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4.1 Introduction

Proteomics inter-alia focuses on the identification of peptides/proteins in complex

biological samples (7). Before the identification of the complex constituents,

several separation steps are required to reduce the sample complexity. The

classical separation method is the two-dimensional gel electrophoresis (11; 12;

13; 14), followed by excision of the detected spots from the gel, digestion with

sequence specific proteases and extraction of the cleaved proteins (15; 16). Mass

Spectrometric (MS) analysis (6; 8; 9; 10; 114; 115) of the resulting mixture of

peptides yields a peptide mass fingerprint (PMF): a set of measured molecular

masses of the proteolytic peptides derived from the analysed protein (17; 18; 19).

PMF commonly requires matrix assisted laser desorption/ionisation (MALDI)

time of flight (TOF) instruments, capable of high throughput analysis of

complex samples with minimal pre-cleanup, high femtomolar range sensitivity

and accuracy of peptide molecular mass determination up to 5 − 10 parts per

million (ppm) (116; 117; 118; 119). Due to the high ion transmission of the
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TOF mass analyzer, this technique is more sensitive compared with other MS

techniques. In relation to Electrospray ionisation (ESI) MS (73), MALDI-MS is

more tolerant to sample contamination resulting from salts and detergents often

present in protein samples due to the separation method. MALDI-MS and ESI-

MS have become the standard high throughput proteome analysis techniques in

many research laboratories.

The experimental peptide mass lists are generated by the analysis of TOF

spectra (58). Ideally, the TOF is proportional to the square root of mass over

charge (
√

m/z). Thus, in order to transform the spectrum from TOF into m/z,

two calibration constants A and B are necessary. These can be derived by

measuring the flight times t of at least two different ions with known masses

and fitting them such that TOF ≈ A
√

m
z

+ B. After the transformation from

time into m/z, the mono-isotopic peptide signals in the spectrum are identified

and their intensity is determined by computational methods (30; 35; 82; 112).

The lists of the first mono-isotopic peptide peaks – further called peak-lists –

are used to identify the protein of interest. In order to assign the PMF to a

protein in a sequence database, database search algorithms use the match (within

a given measurement accuracy) of theoretical peptide masses computed from

protein sequence databases (104) with observed MS masses (18; 19).

Usually the scoring schemes model the mass frequencies of the proteins

and peptides in the sequence databases (27; 29; 30; 31). Other properties

to be considered include the different sensitivity of detection for individual

peptides, known protein modifications, and/or possible mutations (33; 34; 35; 39),

although generally, all popular search scores depend on the precise assignment of

experimental to theoretical peptide masses.

4.1.1 Two novel calibration methods

In a high throughput setting (56; 57), where the samples are placed on a moving

sample support, the calibration coefficients for transforming the TOF into m/z

differ depending on sample position. This is due to deviations in plate flatness,

sample topography changing the size of the acceleration region (40; 56), and

alterations in the strength of the electric field on the sample support borders which
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influences the drift velocity of the ions (58). Thus, when calibration constants

determined from one position on the sample support are used to calibrate TOF

spectra acquired on other positions (a procedure known as external calibration),

the determined m/z values have errors of up to 500 ppm.

Calibration is usually performed using external (40; 120; 121) or internal

calibrants (42; 43), which rely on known masses to calibrate the spectra to

common co-ordinates. It must be stressed, that in some cases the signal of

a reference compounds might be suppressed by the analyte molecules, thus

precluding internal calibration. In other cases, the reference signal may partially

overlap with an analyte signal, resulting in an erroneous assignment. A third

category of calibration methods is based on the peptide mass rule (30; 35). A

major advantage of the latter method is that no internal calibrants are required

to calibrate the peak-lists. The limitation of this method is it’s sensitivity to

the presence of non-peptide peaks in the spectra, and that it completely fails if

the number of peptide peaks in peak-lists are small (30; 35; 43). Therefore, in

practice this method usually is used only to pre-calibrate (30) or to support the

results of internal calibration (43; 112).

We have developed two novel calibration methods for PMF data. Both

calibration methods exploit similarities of peak-lists due to closeness in the

origin of the analysed samples. The first method combines the computation

of dissimilarities (50) between peak-lists with internal calibration. The second

method employs spatial statistical methods (59) to model systematic changes of

the calibration-model over the MALDI sample support. The major advantage of

the presented methods originates from the fact that the MS calibration derives

from samples without internal standards or external calibrants positioned on each

sample support.

4.1.2 Evaluating the methods

To demonstrate the accuracy of our methods, we studied one sample set of 380

mass spectra, consisting of a part of the Arabidopsis thaliana proteome study

(106). For this purpose, a MALDI MS sample support in pre-structured (57)
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(384-well) microtitre plate format was used. The measurements were performed

using the Autoflex MALDI-TOF MS (84) instrument.

To compare the performance of calibration methods described here with those

already published (43; 112), we used two different data sets. The first set consisted

of 1193 spectra deposited on four pre-structured sample supports and measured

on a Reflex MALDI-TOF MS (84) instrument (Reflex data set). Spectra were

generated via mass spectrometric analysis of the Rhodopirellula baltica proteome

(unpublished data). The second set was generated in connection with a proteome

study of Mus musculus and consisted of 1882 spectra deposited on five pre-

structured sample supports and measured on an Ultraflex MALDI-TOF MS (84)

instrument (Ultraflex data set).

During MS sample preparation of the Ultraflex data set, standard peptides

of known masses (human Angiotensin I - 1, 296.6853Da, human ACTH (18-39)

2, 465.1989Da) were added before the measurement to the MS matrix. This was

done because the data sets were optimised for the calibration methods, which

required the internal calibrants. We examined if the standard peaks could be

observed in more than 33% of spectra and if so, we removed the peaks matching

these masses from the data set. This procedure was applied in order to simulate

a data set not optimised for internal calibration.

The Rhodopirellula peptide peak-lists were searched against a Pirelulla

database (108) with 13, 331 predicted Open Reading Frames (ORFs). The Mus

musculus samples underwent searches against the Mus musculus entries (69, 343

-sequences) of the NCBI non-redundant protein database (107).

