
Chapter 3

A mathematical model of the

peptide mass rule with

applications

3.1 Introduction

The mass spectrometric technique is widely used to identify proteins in biological

samples (6; 8; 9; 10). The proteins are cleaved into peptides by a residue specific

protease, e.g. trypsin. The resulting cleavage products can then be analysed by

peptide mass fingerprinting (18) or subjected to MS/MS fragment ion analysis

(24; 25), which both rely on the comparison of peptide or peptide fragment ion

spectra with spectra simulated from protein sequence databases (104).

The sensitivity and specificity of the peptide identification can be increased

by various post-processing methods, for example calibration (30; 37; 40; 41) and

identification of non-peptide peaks (30; 42; 43). The fact that peptide masses are

not uniformly distributed across the mass range but form equidistantly spaced

clusters (51) is employed by some of these methods. In dependence on the atomic

composition of the peptide, the monoisotopic mass would emerge below (e.g.

cystein rich peptides) or above (e.g. lysine rich peptides) the cluster centres.

The deviation from the cluster centre is a result of the mass defect, which is the

difference between the nominal mass and the monoisotopic mass (Table 3.1). The

mass defect is a result of atom fusion (79; 105).
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3.1 Introduction

Atom monoisotopic nominal mass defect

1 H 1.00782 1 0.00782

2 C 12.00000 12 0.00000

3 N 14.003074 14 0.003074

4 O 15.99491 16 −0.00032

5 S 31.97207 32 −0.00087

Table 3.1: Masses of Atoms

Calibration Mass spectrometric peptide peak-lists of peptide mass finger print

experiments (19) can be calibrated by comparing the location of measured peptide

masses with the location of the peptide mass cluster centres. Gras et al. (35)

suggested the use of maximum likelihood methods in order to determine the

calibration coefficients a and b. They defined the likelihood function by:

∑
i

P (ami + b, ∆m) , (3.1)

where mi is the i-th mass in the peak-list, and ∆m is a search window.

P (m, ∆m) is the probability to find a mass in [m, m + ∆m] given the theoretical

distribution of peptide masses. The parameters a, b for argmax

∑
i P (ami+b, ∆m)

can then be used to calibrate the peak-lists. The authors, however, do not provide

information on whether P (m, ∆m) was determined from the exact distribution of

the peptide masses or if a model approximating the distribution was used. They

also do not mention which algorithm was used to maximise the likelihood. They

reported that a mass measurement accuracy of 0.2Da and better was obtained

after calibration.

Wool and Smilansky (30) have used Discrete Fourier Transformation (DFT)

to determine the frequency λ and phase ϕ of a peak-list or mass spectrum. By

comparing the experimental λ and ϕ with the theoretical λ = 1.000495 and ϕ = 0,

they determined the slope and intercept of the calibration function. The authors

reported a 40−60% reduction of the mass measurement error. Furthermore, they

presented a scoring scheme for sequence database searches. This scoring scheme
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approximates the probability P (m, ∆m) to observe a peptide peak of mass m

with given measurement error ∆m.

Matrix noise Filtration. The most widely used MALDI matrices for

the analysis of peptides are 3,5-Dimethoxy-4-hydroxycinnamic acid (synapic

acid), alpha-Cyano-4-hydroxycinnamic acid (alpha cyano) (70) and 2,5-

dihydroxybenzoic acid (DHB) (52). Unfortunately, clusters of matrix molecules

can be ionised and cause peaks in the same mass range where peptide peaks are

measured. Matrix aggregate formation can be minimised but not eliminated by

adding ammonium acetate (52).

Some of the database search scoring schemes incorporate the number of signals

(peaks) not assigned to a protein when computing the identification scores (55).

Therefore, the presence of matrix signals in MS spectra decreases the sensitivity

of the MS spectra interpretation. Hence, the removal of peaks strongly deviating

from the cluster centres is applied (52; 53). The measure of deviation from cluster

centres introduced here provides a simple tool to filter non-peptide peaks.

Data Reduction A further application which employs the property of peptide

mass clustering is the binning of the mass measurement range. By applying this

technique the amount of data is reduced, thus increasing the speed with which

the pairwise comparison of spectra can be made (5; 50).

