one, the cubic scaling of matrix diagonalization
alone renders this approach impractical or even impossible.
Only very recently, de Koker has published yet a different first-principles based approach to

thermal conductivity.518,519 He uses the phonon density of states Eq. (4.20) as obtained by the
velocity autocorrelation Eq. (4.19) to obtain mode-resolved phonon lifetimes along molecular
dynamics trajectories. While this is appealing in order to avoid the aforementioned projection
schemes and their “uncertainties”, the non-continuous and non-equilibrium nature of the dis-
sociation process obviously forbids time-averaging over a long molecular dynamics trajectory.
In other words, it is clearly imperative for the present purposes to obtain phonon populations
“on-the-fly”, i.e. instantaneously for every time step.
Therefore, a general phonon projection scheme is now derived, which not only allows to

treat the present problem, but is also perfectly suited for all of the aforementioned cases. This
instantaneous phonon mode decomposition can be applied to any problem containing “phononic
details” beyond the Γ-point by employing a description based on ∏Np

i=1Ni supercells, where
Np ∈ {1, 2, 3} denotes the number of periodic directions. The formalism is thus deliberately
kept general, allowing for an easy specialization to slabs, i.e. Np = 2, in the end as required
for the present purposes. Ni ∈ N \ {0} characterizes the size of the supercell in direction i as
multiples of the respective primitive cell. This defines a grid of the latter

Ln =
∑
i

niai , n = (ni) ∈
Np∏
i=1
{0, . . . , Ni − 1} , (10.1)

where the {ai}Np
i=1 are real space lattice vectors as defined by the primitive cell. With the

concomitant reciprocal space lattice vectors {bi}Np
i=1 a corresponding grid in the Brillouin zone

qn =
∑
i

[
ni
Ni
− 1

2

]
bi , n = (ni) ∈

Np∏
i=1
{0, . . . , Ni − 1} (10.2)

is given. As already mentioned in Section 4.2 (cf Eqs. (4.21) and (4.22) for Np = 3) the latter
grid describes the q-points where periodicity of the phonons is commensurate with the chosen
supercell and which hence are described exactly.
The same notation as in Part I is employed, building on the theoretical background de-

scribed in Chapter 4. In particular, atoms in the supercell are indexed by a number Ĩ in the
primitive cell and a lattice vector L leading to the desired periodic image, with vector com-
ponents denoted by lowercase Greek letters. Starting point is the atomic displacement field
{UMD

Ĩα
(Ln; t)}Ĩα,Ln at a time t with respect to equilibrium positions {R0

Ĩα
(Ln)}Ĩα,Ln . General-

ization to the corresponding velocity field {ṘMD
Ĩα

(Ln; t)}Ĩα,Ln is then straightforward in the end.

i As detailed in Section 4.2, displacement calculations within the direct method in a N1 × N2 × N3 supercell
of a primitive cell with Ncell atoms provides access to

∏3
i=1 Ni exact q-points in the Brillouin zone of the

latter by solving Eigenvalue problems given by the corresponding dynamical matrices of dimension (3Ncell)2

for each of them. In general, this is computationally much more feasible than the diagonalization of a single
(3Ncell

∏3
i=1 Ni)

2 dimensional dynamical matrix at the Γ-point of the supercell.
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Both of these time-dependent quantities are “naturally” obtained from a molecular dynamics
trajectory. Now, the ansatz

UMD
Ĩα

(Ln; t) = 1∏Np
i=1Ni

grid∑
qn′

∏Np
i=1
√
Ni√

MĨ

C̄Ĩα(qn′ ; t) eiqn′ ·Ln

= 1∏Np
i=1
√
Ni

1√
MĨ

grid∑
qn′

3Ncell∑
b′=1

C(qn′ , b′; t) ûĨα(qn′ , b′) eiqn′ ·Ln
(10.3)

first transforms the displacement field on the real space described by Eq. (10.1) onto the corre-
sponding reciprocal grid given by Eq. (10.2) of exact phonon wave vectors, component-wise by
means of a (generalized or shifted) discrete Fourier transform.ii At every point qn′ , the resulting
3Ncell-dimensional vector of generally complex-valued expansion coefficients C̄Ĩα(qn′ ; t) is then
represented in the orthonormalized basis {

(
ûĨα

)
(qn′ , b′)}b′ ⊂ C3Ncell of displacement Eigenvec-

tors, where b is the phonon band index. The resulting phonon mode expansion coefficients
C(qn′ , b′; t) are the quantity of interest to obtain in the following.
It is important to emphasize that Eq. (10.3) is mathematically well-defined with physically

induced uniqueness for a given choice of a supercell description. Obviously, both are required
properties for a properly defined projection scheme. The fact that the displacement field on
the left-side is real-valued leads to the following properties of the expansion coefficients:

C̄Ĩα(qn′ ; t) =
[
C̄Ĩα(−qn′ ; t)

]∗
(10.4a)

C(qn′ , b′; t) =
[
C(−qn′ , b′; t)

]∗
. (10.4b)

Furthermore, masses have been separated out of the latter in form of 1√
MĨ

, following the
conventional treatment in lattice dynamics employing mass weighted coordinates (cf Eq. (4.5)).
The grid factor∏Np

i=1
√
Ni has been added to simplify the relation between the length (measured

in the corresponding 2-norms, ‖·‖2) of the original displacement field vector and its Fourier
transformed counterparts according to Parseval’s theorem, thus resulting in

Ncell∑
Ĩ=1

3∑
α=1

grid∑
Ln′

MĨ

[
UMD
Ĩα

(Ln; t)
]2

=
Ncell∑
Ĩ=1

3∑
α=1

grid∑
qn′

∣∣∣C̄Ĩα(qn′
∣∣∣2

=
grid∑
qn′

3Ncell∑
b′=1

∣∣C(qn′ , b′; t)
∣∣2 .

(10.5)

Finally, Eq. (10.3) also has a natural continuum limit representing the infinite solid, obtained
for infinite supercell size: A conventional Fourier transform

1
VBZ

grid∑
qn′

VBZ∏Np
i=1Ni

C(qn′)
Ni→∞−−−−−→ 1

VBZ

∫
BZ
dqC(q) . (10.6)

ii The corresponding article in the English wikipedia
http://en.wikipedia.org/wiki/Discrete_Fourier_transform

currently recapitulates the underlying theory in concise way. For implementations in practice it is useful to
remind the reader that the scalar product qn′ · Ln is dimensionless, i.e. lattice constants of real space and
reciprocal space lattice vectors cancel accordingly.
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10.1. Projection onto Phonon Modes

Moreover, this also provides a systematic and sound mathematical foundation of the interpre-
tation of the plane wave ansatz (cf Eq. (4.5)) of lattice dynamics with continuous wave vectors
as “Fourier modes” – as already vaguely indicated in Section 4.1.iii

As indicated above, the desired phonon mode decomposition is given by the coefficients
C(qn′ , b′; t). The orthonormality relations for the discrete Fourier transformation

grid∑
Ln′′

e−iqn·Ln′′ eiqn′ ·Ln′′ =

Np∏
i=1

Ni

 δqnqn′ (10.7)

and the displacement Eigenvectors

Ncell∑
Ĩ=1

3∑
α=1

[
ûĨα(qn, b)

]∗
ûĨα(qn, b′) =

Ncell∑
Ĩ=1

[
ûĨ(qn, b)

]∗ · ûĨ(qn, b′) = δbb′ (10.8)

greatly simplify the task to obtain the latter. Applying both Eq. (10.7) and Eq. (10.8) to
Eq. (10.3) in this order yields

C(qn, b; t) =
Ncell∑
Ĩ=1

[
ûĨ(qn, b)

]∗ · 3Ncell∑
b′=1

C(qn, b′; t) ûĨ(qn, b
′)

=
Ncell∑
Ĩ=1

3∑
α=1

[
ûĨα(qn, b)

]∗ grid∑
Ln′

√
MĨ∏Np

i=1
√
Ni

UMD
Ĩα

(Ln′ ; t) e−iqn·Ln′

= 1∏Np
i=1
√
Ni

Nsupercell∑
I=1

√
MĨ(I) [ûI(qn, b)]∗ · UMD

I (t) e
−iqn·

(
R0
I−R

0
Ĩ(I)

)
.

(10.9)

The terms following the last equality sign are obtained by iterating over atoms in the supercell
directly instead of using the combined index plus lattice vectors notation as introduced above

Ncell∑
Ĩ=1

grid∑
Ln′

−→
Nsupercell∑
I=1

. (10.10)

Hereby, the map Ĩ(I) gives the index Ĩ of the respective image inside the primitive cell for an
atom with supercell index I. If that cell only contains a single atom, R0

1̃ can be set as the origin
so that only R0

I appears in the exponential. Equation (10.9) then simplifies to the expression
that has been given by McGaughey and Kaviany509 for this case. Moreover, Eq. (10.9) also
illustrates in turn how this expression needs to be modified when the primitive cell is not
monatomic – which Henry and Chen hopefully have used internally without clearly saying so
in their published work.512–514

It is illustrative to consider a displacement field corresponding to a single phonon mode with

iii Restriction of the reciprocal space integration domain to the Brillouin zone is thereby also systematically
constructed.
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wave vector qn′ and band index b′, as used as ansatz in the context of lattice dynamics.

U single
Ĩα

(Ln; t) = 1√
M Ĩ

A
(
qn′ , b

′) < (ûĨα(qn′ , b′) ei[qn′ ·Ln−ω(qn′ ,b′)t]
)

= 1√
M Ĩ

A (qn′ , b′)
2

(
ûĨα(qn′ , b′) ei[qn′ ·Ln−ω(qn′ ,b′)t] +

[
ûĨα(qn′ , b′)

]∗︸ ︷︷ ︸
= ûĨα(−qn′ ,b′)

e−i[qn′ ·Ln−ω(qn′ ,b′)t]
) (10.11)

Here A (qn′ , b′) is a real-valued amplitude just like in Section 4.1 (cf Section 4.1). Since
Eq. (10.11) solves the equations of motion of the harmonic solid as given by Eq. (4.6), the
implied time dependence is correct for the latter, but generally cannot be split off from the
amplitude as a simple exponential phase factor. In fact, as already indicated in the beginning,
Eq. (10.9) provides a means to calculate the time-dependence of phonon populations in molec-
ular dynamics trajectories based on “real”, anharmonic interatomic interactions – including
the scattering effects induced thereby. The indicated symmetry property of the displacement
Eigenvector ûĨα(qn′ , b′) under inversion of qn′ (also see Eqs. (4.10) and (4.11)) simplifies the ex-
traction of the phonon mode expansion coefficients and verification of their properties according
to Eqs. (10.4). They are given by

Csingle(qn, b; t) =
Np∏
i=1

√
Ni

A (qn′ , b′)
2[

δqnqn′ δbb′ e−iω(qn′ ,b′)t + δqn,−qn′ δbb′ e+iω(qn′ ,b′)t
]

.

(10.12)

At the Γ-point, i.e. qn′ = 0, Eq. (10.11) and Eq. (10.12) reduce to

UΓ
Ĩα

(Ln; t) = 1√
M Ĩ

A
(
0, b′

)
ûĨα(0, b′)︸ ︷︷ ︸
∈R

cos
(
ω(0, b′)t

)
(10.13)

and

CΓ(qn, b; t) =
Np∏
i=1

√
Ni A

(
0, b′

)
cos

(
ω(0, b′)t

)
δqn0 δbb′ , (10.14)

respectively, as all displacement Eigenvectors (ûĨα(0, b′))Ĩα are real. When the Γ-point of a
supercell is used, ûĨα(0, b′) describes a “modulation” beyond the simple displacement of entire
crystal net planes, which, as indicated above, could be back-folded to wave vectors qn′ 6= 0 in
the Brillouin zone of the primitive cell. Since Eq. (10.13) and Eq. (10.14) are equivalent to the
expressions used by Estreicher and coworkers,229–231,515–517 their “phonon picture” is thus fully
contained as a special case in the decomposition which has been presented here. In other words,
the latter provides a more powerful generalization of the latter as already indicated above.
Inserting Eq. (10.3) into the potential energy of the harmonic solid given by Eq. (4.2) in Sec-

tion 4.1, a phonon mode decomposition thereof can be obtained, using the previously obtained
expansion coefficients C(qn, b; t) and phonon frequencies ω2(qn, b).

V harmsol(t) =
grid∑
qn′

3Ncell∑
b′=1

V harmsol(qn′ , b′; t)

=
grid∑
qn′

3Ncell∑
b′=1

1
2 ω

2(qn′ , b′)
∣∣C(qn′ , b′; t)

∣∣2 (10.15)
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Obviously, as long as the harmonic approximation is good, this also holds reasonably well for the
actual potential energy. Using the same decomposition as introduced with Eq. (10.3) and the
ensuing formalism also for the velocity field {ṘMD

Ĩα
(Ln; t)}Ĩα,Ln yields corresponding expansion

coefficients Ċ(qn′ , b; t). They allow to decompose the nuclear kinetic energy in the same way.

T cl
N (t) =

grid∑
qn′

3Ncell∑
b′=1

Eph
kin(qn′ , b; t)

=
grid∑
qn′

3Ncell∑
b′=1

1
2
∣∣∣Ċ(qn′ , b; t)

∣∣∣2
(10.16)

In the following, the combination of both decompositions Eq. (10.15) and Eq. (10.16)

Eph(qn, b; t) = Eph
kin(qn, b; t) + V harmsol(qn, b; t) (10.17)

forms the foundation for the characterization of the total energy uptake of surface phonons
in particular (i.e. Np = 2) and their role during the dissociation dynamics. Of course, to
obtain the energy density along the continuous directions within the sampling of the surface
Brillouin zone latter given by Eq. (10.2) (e.g. in Fig. 10.5 in Section 10.3), the preceding energy
decompositions need to be divided by the respective numbers of grid points accordingly.

10.2. Surface Phonons
A first practical application of the formalism derived in the previous section comes with the
calculation of energy resolved excitation spectra.

Eph(~ω; t) =
grid∑
qn

3Ncell∑
b=1

Eph(qn, b; t) δ(ω − ω(qn, b)) , (10.18)

where ~ω are the phonon excitation energies. This reduction to the energy axis simplifies
visualization. Still, it is the mode selectivity naturally provided by the underlying formalism
which allows to focus on certain groups of modes in the excitation spectra given by Eq. (10.18).
In particular the surface phonon modes obviously form a very prominent group in this context,
to which attention is thus focused on in the following. After all, the present developments allow
to shed light on their role in gas-surface dynamics from a first-principles perspective for the
first time. As described before (cf Section 4.3 and Section 9.1.3), modes are classified as surface
phonons if their displacement Eigenvectors are localized to at least 20 % in the outermost
layers of the slab It has been verified that none of the results presented in the following change
qualitatively if degree of localization is increased to 30 % and 40 %. But of course, the expected
quantitative changes have been observed, simply because less modes are identified as surface
modes in those cases. Since 20 % has been commonly used in the literature before,250 this
“convention” has been finally adapted here as well.
Picking up the trajectory obtained via QM/Me embedding as discussed in Chapter 9, Fig. 10.1

shows spectra for t = 200 fs, i.e. when the dissociation of the O2 molecule is right in progress
with the oxygen-oxygen distance having reached about one surface lattice constant. The spec-
tra result from a straightforward discretization of Eq. (10.18) based on a (40× 40× 40) grid (cf
Eq. (10.1) and Eq. (10.2)). Intriguingly, despite their negligible spectral weight illustrated by
the phononic density of states in Fig. 10.1, surface modes have taken up about one quarter of
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Figure 10.1.: a), rightmost panel: Excitations of surface phonon modes at t = 200 fs according
to Eq. (10.18). The total amount of energy together with the fraction assigned to surface
modes is given below. a), middle and leftmost panel: The corresponding density of states
(DOSs) are shown for reference together with the surface phonon dispersion, respectively.
As before (cf Fig. 9.7b), modes whose vibrational weight according to their displacement
Eigenvector exceeds 20 % in the first two layers (cf Section 4.3) were identified as surface
modes and are indicated by the small black circles. Their locations in the surface Brillouin
zone is visualized in the inset. The surface phonon band structure of a four layer slab
(presently accessible to ab initio molecular dynamics) is shown in b) for comparison.

the total energy that has been dissipated into the substrate phonons at that time. Furthermore,
it is not the Rayleigh modes that become dominantly excited, although lying energetically be-
low the onset of the bulk part of the spectrum (cf Section 4.3) – quite in contrast to what has
been assumed in model Hamiltonians before which are still in frequent use.520–525 The dom-
inant part of the energy in the phononic system resides instead in the surface band between
21 meV to 23 meV as marked in the dispersion plot in Fig. 10.1 and further detailed in its inset.
Looking at the mode Eigenvectors, this is not surprising: As expected, the Rayleigh modes
dominantly involve transversal displacements along the surface normal, which are not compat-
ible with the “widening” of the lattice in the surface plane observed during the impingement
and subsequent dissociation of the O2 molecule. In fact, the latter is much better described by
the corresponding longitudinal and transversal displacement patterns of the modes belonging
to the aforementioned surface phonon band.
Given these insights about the importance of the “right” surface phonon modes, the largely
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10.3. Harmonic Solid

varying results from Chapter 9, which have been obtained with several more approximate “en-
ergy sinks from the shelf” mimicking the energy uptake by the substrate (cf Sections 9.2.2
and 9.2.3), can be rationalized by their different and insufficient description of these particular
modes. These conclusions cannot be reached based on conventional ab initio molecular dy-
namics (AIMD): The “small” slabs with typically less than four layers do not allow to describe
clearly distinguishable surface phonons as illustrated by the phonon dispersion for a four layer
slab in Fig. 10.1 – which is already more than what can typically be afforded in AIMD. In
addition, the lateral propagation of the surface modes obviously has to be taken good care of.
Attempts to modify the boundary conditions of the slab models thus should not only consider
their aperiodic directions like the thermostats in Sections 9.2.2 and 9.2.3 only acting on atoms
in the bottom layer, but in particular the periodic, lateral “boundaries”. Further emphasizing
its advantages, the massive bath employed within the QM/Me approach thus not only provides
a more realistic description of the dynamics, but also allows to obtain vital new physical insights
about the importance of underlying physical properties for chemical reactions on surfaces.
Finally, the excitation spectrum shown in Fig. 10.1 for one particular time step motivates to

further discuss thermalization. The population of the aforementioned surface modes is obvi-
ously far away from thermal equilibrium – both for a Bose-Einstein or a Maxwell-Boltzmann
distribution in a quantum mechanical or classical picture for the harmonic oscillators consti-
tuting the phonons, respectively.iv Yet also the rest of the modes are not close to the latter.