4.2 Methods

4.2.1 Data sets

In this study, we used three data sets generated in different proteome analyses:

1. A bacterial proteome Rhodopirellula baltica (unpublished data) (1, 193

spectra) measured on a Reflex III (84) MALDI-TOF instrument.
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2. A mammalian proteome Mus musclus (1, 882 spectra) measured on

Ultraflex (84) MALDI-TOF instrument.

3. A plant proteome Arabidopsis thaliana (106) measured on an Autoflex (84)

MALDI-TOF instrument.

All PMF MS spectra derive from tryptic protein digests of individually

excised protein spots. For this purpose, the whole tissue/cell protein extracts

of the former mentioned organisms were separated by two-dimensional (2D) gel

electrophoresis (13) and visualised with MS compatible Coomassie brilliant blue

G250 (106). The MALDI-TOF MS analysis was performed using delayed ion

extraction and by employing the MALDI AnchorChip �targets (Bruker Daltonics,

Bremen, Germany). Positively charged ions in the range of 700− 4, 500m/z were

recorded. Subsequently, the SNAP algorithm of the XTOF spectrum analysis

software (Bruker Daltonics, Bremen, Germany) detected the monoisotopic masses

of the measured peptides. The sum of the detected monoisotopic masses

constitutes the raw peak-list. Before affine mass calibration, mass measurement

errors which can be described by higher order polynomials and determined

using external calibration (cf. Methods: External Calibration), were removed.

Processed peak-lists were then used for the protein database searches with

the Mascot search software (Version 1.8.1) (55), employing a mass accuracy of

±0.1Da. Methionine oxidation was set as a variable and carbamidomethylation

of cysteine residues as fixed modification. We allowed only one missed proteolytic

cleavage site in the analysis.

4.2.2 Describing the Mass Measurement Error and

predicting the correct mass

A mass difference can be described either in absolute ∆A = my − mx[m/z] or

in relative ∆R = (my − mx) · 106/my[ppm] units. The masses in two peak-lists

X, Y were compared to each other and we considered two peaks to match, in the

case of the absolute error if ∆A < a[m/z] and in the case of the relative errors

if ∆R < a[ppm]. If we plotted ∆A or ∆R as a function of mtheo, we observed,

besides a white noise component ε ∝ N(0, σ2), a systematic dependence. This
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dependence was modelled using a function f̂(m). Given f̂(m) we corrected the

experimental masses using the equations:

mcorr =
mexp

1− f̂R(mexp) · 1/106
, or (4.1)

mcorr = mexp + f̂A(mexp), (4.2)

depending on whether the relative or absolute error was used, to obtain

corrected masses mcorr.

4.2.3 Affine mass measurement error model

In the first approximation, the mass measurement error can be described by an

affine function f̂A/R(mi) = c1 · mi + c0, where mi is the mass of the matching

peaks. The intercept and slope coefficients of this function can be determined

using linear regression.

If only one matching peak was found or the mass range enclosed by the

matching masses was small (e.g. less than 200Da), as a remedy one can fix:

� the intercept at 0, if absolute difference ∆A[Da],

� the slope coefficient at 0, if relative difference ∆R[ppm]

and determine the slope or intercept respectively from the data.

To correct the experimental masses mexp we used Equation 4.2 for the absolute

differences ∆A of matching peaks and Equation 4.1 in case of relative differences

∆R.

The difference between theoretical and measured masses is called a mass

measurement error, while the alignment of mexp on mtheo an internal calibration

(35; 122; 123).

4.2.4 Determining ubiquitous masses and their filtering

To determine the abundant masses we computed two histograms for each data

set. The origin in the first histogram f̂ 1
h is x0 = min (M) − h and of the second
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histogram f̂ 2
h is x0 = min (M) − h/2, where M are all masses in the data set

and the bandwidth h equals the measurement accuracy (in Da). We divided the

range of M into bins of bandwidth h

Bj = [x0 + (j − 1)h, x0 + jh], with j ∈ 1, . . . , l , (4.3)

where l = (max(M)−x0) mod h. Formally the histogram of counts f is given by

(124)

f̂h(x) =
n∑

i=1

l∑
j

I(Xi ∈ Bj)I(x ∈ Bj) , (4.4)

where n represented the number of masses in M . If a bin had more counts

than a given threshold, the average mass m̄ of all peaks in the bin was computed.

In the case of two adjacent or overlapping bins B1, B2 with a significant number

of counts c, we first computed a weighted average of the bin midpoints using the

number of counts in each bin as weight

m =
m1 · c1 + m2 · c2

c1 + c2

, (4.5)

where m1 and m2 are the bin midpoints. Afterwards, the average mass m̄ of

all peaks in the range m±h/2 was computed. All peaks with mass m ∈ [m̄±h/2]

were subsequently removed from the data set. Using two overlapping histograms

allows the detection of clusters that are scattered over two adjacent bins in one

of the histograms. Different ways to determine ubiquitous masses were used and

reported by Levender et al. (42) and Kreitler (77).

4.2.5 Standard internal calibration - Alignment to a pre-

compiled list of calibration masses

Instead of using a predefined list of calibration masses, we chose the calibration

masses adaptively. The calibration list consisted of ubiquitous masses determined

for the data set (cf. Determining ubiquitous masses). Some of the peaks in the

list of ubiquitous masses could be assigned to tryptic autolysis products. These

matches were used to calibrate the abundant masses. The peak-lists in the data

set were then aligned to the calibrated list of ubiquitous masses.
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4.2.6 Filtering of ubiquitous masses prior to database

search

We removed ubiquitous masses that occurred in more than 7.7% of peak-lists

(42; 43). Filtering of ubiquitous masses was performed on a calibrated set

of peak-lists. As a result, we could use a small bandwidth of h = 0.2Da

(Equation 4.3) to determine ubiquitous masses. Next, we checked which of

them can be assigned with a significant Probability Based Mascot Score (PBMS )

to a sequence database entry and subsequently removed these masses from the

filtering list. Abundant masses assigned to a database entry usually result from

proteins multiply detected on a 2D-gel. The multiple identification is due to

different localisation of the protein on the 2D-gel caused by: protein modifications

(phosphorylation, glycosylation), different splice variants or by partial protein

degradation. Finally, we removed all peaks within the range ±0.1Da around the

ubiquitous masses.

4.2.7 Thin-plate spline

The thin-plate spline is the two-dimensional analogue to the cubic spline in

one dimension (59; 125). Let vi denote one of the error model coefficients,

e.g. intercept, at a target location (xi, yi). A thin-plate spline f(x, y) is a

smooth function which interpolates a surface that is fixed at the landmark points

Pi = (xi, yi) at a specific height hi. A thin-plate spline interpolation function can

be written as

f(x, y) = a1 + axx + ayy +

p∑
i=0

wiU(||(xi, yi)− (x, y)||) , (4.6)

where U(r) = r2 ln(r) is the radial basis function with r =
√

x2 + y2. This

equation is used to predict an unknown v for location (x, y), and is the unique

solution (59; 125) which minimises the equation:

I[f(x, y)] =

∫ ∫
R2

((
∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂x2

)2
)

dxdy . (4.7)
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This quantity was called the bending energy of the thin-plate spline function.

If noise in the determined coefficients vi is detected, one may wish to relax the

exact interpolation requirement (Equation 4.7). This can be accomplished by

multiplying equation 4.7 with a regularization parameter λ, a positive scalar, and

by adding the residual sum of squares, which gives:

H[f(x, y)] =
n∑

i=1

(vi − f(xi − yi))
2 + λ · I[f(x, y)] . (4.8)

Again, as in case of the cubic smoothing spline with the parameter λ,

the degree of smoothing can be determined. In our study, we utilised an

implementation of the Thin-Plate Spline (TPS) interpolation (126), according

to Doug Nychka (127).

4.2.8 Linear Regression and Peptide mass Rule algorithm

Wolski et al. (32) defined the distance measure

dλ(mi, mj) =

{
|mi −mj| mod λDB if |mi −mj| mod λDB < 0.5
−(1− |mi −mj| mod λDB) if |mi −mj| mod λDB ≥ 0.5 ,

(4.9)

which computes given λDB (the average peptide cluster distance for a sequence

database DB against which the search is performed, e.g. λDB = 1.000495) the

deviation of a peptide mass difference |mi − mj| from the closest monoisotopic

mass predicted by the PM-rule (51). If there was a linear dependence between

|mi−mj| and dλ(mi, mj), then it was caused by the slope of the mass measurement

error. If we computed all differences |mj − mi| and dλ(mi, mj) for peak pairs

mi, mj with |mi, mj| < 1400, we could determine the slope coefficient c1 using

linear regression, while fixing the intercept to zero (128). In order to make

the prediction robust against e.g. non-peptide peaks, we used a robust linear

regression (113). We removed the slope by multiplying each mass mi in the peak-

list by (1 − c1). Next, we identified the intercept, which was the average of the

distance dλ(mi, 0), and corrected for it.
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4.2.9 External Calibration

In order to model higher order systematic changes of mass dependent differences

∆ of experimental mexp and reference masses mtheo, the measurements must be

evenly distributed over the whole measurement range (70; 120). To model the

dependence ∆ ∝ m we used a cubic smoothing spline function (129; 130), given

by ∆ = f(m) + εi, where f is a smooth function, and εi ∼ N(0, σ2).

In our study, we used an implementation of the smoothing spline function,

provided by B.D. Ripley and Martin Mächler (based on Fortran code of T.

Hastie and R. Tibshirani) as part of the R-stats package. Other non-parametric

regression methods like local polynomial regression (131) generated similar results

for all types of instruments used in this study.

To obtain equidistantly spaced measurements of known masses, External

calibration was employed. Some sample spots on the sample support are dedicated

to calibration only. Calibration samples, of polymer mixtures (40), which yield

equidistant peaks were used to precisely estimate the mass-dependent difference

function.

4.2.10 Similarity/Quality measures for internal

calibration

Peak-lists can be easily aligned if they contain many matching peaks and the

masses of these peaks span a wide mass range. The alignment of a peak-list

pair (X, Y ) fails if no matching peaks are found. We described these properties

mathematically by the following similarity measure:

SX,Y =

(
n∑

i=1

n∑
j=i+1

|mj −mi|p
)1/p

, (4.10)

where n represented the number of matches, while mi and mj were the masses

of matching peaks. This measure computed the sum of all mass differences of

the matching peaks. The power p could be used to weight the large differences

stronger.
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4.2.11 Alignment of a set of peak-list using a Minimum

Spanning Tree

To align a whole data-set to a single peak-list and to align the peak-lists with

the highest similarity given by Equation 4.10, we computed for all peak-lists

pairs a distance matrix D by casting the similarities into dissimilarities. This

distance matrix can be represented by a complete, weighted graph G, where the

vertices V correspond to peak-lists and the edges are weighted with the pairwise

dissimilarity. To connect all vertices in the graph G with edges e of maximal

similarity, the Dijkstra-Prim algorithm for finding the Minimum Spanning Tree

(132) was implemented. We present here a modified version of this algorithm (see

Figure 4.1). The algorithm was modified with respect to the starting conditions.

As a starting vertex s we chose a vertex incident to an edge of smallest distance.

In addition to the minimum spanning tree T , the algorithm returns also a list

of calibration coefficients C, which align all peak-lists V in the data set to the

starting vertex (peak-list) s, and a list with connection weights W .

By traversing the edges in T , we reached each vertex in G, starting at s via

edges with the highest possible calibration similarity (smallest distance). This is

because we picked D(uv) with the smallest possible distance (Figure 4.1, line 5).

To align peak-list v to the starting peak-list s we needed to determine the

coefficients C(v, s) of the difference function f̂(v, s) (Equation 4.2). We could

obtain them from the coefficients C(v, u) and C(u, s) of the pairwise difference

function f̂(v, u) and f̂(u, s) by:

C(v, s) = C(v, u) ◦ C(u, s) =

{
cvs
1 = cvu

1 + cus
1 + cvu

1 cus
1

cvs
0 = cus

0 + cvu
0 + cvu

1 cus
0

, (4.11)

where e.g. cus
1 denotes the slope coefficient, and cus

0 the intercept of the function

f̂(u, s).
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Input: A graph G with m edges; each edge e has a given length l(e).

Initialise:

1 Pick a vertex s, which is incident to the edge with smallest distance D(e).

2 Set U := s and let T be a tree with one vertex, namely s.

3 Set the calibration coefficients C of s zero, C(s) := (0, 0).

4 Set measure of path weight W (s) := ∞.

Grow Tree: While U 6= V ,

5 Among all edges uv with u ∈ U and v ∈ V \U pick that one with smallest
D(uv).

6 Add uv to T and remove it from G by setting D(uv) = ∞.

7 Add v to U .

8 Compute C(v, u) where u is used as calibration peak-list. Assign
C(v, s) := C(v, u) ◦ C(u, s).

9 Set the measure of path weight W (v, s) = min(S(uv),W (u, s)) (S - similarity).

Output:

10 T – which is a maximum spanning tree.

11 C – which is the calibration list to align all peak-lists (vertices) to the starting
peak-list (vertex) s.

12 W – which are the weights of the path from s → v ∈ F .

13 S – modified similarity matrix.

Figure 4.1: Modified Dijkstra-Prim minimum spanning tree algorithm. The

algorithm starts with vertex s (peak-list) belonging to the peak-list pair with

smallest distance (line 1) (the standard algorithm starts with an arbitrary pair).

In addition to computing the minimum spanning tree T , the algorithm computes

the calibration constants C(v, s) (line 8) and the connection weight W (u) (line

9).
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Proof: The masses of the peak-list pairs (v,u), as well as (u,s) can be aligned

given the C(v, u) and C(u, s) using the equations

mu = mv + f̂A(v, u) = mv + cvu
1 ·mv + cvu

0 , and

ms = mu + f̂A(u, s) = mu + cus
1 ·mu + cus

0 (see Equation 4.2).

Hence,

∆A(v, s) = ms −mv

= mu + cus
1 ·mu + cus

0 −mv

= (mv + cvu
1 ·mv + cvu

0 ) + cus
1 · (mv + cvu

1 ·mv + cvu
0 ) + cus

0 −mv

= (cus
1 + cvu

1 + cvu
1 cus

1 )︸ ︷︷ ︸
cvs
1

·mv + cus
0 + cvu

0 + cvu
1 cus

0︸ ︷︷ ︸
cvs
0

.

C(v, s) was computed online using Equation 4.11 while growing the tree

(Figure 4.1, line 8). Subsequently, the algorithm returned a list C of

calibration constants, where C(v, s) described the calibration coefficients allowing

to transform peak-list v into the co-ordinate system of the peak-list of origin s.

In order to gain more confidence in the calibration constants in C, the

minimum spanning tree algorithm was iterated n times. For computing the

consecutive Ti, Ci, Wi, Di with i = 2, . . . , n we applied the dissimilarity matrix

Di−1 and set as a starting vertex si = s1 – the vertex incident to the edge of

highest similarity in D1. The returned Ti, Ci, Wi, Di differed since we removed in

iteration i− 1 each visited edge (Figure 4.1, line 6).

The calibration constants Ci(v, s) with i = 1, .., n should ideally be the same.

It is known that Ci(v, s) differ due to alignment errors. Therefore, we computed

a weighted average of the coefficients of the difference model. As weight of

each model Ci(v, s) we utilised the smallest pairwise calibration similarity Wi(v)

(Figure 4.1, line 9), on the path from s to v:

Cw(v, s) =

∑n
i=1 Wi(v) · Ci(v, s)∑n

i=1 Wi(v)
. (4.12)

We applied the calibration constants in Cw to align all peak-lists to the peak-

list s.
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4.3 Results and Discussion

4.3.1 Internal calibration using a pre-calibrated list of

calibration masses

Internal calibration is a widely used method in mass spectrometry. This method

fails however, either if no peaks matching known masses are present or if MS

peak assignment is false. A detailed description of the application of internal

calibration in a high throughput-MS setting, addressing the two points is given

by e.g. Chamrad et al. (43), Levander et al. (42) and Samuelson et al. (112). In

order to avoid the lack of MS peaks matching the known calibration masses the

authors used a pre-compiled list, e.g. trypsin autolysis peaks and unidentified,

frequently observed masses (133).

Chamrad et al. (43) initiated the calibration procedure with searches for

matching masses using a relatively large search window and iterated it with an

increased accuracy. In this scheme, a large search window allows false assignments

for calibration masses to occur more frequently. If a false assignment occurs in the

first iteration, then the determined calibration constants are false and the entire

calibration would be wrong. In the next round of calibration, where a search for

matching masses is performed with a higher mass accuracy, the calibration would

also fail. To prevent this, the authors (43; 112) checked the obtained calibration

coefficients against the peptide mass rule (PM-rule) (30; 51) and stopped further

calibration attempts where they disagreed substantially.

Levander et al. (42) introduced an adaptive method to eliminate low-

sensitivity auto-proteolysis trypsin peaks from the calibration mass list if no

high-sensitivity trypsin peaks e.g. (842.5099Da, 1045.5642Da, 2211.1046Da)

were found to decrease the chance of false matches. Unfortunately, this method

could only be applied for “tryptic” calibration peaks.

Figures 4.2 A & B demonstrate the limitations of a calibration list compiled

from ubiquitous masses of the whole data set. One can recognise that out of

three abundant masses (in red, Figure 4.2 A), only two can be practically used

for calibration. Specifically, the first and the third abundant mass in the list of

ubiquitous masses (Figure 1 A) match simultaneously two peaks in peak-list 3, 4
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and 5 (Figure 4.2 B). Thus, out of five peak-lists only three could be calibrated.

The second calibration mass is also of no use, since it is the only calibration

mass in the peak-lists 1 and 2 (although these peak-lists do contain other shared

masses). This illustrates that the usage of a global calibration list may fail to

calibrate a set of peak-lists.
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Figure 4.2: A: Histogram of masses present in the stick spectra in B. In red, marked

masses recognised as ubiquitous. B: Stick spectra of five hypothetical peak-lists. Red

vertical lines mark the position of ubiquitous masses determined using the histogram

in A. C: Single linkage-clustering dendrogram of the peak-lists in B. As dissimilarity

the mass measurement range (1500 Da) minus the range enclosed by matching peaks

was used. D: Minimum spanning tree.

It is therefore feasible to address the following questions: How can one obtain a

short calibration list to avoid spurious matches while at the same time it matching

a sufficient number of peaks in every peak-list of the set? In addition, how can

one minimise the initial search window to avoid false matches?
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4.3.2 Finding the optimal multiple peak-list alignment

using a modified Minimum Spanning Tree algorithm

In order to bypass the limitations imposed by global calibration we used an

observation made by Schmidt et al. (53). They noticed that protein samples

excised from high-resolution 2D-gels are usually not ideally separated and

therefore exhibit local similarities. Compiling a calibration list of abundant

masses from a whole data set obtained from a 2D-gel does not differentiate local

spectra similarities. For example peak-lists 1, 2 and 3 (Figure 4.2 B) share peaks,

which were not recognised as ubiquitous masses and hence not used further for

calibration using a global calibration list. The peak-list pairs (2, 3) and (1, 3)

shared more than one peak, thus allowing an easy calibration.

We explored the property of local pairwise peak-list similarities for calibration

of data sets. To achieve it, we used a modified minimum spanning tree(132)

algorithm on the complete weighted graph G(V, E, d), where the vertex set V

corresponds to the individual peak-lists and the edges E are weighted by a

dissimilarity measure d. We defined the measure between two peak-lists p1 and

p2 as d(p1, p2) = −s(p1, p2), where s represented a similarity measure defined in

Equation 4.10. This measure not only counts the number of matching peaks, but

also weights the mass range enclosed by them. Hence, it also considers that if the

matching masses lie very close to each other, the calibration model describes a

small mass range only, and can result in a large error when aligning masses that

are out of this range.

Using the dissimilarities one can compute a minimum spanning tree (Figure

4.2 D). The algorithm to compute the minimum spanning tree of the peak-list

data set starts by choosing a peak-list (named s), which belongs to the peak-list

pair of smallest dissimilarity, for example peak-list 2 or 3 in Figure 4.2. This

peak-list is the root of the growing tree T (Figure 4.1 line 1). Next, a peak-list

v was chosen, which easily could be aligned to peak-list u where u is a part of

the growing tree i.e. u ∈ T (Figure 4.1 line 5), for example peak-list v = 2

can easily be aligned to peak-list u = 3. Using linear regression, we computed

the coefficients c(v, u) = (c0, c1) of the affine function, modelling the absolute

mass differences of the peaks matching in the peak-list pair (v, u). Having these
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coefficients one can compute the calibration coefficients c(v, s) using the update

rule in Equation 4.11, which described the mass measurement error between the

peak-list v and the starting peak-list s. The calibration is not terminated until the

whole tree is built. We then added peak-list v to the tree T and have iterated the

procedure until all peak-lists were appended to the tree, for example by adding

peak-list 4, then 5 and finally 1 to T (Figure 4.2 D).

In the minimum spanning tree algorithm, the vertices are joined by edges

of smallest dissimilarity. Consequently, the minimum spanning tree algorithm

connects all peak-lists in the data set in the way that the length of the path from

the peak-list of origin (root of the tree: peak-list 3 in Figure 4.2 D) to any peak-

list in the data set is minimal. The algorithm for computing the agglomerative

clustering using the single linkage method (134; 135) works similarly like the

minimum spanning tree algorithm and therefore the dendrogram (Figure 4.2 C)

provides (as read from bottom to top) the order, by which the peak-list pairs were

chosen. The horizontal lines joining two dendrogram tree branches were drawn

at the height of the value of the minimal dissimilarity of two peak-lists in either

branch.

Finally, the algorithm returns a list of coefficients and a measure of confidence

for all peak-lists equalling the smallest similarity in the path from s to v.

Figure 4.3 A demonstrates how the samples on the target are connected by

the edges. Green dots (brighter) represent leaves, while blue dots (darker) denote

interior vertices. The peak-list of origin s is marked with a red cross-hairs (sample

position D15). Note that long peak-lists (brighter squares) are interior vertices of

the minimum spanning tree.

The strip-charts of mass ranges including peaks of the trypsin autolysis

products 842.508 and 2, 211.100 are presented in Figure 4.3 C1 and C2. One

can observe that the minimum spanning tree method works robustly on raw

data with a mass measurement error of up to ±0.7Da (black crosses), even if

the search for matching peaks when computing the similarities and calibration

coefficients was performed within a much smaller window of ±0.45Da. Notably, if

the maximal error among two peak-lists is much larger than the search window, it

is still possible to find a path, thus allowing alignment of two extreme peak-lists.
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Figure 4.3: A: Colour scheme coded peak-list lengths in dependence of the sample

support position. Blue dots – interior vertex, Green dots – end vertex, white arrows

– connecting edges of the minimum spanning tree. The red hair-cross indicates the

peak-list of origin s. B: Colour scheme coded slope coefficient of the mass- dependent

calibration function in relation to sample support position. C1, C2: Strip chart of the

data set for a mass range of 2210−2212Da (top) and 842−843Da (bottom), including

the tryptic autolysis peaks 842.508 and 2211.100Da. Black hair-crosses – masses of

peaks before calibration, red circles – masses after calibration. Vertical blue line – the

exact position of trypsin autolysis masses 842.508 and 2211.100Da.

Due to the fact that all peak-lists were aligned to the peak-list of origin s,

which did not necessarily match to the theoretical trypsin autolysis masses, a final

correction was required to calibrate the whole tree to the theoretical co-ordinate

system before database searches (not shown).

4.3.3 Determining the calibration model of the sample

support using Thin-Plate Spline interpolation

Because a large part of the mass measurment error is of systematic origin

and depends on the sample support position, the mapping of the calibration

coefficients across the entire MALDI plate was introduced by Gobom et al. (40)

and Moskovets et al. (121). The calibration coefficients were determined using a
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standard mixture of peptides with known masses. Subsequently, the calibration

coefficients were used during MS analysis in order to correct for the masses

measured afterwards on the same plate.

We introduced here a method that derives the calibration model from

calibration coefficients acquired from samples, which do not necessarily contain

internal standards. Instead of refining the minimum spanning tree calibration

model, we chose the peptide mass rule based approach, namely Linear Regression

on Peptide Rule (cf. Methods), to obtain the calibration coefficients. The

methods based on the peptide mass rule do not rely on the specification of

an initial search window or on internal calibrant masses. The peptide rule

based calibration method calibrates the peak-lists into the theoretical co-ordinate

system and increases the mass accuracy to approximately 0.1Da, but fails if the

peak-list is too short, which indeed could be observed for several samples (Figure

4.4 A and C). Figure 4.4 A provides the color scheme coded slope coefficient c1

as determined by the peptide rule based calibration method in dependence of the

target location. One can observe that some erroneous predictions occur (Figure

4.4 C; black crosses marked by magenta triangles). However, it is unbiased to

assume a smooth transition between adjacent positions of the sample support.

For example, Figure 4.3 B demonstrates that the slope coefficient of the sample

calibration-model obtained by the minimum spanning tree calibration methods

increases for samples close to the support border. This change is due to alterations

in the electric field E (Equation 4.13) influencing the flight velocity given by

uD =

√
2Esa

z

m
, (4.13)

where sa is the size of the acceleration region, z is the ion charge and m is the

mass of the ion. We determined the systematic change of the slope using the thin

plate spline interpolation method (59; 127). At first, we computed the thin plate

spline with a degree of smoothing λ = 5 · 10−2 (see Equation 4.8). Calibration

models with slope coefficient c1 that varies more than ±1 · 10−4 or with intercept

coefficient c0 varying more than 0.2Da from the one predicted by the thin plate

spline were discarded. Using the remaining calibration models, the thin plate

spline was recomputed with smaller degree of smoothing λ = 1 · 10−3. Figure 4.4
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Figure 4.4: A : Colour scheme coded slope coefficients c1 of the mass measurement

error determined by the peptide rule based calibration method. B: The slope coefficient

as predicted from the refined samples determined by Thin plate spline with λ = 0.001.

C: Strip chart of the data set for a mass range of 2210−2212Da (C1) and 842−843Da

(C2), including the tryptic autolysis peaks 842.508 and 2211.100Da. Black crosses –

masses of peaks predicted by the peptide rule based calibration method, red circles –

masses predicted by the thin plate spline calibration method. Vertical blue line – exact

position of trypsin autolysis masses 842.508 and 2211.100Da. Dashed red vertical line

– mass of the extreme peptide masses after thin plate spline calibration.

B, demonstrates the Colour scheme coded slope coefficient c1, as estimated by the

refined thin plate spline. This model resembles the one generated by the minimum

spanning tree method (Figure 4.3 B). We corrected the peak-lists masses (black

cross hairs, Figure 4.4 C), using the thin plate spline values as estimates of the

slope coefficients, and as intercept estimate we used the average intercept of all

coefficients of the refined calibration models to obtain the calibrated masses (red

circles).

The thin plate spline method reduced the mass measurement error of a peak-

list compared to any other peak-list in the data set (vertical red, dashed line

in Figure 4.4 C) down to 0.3Da, as compared to 1.5Da for raw data. This is

approximately a 5- fold increase of a mass measurement accuracy. This decrease
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of the mass measurement error enabled us to utilise the minimum spanning tree

algorithm with an accuracy of ±0.15Da, reducing further the probability of false

assignments of calibration masses. In addition, the histogram of dissimilarities

computed for all peak-list pairs (Figure 4.5, A) shows for thin plate spline

calibrated data lower values of dissimilarity (in red) as compared to the raw data

(in grey), even if the first dissimilarities were computed with a search window

of 0.15Da and the second ones with a search window of 0.45Da. A subsequent

calibration using the minimum spanning tree method decreased further the mass

measurement error (Figure 4.5 B).
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Figure 4.5: A: Histogram of pairwise peak-list similarities. In gray – raw data and

similarities computed with an accuracy of ±0.4Da. In red – similarities computed with

accuracy of ±0.15Da using LR/PR and thin plate spline calibrated data. B: Strip

chart of peak-lists. Grey triangles – masses after thin plate spline calibration, green

circles – data after thin plate spline and minimum spanning tree calbration, red circles

– data calibrated into the theoretical co-ordinate system, defined by theoretical tryptic

autolysis masses (blue vertical lines.)
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4.3.4 The mass measurement error

Prior to the calibration, the main error source is due to different drift velocities of

the ions causing an increase of the absolute mass measurement error, proportional

to mass and best described by the slope coefficient c1 6= 0 and measured as relative

error using parts per million ppm (Table 4.1, row 1 and 2). After removal of this

error using calibration methods, for example the thin plate spline calibration

(Table 4.1, row 3,4) or thin plate spline with subsequent minimum spanning tree

calibration (Table 4.1 row 5,6), the main contribution to the mass measurement

error was due to peak detection performance. We were aware, however, of

systematic changes of the mass measurement error, which can be described using

higher order polynomials (120; 122). We have removed higher order terms of

the mass measurement error, by applying external calibration before to other

calibration procedures (cf. Methods : External Calibration). The change of peak-

detection quality was negligible in the range of 500− 4000Da. Figure 4.6, as well

as Table 4.1, illustrates that after calibration the absolute mass measurement

error was smaller for the peak with higher mass (2211.1) than that of the peak

with a lower mass (842.508) if the peak intensity and consequently the Signal

to noise ratio remained sufficiently high. Therefore, we performed the database

searches by specifying the search window in Da instead of ppm.

Calibration Mass SN [Da] SN [ppm]

Raw data 842.508 0.1 118

Raw data 2211.1 0.3 135

TPS 842.508 0.03 37

TPS 2211.1 0.057 26

TPS-MST 842.508 0.012 14.5

TPS-MST 2211.1 0.01 4.6

Table 4.1: Mass Measurement Error. Standard deviation (SN) observed for

the trytpic autolysis peaks 842.508 and 2211.1. Raw data; TPS - thin plate

spline calibrated data; TPS-MST - The data, which undergone Thin-Plate Spline

(TPS)(pre-processing), followed by Maximum Spanning Tree (MST) calibration
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Figure 4.6: Stick spectrum of the merged data set of 380 peak-lists. The black vertical

lines represent peaks calibrated using the thin plate spline and minimum spanning tree

method. Their height equals their intensity. Green line – average mass of all peaks

in the region 842 − 843Da (A) and 2210.5 − 2211.6Da (B). The orange vertical lines

represent the average mass ±, the standard deviation of the peak masses in each region.

Magenta line – density of peak-masses.

4.3.5 The optimal size of the search window

Figure 4.6 and Table 4.1 demonstrate that it is possible to reduce the mass

measurement error to approximately ±10ppm for most of the peak-lists in a

dataset consisting of 380 spectra, by applying the thin plate spline - minimum

spanning tree calibration sequence. Nevertheless, in this dataset one can

observe peak-lists that do not exhibit such high mass measurement accuracy.

Consequently, if the database searches were performed with a search window of

10ppm, these PLs would not be identified.

The optimal size of the search window was determined by searching of four

internally calibrated data sets with five different search window sizes, namely

0.5, 0.2, 0.1, 0.05 and 0.02Da using the Mascot (55) search algorithm. The search

window of 0.2Da generated the highest identification rate. Figure 4.7 shows the

relative identification rate (identification rate / max( identification rate ) ·100%).

Allowing the search window to be larger e.g. 0.5Da, decreases the identification

rate by increasing the rate of false negatives, while a smaller window e.g. ±0.05Da

decreases it by rejecting true matches (55). Because the identification rate for
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a search window of 0.1Da is only slightly worse than one of 0.2Da, and since it

minimizes the risk of false positive matches, we further compared the practical

performance of the calibration methods with a search window of 0.1Da.
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Figure 4.7: The optimal search window. Comparison of the relative identification

rates of internally calibrated data (Y-axis) given a search window size of 0.5Da, 0.2Da,

0.1Da, 0.05Da and 0.02Da, respectively (X -axis). Red – Two Reflex (Pirellula)

dataset, Black – Two Ultraflex (Mus Musculus) datasets

Prior to the database searches we removed all masses that occur in more

than 8% of spectra, as it significantly increased the identification rate (42; 43)

(cf. Methods – Filtering of ubiquitous masses prior to database search). The

sequence data base search was performed using the Mascot (55) search software

version 1.8.1. We interfaced the search server from within R using the in-house

developed R package msmascot (136).

4.3.6 Combining different calibration methods and their

comparison

All parameters were fitted to a data set optimised for internal calibration,

measured on an Autoflex MALDI-TOF MS (84) instrument. We applied the
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calibration methods introduced (minimum spanning tree and thin plate spline

based calibration) without changing the parameters to two sample sets obtained

using two different instruments, namely a Reflex MALDI-TOF MS and a Ultraflex

MALDI-TOF MS instrument. This was executed to illustrate that our methods

are robust with respect to different instruments even if the parameters were not

optimised for the respective machines.

We combined the different pre-calibration and calibration methods resulting

in six different calibration sequences (summarised in Table 4.2). We compared

the performance of the minimum spanning tree and thin plate spline calibration

sequence to the internal calibration (IC), and the peptide rule based calibration

methods (LR/PR). Furthermore, we investigated if the identification rate of the

thin plate spline based method could be improved further by subsequent internal

(TPS-IC) or minimum spanning tree calibration (TPS-MST). The R (137) scripts

implementing each sequence can be found in the samples directory of the mscalib

BioConductor (138) package.

Abbreviation Description

1 LR/PR peptide rule calibration.
2 IC internal calibration 450 ppm and 250 ppm.
3 MST minimum spanning tree calibration.
4 TPS LR/PR and subsequent thin-plate spline calibration.
5 TPS-IC thin plate spline calibration and subsequent internal calibration.
6 TPS-MST thin plate spline calibration and subsequent MST calibration.

Table 4.2: Calibration sequences. LR/PR – linear regression on peptide rule, IC

– Internal calibration with two iterations. (Bruker Reflex – mass measurement

error window of 450 and 250ppm, Bruker Ultraflex – 250 and 125ppm); MST –

minimum spanning tree calibration method computed with an search window of

±0.4Da; TPS-IC - Pre-processing (thin plate spline calibration) and subsequent

internal calibration with a mass measurement error window of 250ppm; TPS-MST

- thin plate spline pre-processing and an minimum spanning tree with a search

window of ±0.25Da;

The only calibration method for which parameters were optimised with respect

to the instrument was the standard internal calibration (IC) method, which
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employs a pre-compiled calibration list of theoretical trypsin autolysis peaks and a

calibrated set of ubiquitous masses (cf. Methods – Standard internal calibration).

In case of the peptide rule based calibration (LR/PR) method we applied an

additional filtering of the calibration-models. Only models with an intercept

coefficient c0 satisfying −0.4Da < c0 < 0.4Da and slope coefficients c1 with

−5 · 10−3 < c1 < 5 · 10−3 were kept. In order to avoid falsely calibrated peak-lists

we performed the filtering.

The identification rates were defined as the number of identified samples by at

least one of the calibration sequences divided by the number of samples submitted

for searches
#{CS1 ∪ CS2 ∪ · · · ∪ CS6}

number of samples submitted for search
, (4.14)

where CSi indicates the set of identified samples by one of the calibration

sequences (Table 4.2), and #{A} denotes the number of elements in a set A.

The identification rates were 74%, 87%, 79%, 85% for the Pirellula (Reflex) data

set, with an overall identification rate of 82%, whereas for the Mus musculus

(Ultraflex) data set they were 51%, 72%, 35%, 51%, 27%, with an overall

identification rate of 58%. The lower identification rate of the Mus musculus

data set can possibly be explained by the fact that it was matched with a

larger database. Therefore, more matching peaks are required to make significant

assignments to a data base entry.

In order to directly compare the identification rates for both data sets and

each calibration sequence, we computed the relative identification rate. It was

defined as the ratio of the number of identified samples calibrated by a sequence

(numerator) and of the number of identified samples, which could be identified

by at least one method (denominator):

#{CSi}
#{CS1 ∪ CS2 ∪ · · · ∪ CS6}

. (4.15)

The relative identification rate is indicated by the dots, joined by continuous lines

for readability purposes only, in Figure 4.8. The dashed lines denote the average

of the sequence coverage of all identified samples. Figure 4.8A presents the results

for the four Pirellula data sets, while Figure 4.8B shows the results of five Mus

musculus data sets.
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Figure 4.8: Relative identification rate in % (continuous line – left y-axis) and sequence

coverage in % (dashed lines - right y-axis). LR/PR – linear regression on peptide rule,

IC – two step internal calibration, MST – minimum spanning tree calibration, P –

thin plate spline calibration, TPS-IC – thin plate spline calibration and subsequent

internal calibration, TPS-MST - thin plate spline calibration and subsequent minimum

spanning tree calibration. Panel A - Reflex datasat, Panel B - Ultraflex datset, Panel

C - Average of Dataset (see text for details).

Only in one case of one data set was a single calibration sequence: thin

plate spline calibration and subsequent minimum spanning tree calibration (TPS-

MST) (see Table 4.2) able to identify all peak-lists (100% identification rate) and

therefore it completely dominated over the other methods (black line, Figure 4.8

A). In the case of the Ultraflex data set (Figure 4.8 B) we observed that the

TPS-MST method had the highest identification rate, while in Reflex data set

(Figure 4.8 A) it achieved the highest performance for approximately half of the

data sets.

Figure 4.8 C illustrates the averaged relative identification rate of the

calibration methods for the Ultraflex and Autoflex data sets. In addition, it

demonstrates that the ordering of the calibration methods according to the

relative identification rate does not depend on the value of the Probability

Based Mowse Score (55) (PBMS) used as identification threshold. The dashed

lines (Figure 5) indicate the identification rates obtained for a PBMS 5 units

higher than the one used to identify the samples with a 0.5% significance level

(continuous lines).

Interestingly, the thin plate spline smoothing method resulted in an overall

higher identification rate than the other methods tested on raw data (peptide
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rule based calibration, internal calibration, minimum spanning tree-calibration),

except for one case of the Ultraflex data set. Furthermore, a combination of the

internal calibration with thin plate spline calibration (TPS-IC) did not increase

either the sequence coverage (dashed lines) or the identification rate of the thin

plate spline method applied alone.

In two out of the four Reflex data sets, the minimum spanning tree method

applied on thin plate spline processed data (P-thin plate spline Figure 4.8 A,

dashed lines) slightly decreased the sequence coverage indicating a reduction of

calibration accuracy. For the Ultraflex data sets, the sequence coverage correlated

well with the identification rate and the combination of the thin plate spline with

minimum spanning tree method accomplished the highest performance.

Moreover, if similar identification rates of the peptide rule based calibration

and the internal calibration were observed, the peptide rule based calibration

method provided higher sequence coverage (Figure 4.8 B). This could be explained

by the fact that the peptide rule based method calibrated well the peak-lists

possessing many peptide peaks. Such peak-lists potentially contain the higher

sequence coverage.

4.3.7 The BioConductor package mscalib

All of the calibration methods are part of the mscalib programme, which is

available as a BioConductor (139) package. The Bioconductor project is an

initiative for the collaborative creation of extensible software for computational

biology and bioinformatics (138). The scripts carrying out the calibration

sequences tested, can be found in the subdirectory /samples of the package.

Furthermore, in the same directory and in the directory /doc there are two

vignettes (140) with detailed descriptions of two selected calibration sequences.

4.4 Conclusions

While the methods described in this study significantly improve the calibration

of raw data, they do not perform better than other published calibration routines

which reduce the mass measurement error to 10ppm or below. The real advantage
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of the methods described here is that they are not dependent on the presence of

internal or external calibrants, required to correct for the affine component of the

mass measurement error. Furthermore, the calibration methods described in this

study allow a larger fraction of peak-lists in the datasets to be calibrated than

the reference internal calibration method would do.

The thin plate spline method deals with systematic detrimental calibration

effects that are due to imperfections in the geometry of the electric field over

the MALDI sample plates. Usage of thin plate spline calibration results in up to

10% higher identification rates, at least for the Bruker mass spectrometers, than

the internal calibration. The thin plate spline calibration procedure enables, for

most of the samples deposited on the sample support, to obtain mass accuracy in

the range of ±0.1Da. Moreover, the TPS method does not require the presence

of internal calibrants since it relies on calibration coefficients acquired from a

calibration method based on the peptide mass rule.

The minimum spanning tree method is able to increase the identification rates

obtained by the thin plate spline method for protein samples separated by a

2D-Gel electrophoretic procedure. Furthermore, the parameters optimised for

one instrument (Autoflex) can be directly utilised for other instruments (Reflex,

Ultraflex).

In this work, we have only examined a version of the minimum spanning

tree algorithm that builds a single tree for all peak-lists. This is adequate if the

data are a set of peak-lists with smooth transitions in the similarity values. If

this is not the case, it might be more appropriate to compute a forest of several

minimum spanning trees. We have examined, however, only a single peak-list

similarity measure (Equation 4.10) for peak-lists calibration. It is possible that

better similarity measures can still be generated and subsequently applied for

peak-lists calibration.

Complete utilisation of microtitre plates and sample supports is not only

rational with respect to increased accuracy of the thin plate spline method, but

also with respect to the idea of high throughput experiments – maximal utilisation

of energy and resources. Dense excision of spots from 2D-gels not only increases

the performance of the minimum spanning tree method, but also identifies novel

proteins. Hence, the main contribution of this manuscript is to present two
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calibration methods, compatible with the principle of high throughput sample

processing and aims to identify a maximum of the proteins resolved on 2D-gels.

However, no single ”best-calibration” method exists. Each of the methods

utilises different properties of the peak-lists. Consequently, applying these

methods in parallel and determining the total (union) of the identified samples

provides the highest identification rate.
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