All these applications require us to know the exact location of or the distance

between the peptide mass cluster centres. The distance between the cluster

centres, which we will henceforth call wavelength λ, is commonly computed

by first generating an in silico digest of the database. Afterwards, the linear

dependence between the decimal point and the integer part is determined by

regression analysis, for a relatively small mass range of 500 to 1000Da (53).

Various authors report different values of the distance between clusters: Wool

and Smilansky reported 1.000495 (30), Gay et al. 1.000455 (51), while Tabb et

al. used a wavelength of 1.00057 (5).

In this work we present an analytical model allowing us to predict the mass of

the peptide cluster centres. The parameters of the model include: the frequencies

of the amino acids in the sequence database (54), the average protein length of
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3.2 Methods

the proteins in the database, the cleavage sites of the proteolytic enzyme and the

cleavage probability. Based on this model we introduced a measure of deviation of

peptide masses from the nearest cluster centre, which is a refinement of a measure

proposed by Wool and Smilansky (30). Using this distance measure, we developed

a calibration procedure which employs least squares linear regression in order to

determine the affine model of the mass measurement error and subsequently to

calibrate the spectra. Using this method we reached higher calibration accuracy

as reported by Wool and Smilansky (30), and Gras et al. (35). We used the same

distance measure to identify and remove non-peptide peaks prior to database

searches performed by the Mascot search engine (55).

3.2 Methods

3.2.1 Data sets

In this study, we used three data sets generated in different proteome analyses:

1. A bacterial proteome of Rhodopirellula baltica (unpublished data) (1, 193

spectra) measured on a Reflex III (84) MALDI-TOF instrument.

2. A mammalian proteome of Mus musclus (1, 882 spectra) measured on an

Ultraflex (84) MALDI-TOF instrument.

3. A plant proteome of Arabidopsis thaliana (106) measured on an Autoflex

(84) MALDI-TOF instrument.

All PMF MS spectra derive from tryptic protein digests of individually

excised protein spots. For this purpose, the whole tissue/cell protein extracts

of the aforementioned organisms were separated by two-dimensional (2D) gel

electrophoresis (13) and visualised with MS compatible Coomassie brilliant blue

G250 (106). The MALDI-TOF MS analysis was performed using a delayed

ion extraction and by employing the MALDI AnchorChip �targets (Bruker

Daltonics, Bremen, Germany). Positively charged ions in the m/z range of

700− 4, 500m/z were recorded. Subsequently, the SNAP algorithm of the XTOF

spectrum analysis software (Bruker Daltonics, Bremen, Germany) detected the
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3.2 Methods

monoisotopic masses of the measured peptides. The sum of the detected

monoisotopic masses constitutes the raw peak-list.

3.2.2 Calibration

In order to perform filtering of non-peptide peaks the dataset must be calibrated

to high mass measurement accuracy. To align the dataset we used a calibration

sequence (41) consisting of several calibration procedures.

First calibration using external calibration samples was performed in order to

remove higher order terms of the mass measurement error (40). Next, the affine

mass measurement error of all samples on the sample support was determined

by linear regression on the peptide mass rule introduced here. Subsequently, the

thin plate splines were used to model the mass measurement error in dependence

of the sample support positions to calibrate the spectra. Finally, the spectra were

aligned using a modified spanning tree algorithm (41).

Mascot Database Search

Processed peak-lists were then used for the protein database searches with the

Mascot search software (Version 1.8.1) (55), employing a mass accuracy of

±0.1Da. Methionine oxidation was set as a variable and carbamidomethylation

of cysteine residues as fixed modification. We allowed only one missed proteolytic

cleavage site in the analysis.

3.2.3 Sequence databases

We determined the amino acid frequencies of the nine protein sequence databases

listed in Table 3.2. Seven of these databases are organism specific subsets of the

NCBI non-redundant protein database (107).

3.2.4 In Silico Protein Digestion

The theoretical digestion of the protein databases was done with ProtDigest (110),

a command line program taking a protein sequence database file in fasta format

and cleavage specificities as input. Other optional input parameters included fixed
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Organizm length fF fS fT fN fK fY fE fV fQ fM

Arabidopsis t. 422.40 4.27 9.01 5.11 4.41 6.36 2.86 6.74 6.69 3.52 2.44

Drosophila m. 506.20 3.48 8.33 5.68 4.80 5.70 2.91 6.41 5.88 5.21 2.33

Escherichia coli 300.30 3.86 6.25 5.67 4.26 4.59 2.96 5.65 6.91 4.40 2.67

Homo sapiens 360.40 3.61 8.61 5.55 3.55 5.54 2.86 6.81 6.02 4.80 2.12

Mus musculus 378.30 3.74 8.58 5.55 3.59 5.71 2.88 6.75 6.11 4.74 2.22

Rattus norvegicus 484.40 3.81 8.33 5.52 3.59 5.62 2.74 6.77 6.32 4.64 2.28

Saccharomyces c. 447.00 4.47 9.02 5.93 6.18 7.26 3.41 6.43 5.58 3.94 2.10

Rhodopirellula b. 314.70 3.70 7.37 5.85 3.37 3.44 2.09 6.02 7.05 4.04 2.43

SwissProt DB 367.90 4.03 6.89 5.47 4.22 5.93 3.09 6.59 6.70 3.93 2.38

Mean 397.96 3.89 8.04 5.59 4.22 5.57 2.87 6.46 6.36 4.36 2.33

SD 71.90 0.32 0.98 0.24 0.88 1.07 0.35 0.39 0.50 0.54 0.18

Min 300.30 3.48 6.25 5.11 3.37 3.44 2.09 5.65 5.58 3.52 2.10

Max 506.20 4.47 9.02 5.93 6.18 7.26 3.41 6.81 7.05 5.21 2.67

reference fC fL fA fW fP fH fD fR fI fG

Arabidopsis t. (107) 1.80 9.52 6.36 1.26 4.80 2.28 5.43 5.39 5.34 6.41

Drosophila m. (107) 1.95 9.02 7.36 1.00 5.46 2.64 5.18 5.53 4.96 6.17

Escherichia coli (107) 1.17 10.23 9.27 1.50 4.32 2.22 5.21 5.54 5.94 7.38

Homo sapiens (107) 2.24 9.78 6.98 1.35 6.22 2.51 4.73 5.64 4.28 6.80

Mus musculus (107) 2.29 9.92 6.86 1.29 6.03 2.57 4.76 5.51 4.38 6.54

Rattus norvegicus (107) 2.29 10.07 6.88 1.25 5.97 2.58 4.77 5.59 4.51 6.49

Saccharomyces c. (107) 1.30 9.52 5.51 1.04 4.39 2.18 5.76 4.41 6.58 5.00

Rhodopirellula b. (108) 1.27 9.31 9.25 1.54 5.33 2.31 6.23 6.96 4.95 7.48

SwissProt (109) 1.57 9.63 7.80 1.17 4.86 2.27 5.30 5.29 5.92 6.94

Mean 1.76 9.67 7.36 1.27 5.26 2.40 5.26 5.54 5.21 6.58

SD 0.45 0.38 1.25 0.18 0.71 0.18 0.50 0.65 0.80 0.74

Min 1.17 9.02 5.51 1.00 4.32 2.18 4.73 4.41 4.28 5.00

Max 2.29 10.23 9.27 1.54 6.22 2.64 6.23 6.96 6.58 7.48

Table 3.2: Protein lengths and amino acid frequencies (one letter code) for nine

in the nine databases. length – average protein length in database, reference –

database reference; fi – amino acid frequencies

as well as variable modifications and number of missed cleavages. The output file

contains all theoretically resulting peptides with their corresponding masses.

3.2.5 Regression analysis

The complete tryptic insilico digest of the SwissProt (109) database generated

more than 7 million peptides. In order to compute the slope coefficient we were

sampling 500 times 10000 monoisotopic and corresponding nominal masses. For

each sample we fitted the affine linear model with and without fixed intercept

using linear regression. The slope and intercept coefficients in Figure 3.1 are the
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medians of these 500 samples.

3.2.6 Wool and Smilanskys algorithm

Wool and Smilansky (30) use a DFT to determine the calibration coefficients.

The wavelength λ of a peptide peak-list can be determined by convolution. The

“time domain” is the peak-list X with masses xi. We computed the amplitude A

(Equation 3.5) for a small range of frequencies ω ∼ f = 1/λ around λtheo. We

scanned the range λ ∈ λtheo±0.0005 in steps of 5 ·10−7 computing, for each λ, the

real part (Equation 3.4), the imaginary part (Equation 3.3) and the amplitude

A(ω)(Equation 3.5):

f = 1/λ ω = 2πf , (3.2)

=(ω) =
∑

i

sin(ωxi) , (3.3)

<(ω) =
∑

i

cos(ωxi) , (3.4)

A(ω) =
√
=(ω)2 + <(ω)2 . (3.5)

The wavelength of the masses in the peak-list is the λ at the maximum of

A(ω). The phase for this ω0 = ωmax A(ω) can be determined by:

ϕ0 = ϕ(ωmax A(ω)) = arctan(
=(ω0)

2

<(ω0)2
) . (3.6)

The peak centres are at the line:

Ḿ =
2 · π
ω0

·N +
ϕ0

ω0

where N = 1, 2, . . . , n . (3.7)

But they should be on the line:

M = λtheo ∗N . (3.8)

Solving Equation 3.7 for N and substituting N in the Equation 3.8 yields the

Equation:

36



3.3 Results and Discussion

M =
λtheo · ω0

2 · π
(Ḿ − ϕ0

ω0

), (3.9)

α =
λtheo · ω0

2 · π
and β =

ϕ0

ω0

and (3.10)

mcorr = α(mexp − β) = αmexp − αβ, (3.11)

which can be used to correct the masses. This is an affine linear model with

two coefficients α and αβ.

3.3 Results and Discussion

3.3.1 A simple way to predict the peptide mass cluster

centres of a protein database

Figure 3.1 shows the mass defect, the difference of the monoisotopic (m(M)) and

nominal (m(N)) masses of peptides of a sequence specific in silico protein sequence

database digest (109), as a function of m(N). The peptides were produced with

the restriction that no missed cleavages were allowed. A strong linear dependence

of the mass defect on m(N) can be observed.

The first model of this dependence which we examined was m(M) − m(N) =

c1 · m(N). We fixed the intercept at 0, because a hypothetical peptide with a

nominal mass of 0 must have a monoisotopic mass equal to 0. The slope coefficient

c1, determined by linear regression (cf. Methods) equalled 4.98 · 10−4(Figure 3.1,

Panel A – red dashed line), which is a value similar to the values 4.95 · 10−4

reported by Wool and Smilansky (30).

We were interested in determining the dependence between monoisotopic

and nominal mass analytically. For example, the monoisotopic mass (m(M)) of

hypothetical peptides built only of one amino acid i can be predicted, given their

nominal mass (m(N)) by m
(M)
i = λim

(N)
i when λi = m

(M)
i /m

(N)
i . For peptides

generated by random cleavage of protein sequences from a protein database this

dependence is approximated by:

λDB =

∑
i∈AA fim

(M)
i∑

i∈AA fim
(N)
i

, (3.12)
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Figure 3.1: The peptide mass rule. Panel A: Scatterplot of m(M) − m(N) against

the m(N) mass (m(M) - monoisotopic mass, m(N) − nominalmass). Inset top left -

colour coded number z of peptide masses per 0.25 pixel. Red dashed line – the model

determined by linear regression with intercept fixed at 0. The magenta line represents

the cluster centres predicted by linear regression.

where fi is the frequency of the amino acid i in the database.

Now write m
(M)
i = λDBm

(N)
i + εi. Substituting this is (3.12), it follows

that
∑

i∈AA fiεi = 0. Therefore, for an amino acid randomly selected from

the database, with frequencies fi, the expectation of εi is zero. Now consider

a peptide made of a random selection of J amino acids, i(1), . . . , i(J). The ratio

of monoisotopic to nominal mass for this peptide would be:

λp =

∑J
j=1 m

(M)
i(j)∑J

j=1 m
(N)
i(j)

=
λDB

∑J
j=1 m

(N)
i(j) +

∑J
j=1 εi(j)∑J

j=1 m
(N)
i(j)

.

If
∑

i εi(j) were uncorrelated with (
∑

i m
(N)
i(j))

−1 for a random selection of amino

acids, then λp would have expectation λDB. Of course, there may be a relationship

between εi and m
(N)
i and we would wish to use any such relationship to improve
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prediction of m
(M)
i .

Figure 3.2 visualises the frequencies fi of all amino acids in the Uniprot

database (109) with their respective λi plotted on the abscissa. The position

of the red vertical line on the abscissa denotes λDB (Equation 3.12) and equals

λDB = 1.000511. The dotted, dashed and dot dashed lines indicate the

wavelength λ of DHB, alpha-cyano and sinapic acid mass spectrometric matrix

clusters, respectively.
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Figure 3.2: Bar-plot of the Amino Acid frequencies. The bars are drawn on the position

of λi = m
(M)
i /m

(N)
i , for each amino acid i. The red line indicates λDB computed

using the Equation 3.12. Dotted blue line – λDHB 2,5-dihydroxybenzoic acid; dashed

line – λalphacyano alpha-Cyano-4-hydroxycinnamic acid; dot dashed line – λsinapica. 3,5-

Dimethoxy-4-hydroxycinnamic acid.

When testing for the significance of the intercept coefficient in the regression

model mM ∝ λmN of a sequence specific (Tryptic) in silico database digest, we

found that the intercept coefficient must be included into the model. Therefore,

the extended model of the monoisotopic peptide mass cluster centres was:

m(M) = c1 ·m(N) + c0 . (3.13)

Subtracting mN from each side of Equation 3.13 we obtained ∆ = m(M) −
m(N) = (c1−1)·m(N)+c0. The coefficients of the affine linear model of the cluster
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centres, determined using regression analysis of ∆ = m(M)−m(N) on m(N) were

c0 = 0.029 and (c1 − 1) = 4.85 · 10−4.

The maximal difference between the prediction of m(M) using m(M) =

1.000499 ·m(N) and m(M) = 1.000485 ·m(N) + 0.029 is 0.022 Dalton for m(N) ∈
[600, 2500] Dalton.

The influence of the digestion enzyme on the wavelength

of peptide mass clusters

In case of a complete sequence specific cleavage of proteins, the number of

generated peptides is CP +1 peptides, given that CP is the number of cleavage sites

per protein. The peptides generated from the terminus of the protein (further

called terminal) will not bear a cleavage site residue RC at their end. All the

other peptides, which we call internal, will have such a residue at their end. The

fraction of the internal peptides fc,n is given by

fc,n =
CP − n

CP + 1− n
, (3.14)

where n is the number of missed cleavages per protein. We approximate CP ,

for a sequence database, by:

CP = |P | · (
∑

fRC
), (3.15)

where fRC
are the relative frequencies of the cleavage sites and |P | is the

average protein length in the database. The fraction of the terminal peptides in

case of n missed cleavages is given by 1− fc,n.

The fraction of cleavage site residues RC in a internal peptide of mass mpep,

with n missed cleavage sites is denoted fm,n and approximated by:

fm,n = (n + 1)
m̄

mpep

, (3.16)

where m̄ is the average mass of an amino acid residue. A more accurate model

of fm,n is provided in the Appendix. In the case of terminal peptides the fraction

of cleavage site residues RC equals fm,n−1. The fraction of all the other amino acid
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residues R\RC equals 1 − fm,n or 1 − fm,n−1 respectively. Table 3.3 summarises

these results.

Rnon-cleavage Rcleavage Peptide type

(1− fm,n) fm,n fc,n internal

(1− fm,n−1) fm,n−1 1− fc,n terminal

Table 3.3: Frequencies of cleavage site residues, and all other residues, in peptides

of mass m and of terminal, and internal, peptides. Rcleavage – frequencies of

cleavage site residues; Rnon-cleavage – frequencies of non-cleavage site residues; fm,n

– see Equation 3.16; fc,n – see Equation 3.14.

In the case of internal peptides, the average contribution of the amino acid

residues to the peptide mass is the weighted sum:

m
(∗)
RC ,n = (1− fm,n) ·mnone + fm,n ·mRc (3.17)

= mnone + fm,n · (mRC
−mnone) , (3.18)

where

mnone =
∑

i∈R\RC

fi ·mi, (3.19)

is the average mass of non cleavage residues, and:

mRC
=
∑
i∈RC

fi ·mi. (3.20)

is the average mass of the cleavage site residues RC . Finally, the wavelength

of internal peptides is presented as:

λm
RC ,n =

m
(M)
RC ,n

m
(N)
RC ,n

(3.21)

The wavelength of terminal peptides was determined by: λ
(n−1)
RC ,m =

m
(M)
RC,n−1

m
(N)
RC,n−1

.
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The wavelength λ of all peptides at a mass m with exactly n missed

cleavages is given by:

λm,∗
RC ,n =

m
(M),∗
RC ,n

m
(N),∗
RC ,n

(3.22)

where

m
[MN ],∗
RC ,n = fc,n ·m[MN ]

RC ,n + (1− fc,n) ·m[MN ]
RC ,n−1 (3.23)

= mnone + (mRC
−mnone) · (fc,nfm,n + fm,(n−1) − fc,nfm,(n−1))(3.24)

=︸︷︷︸
with Eq. 3.16

mnone +
m̄

m
(fc,n + n)(mRC

−mnone) (3.25)

=︸︷︷︸
with Eq. 3.14

mnone +
(

Cp − n

Cp + 1 − n
+ n

)
·

m̄

m
· (mRC − mnone) (3.26)

is the weighted sum of the mass of the terminal peptides (with frequency 1−fc,n)

and the internal peptides (with frequency fc,n).

Cleavage probability pc In practice, the cleavage probability will depend

on various factors, for example on the incubation time and the efficiency of

the protease used. The probability to generate a peptide with n ∈ 0...∞
missed cleavage sites, given the cleavage probability pc can be modelled using

the geometric distribution:

P (n, pc) = (1− pc)
n · pc (3.27)

Furthermore,
∞∑

n=0

(1− pc)
n · pc = 1 (3.28)

holds. Hence, given the cleavage probability is pc and cleavage residues RC , we

express the peptide mass by:

m∗
RC ,pc

= mnone +
∞∑

n=0

(1 − pc)
n · pc · (mRC

− mnone) · Sn , (3.29)

where

Sn = (fc,nfm,n + fm,(n−1) − fc,nfm,(n−1)). (3.30)
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Therefore, the wavelength λ of peptides if the cleavage probability is pc is

given by:

λm,∗
RC ,pc

=
m

(M),∗
RC ,pc

m
(N),∗
RC ,pc

(3.31)

The monoisotopic mass as a function of the nominal mass can be

expressed by:

m(M) = λ
(m),∗
RC ,pc

·m(N) (3.32)

=
m

(M),∗
RC ,pc

·m(N)

m
(N),∗
RC ,pc

(3.33)

=|{z}
Eq. 3.30, 3.14

m
(M)
none ·m(N) +

P∞
n=0(1− pc)n · pc · (m(M)

RC
−m

(M)
none) · m̄(fc,n + n)

m
(N)
none +

P∞
n=0(1− pc)n · pc · (m(N)

RC
−m

(N)
none) · m̄

m(N) (fc,n + n)
(3.34)

≈|{z}
for m(N)�m̄

m
(M)
none ·m(N)

m
(N)
none

+

P∞
n=0(1− pc)n · pc · (m(M)

RC
−m

(M)
none) · m̄(fc,n + n)

m
(N)
none

(3.35)

This equation represents our final model of the peptide mass cluster centres. To

illustrate the accuracy of the prediction we computed the residuals ∆ between

the monoisotopic masses of the in silico database digest and the cluster centres

predicted by Equation 3.34. Figure 3.3 shows the relative residuals ∆ppm(m) =

∆(m)/m · 106 , in parts per million. The grey line shows the moving average of

the residuals ∆ppm(m) computed for a window of 15Da.

Figure 3.4, panel A, shows the difference between nominal and monoisotopic

mass (m(M)−m(N)) where m(M) was predicted using the model of Equation 3.34.

We observed that m(M) − m(N) ∝ m(N) is approximately a straight line for the

mass range greater than 500Da. By using the predicted monoisotopic mass m(M)

at m(N) = 500 and at m(N) = 3000 we determined the slope:

c1 =
3000 · λ(3000),∗

RC ,pc
− 500 · λ(500),∗

RC ,pc

3000− 500
= 1.000482, (3.36)

and intercept coefficient

c0 = 500 · (λ(500),∗
RC ,pc

− 1)− c1 · 500 = 0.029. (3.37)
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Figure 3.3: Deviation ∆ppm of peptide masses from mass cluster centres predicted

using the Equation 3.34 in parts per million [ppm]. Gray line – moving average

of ∆ppm. Orange lines – Standard deviation of ∆ppm, Green lines – 1% and 99%

Quantile computed for mass windows having a size of 15Da and covering the mass

range. Magenta dot dashed line – maximum possible deviation from cluster centre,

which can be assigned to the true cluster centre using the Equation 3.40. Horizontal

dotted blue line – distance of DHB (2,5-dihydroxybenzoic acid) matrix clusters from

the peptide mass cluster centres; dashed line – distance of alphacyano (alpha-Cyano-

4-hydroxycinnamic acid) clusters from the peptide mass cluster centres; distance

of sinapicacid (3,5-Dimethoxy-4-hydroxycinnamic acid) clusters from peptide mass

cluster centres.

These coefficients are in good agreement with the slope and intercept

determined by linear regression for the in silico sequence database digest (Figure

3.1).

Furthermore, we observed that the intercept c0 will be positive if mRC
>

mnone, zero or negative otherwise. The slope c1 equals λnone = m
(M)
none

m
(N)
none

, for large

m(N), because the frequency of the cleavage site residues RC decreases with

increasing peptide length:

lim
|Pep|→∞

fm,n ∝ lim
mpep→∞

(n + 1)m̄

m(N)
= 0 .

44



3.3 Results and Discussion

Figure 3.4, panel B, displays the difference between the line (c1 +1) ·m(M) +c0

and the prediction made using Equation 3.13. For the mass range m ∈ (500, 4000)

where peptide masses for peptide mass fingerprinting are acquired this difference

is minimal.
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Figure 3.4: The monoisotopic mass as an function of the nominal mass. Left panel :

m(M)−m(N) = (λ(m),∗
RC ,pc

−1) ·m(N). Right panel : Difference between (λ(m),∗
RC ,pc

−1) ·m(N)

and 0.00048 ·m(N) + 0.029.

The coefficients c0 and c1 do not depend on the mass of the peptides. Due

to this feature, we are going to use the affine model c1m
(N) + c0 to predict the

peptide mass cluster centres in the applications discussed later. This simplified

model is also in agreement with the affine model (Equation 3.13), which has been

fitted by linear regression to the in silico database digest in order to explain the

dependency of the peptide mass cluster centres on the nominal mass.

3.3.2 Error of the model

Combinatorial restrictions may cause significant differences between the linear

prediction of the model (Equation 3.34) introduced and the actual location of the

cluster centre. To assess this error we first computed the location of the cluster

centres (average of all monoisotopic masses in cluster) of the in silico database
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digest, and afterwards determined the difference to the cluster centre location

predicted by model of Equation 3.34. This difference ∆̄(cluster) is shown in

Figure 3.5.
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Figure 3.5: Difference between cluster centre computed for the in silico database digest

and the cluster centre location predicted by the model (Equation 3.34). Orange lines

– minimum and maximum, red lines – first and third quartile, green – mean, blue –

median of the differences computed for a moving window of 100Da.

For a moving window of 100Da we computed the maximum and minimum

(orange), third and first quartile (red), median (blue) and mean(gree) of

∆̄(cluster). The combinatorial restriction decreases with increasing mass and

for peptide masses greater than 1000Da it is negligible. However, ∆̄(cluster)

increases again for masses greater than 2500Da because peptide masses may

deviate more strongly from the cluster centres and furthermore much fewer long

peptides are generated.

3.3.3 The type of distribution around the cluster centres

In order to remove non-peptide peaks prior to database search, filtering thresholds

have to be chosen. In Figure 3.3 the orange line visualises the standard deviation

while the green lines show the 1% and 99% quantiles of ∆ppm(m) = ