
Chapter 6

Conclusions

Through our work we have contributed to the computational methods of the

protein identification by peptide mapping that comprise of peak detection,

recalibration of peptide mass lists, removal of non-peptide peaks, and finally

grouping and assigning peptide mass lists to protein sequences.

We have examined the properties of protein sequence databases and derived

a mathematical model of the peptide mass rule, which describes the distribution

of peptide masses of a peptide mixture generated from a sequence database. We

studied how the parameters of the model influence the location of cluster centres,

concluding that the cleavage specificity of the enzyme used for peptide digestion

and the cleavage probability are the most important factors to accurately predict

the location of the cluster centres. The location of the cluster centres can be

used to calibrate peptide masses or to remove non-peptide peaks. Calibration is

possible because on average the deviation from the cluster centres predicted by

our model, of all peaks in a peptide mass list, should be zero. Hence, if systematic

deviations from the cluster centres are observed it indicates a mass measurement

error. We have called this calibration method ”‘linear regression on peptide rule”’.

It is a robust and accurate method allowing calibrating single peak-lists without

resorting to internal calibrants. Using the method we obtained desired calibration

precision and reliability, which make this method to be practically applicable.

After calibrating the peak-lists, which employs minimising the distances of

all peptide masses to the cluster centres by a linear transformation, the distance

to cluster centres can be utilised to detect non-peptide peaks from peptide peak-
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lists. Non-peptide peaks are those peaks, which after peak-list calibration strongly

deviate from the cluster centres. Due to their removal, the sensitivity as well as

the specificity of protein identification by database searches can be achieved.

Applying the non-peptide peak filtering increased the identification rate up to

2.5% in case of the Probability based Mascot scoring scheme.

An important part of this work was the development of calibration methods

for sets of peak-lists acquired in high throughput experiments. Samples processed

in high-throughput experiments exhibit similarities with many other samples

because they, for example share the mass spectrometric sample support or the

microtitre plate. Samples sharing the microtitre plate are exposed to identical

laboratory conditions, what increases the relative reproducibility of experiments

within a set. Hence, learning about one sample supplies us with additional

information about another samples in the same set. For example, peaks observed

in one sample are more likely to be observed in other samples of the same set

than in otherwise unrelated samples. Furthermore, the mass measurement error

for samples, deposited at the same mass spectrometric instrument and processed

at approximately the same time is highly correlated. Based on these observations

we have developed two methods for calibration of mass-spectrometric peak-list

sets. One method is based on expected similarities due to contaminants, mass

spectrometric matrix and peptide peaks of auto- proteolysis products of the

protease. The other method explores the correlation of the mass measurement

error for closely related peak-lists.

While the methods described in this study significantly improve the calibration

of raw data, they do not perform better than other published calibration routines,

which reduce the MME to 10ppm or below. The novelty of the methods

introduced for calibration of set of peak-lists (41) is, that by exploiting similarities

between peak-lists we were able to re-calibrate peak-lists what would be not

be possible using conventional calibration methods. Hence, by employing our

methods a larger fraction of peak-lists in the dataset can be calibrated and more

proteins could be identified.

The other method introduced in this work, explores similarities between the

peaks content of peak-lists, resulting from similar chemical processing. In a high-

throughput setting a restriction enzyme of identical chemical properties is used.
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Hence, peak-lists processed in parallel share a unique set of peaks, characteristic

for the batch. These peaks can be used to align the peak-lists. To determine the

order in which to align the peak-lists we have used the minimum spanning tree

(MST) algorithm.

A common property of these two calibration methods is that they performance

increases with higher number of samples in the set. We can conclude, that if peak-

lists are deposited closer on the sample support, we are able to measure the mass

measurement error more precisely increasing the efficiency of the TPS calibration

method. Therefore, high density microtitre plates and sample supports are not

only rational with respect to the idea of high throughput experiments – maximal

utilisation of energy and resources but also help to obtain better calibration results

employing the TPS method. Dense excision of spots from 2D-gels not only helps

to identify more proteins but also increases the performance of the MST method.

The next step of protein identification was the classification of peptide mass

lists, which were calibrated to high precision. This can be achieved by searching

protein sequence databases. In order to complement identification by database

search, pairwise peak-list comparison can be employed (Chapter 5). In our work

we had concentrated on assessing the performance and identifying the factors on

which their performance depends, of a large group of pairwise similarity measures.

Furthermore, we examined the performance of various measures, which to our

knowledge were not used for the pairwise comparison of peak-lists. We have

extended the measures to accommodate means to handle properties specific to

mass spectrometry, e.g. mass measurement error.

The aim of this part of the work presented here was to determine the pairwise

peak-list comparison approach with highest sensitivity and specificity for the

grouping of spectra. The primary however was to determine which factors studied

had the highest effect on the outcome of the clustering, in order to foster the

understanding of the pairwise peak-list comparison process. While the first goal

could be easily achieved by ranking the various peak-list comparison approaches,

the second goal was approached by analysis of variance (ANOVA) techniques. The

partial area under the Receiver Operator Characteristic (ROC) curve, determined

for high sensitivity and specificity values was used as the dependent variable, while

the various choices for the comparison process were the factors in the ANOVA.
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To examine whether the obtained results can be generalised to various mass

spectrometric datasets we based our study on two distinct datasets (PMF and

MS/MS data). The results generated for both datasets were similar, providing

evidence that the obtained results might be of general interest.

Two factors, namely measure and intensity scaling and their interactions had

the highest impact on the intensity based pairwise peak-list comparisons. The

combination of the Euclidean distance with vector norm scaling, the Manhattan

distance with total ion count scaling and the sum of agreeing intensities with

vector length scaling were the best performing measures. The measures suggested

by us were so far not used to assess similarities between mass spectrometric peak-

lists. A further factor, which can be used to increase the classification performance

of the peak-list comparison is the intensity transformation with the log function as

a best choice. In case of the MS/MS data we recommend to apply the weighting

of mass measurement accuracy and combine it with a decrease of the weight

of non-matching peaks (θ = 0.5), as well as to implement the computation of

non-crossing matching.

The most important factors for the comparison of the peak-lists using binary

measures are the measure, weight of non-matching peaks (θ) and peak-list length

N . Symmetric measures with large peak-list length N and a small weight of non-

matching peaks (θ = 0.5) performed best for MS/MS data, while asymmetric

measures were the most useful during a comparison of PMF data. A further

possible direction to enhance measures of pairwise peak-list dissimilarity would

be to combine them with methods that model peak-list properties i.e. peptide

fragmentation patterns (45).

The recommended pairwise peak-list comparison approaches can be used

as predictive functions of within and between cluster associations of mass

spectrometric peak-list pairs. However, the best value of the discriminatory

variable still needs to be determined. This can be achieved, for example, by

the use of ROC curves combined with cross validation analysis, but will require

a dataset where the identities of the peak-lists are known a-priori.
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