10.3. Harmonic Solid

Already when recapitulating the theory behind lattice dynamics in Section 4.1, the harmonic
solid was obviously a very important concept for the description of phonons. Likewise, also the
analysis scheme presented in Section 10.1 relies on the resulting normal modes. Furthermore,
as described in Chapter 8, a lot of the dynamical models employed in the context of gas-
surface dynamics make use of this concept – implicitly assuming that the interaction with
adsorbates involves only single phonon excitations and leads only to a weak perturbation away
from equilibrium. As the results of the previous section already confute the latter assumption,
QM/Me is now put forward in order to offer a first-principles perspective on the former.
Even at the level of the optimized MEAM force field obtained in Section 9.1.3 (MEAMopt),

this description of the substrate goes beyond the harmonic approximation (cf Section 3.2.2 in
Chapter 3), which, in principle, allows to test the validity of the latter during the exother-
mic reaction investigated here. Conceptually, this can be done in a straightforward fashion
by comparing to trajectories obtained with the best possible harmonic description of the sub-
strate, implicitly obtained from lattice dynamics as described in Chapter 4. Technically, the
implementation of the corresponding simple analytical force field is challenging when including
force constants from a sufficiently large number of neighbor shells and aiming at molecular
dynamics for more than 105 substrate atoms as used for QM/Me embedding (cf Chapter 9) to
ensure proper phonon propagation. The corresponding extension to the Lammps code which is
suitable for these purposes is detailed in Appendix D.4 and used in the following. The required
force constants are taken from phonon calculations using the aforementioned optimized MEAM
force field after extending the phonopy infrastructure that has already been employed before
as needed. Again, the accuracy of the trajectory integration is sufficiently high in order to al-

ivSince the nuclear dynamics are based on Newton’s equations of motion, it would of course be more consistent
to use a classical Maxwell-Boltzmann distribution if this was analyzed in more quantitative detail.
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10. Role of Phonons

low for a meaningful comparison. As already pointed out in Section 9.2.2, in particular rather
stringent criteria for the electronic self-consistency (enabled along entire trajectories thanks to
the DM/EDFT scheme introduced in Section 5.3) are required to obtain well converged forces.
Given the additional complexity introduced by surface phonons, it is not surprising that

previous models have rather obtained the force constants from bulk phonon properties and
used them also for the surface calculations.36,434,448,465,468 This has been chosen as a starting
point here as well – aiming at a discussion of potentially concomitant limitations. Of course, for
each pair of atoms I and J , the corresponding force constant matrix Φbulk

IJ has to be properly
transformed to yield the corresponding surface constant matrix

Φ100
IJ =

cos(45°) − sin(45°) 0
sin(45°) cos(45°) 0

0 0 1

 ·Φbulk
IJ . (10.19)

This accounts for the rotation of the reference coordinate systems with respect to each other,
which are commonly used to describe bulk and surface unit cells. As directly inferred from
the convergence of the bulk phonon properties with respect to the supercell size within the
direct method (cf Section 4.2), an accurate bulk harmonic force field (BHFF) is then formed
by including force constants up to third nearest neighbors, corresponding to a cut off distance
of about 5Å and resulting in more than 50 force constant matrices Φ100

IJ . Fig. 10.2 shows
a comparison of the results obtained based on QM/Me embedding for trajectories starting
from identical initial conditions (same as in Chapter 9), using MEAMopt as originally for the
substrate description (cf Section 9.2) and substituting the latter by BHFF. It is important to
note that the DFT-based part of the embedding is exactly the same in both cases . As to be
expected, the original dynamics employing MEAMopt are reproduced precisely within the first
150 fs. Thereafter, however, the trajectories start to deviate very strongly – similar to what
has been observed for the “energy sinks from the shelf” in Section 9.2.1 Emphasizing again
that the numerical uncertainties in the non-analytical DFT forces are too small for causing this
deviation within the trajectory integration and thus cannot be blamed therefor, this does raise
severe doubts about the harmonic approximation in the context of gas-surface dynamics.
Notwithstanding, the use of bulk force constants might still come to the former’s rescue.

Figure 10.3 illustrates the phonon dispersion resulting from the BHFF when used for the
description of the Pd(100) surface compared against the MEAMopt reference. Unlike in the
bulk case, the latter is not matched exactly, since changes of the force constants due to the
presence of the surface are not accounted for. As shown by Fig. 10.3, this leads in particular
to an extremely poor description of the surface phonon modes.
Since surface phonons have been found to play a crucial role for the adsorbate dynamics

in Section 10.2, the strong deviations of the trajectories shown in Fig. 10.2 on a rather short
time scale might not appear to be so surprising any more. Furthermore, it is thus interesting to
include a proper description of the former into a harmonic force field. Of course, this is achieved
completely naturally when force constants are obtained from the surface phonon calculations –
the resulting surface harmonic force field (SHFF) then by construction yields a dispersion that
is indistinguishable from the optimized MEAM reference shown in Fig. 10.3. Technically, this
is significantly more complicated as the layer dependance of the force constants needs to be
properly considered (cf Appendix D), multiplying the number of force constant matrices Φ100

IJ

accordingly. For the atoms in each layer, again up to third nearest neighbors are considered
as for BHFF before. The plots in Fig. 10.4 show the same comparison as in Fig. 10.4, but
with SHFF instead of BHFF. Indeed, the trajectories start to deviate much later only after
300 fs, thus confirming that the surface phonons have been correctly identified as culprit before.
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Figure 10.2.: Dissociation dynamics including energy dissipation for O2 dissociating on a
Pd(100) surface described by a harmonic force field based on bulk force constants (BHFF,
thick lines) together with the reference results obtained in Chapter 9 (MEAMopt, thin lines)
as explained in the text. a) Separation distance d(t) of both oxygen atoms on the surface
like in Fig. 9.10. b) and c) Kinetic energies of both oxygen atoms as well as the palladium
atoms in the embedding cell (indicated in the inset in a)) and the bath as a function of time,
respectively, like in Fig. 9.8.
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Figure 10.3.: Comparison of phonon dispersions and density of states obtained from (a)
MEAMopt and (b) BHFF as explained in the text. Since the latter lacks a proper de-
scription of surface features, it is not surprising that it reproduces surface modes (indicated
by the small black circles) only very poorly. In both cases, as before in Fig. 9.7 and Fig. 10.1,
these modes were identified as such if the vibrational weight according to their displacement
Eigenvector exceeds 20 % in the first two layers (cf Section 4.3).

Still, the fact that there are deviations confirms the suspicions about the harmonic solid, as the
SHFF represents the best possible corresponding force field for the description of the Pd(100)
surface based on MEAMopt.
In order to further scrutinize these important findings, important insights can be gained

from the projection scheme worked out at the beginning of this chapter. For t = 200 fs (as
already used for the surface phonon analysis presented in Section 10.2) Fig. 10.5 visualizes the
distribution of phonon excitations over the surface Brillouin zone for substrate descriptions
with both MEAMopt and SHFF, summed over all bands according to

Ẽph(qn; t) =
3Ncell∑
b=1

Eph(qn, b; t) , (10.20)

where Eph(qn, b; t) is defined in Eq. (10.17). Like in Section 10.2, projection weights have been
calculated using a (40 × 40 × 40) grid (cf Eq. (10.1) and Eq. (10.2)), resulting in the dense
sampling of reciprocal space indicated in Fig. 10.5. Qualitatively, the same results can already
be obtained for a (20× 20× 20) grid, which, however, does not yield a significant reduction of
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Figure 10.4.: Same as Fig. 10.2, but for a harmonic force field based on surface force constants
(SHFF, thick lines) together with the reference results obtained in Chapter 9 (MEAMopt,
thin lines) as explained in the text.
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Figure 10.5.: Phonon excitations at t = 200 fs over the entire surface Brillouin zone of Pd(100)
according to Eq. (10.20) for the a) MEAMopt and b) SHFF force fields described in the
text. The blacks dots indicate modes with wave vectors q for which exact results according
to the analysis devised in Section 10.1 are obtained using a (40 × 40 × 40) grid. At each q,
all corresponding bands have been summed. The coloring is based on a linear interpolation
between these values.

computational effort – in particular in comparison with the integration of a QM/Me trajectory.
As clearly shown by Fig. 10.5, this analysis directly targeting phonons reveals differences already
at a much earlier time step than perceivable from the trajectory data depicted in Fig. 10.4:
Anharmonic couplings, which are present in MEAMopt but absent by construction in SHFF, are
of paramount importance to excite phonons with long wavelengths in the vicinity of the Γ point,
that obviously do not (predominantly) result from the interaction with the adsorbate alone.
The multiphonon nature of the excitations visualized in Fig. 10.5 rationalizes the importance
of anharmonicity and thus the breakdown of the harmonic approximation. Finally, as quantum
effects become negligible for harmonic oscillator containing many quanta, the former also nicely
corroborates the present classical description of the phonon excitations

10.4. Summary and Outlook

This chapter aimed at unraveling details about phonon excitations which are “hidden” in the
dynamics and now explicitly accessible thanks to the novel QM/Me embedding approach as
introduced in the previous chapter. For this, first a projection scheme has been derived to
“count phonons” instantaneously and in a mode-selective fashion at each molecular dynamics
time step. To the best of the author’s knowledge this has never been worked out in a similarly
rigid fashion before. Apart from the specific applications in the present context, it can also
straightforwardly offer very beneficial insights into problems of thermal transport, e.g. to
characterize the role of defect modes for the Boltzmann transport equation often used for
modeling thermal conductivity.
Using this newly introduced phonon projection scheme surface phonons were identified to be

of crucial importance for the dissociation dynamics of the O2 at Pd(100) showcase – rationalizing
the vastly different results obtained by using “energy sinks from the shelf” in Chapter 9. Unlike
what has been assumed before, it is not the Rayleigh, but surface modes within an energetically
higher band in a gap between bulk modes at the boundaries of the surface Brillouin zone
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which predominantly get excited. During the dissociation of the oxygen molecule, these modes
carry about a quarter of the total energy in the phononic system. The latter is thus strongly
perturbed and equilibration is still very much in progress even after 1.5 ps – again in contrast
to assumptions made within previous models.
Attention next turned to the harmonic solid frequently employed in modeling of gas-surface

dynamics by substituting the description of the substrate in QM/Me embedding by the former
based on bulk force constants leads to quite different dynamics. With the best possible harmonic
force field resulting from the anharmonic description of the surface as originally employed within
the QM/Me embedding approach, deviations set in later – confirming the importance of the
surface phonon modes once more. Nevertheless, the fact that trajectories still do deviate
considerably, marks a breakdown of the harmonic approximation in the present context. This
is rationalized by again invoking the phonon projection scheme: It reveals the multiphonon
nature of the excitations, which leads to long-wavelength phonons being predominantly excited
by anharmonic decay already much earlier than deviations become apparent in the dynamics.
Furthermore, also the classical description of the phonon excitations is corroborated thereby.
Despite all these important theoretical insights, altogether, the analyses worked out in this

chapter stand for itself for the time being. Although a plethora of experimental efforts (also)
in surface science are currently focused on producing “molecular movies” (e.g. by means of
free electron lasers), the difficult experimental challenge of obtaining detailed time-resolved
data about phonon excitations during individual adsorbate-substrate interaction events has
not yet been mastered. Therefore, at present, comparison to experiments can only be done
indirectly based on experimentally accessible observables that demand statistics, i.e. obtaining
and analyzing sufficiently many trajectories. As already indicated in the introduction to this
chapter this is left for future work – which “only” requires to apply the concepts that have been
laid out here on a (computationally) larger scale.
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As typical for scientific work in general, also this thesis has aimed to answer many questions
and inspired many new ones at the same time. A detailed discussion of the specific insights
gained with respect to energy dissipation during dissociative adsorption has already been pre-
sented in the end of the various chapters. The following outlook comprises therefore only a
loose collection of additional ongoing effort and future perspectives which have already been
stimulated through this work.
Interest in the symmetry adapted coordinates conceived in the context of the interpolation

of the six-dimensional potential energy surface (PES) (cf Chapter 6 and generalizations in
Appendix A) has already been expressed for an application with the modified Sheppard method,
as it should allow to overcome the problem with discontinuities encountered therewith before.333
In fact, a neural network based PES relying on the proper variant of these coordinate transfor-

mations (cf Appendix A.3) has already been successfully used to obtain a neural network-based
PES for O2 on Ag(111) and investigate the adsorption dynamics for this system.52 Since, in
that case, the initial sticking coefficient is extremely low, several millions of trajectories needed
to be calculated for its statistically reliable evaluation, which at present can only be routinely
obtained with first-principles quality based on a divide and conquer strategy. A study compar-
ing the extensive statistics concomitantly obtained for scattering to the wealth of experimental
data is presently under way.
An application of the perturbative approach for the calculation of electron-hole pair excitation

spectra (cf Chapter 7) to other “large” systems, for which chemicurrents have actually been
detected,28 would of course be interesting. Such efforts are planned for O2 on Ag(100), i.e. a
coinage metal surface with the same symmetry as the one investigated here.
Since very similar matrix elements, which pose the central computational challenge, are also

required for electronic friction theory (cf Section 7.1.4), the present highly-efficient implementa-
tion can easily be adapted. As the community has long relied essentially on a single particular
implementation,119,399 this can offer “fresh” perspectives: For example, together with an en-
suing interpolation, this could provide high-dimensional (electronic) friction tensors, allowing
to settle the controversy about the accuracy of friction coefficients.44–46 and thus offer an im-
portant contribution to the ongoing debate about the importance of non-adiabatic effects for
dissociation dynamics on metal surfaces. In addition, these matrix elements could also serve as
a natural starting point to investigate the role of electron-phonon coupling within the substrate
for the adsorbate dynamics.277
As already indicated above, many systems or experimental observables less benign than stick-

ing can easily require an extensive amount of statistics. Divide and conquer strategies provide a
computational efficiency that seems to be difficult to beat in this respect once the PES obtained,
implying a frozen substrate as present state of the art. It remains an open question whether the
corresponding potential energy surfaces can also be easily extended successfully to accurately
account for substrate motion. Only recently, Bonfanti and coworkers have tried another step
into that direction, which already clearly hints at the complexity and challenges introduced
thereby.26. For H2 on Cu(111), they have extended frozen surface interaction potentials to
seven dimensions by inclusion of substrate motion along conveniently preselected displacement
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directions, not corresponding to phonon Eigenvectors by construction. Their underlying DFT
calculations are based on (2 × 2) supercells of the surface unit cell, so that phonons could at
best have been sampled only at two points in the surface Brillouin zone. Apart from the im-
plied harmonic approximation, in light of the results of this work (cf Chapter 10), it would be
interesting to verify whether the implications for the adsorbate dynamics are captured properly,
even for a significantly lighter molecule than O2.
On the contrary, the QM/Me approach introduced in Chapter 9 of this work does not suffer

from any of those shortcomings, and could provide theoretical reference data. Still, at present
it is unclear how much of the phononic details propagate into also experimentally observable
quantities, i.e. are not “washed out” by statistics. To obtain the latter, “on-the-fly” force
evaluations with first-principles codes still form a significant computational burden. The latter
varies obviously depending on the employed DFT implementation, the system investigated
therewith and the (numerical) convergence quality that is aimed for. In general, any system
which can treated by ab initio molecular dynamics (AIMD) also qualifies for an application of
QM/Me. This burden might even be overcome routinely and automatically in practice, during
the next few years by the exponential growth of available computational power or even potential
further algorithmic improvements of first-principles codes. Special AIMD acceleration schemes
that have been conceived in recent years208–210,357,526 could already be exploited today also
with QM/Me – if they are applicable to metallic systems.
Another possibility is to apply techniques currently developed in the context of interatomic

potentials based on high-dimensional interpolation.183,184 As published, these schemes currently
try to approximate direct results of the underlying quantum mechanical reference calculations.
Targeting a difference term as introduced by QM/Me instead results in a “simpler” high-
dimensional function to be interpolated and should hence simplify the interpolation procedure.
In a first step, the description of the interactions between metal atoms could even be left to an
established, more traditional interatomic potential (similar to the MEAM-based one employed
here). Behler and coworkers have already made first steps in such a direction by augmenting
a “pure” NN description of a polar material (ZnO) with analytical expressions for long-range
electrostatics.527
Either way, a calculation of pair distributions resulting from the hot adatoms (cf Section 9.2.3)

for this or another system, for which corresponding experimental data from scanning tunneling
microscopy experiments is already available, would enable an important benchmark for theory.
It would also provide another important contribution to the aforementioned debate about the
importance to go beyond the Born-Oppenheimer approximation for the description of dynamics
on surface.
Ultimately, coarse-grained modeling of heterogeneous catalysis based on first-principles ki-

netic Monte Carlo simulations3,7,8 might be extended “beyond the Markov approximation” by
including a suitable description of heat dissipation, using kinetic parameters obtained from
(QM/Me-based) dynamics. Ideas along those lines have been proposed only recently528 but
base their extensions on the validity of Fourier’s law on the atomistic scale. In fact, more
extensive evaluations of kinetic energies than in Chapter 9 will allow to verify this assumption.
This would be of obvious interest and importance for the description of thermal transport

in general – not only in the context of energy conversion at interfaces. In addition, the former
can also benefit from the phonon analysis as presented in Chapter 10. It allows to quantify
phonon scattering e.g. at defects, thus providing important input for coarse grained description
via the Boltzmann transport equation and the determination of thermal conductivities from
first-principles.509,512–514
Finally, in principle anything that breaks periodicity of a metal surface or even a bulk crystal
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can be subjected to the QM/Me embedding treatment. Its application even in a “static con-
text” might thus provide important insights about long range elastic effects, e.g. for defects,
dislocations or steps.
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Appendices

Overview

Appendix A practically demonstrates generalizability of the concept
behind the symmetry adapted coordinates developed in the scope of
Chapter 6 to other common low-index surfaces. The six-dimensional po-
tential energy surface constructed in the same chapter is characterized
in comprehensive detail in Appendix B. Motivated by its rather general
applicability, implementation details of the code written to obtain elec-
tron-hole pair spectra described in Chapter 7 (based on the Castep
DFT code) together with convergence and consistency checks are as-
sembled into Appendix C. Lastly, the design decisions and implemen-
tation of several extensions to the classical MD code Lammps, which
have been required in Chapter 9 and Chapter 10 and might also have
straightforward future applications, are documented in Appendix D.

http://www.castep.org
http://lammps.sandia.gov




A. Symmetry Adapted Coordinates for
Diatomics on Low-Index Surfaces

In Chapter 6, the six-dimensional potential energy surface of a homonuclear diatomic molecule
on a fcc(100) surface is interpolated according to

V6D ≈ V6D(Q(Rph)) , (A.1)

where the physical coordinates Rph are first transformed to symmetry adapted coordinates.
Neural networks have been used as interpolation function V6D in the present work, but the
general ansatz given by Eq. (A.1) can also be beneficially used together with any other sophis-
ticated scheme for high-dimensional interpolation.i Thus, at the same time, the complexity of
the interpolation problem is significantly reduced and symmetry correctly incorporated. In the
following, the surface specific parts of this concept (as developed in Section 6.1.4) are given for
common low-index surfaces of both fcc and bcc crystal typically encountered in applications.
For the sake of completeness, first the essential definitions are briefly recapitulated.
Typical physical coordinates Rph to describe molecular configurations of a (in general het-

eronuclear) diatomic molecule consisting of two atoms A and B, with masses mA and mB,
respectively, and a total mass M = mA +mB, are Cartesian

Rcart = RA ⊕RB = (XA, YA, ZA)⊕ (XB, YB, ZB) (A.2)
or center of mass centered spherical coordinates

Rsph = (X,Y, Z, d, ϑ, ϕ) , (A.3)
with center of mass coordinates R = (X,Y, Z), internuclear distance d, polar angle ϑ and
azimuth angle ϕ. Here and in the following, the origin is located in the surface plane on a
top site. An illustration of these two coordinate systems above a fcc(100) surface is given in
Section 6.1.1 by Fig. 6.1. The transformation from Cartesian to spherical coordinates is given
by

X = mA
M

XA + mB
M

XB (A.4a)

Y = mA
M

YA + mB
M

YB (A.4b)

Z = mA
M

ZA + mB
M

ZB (A.4c)

d =
√

(XB −XA)2 + (YB − YA)2 + (ZB − ZA)2 ≡
√
d2
‖ + d2

⊥ (A.4d)

ϑ = arccos
(
d⊥
d

)
(A.4e)

ϕ = arccos
(
XB −XA

d‖

)
= arcsin

(
YB − YA

d‖

)
(A.4f)

i Interest has already been signaled529 in conjunction with the so-called corrugation reducing procedure quite
frequently used in the gas-surface dynamics community nowadays.323
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Of course, Eq. (A.4f) is only valid for d‖ 6= 0, which is equivalent to ϑ 6= 0. In other words, for
a diatomic molecule with its molecular axis perpendicular to the surface, an azimuth angle is
not defined. The reverse transformation from spherical to Cartesian coordinates reads

XA = X − mB

M
d sin(ϑ) cos(ϕ) (A.5a)

YA = Y − mB

M
d sin(ϑ) sin(ϕ) (A.5b)

ZA = Z − mB

M
d cos(ϑ) (A.5c)

XB = X + mA

M
d sin(ϑ) cos(ϕ) (A.5d)

YB = Y + mA

M
d sin(ϑ) sin(ϕ) (A.5e)

ZB = Z + mA

M
d cos(ϑ) (A.5f)

For a homonuclear diatomic, the above expression simplify accordingly since mA = mB = m,
which e.g. results in mA

M = mB
M = 1

2 .
In Section 6.1.4, the construction of the following symmetry adapted coordinates Qhom for

a homonuclear diatomic is extensively discussed.

Qhom
1 = 1

2
[
exp

(
−ZA

2

)
· g1(XA, YA) + exp

(
−ZB

2

)
· g1(XB, YB)

]
(A.6a)

Qhom
2 = exp

(
−ZA

2

)
· g1(XA, YA) · exp

(
−ZB

2

)
· g1(XB, YB) (A.6b)

Qhom
3 = 1

2
[
exp

(
−ZA

2

)
· g2(XA, YA) + exp

(
−ZB

2

)
· g2(XB, YB)

]
(A.6c)

Qhom
4 = exp

(
−ZA

2

)
· g2(XA, YA) · exp

(
−ZB

2

)
· g2(XB, YB) (A.6d)

Qhom
5 = exp

(
−Z

2

)
· g1(X,Y ) (A.6e)

Qhom
6 = exp

(
−Z

2

)
· g2(X,Y ) (A.6f)

Qhom
7 = exp

(
−Z

2

)
(A.6g)

Qhom
8 = d (A.6h)

Qhom
9 = cos(ϑ)2 (A.6i)

For a heteronuclear molecule, the symmetrization in Eqs. (A.6a) to (A.6d) has to be removed
accordingly:

Qhet
1 = exp

(
−ZA

2

)
· g1(XA, YA) (A.7a)

Qhet
2 = exp

(
−ZA

2

)
· g2(XA, YA) (A.7b)

Qhet
3 = exp

(
−ZB

2

)
· g1(XB, YB) (A.7c)

Qhet
4 = exp

(
−ZB

2

)
· g2(XB, YB) (A.7d)

Qhet
i = Qhom

i , i ∈ {5, 6, 7, 8, 9} (A.7e)
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g1 and g2 are surface specific functions R2 → R determining symmetry equivalent lateral
positions as discussed in detail in the context of Eq. (6.16) in Section 6.1.4. For a surface
lattice with primitive vectors a1 and a2, they are typically based on appropriate combinations
of lowest order terms of the corresponding Fourier series, given by the corresponding reciprocal
lattice vectors

Gij = ib1 + jb2 . (A.8)

The crystallographic convention to indicate a negative direction by a bar over the corresponding
number is adopted. As usual, the primitive vectors b1 and b2 of the reciprocal lattice are defined
by

ai · bj = 2πδij i, j ∈ {1, 2} . (A.9)

In the following Appendices A.1 to A.6, examples are given for (100), (110) and (111) surfaces
of both fcc and bcc crystals.

A.1. fcc(100)

Equations and plots presented in this section are identical to those in Section 6.1.4 and are
only included here for the sake of completeness.

Primitive vectors of the surface lattice (cf Fig. A.1.1 for illustration):

afcc100
1 =

√
2

2 afcc

(
1
0

)
= a100

fcc

(
1
0

)
(A.10a)

afcc100
2 =

√
2

2 afcc

(
0
1

)
= a100

fcc

(
0
1

)
(A.10b)

Lateral coordinate transformations:

gfcc100
1 (x, y) = 1

4
[
cos

(
Gfcc100

10 ·
( x
y
))

+ cos
(
Gfcc100

01 ·
( x
y
))]

+ 1
2

= 1
4

[
cos

(
2π
a100

fcc
x

)
+ cos

(
2π
a100

fcc
y

)]
+ 1

2

(A.11a)

gfcc100
2 (x, y) = 1

4
[
cos

(
Gfcc100

11 ·
( x
y
))

+ cos
(
Gfcc100

11̄ ·
( x
y
))]

+ 1
2

= 1
4

[
cos

(
2π
a100

fcc
x

)
· cos

(
2π
a100

fcc
y

)]
+ 1

2

(A.11b)

Contour plots of Eqs. (A.11a) and (A.11b) are shown in Fig. A.1.2. Examples for symmetry
equivalent points (as given by intersections of contours of gfcc100

1 and gfcc100
2 ) are presented in

Fig. A.1.3.
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Figure A.1.1.: Structure and symmetry of a fcc(100) surface: The primitive lattice vectors
afcc100

1 and afcc100
2 as given by Eqs. (A.10) are shown as arrows, high symmetry sites are

marked by different symbols, and the irreducible wedge is indicated by the dark gray triangle.
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Figure A.1.2.: Contour plots of the coordinate transformations a) gfcc100
1 and b) gfcc100

2 as
defined by Eqs. (A.11) for lateral coordinates (x, y) given in units of the surface lattice
constant a100

fcc . The spacing of the contour lines is 1
8 .
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Figure A.1.3.: Examples for symmetry equivalent lateral coordinates given in units of the
surface lattice constant a100

fcc . In a) to d), for different points (x0, y0) in the indicated triangular
irreducible wedge (thick green circle), the respective equivalents are the intersection points
(thin green circles) of contour lines of gfcc100

1 (blue) and gfcc100
2 (red) as defined by Eqs. (A.11).

Contour values are given by gfcc100
1 (x0, y0) and gfcc100

2 (x0, y0), respectively.
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Figure A.2.1.: Structure and symmetry of a fcc(110) surface: The primitive lattice vectors
afcc110

1 and afcc110
2 as given by Eqs. (A.12) are shown as arrows, high symmetry sites are

marked by different symbols, and the irreducible wedge is indicated by the dark gray rect-
angle.

A.2. fcc(110)
Primitive vectors of the surface lattice (cf Fig. A.2.1 for illustration):

afcc110
1 = afcc

(
1
0

)
(A.12a)

afcc110
2 =

√
2

2 afcc

(
0
1

)
(A.12b)

Lateral coordinate transformations:

gfcc110
1 (x, y) = 1

4
[
cos

(
Gfcc110

10 ·
( x
y
))

+ cos
(
Gfcc110

01 ·
( x
y
))]

+ 1
2

= 1
4

[
cos

( 2π
afcc

x

)
+ cos

( 2π
afcc

√
2y
)]

+ 1
2

(A.13a)

gfcc110
2 (x, y) = 1

4
[
cos

(
Gfcc110

10 ·
( x
y
))
− cos

(
Gfcc110

01 ·
( x
y
))]

+ 1
2

= 1
4

[
cos

( 2π
afcc

x

)
− cos

( 2π
afcc

√
2y
)]

+ 1
2

(A.13b)

Contour plots of Eqs. (A.13a) and (A.13b) are shown in Fig. A.2.2. Examples for symmetry
equivalent points (as given by intersections of contours of gfcc110

1 and gfcc110
2 ) are presented in

Fig. A.2.3.
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Figure A.2.2.: Contour plots of the coordinate transformations a) gfcc110
1 and b) gfcc110

2 as
defined by Eqs. (A.13) for lateral coordinates (x, y) given in units of the bulk lattice constant
afcc. The spacing of the contour lines is 1

8 .

A.3. fcc(111)

Primitive vectors of the surface lattice (cf Fig. A.3.1 for illustration):

afcc111
1 =

√
2

2 afcc

(
1
0

)
= a111

fcc

(
1
0

)
(A.14a)

afcc111
2 =

√
2

2 afcc

( 1
2√
3

2

)
= a111

fcc

( 1
2√
3

2

)
(A.14b)
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Figure A.2.3.: Examples for symmetry equivalent lateral coordinates given in units of the bulk
lattice constant afcc. In a) to d), for different points (x0, y0) in the indicated rectangular
irreducible wedge (thick green circle), the respective equivalents are the intersection points
(thin green circles) of contour lines of gfcc110

1 (blue) and gfcc110
2 (red) as defined by Eqs. (A.13).

Contour values are given by gfcc110
1 (x0, y0) and gfcc110

2 (x0, y0) respectively.
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Figure A.3.1.: Structure and symmetry of a fcc(111) surface: The primitive lattice vectors
afcc111

1 and afcc111
2 as given by Eqs. (A.14) are shown as arrows, high symmetry sites are

marked by different symbols, and the irreducible wedge is indicated by the dark gray triangle.

Lateral coordinate transformations (for a “proper” fcc(111) surface):

gfcc111(x, y) = 1
3
√

3

[
sin
(
Gfcc111

10 ·
( x
y
))

+ sin
(
Gfcc111

01 ·
( x
y
))

+

sin
(
Gfcc111

11 ·
( x
y
))]

+ 1
2

= 1
3
√

3

[
sin
(

2π
a111

fcc

(
x− 1√

3
y

))
+ sin

(
2π
a111

fcc

2√
3
y

)
+

sin
(

2π
a111

fcc

(
x+ 1√

3
y

))]
+ 1

2

(A.15a)

gfcc111
1 (x, y) = gfcc111(x− 1

4a
111
fcc , y − 1

4
√

3a
111
fcc ) (A.15b)

gfcc111
2 (x, y) = gfcc111(x+ 1

4a
111
fcc , y + 1

4
√

3a
111
fcc ) (A.15c)

Contour plots of Eqs. (A.15b) and (A.15c) are shown in Fig. A.3.2. Examples for symmetry
equivalent points (as given by intersections of contours of gfcc111

1 and gfcc111
2 ) are presented in

Fig. A.3.3.
Equations (A.15) are similar to the expressions that have been given by Behler and coworkers.342,351

In the notation system employed here, these expressions read as follows when linearly trans-
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A. Symmetry Adapted Coordinates for Diatomics on Low-Index Surfaces
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Figure A.3.2.: Contour plots of the coordinate transformations a) gfcc111
1 and b) gfcc111

2 as
defined by Eqs. (A.15) for lateral coordinates (x, y) given in units of the surface lattice
constant a111

fcc . The spacing of the contour lines is 1
8 .

formed to the range [0, 1] favored here:

g̃fcc111(x, y) = 2
9
[
cos

(
Gfcc111

10 ·
( x
y
))

+ cos
(
Gfcc111

01 ·
( x
y
))

+

cos
(
Gfcc111

11 ·
( x
y
))]

+ 1
3

(A.16a)

g̃fcc111
top (x, y) = g̃fcc111(x− 0 a111

fcc︸ ︷︷ ︸
≡xfcc111

top

, y − 0 a111
fcc︸ ︷︷ ︸

≡ yfcc111
top

) (A.16b)

g̃fcc111
fcc (x, y) = g̃fcc111(x− 1

2a
111
fcc︸ ︷︷ ︸

≡xfcc111
fcc

, y − 1
2
√

3a
111
fcc︸ ︷︷ ︸

≡ yfcc111
fcc

) (A.16c)

g̃fcc111
bridge(x, y) = g̃fcc111(x− 1

2a
111
fcc︸ ︷︷ ︸

≡xfcc111
hcp

, y − −1
2
√

3a
111
fcc︸ ︷︷ ︸

≡ yfcc111
hcp

) (A.16d)

Figures A.3.4a to A.3.4c show contour plots of Eqs. (A.16b) to (A.16d), respectively. For the
same example points also chosen in Fig. A.3.3 before, those plots show the redundancy of
Eqs. (A.16b) to (A.16d): Only two of the originally proposed “Fourier terms” are required in
order to describe a point in the irreducible wedge and all its symmetry equivalent replica.
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A.3. fcc(111)
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Figure A.3.3.: Examples for symmetry equivalent lateral coordinates given in units of the
surface lattice constant a111

fcc . In a) to d), for different points (x0, y0) in the indicated triangular
irreducible wedge (thick green circle), the respective equivalents are the intersection points
(thin green circles) of contour lines of gfcc111

1 (blue) and gfcc111
2 (red) as defined by Eqs. (A.15).

Contour values are given by gfcc111
1 (x0, y0) and gfcc111

2 (x0, y0) respectively.
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Figure A.3.4.: Contour plots of the “Fourier terms” a) g̃fcc111
top , b) g̃fcc111

fcc and c) g̃fcc111
hcp reproduced

from the work of Behler and coworkers342,351 as given by Eqs. (A.16) using the notation
employed within this work. Lateral coordinates (x, y) given in units of the surface lattice
constant a111

fcc . The spacing of the contour lines is 1
8 .
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A.3. fcc(111)
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~gfcc111top

~gfcc111fcc
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Figure A.3.5.: Same as Fig. A.3.2, but using the “Fourier terms” reproduced from the work of
Behler and coworkers342,351 as given by Eqs. (A.16) and illustrated in Fig. A.3.4. Note that
only dotted gray contour lines are given for g̃fcc111

top as the present description is redundant:
Any two of the three functions g̃fcc111

top , g̃fcc111
fcc , g̃fcc111

hcp yield the correct symmetry equivalent
replica of the points in the irreducible wedge as intersection points of their respective contour
lines.
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x (a 111fcc )
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Figure A.3.6.: Structure and symmetry of a derivatice of a fcc(111) surface with six-fold in-
stead of three-fold symmetry: The primitive lattice vectors afcc111

1 and afcc111
2 as given by

Eqs. (A.14) are shown as arrows, high symmetry sites are marked by different symbols, and
the irreducible wedge is indicated by the dark gray triangle.

Apart from transformations gfcc111
1 and gfcc111

2 given by Eq. (A.15) for “proper” fcc(111) sur-
faces with threefold symmetry, the following counterparts g f̃cc111

1 and g f̃cc111
2

(cf Eqs. (A.17)) for an “artificial” fcc(111) derivative with sixfold symmetry as illustrated
in Fig. A.3.6 can also prove extremely useful: Very often, fcc-hollow and hcp-hollow are en-
ergetically quasi-degenerate, e.g. for H2 on Pt(111)324 or O2 at Ag(111).ii Therefore, the
interpolation of a six-dimensional PES can greatly benefit from this extended symmetry be-
cause the size of irreducible wegde is halfed. By no longer distinguishing between the two

ii Work together with I. Goikoetxea, J. Beltrán, M. Alducin and J. I. Juaristi.52
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A.3. fcc(111)

¡1:0 0:0 1:0

x (a 111fcc )

¡1:0

0:0

1:0

y
(a
11
1

fc
c
)

ggfcc1111 (x;y)

0.00 0.25 0.50 0.75 1.00

¡1:0 0:0 1:0

x (a 111fcc )

¡1:0

0:0

1:0

y
(a
11
1

fc
c
)

ggfcc1112 (x;y)

0.00 0.25 0.50 0.75 1.00

a) b)

top hollow bridge

Figure A.3.7.: Contour plots of the coordinate transformations a) g f̃cc111
1 and b) g f̃cc111

2 as
defined by Eq. (A.15) for lateral coordinates (x, y) given in units of the surface lattice constant
a111

fcc . The spacing of the contour lines is 1
8 .

hollow sites, g f̃cc111
1 and g f̃cc111

2 do fully take this into account.

g f̃cc111
1 (x, y) = 1

4
[
cos

(
Gfcc111

10 ·
( x
y
))

+ cos
(
Gfcc111

01 ·
( x
y
))

+

cos
(
Gfcc111

11 ·
( x
y
))]

+ 1
4

= 1
4

[
cos

(
2π
a111

fcc

(
x− 1√

3
y

))
+ cos

(
2π
a111

fcc

2√
3
y

)
+

cos
(

2π
a111

fcc

(
x+ 1√

3
y

))]
+ 1

4

(A.17a)

g f̃cc111
2 (x, y) = 1

4
[
cos

(
Gfcc111

11̄ ·
( x
y
))

+ cos
(
Gfcc111

21 ·
( x
y
))

+

cos
(
Gfcc111

12 ·
( x
y
))]

+ 1
4

= 1
4

[
cos

(
2π
a111

fcc

(
x−
√

3y
))

+ cos
(

2π
a111

fcc
2x
)

+

cos
(

2π
a111

fcc

(
x+
√

3y
))]

+ 1
4

(A.17b)
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Figure A.3.8.: Examples for symmetry equivalent lateral coordinates given in units of the
surface lattice constant a111

fcc . In a) to d), for different points (x0, y0) in the indicated triangular
irreducible wedge (thick green circle), the respective equivalents are the intersection points
(thin green circles) of contour lines of g f̃cc111

1 (blue) and g f̃cc111
2 (red) as defined by Eqs. (A.17).

Contour values are given by g f̃cc111
1 (x0, y0) and g f̃cc111

2 (x0, y0) respectively.
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A.4. bcc(100)

Contour plots of Eqs. (A.17a) and (A.17b) are shown in Fig. A.3.2. Examples for symmetry
equivalent points (as given by intersections of contours of g f̃cc111

1 and g f̃cc111
2 ) are presented in

Fig. A.3.8. It is noted in passing that g f̃cc111
1 (x, y) given in Eq. (A.17a) can also be paired with

g f̃cc111
1′ (x, y) = g f̃cc111

1 (2x, 2y) , (A.18)

thus consisting of cosine terms corresponding to reciprocal lattice vectors Gfcc111
20 , Gfcc111

02 and
Gfcc111

22 . Consequently, two different sets of coordinate transformations for the fcc(111) surface
with six-fold symmetry are available.

A.4. bcc(100)
Primitive vectors of the surface lattice:

abcc100
1 = abcc

(
1
0

)
= a100

bcc

(
1
0

)
(A.19a)

abcc100
2 = abcc

(
0
1

)
= a100

bcc

(
0
1

)
(A.19b)

This surface has the same symmetry as a fcc(100) surface with the latter being illustrated in
Fig. A.1.1. Accordingly, the transformations given by Eq. (A.11) can be used when substituting
a100

fcc =
√

2
2 afcc by the surface lattice constant a100

bcc = abcc =
√

2a100
fcc

abcc
afcc

of the accordingly more
open bcc(100) surface.

A.5. bcc(110)
Primitive vectors of the surface lattice (cf Fig. A.5.1 for illustration):

abcc110
1 = abcc

(
1
0

)
(A.20a)

abcc110
2 = abcc

( 1
2√
2

2

)
(A.20b)

Lateral coordinate transformations:

gbcc110
1 (x, y) = 1

4
[
cos

(
Gbcc110

10 ·
( x
y
))

+ cos
(
Gbcc110

11 ·
( x
y
))]

+ 1
2

= 1
4

[
cos

( 2π
abcc

(
x− 1√

2
y

))
+

cos
( 2π
abcc

(
x+ 1√

2
y

))]
+ 1

2

(A.21a)

gbcc110
2 (x, y) = 1

4
[
cos

(
Gbcc110

01 ·
( x
y
))
− cos

(
Gbcc110

21 ·
( x
y
))]

+ 1
2

= 1
4

[
cos

( 2π
abcc

√
2y
)
− cos

( 2π
abcc

2x
)]

+ 1
2

(A.21b)

Contour plots of Eqs. (A.21a) and (A.21b) are shown in Fig. A.5.2. Examples for symmetry
equivalent points (as given by intersections of contours of gbcc110

1 and gbcc110
2 ) are presented in

Fig. A.5.3.
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Figure A.5.1.: Structure and symmetry of a bcc(110) surface: The primitive lattice vectors
abcc110

1 and abcc110
2 as given by Eqs. (A.20) are shown as arrows, high symmetry sites are

marked by different symbols, and the irreducible wedge is indicated by the dark gray triangle.

¡1:0 0:0 1:0

x (abcc)

¡1:0

0:0

1:0

y
(a
b
cc
)

gbcc1101 (x;y)

0.00 0.25 0.50 0.75 1.00

¡1:0 0:0 1:0

x (abcc)

¡1:0

0:0

1:0

y
(a
b
cc
)

gbcc1102 (x;y)

0.00 0.25 0.50 0.75 1.00

a) b)

top hollow bridge

Figure A.5.2.: Contour plots of the coordinate transformations a) gbcc110
1 and b) gbcc110

2 as
defined by Eqs. (A.21) for lateral coordinates (x, y) given in units of the bulk lattice constant
abcc. The spacing of the contour lines is 1

8 .
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A.5. bcc(110)
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Figure A.5.3.: Examples for symmetry equivalent lateral coordinates given in units of the
surface lattice constant abcc. In a) to d), for different points (x0, y0) in the indicated triangular
irreducible wedge (thick green circle), the respective equivalents are the intersection points
(thin green circles) of contour lines of gbcc110

1 (blue) and gbcc110
2 (red) as defined by Eqs. (A.21).

Contour values are given by gbcc110
1 (x0, y0) and gbcc110

2 (x0, y0), respectively.
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A.6. bcc(111)
Primitive vectors of the surface lattice:

abcc111
1 =

√
2abcc

(
1
0

)
= a111

bcc

(
1
0

)
(A.22a)

abcc111
2 =

√
2abcc

( 1
2√
3

2

)
= a111

bcc

( 1
2√
3

2

)
(A.22b)

This surface has the same symmetry as a fcc(111) surface with the latter being illustrated in
Fig. A.3.1. Accordingly, the transformations given by Eq. (A.15) can be used when substituting
a111

fcc =
√

2
2 afcc by the surface lattice constant a111

bcc =
√

2abcc = 2a111
fcc

abcc
afcc

of the accordingly much
more open bcc(111) surface.

A.7. Implementation
An implementation in Fortran 90 of all the aforementioned functions is available from the
author upon request. The same holds for Python bindings to the former, which have greatly
simplified the generation of all the plots.
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B. Six-dimensional Potential Energy Surface
for O2on Pd(100)

The six-dimensional potential energy surface (PES) constructed and used in Chapter 6 (based
on the techniques both described and developed therein) is characterized in detail by the collec-
tion of plots that follows here. They are all based on the finally obtained best NN fit mentioned
in Section 6.2.2. Apart from a quantification of the quality of the latter, which is excellent all
in all, an impression of the overall shape of the PES can also be obtained.

B.1. Elbow Plots (d-Z-Cuts)

The plots that follow in this section are equivalent to the one shown in Fig. 6.8b, whose caption
together with Section 6.2.2 provide more details.
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B. Six-dimensional Potential Energy Surface for O2on Pd(100)
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B.1. Elbow Plots (d-Z-Cuts)
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B. Six-dimensional Potential Energy Surface for O2on Pd(100)

B.1.2. Bridge Site
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B.1. Elbow Plots (d-Z-Cuts)
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B. Six-dimensional Potential Energy Surface for O2on Pd(100)

1.0 1.5 2.0 2.4

d (
±
A)

0

1

2

3

4

5
Z

(
± A
)

0
.01

.0

¡1:5

¡1:0

¡0:5

+0:0

+0:5

+1:0

VNN
6D (eV)

¢V6D : calculated

< 10 meV
< 50 meV

< 100 meV
> 100 meV

Figure B.1.2.9.:
X = 0.0 a100

Pd Y = 0.5 a100
Pd

ϑ = 60° ϕ = 90°

1.0 1.5 2.0 2.4

d (
±
A)

0

1

2

3

4

5

Z
(
± A
)

-1.0
0.0

0
.0

1
.0

1
.0

¡1:5

¡1:0

¡0:5

+0:0

+0:5

+1:0

VNN
6D (eV)

¢V6D : calculated

< 10 meV
< 50 meV

< 100 meV
> 100 meV

Figure B.1.2.10.:
X = 0.0 a100

Pd Y = 0.5 a100
Pd

ϑ = 90° ϕ = 0°

1.0 1.5 2.0 2.4

d (
±
A)

0

1

2

3

4

5

Z
(
± A
)

0.0

0
.0

1
.0

1.0

¡1:5

¡1:0

¡0:5

+0:0

+0:5

+1:0

VNN
6D (eV)

¢V6D : calculated

< 10 meV
< 50 meV

< 100 meV
> 100 meV

Figure B.1.2.11.:
X = 0.0 a100

Pd Y = 0.5 a100
Pd

ϑ = 90° ϕ = 30°

1.0 1.5 2.0 2.4

d (
±
A)

0

1

2

3

4

5

Z
(
± A
)

0
.01

.0

1
.0

¡1:5

¡1:0

¡0:5

+0:0

+0:5

+1:0

VNN
6D (eV)

¢V6D : calculated

< 10 meV
< 50 meV

< 100 meV
> 100 meV

Figure B.1.2.12.:
X = 0.0 a100

Pd Y = 0.5 a100
Pd

ϑ = 90° ϕ = 60°

212



B.1. Elbow Plots (d-Z-Cuts)
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B. Six-dimensional Potential Energy Surface for O2on Pd(100)
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B.1. Elbow Plots (d-Z-Cuts)
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B. Six-dimensional Potential Energy Surface for O2on Pd(100)

B.2. Lateral Plots (X-Y -Cuts)

The plots that follow in this section are equivalent to the one shown in Fig. 6.9b, whose caption
together with Section 6.2.2 provide more details.
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B.2. Lateral Plots (X-Y -Cuts)
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B. Six-dimensional Potential Energy Surface for O2on Pd(100)
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B.2. Lateral Plots (X-Y -Cuts)

0.00 0.25 0.50 0.75 1.00

X (a 100
Pd )

0.00

0.25

0.50

0.75

1.00

Y
(a

10
0

P
d

)

¡1:5

¡1:0

¡0:5

+0:0

+0:5

+1:0

VNN
6D (eV)

¢V6D : calculated
/ < 10 meV
/ < 50 meV

/ < 100 meV
/ > 100 meV

Figure B.2.2.3.:
Z = 2.5Å d = 1.3Å
ϑ = 30° ϕ = 30°

0.00 0.25 0.50 0.75 1.00

X (a 100
Pd )

0.00

0.25

0.50

0.75

1.00

Y
(a

10
0

P
d

) 0
.0

¡1:5

¡1:0

¡0:5

+0:0

+0:5

+1:0

VNN
6D (eV)

¢V6D : calculated
/ < 10 meV
/ < 50 meV

/ < 100 meV
/ > 100 meV

Figure B.2.2.4.:
Z = 2.5Å d = 1.3Å
ϑ = 60° ϕ = 0°

0.00 0.25 0.50 0.75 1.00

X (a 100
Pd )

0.00

0.25

0.50

0.75

1.00

Y
(a

10
0

P
d

)

0.0

0.
0

¡1:5

¡1:0

¡0:5

+0:0

+0:5

+1:0

VNN
6D (eV)

¢V6D : calculated
/ < 10 meV
/ < 50 meV

/ < 100 meV
/ > 100 meV

Figure B.2.2.5.:
Z = 2.5Å d = 1.3Å
ϑ = 60° ϕ = 30°

0.00 0.25 0.50 0.75 1.00

X (a 100
Pd )

0.00

0.25

0.50

0.75

1.00

Y
(a

10
0

P
d

)

0.0 0.
0

0.
0

0.
0

0.0

0.0

¡1:5

¡1:0

¡0:5

+0:0

+0:5

+1:0

VNN
6D (eV)

¢V6D : calculated
/ < 10 meV
/ < 50 meV

/ < 100 meV
/ > 100 meV

Figure B.2.2.6.:
Z = 2.5Å d = 1.3Å
ϑ = 90° ϕ = 0°

219



B. Six-dimensional Potential Energy Surface for O2on Pd(100)
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B.2.3. Height Z = 2.0Å
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B.2. Lateral Plots (X-Y -Cuts)

0.00 0.25 0.50 0.75 1.00

X (a 100
Pd )

0.00

0.25

0.50

0.75

1.00

Y
(a

10
0

P
d

)

0.0 0.
0

0.0
0.0

1.0

1.
0

1.0
1.0

¡1:5

¡1:0

¡0:5

+0:0

+0:5

+1:0

VNN
6D (eV)

¢V6D : calculated
/ < 10 meV
/ < 50 meV

/ < 100 meV
/ > 100 meV

Figure B.2.3.3.:
Z = 2.0Å d = 1.3Å
ϑ = 30° ϕ = 30°

0.00 0.25 0.50 0.75 1.00

X (a 100
Pd )

0.00

0.25

0.50

0.75

1.00

Y
(a

10
0

P
d

)

0.0
0.0

0.0
0.0

¡1:5

¡1:0

¡0:5

+0:0

+0:5

+1:0

VNN
6D (eV)

¢V6D : calculated
/ < 10 meV
/ < 50 meV

/ < 100 meV
/ > 100 meV

Figure B.2.3.4.:
Z = 2.0Å d = 1.3Å
ϑ = 60° ϕ = 0°

0.00 0.25 0.50 0.75 1.00

X (a 100
Pd )

0.00

0.25

0.50

0.75

1.00

Y
(a

10
0

P
d

)

0.
0

0.
0

0.0
0.0

1.0

¡1:5

¡1:0

¡0:5

+0:0

+0:5

+1:0

VNN
6D (eV)

¢V6D : calculated
/ < 10 meV
/ < 50 meV

/ < 100 meV
/ > 100 meV

Figure B.2.3.5.:
Z = 2.0Å d = 1.3Å
ϑ = 60° ϕ = 30°

0.00 0.25 0.50 0.75 1.00

X (a 100
Pd )

0.00

0.25

0.50

0.75

1.00

Y
(a

10
0

P
d

)

0.0 0.
0

0.0

0.0

¡1:5

¡1:0

¡0:5

+0:0

+0:5

+1:0

VNN
6D (eV)

¢V6D : calculated
/ < 10 meV
/ < 50 meV

/ < 100 meV
/ > 100 meV

Figure B.2.3.6.:
Z = 2.0Å d = 1.3Å
ϑ = 90° ϕ = 0°

221



B. Six-dimensional Potential Energy Surface for O2on Pd(100)
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B.2.4. Height Z = 1.5Å
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B.2. Lateral Plots (X-Y -Cuts)
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B. Six-dimensional Potential Energy Surface for O2on Pd(100)
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B.3. Angular Plots (ϑ-ϕ-Cuts)

B.3. Angular Plots (ϑ-ϕ-Cuts)

The plots that follow in this section are equivalent to the one shown in Fig. 6.10b, whose caption
together with Section 6.2.2 provide more details.

B.3.1. Height Z = 3.5Å
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B. Six-dimensional Potential Energy Surface for O2on Pd(100)
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B.3. Angular Plots (ϑ-ϕ-Cuts)
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B. Six-dimensional Potential Energy Surface for O2on Pd(100)
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0 30 60 90 120 150 180

# ( ± )

0

60

120

180

240

300

360

'
(
±
)

0
.0

0.0

0
.0

0.0

0.0

0.0

0.0

¡1:5

¡1:0

¡0:5

+0:0

+0:5

+1:0

VNN
6D (eV)

¢V6D : calculated
/ < 10 meV
/ < 50 meV

/ < 100 meV
/ > 100 meV

Figure B.3.2.1.:
X = 0.0 a100

Pd Y = 0.0 a100
Pd

Z = 2.5Å d = 1.3Å

0 30 60 90 120 150 180

# ( ± )

0

60

120

180

240

300

360

'
(
±
)

0.0

0.
0

¡1:5

¡1:0

¡0:5

+0:0

+0:5

+1:0

VNN
6D (eV)

¢V6D : calculated
/ < 10 meV
/ < 50 meV

/ < 100 meV
/ > 100 meV

Figure B.3.2.2.:
X = 0.0 a100

Pd Y = 0.125 a100
Pd

Z = 2.5Å d = 1.3Å

228



B.3. Angular Plots (ϑ-ϕ-Cuts)
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B. Six-dimensional Potential Energy Surface for O2on Pd(100)
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B.3. Angular Plots (ϑ-ϕ-Cuts)
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B. Six-dimensional Potential Energy Surface for O2on Pd(100)
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B.3. Angular Plots (ϑ-ϕ-Cuts)
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B.3. Angular Plots (ϑ-ϕ-Cuts)
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B.3. Angular Plots (ϑ-ϕ-Cuts)
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B. Six-dimensional Potential Energy Surface for O2on Pd(100)
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B.3. Angular Plots (ϑ-ϕ-Cuts)
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B. Six-dimensional Potential Energy Surface for O2on Pd(100)

B.4. Interpolation Errors

The plots that follow here summarize the mean average deviations (MADs) and root mean
square errors (RMSEs) of the finally obtained best NN fit for individual groups of data points
that are described by the captions below. Plots of this kind have greatly helped to monitor
and improve the quality of the NN description as detailed in Section 6.2.2.
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B.4. Interpolation Errors

0:0 1:0 2:0 3:0 4:0

VDFT¡PBE
6D (eV)

0:0

1:0

2:0

3:0

4:0

V
N

N
6D

(e
V

)

1815 points
MAD: 8 meV

RMSE: 22 meV

Figure B.4.5.:
Z > 5Å,
1.0Å < d < 1.5Å

0:0 0:1 0:2 0:3 0:4

VDFT¡PBE
6D (eV)

0:0

0:1

0:2

0:3

0:4

V
N

N
6D

(e
V

)

825 points
MAD: 2 meV

RMSE: 2 meV

j¢V6Dj (meV)
10
50
100

Figure B.4.6.:
Z > 5Å,
1.15Å < d < 1.35Å

0:0 1:0 2:0 3:0 4:0

VDFT¡PBE
6D (eV)

0:0

1:0

2:0

3:0

4:0

V
N

N
6D

(e
V

)

920 points
MAD: 17 meV

RMSE: 45 meV

Figure B.4.7.:
3.5Å ≤ Z < 5.0Å,
1.0Å < d < 1.5Å

¡0:10 ¡0:05 0:00 0:05 0:10

VDFT¡PBE
6D (eV)

¡0:10

¡0:05

0:00

0:05

0:10

V
N

N
6D

(e
V

)

558 points
MAD: 5 meV

RMSE: 7 meV

j¢V6Dj (meV)
10
50
100

Figure B.4.8.:
3.5Å ≤ Z < 5.0Å,
1.2Å < d < 1.3Å

241



B. Six-dimensional Potential Energy Surface for O2on Pd(100)
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B. Six-dimensional Potential Energy Surface for O2on Pd(100)

¡1 0 1 2 3 4 5 6

VDFT¡PBE
6D (eV)

¡1

0

1

2

3

4

5

6

V
N

N
6D

(e
V

)

3496 points
MAD: 81 meV

RMSE: 238 meV

Figure B.4.17.:
DFT points

0 1 2 3 4 5 6

VDFT¡PBE
6D (eV)

0

1

2

3

4

5

6

V
N

N
6D

(e
V

)

3036 points
MAD: 66 meV

RMSE: 140 meV

Figure B.4.18.:
added points

244



C. Electron-Hole Pairs: Supplemental
Information

The following sections contain supplemental material to Chapter 7.

C.1. Implementation Details

C.1.1. Numerical Integration and Interpolation

In order to obtain the “dressed” matrix elements described by Eq. (7.12), a huge number of one-
dimensional numerical integrations along a trajectory (using reaction coordinate representation
in practice) have to be carried out. Details on how to obtain the necessary ingredients for the
integrand have just been described in Sections 7.2.1 and 7.2.2. The according to Eq. (7.12)
unbounded intervals do not cause any numerical problems, as the interaction of the impinging
adsorbate as calculated within DFT rapidly vanishes with increasing distance from the surface.
Therefore, “infinite” distance in Eqs. (7.4) and (7.6) is about 5Å for most systems in practice
(cf Chapter 6), so that the integration can be perfectly performed over a finite interval (τ , τ).
Furthermore, it is worth noting that λij are in general complex valued, and that Eq. (7.12) can
be rewritten as a sum of four real valued integrals with oscillatory weight functions sin and cos:

λσij ≈
τ∫
τ

dt Re
(
∂

∂Q
vσij(t)

)
· Q̇(t) · cos

(1
~

(εσj − εσi )t
)
−

τ∫
τ

dt Im
(
∂

∂Q
vσij(t)

)
· Q̇(t) · sin

(1
~

(εσj − εσi )t
)

+

i ·
τ∫
τ

dt Re
(
∂

∂Q
vσij(t)

)
· Q̇(t) · sin

(1
~

(εσj − εσi )t
)

+

i ·
τ∫
τ

dt Im
(
∂

∂Q
vσij(t)

)
· Q̇(t) · cos

(1
~

(εσj − εσi )t
)

.

(C.1)

This is particularly important as specialized numerical integrators exist for these cases. Exam-
ples are those implemented in the QAWO and QAWF routines in the well-established QUADPACK
package.530
Furthermore, as already indicated before in Section 7.2.1, matrix elements according to

Eq. (7.26) are significantly more computationally expensive to evaluate than the velocities.
Less values at potentially different points along a trajectory are hence typically available.
Consequently, depending on the applied numerical integration scheme different parts of the
integrands need to be interpolated before numerically “smooth” integrations can be carried
out. As detailed in Section 7.2.2, the strategy chosen in this work to obtain matrix elements
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according to Eq. (7.30) even relies on the (analytical) derivative of a suitable interpolation. In
principle, the integrals could even be evaluated by analytical integration of the interpolated in-
tegrands. A flexible integration package is hence obviously required altogether. Unfortunately,
a lot of well-established spline packages do not come with such functionality available for the
interpolation function. Examples are Carl de Boor’s Piecewise Polynomial Package PPPACK
or John Burkhardt’s SPLINE package. On the other hand, both Paul Dierckx’s FITPACK
package,i and its namesake by Alan Cline do provide derivatives and integrals, but only for a
limited choice of interpolation functions.
With all that in mind and trying to stick to modern coding and to avoid reinventing the wheel,

the GNU Scientific Library (GSL, available under LGPL) has been chosen as a convenient stock-
pile to supply required numerical routines.531 Written in C, also publicly (under GPL) available
Fortran wrappers written by Reinhold Bader (FGSL) are employed for it to become usable
within the Castep code. This can be seen as a technical inconvenience, but Fortran compilers
on most major computer architectures are getting more and more adept to offer interoperabil-
ity with C that even works in practice. However, this is easily outweighed by the advantages
for present purposes, in particular during development: Consistent interfaces allow for an easy
exchange of different interpolation and integration routines provided within the library. The
former encompasses (amongst others) several different flavors of splines, including derivatives
and integrals, the latter the rewritten contents of the aforementioned well-established QUAD-
PACK package. Furthermore, a consistent, modern error handling framework facilitates to
conveniently monitor numerical integration errors (also if the surrounding code is parallelized).
All of this is made proper use of to detect and avoid numerical errors induced by the imple-
mentation. Finally, local employment of GSL library routines ensures ease of exchangeability
by native Fortran counterparts in the future (based on the experiences from the development
collected here).

C.1.2. Parallelization, Output and Restarting
Once all the λij according to Eq. (7.12) have been calculated, they are stored in memory for
multiple use in the spectra as given by Eqs. (7.14), (7.15a) and (7.15b). A pre-screening of the
evaluation of individual λij according to thresholds for the Fermi and δ-function factors in those
equations as also discussed by Trail and coworkers389 has been implemented as well. For the
same reasons as in case of Timmer and Kratzer, inter-k transitions have not been considered.
With the application to large systems in mind, parallelism has been added within the (at the
point) existing parallel infrastructure of the Castep code: Operations required to obtain the
matrix elements

〈
εσj | vσ(Q(t)) | εσi

〉
in Eq. (7.12) are computationally most intense and make

use of k-point and G-vector (i.e. wave function coefficients) parallelism. Integrations for the
squared moduli of the fractions involving individual λij for different k-points (whose indices
are hidden together with those for different bands at each k-point in the collective indices i
and j) in Eqs. (7.14), (7.15a) and (7.15b) are calculated concurrently, only requiring minimal
amount of communication for the (final) evaluation of the sums.ii Finally, intermediary results
are written out to files at different stages, both for potential debugging and restart purposes,
including fully parallelized input/ouput (I/O) operations. Results from a previous run are
optimally reused automatically, if according files are detected in a subsequent run. Several core

i also see http://nalag.cs.kuleuven.be/research/topics/fitpack.shtml
ii With the recent advent of bands parallelism in Castep 5.5,148 further parallelization over band indices could

be easily added.
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Figure C.1.: Chemisorption potential of a hydrogen atom above the top site on the (111)
surface of aluminum (Q denotes distance from the surface). A typical Morse-potential shape is
obtained. Left: Details to the results of the present work can be found in the text. Right: Plot
reproduced based on Ref. 393, which considers a 12 layer system only. In both cases, points for
which DFT total energies have been calculated are indicated by the markers.

routines of the Castep code needed to be modified (e.g. for reading of electronic structure
input data) as their original design had not envisioned to be used in the present context.

C.2. Tests with H on Al(111)

In order to test the present independent and improved implementation of the perturbative
approach to energy dissipation into electron-hole pairs as proposed by Timmer and Kratzer
(cf Eqs. (7.14), (7.15a), (7.15b) and (7.19) in Sections 7.1.3 and 7.1.5 of Chapter 7),393,396 the
same system has been considered as in the aforementioned work of the two original authors:
Impingement of a single hydrogen atom on a top site of the (111) surface of aluminum.
For this purpose, computational parameters have been synchronized between the two un-

derlying plane-wave DFT-codes Castep (this work)145,146 and PWscf (Timmer & Krater)532
wherever possible and reasonable. The exchange-correlation functional due to Perdew, Burke
and Enzerhof (PBE)85,86 has been used in both cases. However, deliberately to both improve
convergence with respect to the plane-wave cutoff energy and study the influence on the calcu-
lated electron-hole pair properties, ultrasoft pseudopotentials117,118 supplied within the Castep
standard library have been used. This is of particular importance for the primary system of
interest in this thesis (O2 on Pd(100)), because a description with norm-conserving pseudopo-
tentials would be very inconvenient in that case and besides would not allow to efficiently reuse
calculated data from Chapter 6 besides. At a cutoff energy EAl

cut = 250 eV and with a 12×12×12
Monkhorst-Pack grid,123 a bulk lattice constant of a0 = 4.048Å for the fcc-phase of aluminum
is obtained (converged with respect to both parameters). This is in close agreement with the
value of aTK

0 = 4.061Å reported by Timmer and Kratzer393,396 and somewhat closer to the
tightly converged result of all-electron calculations and the experimental value, aAE

0 = 4.04Å
and aexp

0 = 4.05Å respectively.253
The Al(111) surface has been modeled with 2

√
3× 2

√
3 supercells of the (primitive) surface

unit cell with 12 layers like in case of Timmer and Kratzer. In addition, 6 layer slabs have
been constructed as well. They ease the computational burden when evaluating electron-hole
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Figure C.2.: Adiabatic spin transition for H perpendiculary approaching the top site of Al(111)
with Q denoting the distance from the surface. The spin density projected onto the hydrogen
atom ρH

spin is shown. Far away from the surface, the single unpaired electron of the “free”
hydrogen atom leads to ρH

spin(Q > 4Å) ≈ 1 e, whereas the spin is quenched with a typi-
cal
√
Q-behavior when approaching the surface. In the present work (left panel), a plane-

wave implementation409,410 of the population analysis scheme due to Mulliken411 has been
used, whereas in the work of Timmer and Kratzer (right panel)393 the Löwdin approach was
employed.533 This accounts for the slight difference in the spin transition points at 2.5Å and
2.6Å, respectively.

pair properties during the development stage of the present implementation, and, in addition,
allow to verify that there are no (unphysical!) changes with slab thickness. Relaxed interlayer
distances have been obtained by fixing the three bottommost layers within corresponding 1× 1
slabs. A vacuum of 12Å ensures a sufficient decoupling across the periodic boundary conditions
even when the adsorbate is included. In all cases, a 6 × 6 × 1 Monkhorst-Pack grid has been
employed here, which is the denser grid considered by Timmer and Kratzer,393 together with
a Fermi smearing of 10 meV to improve the convergence of the self-consistency cycles. When
adding the hydrogen, whose pseudopotential is harder than the one for aluminum, the cutoff
energy was raised to Ecut = 350 eV, which is between the 286 eV and 544 eV (21 Ry and 40 Ry,
respectively) reported in the original work.393 However, the higher energy cutoff was only used
to reveal underconvergence of the hydrogen binding energy by about 30 meV, i.e. all subsequent
results have been obtained with the lower. Apart from that, Fig. C.1 shows that the agreement
of the chemisorption potential of the hydrogen atom between both works is still excellent.
Obviously, the interaction potential is well converged with the 6 layer slabs already. Here and
in the following, a strictly one-dimentional trajectory of perpendicular impingement on a top
site is considered, described by the coordinate Q, which simply denotes the distance from the
surface. Numerical integration using the velocity Verlet algorithm213 with a starting distance
Q(t = 0) = 3.16Å and velocity Q̇(t = 0) ≈ 34Åps−1 corresponding to an initial kinetic energy
E 0

kin = 60 meV yield a total time of 20 fs for one half round trip. Hence apparently also the
same trajectory as in Ref. 393 is obtained when the same initial conditions are used. Of course,
this is not surprising, thanks to the good agreement of the chemisorption potential.
Figure C.2 illustrates similarly good agreement for the description of the spin transition in an

adiabatic picture. In both cases, the typical73
√
Q-behavior is obtained for quenching of the spin

when approaching the surface. Again, the 6 and 12 layer slabs employed in this work yield the
same results. Two different projection schemes are used to obtain the spin density associated
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with the hydrogen atom ρH
spin = ρH

↑ − ρH
↓ : In this work, a plane-wave implementation410 of

Mulliken’s approach411 is used, whereas Timmer and Kratzer employed the Löwdin scheme533
implemented in PWscf. Both are known to give similar results,409 but nevertheless the slight
difference of the spin transition points at 2.5Å and 2.6Å, respectively, is attributed to those
two the different projections.
Finally, spectra according to Eqs. (7.15a) and (7.15b) and Eq. (7.14) in Section 7.1.3 for

one half round trip along the aforementioned trajectory have been evaluated. Matrix elements
according to Eq. (7.12) corresponding to excitations with excitation energies |~ω| ≤ 10 meV
relative to the Fermi level of the aluminum slabs have not been included in the calculations
resulting in Figs. C.3 and C.4. As Timmer and Kratzer have already noted,393 this special care
must be taken in the range of the broadening applied during the self-consistency iterations (see
above) due to numerical difficulties although the corresponding contributions are analytically
well defined. What is of highest importance for present purposes (and hence has been carefully
verified) is that it has negligible influence on the energies dissipated into electron-hole pair
as calculated by Eq. (7.19). In order to scrutinize the convergence of the matrix elements
when evaluated according to Eq. (7.30) and verify the robustness of the employed interpolation
and numerical integration techniques as detailed in Section 7.2.2 and Appendix C.1.1, first
electronic structure data from only 20 configurations along the trajectory has been calculated
and considered. In a second step, 21 more points were added, efficiently exploiting density
extrapolation during the self-consistency iterations. Changes to the spectra and dissipated
energies were negligible, but the QAGS adaptive integrator has been found to be most numerically
stable (for details see Appendix C.1.1). Finally, the spectra shown in Figs. C.3 and C.4 have
been obtained by using this integrator together with all the available points.
As before, electron and hole pair spectra given by Eqs. (7.15a) and (7.15b) are in good

agreement with those in Ref. 393, which is illustrated in Fig. C.3. The hole spectra (~ω < 0 eV)
match perfectly with results for 6 and 12 layers being almost identical. Tiny differences in the
tail towards higher energies for the electron spectra P σ

ex,el(~ω) in case of the 12 layer system are
attributed to the fact that the number of empty bands has not been raised sufficiently. More
empty states covering a larger energy interval above the Fermi energy have been calculated for
the 6 layer system. According to the good agreement in case of the hole spectra, the better
agreement of the latter with the 12 layer system considered in Ref. 393 is hence not surprising.
By analysing the decay of relevant matrix elements for both systems, this has been confirmed
as the reason for the slightly worse agreement. The number of calculated empty bands is hence
an important convergence parameter for the spectra to be taken into account which can be
verified a posteriori by the aforementioned analysis.
Obviously, according to Eq. (7.14), the differences in the tail towards higher energies for the

electron spectra of the 12 layer system carry over to the excitation spectra shown in Fig. C.4.
Due to the exponential decay of the excitation probabilities, the energy dissipated into electron-
hole pair excitations given by Eq. (7.19) (summed over both spin channels) remains largely
unaffected – and is in excellent agreement with the result of Ref. 393. It is worth noting that
energies dissipated in both individual spin channels are identical to half the total dissipated
energies E 6L

eh and E 12L
eh given in Fig. C.4 for the electron-hole pair spectra given in 6 layer and

12 layer systems, respectively. Finally, the reader is reminded that this energy is of paramount
importance for the purposes of this thesis, and deviations in the order of several millielectron
volts are of negligible concern when dissipation of chemisorption energies in the order of several
electron volts are considered.
Altogether, the reference results by Timmer and Kratzer for the test case of a H atom
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Figure C.3.: Spin dependent excitation spectra for electrons P σ
ex,el(~ω > 0) and holes

P σ
ex,ho(~ω < 0) with σ ∈ {↑, ↓} for H impinging perpendicularly on a top site of Al(111).

The former are given by Eqs. (7.15a) and (7.15b) in Section 7.1.3 for excitation energies ~ω
relative to the Fermi energy of the aluminum surface. Values in the interval |~ω| ≤ 10 meV
closely around the latter are not plotted due to numerical inaccuracies. A starting distance
Q(t = 0) = 3.16Å and velocity Q̇(t = 0) ≈ 34Åps−1 corresponding to a kinetic energy
E 0

kin = 60 meV are the initial conditions of the considered trajectory, a half round trip ending
at 20 fs. Differences in the electron spectra in the tail towards higher energies between the
present work (top panel) and Ref. 393 (bottom panel) are due insufficent amount of empty
bands that have been calculated as detailed in the text.
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Figure C.4.: Spin dependent electron-hole pair excitation spectra P σ
ex(~ω > 0) with σ ∈ {↑, ↓}

as given by Eq. (7.14) in Section 7.1.3 for H impinging on a on-top site of Al(111). The
trajectory is the same as the one considered in Fig. C.3 (see caption for details), and like
there no values are plotted for excitation energies ~ω ≤ 10 meV around the Fermi level of the
aluminum surface. Energies dissipated in both individual spin channels are identical to half the
total dissipated energies E 6L

eh and E 12L
eh . Note that due to their exponential decay differences

between this work (top panel) and Ref. 393 (bottom panel) do not affect the good agreement
of the latter.
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impinging on a top site of the Al(111) surface393 are excellently reproduced by the present
implementation. The use of ultrasoft potentials yields negligible deviations in practice de-
spite potential conceptual difficulties (cf Section 7.2.2),407 and the same hold for slabs with
only 6 layers. Both is important to know for the application to O2 on Pd(100) described in
Section 7.3. Furthermore, thanks to improvements in algorithm (as detailed in Section 7.2.2
and Appendix C.1.2) and parallelism, run times for the evaluation of the spectra could be
reduced by about one to two orders of magnitude.394,396,407

C.3. Trajectories for O2 on Pd(100)
Unlike in case of the large number of trajectories obtained for the determination of the initial
sticking coefficient here output of coordinates and velocities is obviously required for every
integrated time step. Therefore, the corresponding molecular dynamics routines had also to be
modified. The reaction coordinate has been constructed according to Eqs. (7.22) and (7.23)
such that it describes at the start of each trajectory the center of mass distance from the
surface. Comparison has shown that motion is rather rigid for all trajectories considered here,
i.e. a corresponding reaction coordinate constructed for the center of mass and concomitant
velocities are essentially identical. The employed Bulirsch-Stoer integrator with its varying and
possibly large time steps (cf Section 3.3.2 in Part I) has been found to be sufficient for the
discretization of reaction coordinate Q and corresponding velocities Q̇ as given by Eqs. (7.24)
and (7.25) – also thanks to the interpolation described in Section 7.2.1.
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D. Extensions to the LAMMPS Code

The results presented in Chapter 9 and Chapter 10 of Part III have been obtained based
on the classical molecular dynamics code Lammps,218 which is freely available.i While the
provided documentationii is exemplary and excellent for a conventional user, only most common
entry points for code developers are pointed out therein – as required for straightforward add-
ons. More elaborate extensions as required within the scope of this thesis demand intense
reading into certain parts of the presently over 170,000 lines of the Lammps code in order to
grasp the general code structure. Therefore, first, a short overview about the latter is given,
focusing on aspects which are of particular relevance in the present context. Here and in
the following, the reader is assumed to be familiar with the basic concepts of object oriented
programming. Afterwards, the individual extensions are described. In perfect compliance with
the paradigm proclaimed by the main developers, they are each capsuled into independent
modular pieces – not requiring any further modifications of core parts of the code. They have
not been committed back to the main development line yet – despite their apparent maturity
and robustness throughout the use for the present work. Of course, should there turn out
to be a more general interest in these developments, this will happen supplementary in full
compliance with the GPL.

D.1. Overview
While low-level parts like IO operations or actual computations are written in a procedural
fashion, i.e. “vanilla C-style code”, hi-level structures including scientific algorithms are im-
plemented according to an object-oriented programing paradigm within C++. This is how the
extremely modular design of the Lammps code is facilitated in practice. An overview about
top-level classes (with no claim of completeness) and others which have been of particular im-
portance for the present thesis and the code extensions crafted therein is given by Fig. D.1.
The actual “main” program merely instantiates a LAMMPS object and is thus incredibly short
per se. For this reason, a consequence of the well-thought-out object-oriented design, Lammps
can be easily coupled to a library in particular to other C++ or also C codes. However, since
only very recently, also Python bindings are under “official” development.iii This is why the
Lammps calculator class for the Atomic Simulation Environment (ASE) written by the present
author still relies on files to communicate with Lammps.iv

iLicensed under GPL and avialable from http://lammps.sandia.gov.
iiThe source code comes with a manual that is up-to-date, in the sense of being perfectly synchronized with

the latter. A version that is continuously updated, following the modifications and extensions due to re-
cent patches, which are individually provided via http://lammps.sandia.gov/bug.html or incorporated
into recent snapshots obtainable from http://lammps.sandia.gov/download.html, is available online under
http://lammps.sandia.gov/doc/Manual.html.

iiiSee http://lammps.sandia.gov/doc/Section_howto.html#4_19 and http://lammps.sandia.gov/doc/
Section_python.html of the on-line manual.

ivFurther development stimulated after committing this code to the ASE community, see https://wiki.fysik.
dtu.dk/ase/ase/calculators/lammps.html, now also allows to use stdin and stdout via pipes to provide
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LAMMPS

InputComm

Update

subclassclosely related

Neighbor Modify

Force

Output

Pair

PairMEAM

PairHarmsol

Bond

Angle Dihedral

Improper

KSpace

PairHybrid BondHarmonic

Group

ReadData

Run Minimize

Dump

ThermoMinIntegrate

Verlet

Fix Compute

FixSurfOsci

FixExtForces

FixExtForcesAdd

FixExtForcesSub

FixNVE

FixNH

FixNVT

CreateAtoms

Lattice

DisplaceAtoms

Figure D.1.: Lammps classes with particular relevance for this work and their relation to the
most top-level layer within the present code design of the former. Classes encompassing code
required for this thesis and thus written by the author of the latter as extensions to Lammps
are highlighted by bold letters.
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During instantiation of the LAMMPS object, first potential command line arguments are pro-
cessed, followed by setting up general IO and (even before) the MPI-based communication infra
structure147 to potentially enable parallelism via a spatial-decomposition218 of the simulation
domain. The former is handled and administrated via Comm in the following. Input is first
processed by an Input object, with certain parts potentially being delegated to others. Be-
cause the Lammps input script language is rather complex, this is not an entirely trivial task.
Apart from general simulation parameters, like e.g. the desired boundary conditions, units or
overall output options, also the initial “atomic arrangement” is set up at this stage. The input
geometry can be read from files using a simple but Lammps specific data file format, which
is handled by an instance of a ReadData and requested in the input script by a read_data
command. Furthermore, combination of the lattice and create_atoms input commands is
extremely powerful to automatically generate regularly spaced atoms like in a huge surface
slab without specifying their individual coordinates explicitly, the latter being handled by a
CreateAtoms object. Displacements of surfaces layers due to relaxation can then be conve-
niently adjusted by the displace_atoms input command, which hands this job over to an
instance of DisplaceAtoms. Thanks to the Group object, subsets of atoms can be assigned
to different groups, for which interaction potentials, properties and details of their structural
evolution (i.e. all what is detailed in the following) can be defined and evaluated individually.
For the force calculations, which are centrally managed by the Force object, the classi-

cal interatomic interaction potentials and their parameters need to be specified. Following
common practice in the classical molecular dynamics community, two-body, three-body and
four-body contributions are separated into Pair and Bond, Angle, Dihedral and Improper,
respectively. Apart from actual computations, individual subclasses for particular functional
forms of these contributions also typically handle the processing of the corresponding input
parameters. So-called “hybrid styles” like e.g. PairHybrid allow to combine different flavors
of the same contribution type in a more or less arbitrary fashion. Different definitions can be
made and applied to different groups that have been defined before. As the many-body aspects
of the modified embedded atom method (MEAM) are usually accounted for based on nearest
neighbors, it is not surprising that PairMEAM is derived from Pair. It provides the link to the
external Fortran code written by Greg Wagner198 (cf Section 3.2.2). In periodic systems, long
range pair interactions can be treated more efficiently with the help of the KSpace class and the
contents of the KSPACE package. This has not been necessary in the present context. The type
of interactions determines the neighbor lists and their sizes, which are handled by the Neighbor
object (cf Section 3.4). In addition, when Newton’s third law of actions and reactions is made
use of, which has to be supported by the individual respective descendants of Pair and Bond
and can be controlled globally by the input command newton, only half neighbor lists are built
accordingly.
Very individual output can be tailored and requested via the input script. Overall, it is

managed by the Output object, with Thermo and Dump (and the subclasses of the latter) being
responsible for outputting intensive and extensive quantities, respectively. Both are internally
provided by objects derived from Compute, which can be defined individually for each previously
defined group.
Most importantly, the input structure can be evolved by the input commands minimize

and run, processed internally by the homonymous classes Minimize and Run. The former
performs relaxations, i.e. energy minimizations of the input geometry according to various

input to and receive results from Lammps, respectively.
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currently implemented common algorithms (e.g. steepest descent, conjugate gradients), which
are all derived from Min. The latter command runs molecular dynamics, utilizing integrators
descending from the Integrate class. The overall responsibility for the structural evolution lies
with the Modify object, whereas Update handles a few detailed preparations and housekeeping
tasks (like e.g. setting unit conversion factors), and, most importantly, stores the currently used
value for the time step ∆t. More precisely, when a run command is encountered in the input,
update->integrate->run() is executed. Here and in the following, attributes and methods
are indicated as usual by -> and (), respectively, but arguments of the latter are omitted for the
sake of simplicity. Within the scope of this thesis, the Integrate object is always an instance of
the Verlet class.v It implements the framework of an integration scheme which is suitable for
the velocity Verlet algorithm213. Operations which modify properties of the simulation during
such a so-called time stepping are referred to as fixes, accordingly derived from the Fix class
and defined by fix command in the input. One very prominent descendant is FixNVE, which fits
the individual steps of that aforementioned algorithm as given by Eqs. (3.33) in Section 3.3.1
of Part I into the time stepping implemented in the run() method of the Verlet class in the
following way:

• modify->initial_integrate()
This calls the corresponding initial_integrate() methods of all registered fixes. In
FixNVE, an intermediary update of velocities

ṘI

(
t+ ∆t

2

)
= ṘI (t) + F I (t)

2mI
∆t (D.1a)

and the final update of positions

RI (∆t) = RI (t) + ṘI

(
t+ ∆t

2

)
∆t (D.1b)

for the current time step, corresponding to Eqs. (3.33a) and (3.33b), is carried out in the
respective method.

• neighbor->decide()
Decides whether a neighbor list rebuild is necessary, exploiting the skin distance (cf
Section 3.4), and triggers the latter if it is.

• modify->pre_force()
Just before forces are calculated for the current time step, the corresponding pre_force()
methods of all registered fixes are called.

• force->[type]->compute()
As described above, the interatomic interactions specified for the current simulation are
objects descending of [type], i.e. Pair and Bond, Angle, Dihedral, Improper or KSpace.

vFor the sake of completeness, another descendant of Integrate is the Respa class, implementing the reversible
reference system propagator algorithm developed by Tuckerman and coworkers.534 It allows to accelerate
molecular dynamics simulations for systems where degrees of freedom performing fast and uninteresting
oscillations can be “projected out”, thus allowing to use larger time steps for the integration of the dynamics
of the “more interesting” degrees of freedoms. Unfortunately, this could not be made use of within the scope
of this thesis and is thus not indicated in Fig. D.1.
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Their respective compute() method gets called by looping over them. This calculates the
force contributions at the previously updated positions (cf Eq. (D.1b)):

F I (t+ ∆t) = −∇RIV cl
N ({RI (t+ ∆t)}I) (D.1c)

Depending on whether Newton’s third law is made use of, additional MPI communication
might be required afterwards. Potential savings during force field evaluation have thus
to be weighed carefully against cost of the latter.

• modify->post_force()
Immediately after the force calculations for the current time step, this is where the cor-
responding post_force() methods of all registered fixes are called.

• modify->final_integrate()
The final_integrate() methods of all registered fixes are called here. In FixNVE, the
respective method performs the final velocity for the current time step

ṘI (t+ ∆t) = ṘI

(
t+ ∆t

2

)
+ F I (t+ ∆t)

2mI
∆t (D.1d)

corresponding Eq. (3.33d) using the previously updated forces.

• modify->end_of_step()
At the very end of each time step, the end_of_step() method of all registered fixes are
called here, usually in order to update computed quantities stored within the fix.

• output->write()
Finally, the output as requested in the input script is generated and written here, using
the Thermo and Dump together with the respective Compute objects. Obviously, depending
on the quantities that need to be calculated, this might require a more or less extensive
amount of communication.

For extended system approaches like thermostats (cf Section 8.5) or barostats resulting in
modified Newtonian equations of motion, other fixes including their own positions and veloc-
ity updates (like FixNVE) are available.vi Thanks to the Liouville operator approach216,217
discretizations similar to the aforementioned velocity Verlet algorithm in case of the NVE en-
semble (cf Section 3.3.3) can also be constructed for NVT based on the equations of motion
(cf Eq. (3.6) in Section 3.1) given by Nosé-Hoover chains (NHC).156 Therefore, the implemen-
tation in FixNVT, descending from FixNH, according to the formulation given by Shinoda and
coworkers (also including barostats)498 perfectly fits into the time stepping framework provided
by the Verlet class.vii
In contrast to simple procedural programs centered around a single “main loop”, the well

planned and engineered object oriented design of the Lammps code facilitates the powerful input

viFor the Berendsen thermostat484 only velocities need to be rescaled at the end of each integration step.
Therefore, this is implemented in a corresponding end_of_step() method in the FixTempBerendsen class,
whereas an instance of FixNVE is required to perform the actual integration.

viiThe modern and transparent, i.e. well commented and documented, rewrite of the Nosé-Hoover chains in-
frastructure centered around FixNH and including the NVT integrator in FixNVT is only available since April
7th, 2010, due to the patch by Aidan Thompson, see http://lammps.sandia.gov/bug2010.html. It has thus
become part of the official stale release from September 10th, 2010.
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MD code:
integrator
for EOM

DFT code:
single
points

scripts 
+ 

files

forces

coordinates

Figure D.1.: Schematic illustration of coupling mechanism provided by the Lammps class
FixExtForces. The Lammps code drives the MD integration requests single point calculations
from the external (e.g. DFT) code during each step in order to obtain forces calculated by the
latter for the chosen number of atoms. Their coordinates as well as the resulting forces are
communicated via scripts and files.

script language, already exposing control over many internal parts to the user, thus enabling a
remarkable flexibility of potential applications. In addition to what has already been described,
also e.g. different structural modifications can be easily combined subsequently in a single run.
Nevertheless, for the purposes of this thesis the extensions accentuated in Fig. D.1 and described
in more detail in the following sections needed to be developed.

D.2. Coupling Interface: FixExtForces

Within the QM/Me embedding approach presented in Chapter 9, molecular dynamics simu-
lations based on forces from both a force field and first-principles need to be obtained during
every time step. As detailed in Section 3.2.2, the former is rather complex in order to provide
a realistic description of metallic systems (e.g. the modified embedded atom method, MEAM),
seamlessly matching the embedding region described on a higher level of theory. In addition,
the 104 to 105 of “force field atoms” acting as bath require an efficient integration based on
neighbor lists, potentially even parallelized.218 As already indicated in Section 3.4, MD routines
integrated into many first-principles codes typically do not provide this level of sophistication.
A naive and straightforward O(N2) implementation is not yet a performance bottleneck for
N less than 103 atoms which can nowadays be tackled ab initio on “interesting” integration
time scales. Blinded by the complexity of the quantum mechanical problem, the complexity
of classical MD is thus often overlooked in attempts to multiscale modeling. In order to focus
efforts first on scientific issues rather than “from-scratch-reimplementation” of existing tech-
niques “from both worlds” into a single code, coupling of different highly specialized packages
seems to be a more appealing route at this point.
For the propagation of 106 MEAM atoms within Lammps the computational cost even on a

single CPU is negligible (i.e. less than 5 %) compared to Castep calculations underlying the
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evaluation of the forces for about 102 DFT atoms in the embedding region. The same cost
ratio has also been observed for earlier simulations in material science addressing the oxida-
tion of silicon surfaces based on traditional QM/MM embedding.535,536 Therefore, Lammps is
suitable to drive the MD integration, thus having the “main” responsibility for an embedding
simulation. Using files and (shell) scripts to communicate with ab initio codes as depicted
schematically in Fig. D.1 provides a flexible interface, easily allowing to switch the latter by
adapting the scripts. In fact, other attempts for conventional QM/MM embedding like e.g.
ChemShellviii have adopted a similar strategy.537 Tedious technical problems associated with
interfacing different programing languages are avoided this way, and potential problems with
individual (single point) first-principles calculations in the course of the dynamics can be nat-
urally analyzed in detail by storing the respective outputs. Even a replay mechanism can be
easily implemented on the script level, allowing to calculate additional properties for an already
“finished” trajectory or to resume an interrupted run. On the other hand, parallel execution of
the quantum code and proper book keeping of its input and output files might pose a platform
dependent challenge which has to be taken proper care of. Furthermore, within this interfacing
strategy, additional overhead is introduced by the input and output (I/O) operations of writ-
ing coordinates and reading forces. This, however, is easily mastered by most nowadays file
systems, and in light of the dominating computational cost of the first-principles calculations
still remains negligible.
According to the structure of the Lammps code detailed in Appendix D.1, a coupling interface

as described in the previous paragraph, is best implemented in Lammps as a fix, i.e. in a class
FixExtForces derived from Fix to obtain forces calculated externally from the driving Lammps
simulation. FixExtForces provides an input command of the following form (& indicating a
continuation line):

fix <ID> <group-ID> &
<extforces-style> <forces-file> <script-file> <dump-arguments ...>

As usual for fix commands, <ID> is its user-assigned nameix, while <group-ID> denotes a
group of atoms, previously defined in the input script via the group command resulting in an in-
stance of Group, which the fix is to be applied to. <extforces-style> is one of extforces/set,
extforces/add or extforces/sub, determining whether the externally calculated forces should
replace, be added to or subtracted from other force contribution of the atoms in the group as-
sociated with this fix. The corresponding classes FixExtForcesSet, FixExtForcesAdd and
FixExtForcesAdd, which are derived from FixExtForces (cf Fig. D.1), (only) provide the
actual post_force() method which is responsible for the according incorporation of the ex-
ternally calculated forces into the Lammps simulation. <forces-file> is the name of the file
where the latter are tried to be read from by the read_forces() method in FixExtForces,
The expected file format has been inspired by simple .xyz filesx as sketched out in Listing D.1
and can hence be directly read by many visualization tools. It must have been generated as
a result by <script-file>, which is called in the run_external() method of the aforemen-
tioned class using a C system() command. Apart from calling the desired first-principles code,
this script must also take care of setting up all the required input files for the latter, and
conveniently perform some clean up afterwards, potentially archiving the results of the single

viiiChemShell, a Computational Chemistry Shell, see www.chemshell.org
ixSee http://lammps.sandia.gov/doc/fix.html.
x See e.g. http://en.wikipedia.org/wiki/XYZ_file_format.
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N
Atoms
< species(1) > R11 R12 R13 F11 F12 F13

...
...

...
...

...
...

...
< species(N) > RN1 RN2 RN3 FN1 FN2 FN3

Listing D.1: Schematic listing of file from which externally calculated forces F I = (FI1, FI2, FI3)
for each atom I of the total number of N atoms marked for external calculation are read
from by the read_forces() method of the Lammps class FixExtForces. Respective labels of
<species(I)> atomic coordinates RI = (RI1, RI2, RI3) are read as well, the latter for proper
assignment of forces within Lammps as explained in the text. The simple file format has been
inspired by .xyz files.x

point calculation of this iteration. Input coordinates have to be converted from the output
requested by the <dump-arguments ...>.xi In the do_dump() method of FixExtForces these
are handed over to the infrastructure provided by the Dump class, which takes proper care of
all necessary communication in case of a parallel Lammps run, avoiding duplication of rather
nasty MPI code here. In contrast, run_external() imposes an effective barrier to the Lammps
parallelism, only having the external script run by the first Lammps MPI task while the oth-
ers wait for its completion. This way, the external first-principles code is only started once,
potentially creating its own parallel realm independently. Likewise, the actual file I/O opera-
tions in read_forces() are also executed only by the first Lammps MPI task, communicating
the results afterwards. This ensures consistency of the calculated external forces and avoids
additional overhead or even file system troubles by having all Lammps MPI tasks accessing
the same result file simultaneously. Finally, the canonical methods compute_scalar() and
compute_vector() in FixExtForces provide access to its contribution to the potential energy,
which is also read in by read_forces(), and the forces on the atoms of the fix group before
the external contributions have been considered. Providing the former method easily facilitates
to include the energy contribution in the usual standard (“thermo”) output, thus allowing to
conveniently monitor energy conservation during an embedding run. In addition to checking
the consistency of the intermediary files written for the communication with an external code,
this can also be very helpful when testing and debugging the interface, i.e. both the Lammps
and the script parts.
Obviously, the fix style extforces/set directly enables conventional QM/MM embedding.

Furthermore, when only the system for which the external first-principles calculations are car-
ried out is modeled within Lammps, i.e. no additional environment is included, this effectively
also makes all the techniques included therein available to ab initio molecular dynamics based
on the external code. This is how the selective thermostatting Chapter 9 of only bottom layer
atoms in the slab could be easily accomplished, without having to reimplement a common MD
technique for very special purpose applications.
The QM/Me approach presented in Chapter 9 is easily obtained by two separate fixes of

styles extforces/add and extforces/sub applied to accordingly different fix groups. In prac-
tice, with external codes like Castep, which reorder the atoms for internal convenience in

xiFor details see http://lammps.sandia.gov/doc/dump.html.
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the output, initial atom numbers of the input geometry can no longer be used in order to
assign the external forces to the right atoms in the Lammps simulation. In the post_force()
methods, coordinates from the external output are therefore compared against those within the
latter, which is a pragmatic and simpler solution than attaching (and preserving) additional
labels. The straightforward implementation of this comparison scales with (N2), where N is
the number of atoms for which external forces have been calculated. Because the motivation
for the embedding is N to be small, this is not a bottleneck so that more sophisticated hashing
techniques are not required at the moment. Separately for both fixes, the employed shell script
also takes care of exploiting the Castep reuse mechanism, allowing to restart from density
and wave functions as contained in the separate checkpoint files from the last iteration when
setting up the input files for the next one. For the QM/Me DFT calculation pairs of Chap-
ter 9 and Chapter 10 tests have shown that this nearly yields the same efficiency as within
conventional “internal” Castep MD simulations using the extrapolation scheme proposed by
Arias and coworkers.538 In comparison, the calculation without the adsorbate is quite cheap
already as a smaller number of self-consistency iterations are required after the first MD step.
Therefore, it has not been considered worth the effort to expose the extrapolation functionality
to the embedding framework, though the required information could be easily stored alongside
the trajectory. Though possible in principle, this is also the reason why the DFT calculations
have not been run concurrently – not letting CPUs idle until the calculation with the adsorbate
is complete. On the other hand, the replay mechanism indicated in the previous paragraph has
shown to be necessary. A script which bypasses the call to Castep and extracts archived result
files from complete single point calculations instead has therefore been implemented. In this
case, it can be beneficial to also run Lammps in parallel, mainly in order to accelerate the eval-
uation of the MEAM forces. Within the scope of this thesis, when Castep was run alongside
“on-the-fly”, the overhead of a serial Lammps never was a serious performance bottleneck.
If not being all of a piece, future implementations of QM/Me might rely on tighter coupling

strategies of separate packages than the one followed here. This is of particular importance
should the file-based I/O operations become a bottleneck in case of small embedding regions
or considerably faster external (first-principles) codes. Also, for platforms which might require
a single program that manages all the parallelism employed during its execution directly and
consistently, this can be a way to rely on a single MPI communicator only. In that respect,
the Python developments indicated in Appendix D.1 including the Lammps calculator class
for ASE in particular are very interesting and promising steps. Not relying on files for com-
munication with Lammps any more in its current development version, the latter does already
provide a slightly tighter coupling than FixExtForces and descendants. However, it is not yet
integrated into the molecular dynamics capabilities of ASE, and the “native”, i.e. pure Python,
versions are by far not efficient enough to deal with a large number of bath atoms as described
above. Using the neighbor list based velocity Verlet integrator provided by the ASAP codexii,
which is tightly integrated into ASE, is still by about one order of magnitude slower even with
a Lennard-Jones potential (cf Section 3.2.1). In contrast to the Lammps solution described
above, this makes them similarly expensive as the first-principles calculations. Using the effec-
tive medium theory (EMT) implemented in ASAP, which is of course more computationally
expensive than Lennard-Jones, but qualitatively similar to MEAM (cf Section 3.2.2), QM/Me
embedding based on ASE could become a very powerful alternative – if the performance can
be improved significantly. Some ASE calculator classes for first-principles codes do already

xiiSee https://wiki.fysik.dtu.dk/asap.
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provide a tight coupling. For these, mechanisms discussed in the literature for accelerating
conventional ab initio MD (cf Section 3.2.3) based on extrapolation techniques208–211,538 could
be easily integrated and tested for their efficiency in this context. Considering these prospects
of such tight coupling of “different” codes, it is questionable whether potential future QM/Me
implementations in a single monolithic code would actually be advantageous.

D.3. Surface Oscillator: FixSurfOsci

In the comparison of QM/Me to energy sinks “from the shelf” (cf Chapter 8) presented in
Section 9.2.2 also the surface oscillator model (cf Section 8.2) is included. It only enriches the
potential energy surface of an adsorbate with degrees of freedom I based on the frozen surface
approximation Vfsa({RI}I) by a virtual surface oscillator coupled to the former by rigid shifting
(cf Eq. (8.7))

Vfsa+SO3 ({RI}I ,RS) = V fsa ({RI −RS}I) + 1
2mSR

†
S Ω2

SRS , (D.2)

with associated displacement coordinate RS and the parameters mS and Ω2
S, depicted as mass

and matrix of characteristic frequencies, respectively. The corresponding Hamiltonian

Hfsa+SO3

(
{RI}I ,RS,

{
ṘI

}
I
, ṘS

)
=∑

I

1
2mIṘ

2
I + 1

2mSṘ
2
S + Vfsa+SO3({RI} ,RS)

(D.3)

leads to the following equations of motion

∂
∂tRI = ṘI (D.4a)
∂
∂tṘS = ṘS (D.4b)

∂
∂tṘI = −∇RIVfsa+SO3({RI −RS}I) (D.4c)
∂
∂tṘS = −∇RSVfsa+SO3({RI −RS}I)−mSΩ2

SRS , (D.4d)

formulated using velocities instead of momenta because the former are used internally within
Lammps. In principle, the neural network interpolation (and associated infrastructure) de-
scribed in Section 6.1.3 could have been employed. However, for a fair comparison excluding
interpolation uncertainties and possible numerical differences in the different integrators used
for the molecular dynamics simulations, the frozen surface potential is better also calculated
“on-the-fly” as it is done with the first-principles input for the other energy sinks.
This cries for reusing the Lammps infrastructure provided by FixExtForces as detailed in

Appendix D.2. The desired frozen surface slab to be employed by the external first-principles
calculations is then also most conveniently represented atomistically within Lammps, despite
the fact that there are no moving surface atoms appearing in the equations of motion. According
to Appendix D.1, a Lammps fix is the obvious choice for the integration of Eqs. (D.4), which is
why the implementation has been put into a class FixSurfOsci derived from Fix. The input
command associated with this fix expects the following arguments:

fix <ID> <group-ID> surfosci <surface-group-ID> mS Φ11 Φ22 Φ33
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Like for any fix command, <ID> is its user-assigned namexiii, while <group-ID> denotes the
group of actual dynamical atoms with the coordinates {RI}I and velocities

{
ṘI

}
I
. It must

have been defined in the input script before via the group command resulting in an instance of
Group. <surface-group-ID> denotes another instance of the latter, previously defined in the
input for a set of atoms forming the slab to be used in the external DFT calculations. mS is
the fictitious mass parameter of the surface oscillator, and Φ11, Φ22 and Φ33 are the diagonal
elements of the force constant matrix. This implies the following approximation for the matrix
of characteristic frequencies

mSΩ2
S ≈

Φ11 0 0
0 Φ22 0
0 0 Φ33

 , (D.5)

which has been commonly used in the literature.23,24,447 Compared to the original one-di-
mensional formulation444,458, this does already allow for both much more flexibility and arbi-
trariness. An extension of the implementation to a full, non-diagonal 3 × 3 matrix would be
completely straightforward.

FixSurfOsci includes its own time stepping. For the actual dynamical atoms, i.e. the ad-
sorbate, coordinates {RI}I and velocities

{
ṘI

}
I
are updated like in FixNVE. As detailed in

Appendix D.1 the usual velocity Verlet discretization scheme213 is employed, implemented in the
initial_integrate() and final_integrate() methods of FixSurfOsci. It is also applied in
the same fashion to discretize Eqs. (D.4b) and (D.4d), the equations of motion of the surface os-
cillator degrees of freedom RS, where the latter are internal variables of the class FixSurfOsci.
Coordinates of the atoms in the surface group are rigidly shifted in initial_integrate(),
using the same update value that is also applied to RS. This way, a fix of style extforces/set
(cf Appendix D.2) directly passes the right slab geometry to an external first-principles calcu-
lation for which forces on the adsorbate atoms I are required in the equations of motion given
by Eqs. (D.4c) and (D.4d). Here it is important to emphasize that no fix class performing
time stepping has been instantiated for the surface group (e.g. by a fix style nve command
including some of its members), unless externally calculated force components for the atoms in
that group are explicitly zeroed elsewhere. Otherwise the rigidity of the frozen surface implied
by the model could be violated. The actual values of the surface oscillator coordinates RS and
its contribution to the total energy

ESO3 = Ekin
SO3 + Epot

SO3

= 1
2mSṘ

2
S + 1

2mSR
†
S Ω2

SRS
(D.6)

can be queried and output in a fashion similar to computes, relying on the Lammps infras-
tructure for which the methods compute_vector() and compute_scalar(), respectively, are
defined in FixSurfOsci. The latter is also used within the usual Lammps machinery to include
the aforementioned energy contribution in the total energy output managed by the Thermo class,
allowing to easily monitor energy conservation according to Eq. (D.3). Using toy potentials for
Vfsa, this has also been used to thoroughly test the implementation. For suitable time steps,
Hfsa+SO3 could be excellently preserved, thus providing perfect trust into the former.

xiiiSee http://lammps.sandia.gov/doc/fix.html.
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D.4. Harmonic Solid: PairHarmsol

For the comparison with the harmonic solid in the context of the phonon analysis described in
Chapter 10, the pair potential describing the former needed to be implemented within Lammps.
For a crystalline solid with atoms at positions R = {RI}I , which are generally displaced from
the equilibrium positions {R0

I}I of the crystal lattice, this potential is given by (cf Eq. (4.2) in
Section 4.1):

V harmsol(R) = 1
2
∑
I,J

(
RJ −R0

J

)†
ΦIJ

(
RI −R0

I

)
(D.7)

Here ΦIJ is a 3 × 3 matrix of force constants, i.e. the material specific parameters describing
the interaction between atoms I and J within the harmonic approximation. These can be
obtained from a lattice dynamics calculation, which has been done based on first principles in
the present context (cf Section 4.2).
The Lammps class Bondxiv already allows to model harmonic bonds in the simple form which

is typically used in force fields for the description of large molecules in the bio-community

V bond/harmonic(R) =
∑
I,J

Kn

(
‖RJ −RI‖2 −R

0
n

)2
, (D.8)

where n = n(I, J) and Kn is supposed to include the usual factor 1
2 . Obviously, this is quite

different from what is needed here. Both the force constants Kn and the equilibrium bond
distances R0

n are only scalar, and not matrix and vector valued, respectively. The “self-terms”
with I = J in Eq. (D.8) thus only yield a constant energy offset and hence do not contribute
to the corresponding forces – quite in contrast to Eq. (D.7). Even worse, V bond/harmonic is
restricted to central forces, which is known to be a limitation in the accurate description of
surface phonons251 as indicated in Section 4.3. Finally, bonds need to be defined one by one in
an input data file together with individual parameter definitions Kn and R0

n for each declared
bond type n and read in via a read_data command in the input script as sketched out in
Appendix D.1 For the “pair bond topology” of a large slab as required in Eq. (D.7) this is
of course very tedious. An automatic generation based on neighbor shells is a much better
approach, but an extension of Bond along those lines exploiting already existing infrastructure
for Neighbor and descending classes is not easily possible within the present design of the
former class. Alternatively, this could of course be done externally e.g. in the form of scripts,
which create the required data input files. But then either very system specific code would
have been created or a lot of functionality already existing in the Lammps Neighbor class and
its descendants would have simply been duplicated. Altogether, Bond is unfortunately not a
helpful starting point in the present context.
In the spirit of generalized Langevin equations (GLEs), the Green’s function molecular dy-

namics (GFMD) approach by Müser and coworkers450,451 is based on a harmonic solid as well
(cf Section 8.1). However, their Lammps extensions452 do not include the latter as a reference
system e.g. for testing purposes. It only encompasses the two fixes FixGFC and FixGFMD. The
latter reproduces the effective elastic force on an atom which comes from the bulk that has
been integrated out within the GLE ansatz, thereby employing “effective elastic stiffness co-
efficients”. In engineering lingo, these are suitable elements of the dynamical matrix, i.e. the

xivSee http://lammps.sandia.gov/doc/bond_harmonic.html.
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D.4. Harmonic Solid: PairHarmsol

Fourier transforms of the force constants ΦIJ in Eq. (D.7) (cf Eq. (4.7) in Section 4.1), which
can be obtained by the former fix class from preceding molecular dynamics runs. Therefore,
this could not be built upon in the context of the present work, either. Starting over from
scratch thus turned out to be necessary.
Despite its simple analytic form, the large numbers of (though well determined) parameters

occurring in Eq. (D.7) make an implementation of V harmsol for an arbitrarily large simulation
cell quite challenging. Only if the latter is restricted to the order of magnitude of the nowadays
usually accessible DFT regime, i.e. N ≈ 1000 atoms, the entries of all 3 × 3 matrices ΦIJ

for all 1
2 N

2 pairs can be straightforwardly kept in memory for a simple direct evaluation of
Eq. (D.7).xv Quite in contrast, for the huge bath-like slabs consisting of more than 1× 105 atoms
which are of interest in the present work, 1

2(3 ·105)2 entries would need to be stored. Even when
using single-precision floating-point numbers only, each of typically 4 bytes, ≈ 1.5 terabytes of
memory would be required only to store the force constants, thus exceeding directly accessible
resources even of nowadays supercomputers. Transforming to Eigensystems in order to store
only diagonal elements, either in real space or in reciprocal space, the latter along the lines
sketched out e.g.by Mueser and coworkers450,452 or detailed in Section 10.1, is equally or even
more expensive in terms of memory since both Eigenvectors and Eigenvalues would need to be
stored. However, given the translational invariance of the force constants in periodic directions,
a lot of duplicate entries are stored within the previous naive direct approach. Furthermore,
force constants go to zero with increasing distance

ΦIJ

‖R0
J−R

0
I‖2→∞−−−−−−−−−−→ 0 , (D.9)

with the strength of the decay usually being proportional to a material specific power law.
When obtained from first-principles lattice dynamics calculations within the direct method,
Φcum
IJ = 0 even holds exactly for

∥∥∥R0
J −R0

I

∥∥∥
2
> Rcut with a cut-off radius Rcut implicitly

imposed by size of the supercells employed for the former (cf Section 4.2). If the latter are
sufficiently large, the cumulant force constants (cf Eq. (4.25), in particular for notation)

Φcum
IJ = Φcum

ĨJ̃

(
LĨ ,LJ̃

)
=

supercell
images∑
LS

ΦĨJ̃

(
LĨ ,LJ̃ +LS

)
(D.10)

as introduced in the formalism by Parlinski and coworkers237 are expected to be a good ap-
proximation for the ΦIJ within the principle accuracy limits of the employed ab initio theory.
Neighbor shells reaching out up Rcut are thus an in this context complete and compact way to
input and store the ΦIJ for the evaluation of V harmsol(R).
In order to store the force constants of various neighbor shells of inequivalent atoms which

are termed centers, the file format sketched out in Listing D.2 has been established and simply
suffixed by .harmsol. Units of lattice vectors, which are given in absolute coordinates for
positions and distances, and force constants are usually in Å and eVÅ−2, respectively, but
obviously only have to match the corresponding energy units when evaluating Eq. (D.7). All

xvIn fact, this is done within the present implementation of thermodynamic integration in FHI-aims by Christian
Carbogno, relying on force constants calculated with phonopy-FHI-aims. The latter was contributed to the
phonopy package by the author of this thesis, who still maintains it, in order to provide a reliable phonon
infrastructure based on the direct method (cf Section 4.2) for the former first-principles code.
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nine entries of the ΦIJ of all neighbors in each shell are expected to be given for every inequiv-
alent “center”, i.e. atoms in the primitive cell of the underlying phonon calculation. Within
the present work, these are obviously one atom in case of the fcc bulk and one atom per layer
in the surface unit cell of the (100) surface of the fcc-crystal. The force constants need to
be properly unfolded when symmetry has been used in order to reduce the number of finite
displacements and hence the computational costs of the underlying first-principles calculations
– as typically done within the Parlinski formalism.237 In the present work, this is taken care
of within the employed Python scripts based on phonopy. They center around the Python
module harmsol.py, defining a class Harmsol. In addition to general I/O of .harmsol files, it
also encompasses replication and linear transformation of force constants. The latter is required
when the reference coordinate system changes, like e.g. when switching from the primitive unit
cell of a fcc crystal to surface unit cell its (100) surface. For convenience, these operations can
also be optionally specified in a .harmsol file as indicated in Listing D.2.

# optional: comment lines
# explaining details about force constants in this file

a11 a21 a31 # components of lattice vector a1 = (ai1)i
a12 a22 a32 # components of lattice vector a2 = (ai2)i
a13 a23 a33 # components of lattice vector a3 = (ai3)i

# optional: rotation matrix O = (Oij)ij
# to transform reference coordinate system with
Rotation

O11 O12 O13
O21 O22 O23
O31 O32 O33

# optional: translation vector t = (ti)i
# to shift reference coordinate system with
Translation

t1 t2 t3

# number of atoms (termed centers)
# for which force constants in neighbor shells follow
Ncent
# maximum neighbors and distances
# between any two of the following neighbor pairs
Nmax

neigh dmax

# in the following:
# RI = (RIi)i : lattice site of center I
# dmax

neigh,I : maximum distance of neighbors from center I in any shell
# d̄max

neigh,I : same as before, but in last complete shell
# (can be set to 0.0 in order to be ignored)
# LIJ = (LIJi)i : lattice vector from center I to its neighbor J
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D.4. Harmonic Solid: PairHarmsol

# ΦIJ = (ΦIJij)ij : force constants for center I and neighbor J
1 R11 R12 R13
Nneigh,1 dmax

neigh,1 d̄max
neigh,1

1 L111 L112 L113
Φ1111 Φ1112 Φ1113
Φ1121 Φ1122 Φ1123
Φ1131 Φ1132 Φ1133

...
Nneigh,1 L1Nneigh,11 L1Nneigh,12 L1Nneigh,13

Φ1Nneigh,111 Φ1Nneigh,112 Φ1Nneigh,113
Φ1Nneigh,121 Φ1Nneigh,122 Φ1Nneigh,123
Φ1Nneigh,131 Φ1Nneigh,132 Φ1Nneigh,133

...

Ncent RNcent1 RNcent2 RNcent3
Nneigh,Ncent dmax

neigh,Ncent
d̄max

neigh,Ncent
1 LNcent11 LNcent12 LNcent13

ΦNcent111 ΦNcent112 ΦNcent113
ΦNcent121 ΦNcent122 ΦNcent123
ΦNcent131 ΦNcent132 ΦNcent133

...
Nneigh,Ncent LNcentNneigh,Ncent1 LNcentNneigh,Ncent2 LNcentNneigh,Ncent3

ΦNcentNneigh,Ncent11 ΦNcentNneigh,Ncent12 ΦNcentNneigh,Ncent13
ΦNcentNneigh,Ncent21 ΦNcentNneigh,Ncent22 ΦNcentNneigh,Ncent23
ΦNcentNneigh,Ncent31 ΦNcentNneigh,Ncent32 ΦNcentNneigh,Ncent33

Listing D.2: Schematic listing of file format used to specify force constants ΦIJ for the potential
of a harmonic solid V harmsol as given by Eq. (D.7). The usual file suffix is .harmsol. Empty
lines and lines (or parts thereof) starting with # are supposed to be ignored by the respective
parser, which holds for the one in the read_file() method of the Lammps class PairHarmsol
and harmsol.Harmsol.read() in the Python utility module harmsol.py both implemented by
the author of this thesis. Note that incomplete shells are a consequence of the respective missing
neighbors not being captured by the extended supercells used for the finite difference phonon
calculations (cf Section 4.2). For more details in particular concerning the use in PairHarmsol
see text, where the same symbols are used. Explanations for the latter are also provided by
comments included in this listing.

Due to the similarities of V harmsol with a conventional pair potential and inadequacy of
other parts of Lammps outlined before, the present implementation was put into the new
class PairHarmsol derived from Pair. Based on the infrastructure provided by the latter, its
associated input commands are

pair_style harmsol d2
disp d2

lat

processed within the usual settings() method, and (& indicating a continuation line)
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pair_coeff * * <.harmsol-file> <yes or NULL for each atom type> &
<optional: output-file <optional: .harmsol-output-file>>

parsed and evaluated by the expected coeff() of PairHarmsol. The displacement cut off
allows to neglect certain contributions to V harmsol altogether if one of two atoms of a pair is
displaced by less than ddisp, i.e.

1
2
(
RJ −R0

J

)†
︸ ︷︷ ︸

≡U†J

ΦIJ

(
RI −R0

I

)
︸ ︷︷ ︸

≡UI

≡ 0


‖U I‖2 < ddisp

or
‖UJ‖2 < ddisp

(D.11)

in Eq. (D.7), conveniently expressed using the displacement coordinates U I and UJ . It can be
set to zero, but 1× 10−9 Å has been found to give numerically identical results in the present
work for greatly reduced computational cost. dlat specifies lattice tolerance, i.e. the acceptable
maximum absolute value of differences when determining the associated lattice positions of
displaced atoms (vide infra), for which 1.0Å has been used to reliably carry out the simula-
tions presented in Chapter 10. The syntax of pair_coeff has been inspired by the Lammps
classes PairMEAM, PairSW and PairAIREBO.xvi For each atom type the <yes or NULL> argu-
ments are used to set the internal masking flags which indicate whether force contributions
from PairHarmsol are evaluated for that type. The read_file() method takes care of reading
the specified <.harmsol-file> in the format described in Listing D.2. If <output-file> is
specified, not only debug output but also warnings specific to an instance of PairHarmsol are
written to the former, which is thus always recommended. Finally, <.harmsol-output-file>
is written by write_file() if it has been optionally specified as last argument to pair_coeff,
allowing to verify that <.harmsol-file> has been read and parsed correctly. Based on the
information provided therein, in the init_style() method the Lammps infrastructure pro-
vided by the Neighbor class and its descendants is requested to provide a full neighbor list,
not relying on Newton’s third law. As expected, the necessary cut off distance (cf Eq. (3.8) in
Section 3.2.1) is supplied by init_one() and chosen to be Nmax

neigh +
√
dlat, where Nmax

neigh is the
maximum distance of any neighbor in any neighbor shell within the “harmonic force field” read
from <.harmsol-file> (cf Listing D.2). This way, an external specification of the “pair bond
topology” required to evaluate Eq. (D.7) as indicated above is completely avoided and entirely
handled internally within Lammps.
Most important in PairHarmsol is of course the compute() method, which gets called during

each time step as described in Appendix D.1 in order to evaluate the forces from V harmsol on
each atom. This is done according to the following algorithm, which faces the major challenge
of assigning the right force constants to the right atoms in a straightforward fashion:

For each atom I do the following:
1. Identify which (equivalent) center at equilibrium position given by the lattice site R0

I

atom I with coordinates RI(t) at present time step t corresponds to, thereby selecting
the right set of neighbor shell force constants to be used in the following.

2. Calculate the displacement vector U I(t) = RI(t) −R0
I of atom I. If U I(t) < ddisp and

thus Eq. (D.11) holds, this (outer) loop is immediately continued by starting over with
the first step for the next atom I, which greatly improves performance.

xviReferring to the respective parts of the Lammps documentation might thus provide additional insight.
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3. Evaluate the “on-site” energy

EII(t) = 1
2 (U I(t) )†ΦII U I(t) (D.12a)

and force

F II(t) = −ΦII U I(t) (D.12b)

contributions for atom I due to the displacement of atom I itself, using the force constants
ΦII properly identified before.

4. For each atom J in the neighbor list of the present atom I do the following:
a) Determine the corresponding equilibrium position of atom J given by the lattice site
R0
J , so that the lattice vector

LIJ = R0
J −R0

I (D.13)

can be used in order to identify which neighbor of atom I the current atom J corre-
sponds to.

b) Calculate the displacement vector UJ(t) = RJ(t)−R0
J of atom J . Like in step 2, if

UJ(t) < ddisp and thus Eq. (D.11) holds, this (inner) loop is immediately continued
by starting over with the first step for the next atom J in the neighbor list of atom
I.

c) Evaluate the neighbor energy

EIJ(t) = 1
2 (UJ(t))† ΦIJ U I(t) (D.14a)

and force

F JI(t) = −ΦIJ U I(t) (D.14b)

contributions for atom J due to the displacement of atom I, using the force constants
ΦII properly identified before.

It is important to note that the meaning of the index notation in Eqs. (D.12b) and (D.14b) is
completely consistent with Eq. (4.24) in Section 4.2. No explicit checks for Lammps atom types
are done in compute(): It is assumed that force constants are assigned to the right atoms of
possibly different species based on their (lattice) coordinates alone.xvii In principle, this should
also allow applications to multicomponent systems, with the corresponding .harmsol files then
containing force constants for all atomic species. Of course, when combined with the hybrid
style from the PairHybrid class, the skip list mechanism provided by the latter offers an
additional prescreening of neighbor lists. On the other hand, atomic arrangements containing
several spatially separated “lattice areas” (like e.g. for a molecule between two surfaces acting
as electrodes) would still require some special care.
If the simulation cell is spatially decomposed into different domains within a parallel Lammps

run,218 in the present implementation of the above algorithm in compute(), the outer loop is

xviiThis is the reason why the pair_coeff command above always needs to be set for all atom types, i.e. followed
by * *.
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over atoms which are local (i.e. “non-ghost”) atoms for each parallel process. By using a
full neighbor list and enforcing the use of Newton’s third law as indicated before, force con-
tributions calculated for ghost atoms are conveniently communicated by the existing Lammps
infrastructure in the correct way. Consequently, the performance of the present version of
PairHarmsol could “simply” be improved by running in parallel, which however turned out
not to be necessary within the scope of the present work and therefore has not yet been tested
extensively.
For the important identification of (equivalent) lattice sites in steps 1 and 4a, the auxiliary

method get_lattice_site() has been implemented – thus maximizing code reuse and simpli-
fying debugging and maintainability. It makes use of the inverse lattice vectors {bi}i = {(bki)k}i,
which are already calculated in the read_file() method according to their definition

ai · bj =
3∑

k=1
aki bkj = δij , (D.15)

where {ai}i = {(aki)k}i are the lattice vectors specified in the <.harmsol-file> (cf List-
ing D.2).xviii get_lattice_site() iterates over the neighbor shell centers therein, defining the
harmonic force field, and compares their absolute coordinates to a position vector R based on
the following algorithm:

For each of the Ncent centers I do the following:
1. Calculate the difference vector

d abs =
(
d abs
k

)
k

= R−R0
I (D.16)

in absolute coordinates.
2. Obtain its representation in fractional coordinates (cf Eq. (D.15))

d frac
i =

3∑
k=1

bik d
abs
k . (D.17)

3. Determine the displacement from a lattice site

u frac
i = d frac

i − round
(
d frac
i

)
(D.18)

in fractional coordinates, where round defines the usual rounding operation to the nearest
integer

round(x) =
{
bxc if x− bxc < 1

2
dxe if x− bxc ≥ 1

2

4. Obtain the aforementioned displacement in absolute coordinates

uabs
i =

3∑
k=1

aki u
frac
k . (D.19)

xviiiHere, the choice of indices follows the usual crystallographic convention to have lattice vectors as column
vectors of the matrix (ai)i = (aki)ki.
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5. If
∥∥∥uabs

∥∥∥
2
< dlat, where uabs =

(
uabs
i

)
i
, accept

R0 = R− uabs . (D.20)

as lattice site within the tolerance dlat specified by pair_style harmsol command as
described above. It is equivalent to R0

I , in the sense of being related to the latter by a
lattice vector

L = R0 −R0
I (D.21)

For slab geometries (cf Fig. 2.1), this algorithm ensures that equivalent centers in different
layers can be properly identified due to lateral periodicity while also allowing for relaxation of
the surface resulting in deviations from ideal, bulk truncated lattice positions. The only crucial
requirement is that the lattice vector encompassing the vacuum separation between slabs given
in the <.harmsol-file> (cf Listing D.2) and the one used for the actual Lammps simulation
cell are identical. Thanks to the absolute coordinates used everywhere else in a .harmsol file,
this can be easily adapted.
In the first algorithm above used in compute(), steps 1 and 4a would not have to be done

anew during each time step, if the assignment of lattice sites and force constants to atoms and
pairs of atoms within Lammps, respectively, was stored after having been carried out once.
As the comparison operations in compute() and get_lattice_site() are quite expensive and
currently dominate the computational cost, this would be a great performance improvement.
Obviously, a direct look-up of the force constants would reduce the poor O (NcentNneigh) scaling
with accordingly large prefactor of the present implementation to O(1), i.e. like for other
potentials with significantly less parameters. Ideally, the force constants could be attached as
“tags” within the neighbor lists, which would, however, require significant structural changes
at the “heart of Lammps”, i.e. the Neighbor class and its descendants. These are far from
being trivial in particular when also supposed to include the communication necessary for the
parallel case. Since performance was not a limitation for the present work, also thanks to the
introduction of the displacement cut off ddisp and the potential parallel use of PairHarmsol as
indicated above, this has been left to future work where it might become necessary.
Finally, energies V harmsol obtained with the present implementation have been carefully

checked against corresponding reference energies for arbitrary displacement patterns, including
in particular those from the finite displacement calculations used to determine the underlying
force constants. As to be expected from an analytical potential, energy conservation during
molecular dynamics runs starting from such displacements patterns is excellent – as long as
ddisp is not too large as indicated above. But also dlat has to be chosen with proper care. Ob-
viously, it must be big enough to cope with the displacements from lattice sites present in the
simulated system, and small enough to avoid wrong assignments by get_lattice_site() (cf
step Item 5 from the algorithm underlying the latter). Otherwise, with the present implemen-
tation, force constants cannot be assigned correctly – a limitation which would also be lifted by
the extension sketched out in the previous paragraph. However, by carefully including debug
output in both compute() and get_lattice_site() and monitoring the latter by specifying
an <output-file> in the pair_coeff command as described above, it has been verified that
no misassignments occur in the present application for the chosen value of dlat.
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Summary

In this work energy dissipation during exothermic chemical reactions in the context of hetero-
geneous catalysis is investigated in great detail, based on and substantially further developing
ab initio methodologies. The dissociation of oxygen molecules (O2) on the Pd(100) surface
serves as a representative showcase, involving a release of about 2.6 eV of chemisorption energy.
State-of-the-art ab initio-based multiscale models implicitly assume an instantaneous equilibra-
tion of reaction products. Consequences of this Markov approximation can only be estimated
by explicitly time-dependent dynamics without any further simplifying assumptions.
The impingement of O2 from the gas phase onto the surface occurs with randomly distributed

initial molecular orientation and lateral position. The increasing interaction with the surface
potential induces a funneling into preferential adsorption channels, which is first investigated
based on a frozen surface approximation. Under this assumption, Born-Oppenheimer molecular
dynamics needs (at least) a six dimensional potential energy surface representing the molecular
degrees of freedom. In order to properly capture the breaking of the oxygen-oxygen bond, the
latter is described on the level of density functional theory (DFT) with a semi-local exchange-
correlation functional. Following a “divide-and-conquer” strategy, this description is decoupled
from the dynamics to reduce the computational cost. The resulting interpolation problem is
tackled with the help of neural networks using only a very limited number of data points.
In doing so, a suitable transformation of the molecular coordinates is of crucial importance,
capturing the complex symmetry of the system. Due to the lack of such a transformation
for diatomics on (100) surfaces an approach was developed, which, as opposed to previous
concepts, is also demonstrated to be transferable to other low-index surfaces. The initial
sticking coefficient resulting from thousands of trajectories shows good agreement with available
experimental data. Quite in contrast to Al(111) surfaces, the spin transition of the oxygen
molecule (3Σ−g spin triplet in gas phase to singlet-like state on the surface) can apparently be
described adiabatically.
In order to characterize this further and at the same time assess the relevance of one pos-

sible energy dissipation channel, excitations of electron-hole (e-h) pairs in the metal substrate
are investigated using time-dependent perturbation theory – based on time-dependent den-
sity functional theory (TDDFT) and the Kohn-Sham band structure of the substrate. A new,
efficient implementation based on further developed ideas for the evaluation of the required
non-adiabatic coupling matrix elements enables the calculation of spin resolved e-h excitation
spectra for a variety of trajectories obtained on the previously obtained potential energy sur-
face. The resulting energy losses do vary over several orders of magnitude, but do not exceed
100 meV and thus 5 % of the chemisorption energy mentioned above. On the one hand, this
eliminates e-h pair excitations as dominant dissipation channel in this system, in agreement
with the lack of detectable chemicurrents in corresponding experiments. On the other, a spin
asymmetry identified in the calculated spectra offers a mechanism that could be responsible for
the adiabatic spin transition of the oxygen molecule.
As a consequence, focus is inevitably shifted on phonons as major energy dissipation chan-

nel. Unfortunately, a detailed discussion reveals the crudeness and inappropriateness of existing
schemes to describe the phonon excitation during adsorption at metal surfaces. Within conven-
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tional ab initio molecular dynamics in particular, phonon propagation is limited by the periodic
boundary conditions, that are necessarily used to properly describe the metallic band struc-
ture and its influence on the chemical bond with the adsorbate. Therefore, a new embedding
scheme called QM/Me was developed, which also offers versatile potential applications beyond
the scope of this thesis. In the present context it allows to model realistic (surface) phonons
on the level of a “modified embedded atom method” (MEAM) potential, seamlessly adapted
to and concurrently with the DFT description of the O2 dissociation. For the first time, dissi-
pation into a huge environmental bath can be observed directly based on ab initio methods. A
comparison to previous more approximate approaches shows remarkable differences even with
respect to the adsorbate trajectories, which casts severe doubts on prior descriptions achieved
with these schemes. Furthermore, the obtained dissociation dynamics yields an extended “hot”
translational movement across the surface, with both adsorbed oxygen atoms diffusing in op-
posite directions away from each other. This coupling of dissociation and diffusion processes
through the non-instantaneous dissipation of the released reaction heat invalidates the otherwise
unanimously applied Markov assumption for the dynamics of adsorptive processes. Resulting
differences in the arrangements of adsorbates might have crucial consequences for many sur-
face functionalities, including the catalytic activity. Finally, a new projection scheme allows to
thoroughly characterize the influence of surface phonons and the failure of the harmonic ap-
proximation commonly used in models for solids in the context of gas-surface dynamics. These
results thus pose a challenge for emerging experimental methods with sufficient time resolution
and provide a pioneering foundation for improved multiscale modeling.
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Zusammenfassung

In dieser Arbeit wird die Energiedissipation bei exothermen chemischen Reaktionen im Kon-
text heterogener Katalyse mit Hilfe und unter entscheidender Weiterentwicklung von ab in-
itio Methoden eingehend untersucht. Die Dissoziation von molekularem Sauerstoff (O2) auf
der Palladium(100)-Oberfläche dient als repräsentatives Beispiel, welches eine Freisetzung von
rund 2.6 eV Chemisorptionsenergie involviert. Multiskalenmodelle, welche dem letzten Stand
der Forschung entsprechen und daher ebenfalls auf ab initio-Ansätzen basieren, gehen implizit
von einer instantanen Equilibrierung der Reaktionsprodukte aus. Konsequenzen dieser Markov-
Näherung lassen sich nur durch explizite zeitabhängige Dynamik ohne weitere vereinfachende
Annahmen abschätzen.
Sauerstoffmoleküle treffen mit zufällig verteilten Orientierungen und lateralen Positionen

über der Oberfläche auf. Die zunehmende Wechselwirkung mit dem Oberflächenpotential steu-
ert Erstere in bevorzugte Adsorptionskanäle, was zunächst ausgehend von einer eingefrorenen
Oberfläche untersucht wird. Mit dieser Annahme benötigt Born-Oppenheimer Molekulardy-
namik eine (mindestens) sechsdimensionale Potentialhyperfläche, welche alle molekularen Frei-
heitsgrade berücksichtigt. Zur verlässlichen Einbeziehung des Bruches der Sauerstoff-Sauerstoff-
Bindung wird diese auf dem Niveau von Dichtefunktionaltheorie (DFT) mit semilokalem Aus-
tausch-Korrelationsfunktional beschrieben. Um den notwendigen Rechenaufwand zu verringern,
wird dies im Rahmen einer divide et impera-Strategie von der Dynamik entkoppelt. Das resul-
tierende Interpolationsproblem lässt sich mit Hilfe von neuronalen Netzen unter Verwendung
einer sehr geringen Zahl von Stützpunkten bewältigen. Dabei ist eine geeignete Transforma-
tion der Molekülkoordinaten von entscheidender Bedeutung, welche die komplexe Symmetrie
des Systems berücksichtigt. Mangels Verfügbarkeit einer solchen Koordinatentransformation
für zweiatomige Moleküle auf (100)-Oberflächen wurde ein eigener Ansatz entwickelt, und – im
Gegensatz zu bisherigen Konzepten – dessen leichte Übertragbarkeit auf andere niedrigindizier-
te Oberflächen auch praktisch demonstriert. Der aus tausenden von Trajektorien resultierende
Haftkoeffizient auf der sauberen Pd(100)-Oberfläche zeigt bei verschiedenen Einfallsenergien
gute Übereinstimmung mit verfügbaren experimentellen Daten. Ganz im Gegensatz zu Alumi-
nium(111)-Oberflächen lässt sich der Spinübergang des Sauerstoffmoleküls (3Σ−g Spin-Triplett
in der Gasphase zu singlett-artigem Zustand auf der Oberfläche) also offenbar adiabatisch be-
schreiben.
Um dies und gleichzeitig die Bedeutung eines wichtigen Energiedissipationskanal genauer

zu charakterisieren, wird die Anregung von Elektron-Loch-Paaren (eh-Paaren) in der Metal-
loberfläche mit Hilfe von zeitabhängiger Störungstheorie untersucht, ausgehend von zeitab-
hängiger Dichtefunktionaltheorie (TD-DFT) und der Kohn-Sham Bandstruktur des Substrats.
Eine neuartige, effiziente Implementierung basierend auf weiterentwickelten Ideen zur Auswer-
tung der benötigten nicht-adiabatischen Kopplungsmatrixelemente erlaubt die Berechnung von
spinaufgelösten eh-Anregungsspektren erstmals für eine Vielzahl der mit Hilfe vorgenannter
Potentialhyperfläche erhaltenen Trajektorien. In der Tat variieren die resultierenden Energie-
verluste über mehrere Größenordnungen, bleiben aber unterhalb von 100 meV und damit 5 %
der oben genannten Chemisorptionsenergie. Einerseits scheiden eh-Paaranregungen damit als
Hauptenergiedissipationskanal für dieses System aus, was im Einklang mit nicht detektierbaren
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Zusammenfassung

Chemoströmen bei Experimenten für letzteres ist. Andererseits offeriert eine Spin-Asymmetrie
in den berechneten Spektren einen Mechanismus, der möglicherweise für den adiabatischen
Verlauf des Spinübergangs des Sauerstoffmoleküls verantwortlich ist.
Somit rücken letztlich unweigerlich Phononen als Hauptenergiedissipationskanal in den Vor-

dergrund. Eine detaillierte Diskussion verdeutlicht jedoch leider, dass Phononenanregungen
bei der Adsorption auf Metalloberflächen mit bisherigen Ansätze nur äußerst ungenau und
unangemessen beschrieben werden. Insbesondere ist bei herkömmlicher ab initio Molekulardy-
namik die Phononenpropagation durch die periodischen Randbedingungen begrenzt, welche zur
korrekten Beschreibung der metallischen Bandstruktur mitsamt ihres Einflusses auf die chemi-
sche Bindung zum Adsorbat notwendig sind. Daher wurde ein neuartiges Einbettungsverfahren
„QM/Me“ entwickelt, welches auch über den Rahmen dieser Arbeit hinaus vielfältige Anwen-
dungsmöglichkeiten bietet. Im Rahmen dieser Arbeit erlaubt es die Modellierung realistischer
(Oberflächen-) Phononen auf dem Niveau eines „modified embedded atom method“ (MEAM)
Potentials, nahtlos angepasst an die simultane DFT-Beschreibung der O2 Dissoziation. Erst-
malig lässt sich dadurch die Dissipation in ein großes „Umgebungs-Bad“ direkt ausgehend von
ab initio Methoden beobachten. Ein Vergleich mit vorhergehenden Ansätzen, welche alle starke
Näherungen beinhalten, zeigt bemerkenswerte Abweichungen selbst im Hinblick auf Adsor-
battrajektorien, welches schwere Zweifel an früheren Beschreibungen mit ebendiesen Ansätzen
aufwirft. Weiterhin zeigt die erhaltenen Dissoziationsdynamik eine „heiße“ Translationsbewe-
gung entlang der Oberfläche, bei der sich die beiden adsorbierten Sauerstoffatome in entgegen-
gesetzte Richtungen voneinander weg diffundieren. Diese Verknüpfung von Dissoziation- und
Diffusionsprozessen, welche durch die nicht instantane Dissipation der freiwerdenden Reaktions-
energie erfolgt, führt zum Zusammenbruch der sonst einhellig angewendeten Markov-Näherung
für die Dynamik von Adsorptionsprozessen. Daraus resultierende Änderungen in der Adsorba-
tanordnung können wichtige Konsequenzen für viele Funktionalitäten von Oberflächen haben,
einschließlich der katalytischen Aktivität. Schließlich erlaubt es ein neu entwickeltes Projek-
tionsschema, den Einfluss von Oberflächenphononen und die in Modellen häufig verwendete
harmonische Näherung für den Festkörper sowie ihr Versagen eingehend zu charakterisieren.
Diese Ergebnisse stellen damit eine Herausforderung für aufkommende experimenteller Me-
thoden mit ausreichender Zeitauflösung dar und bieten eine zukunftsweisende Grundlage für
verbesserte Multiskalenmodellierung.
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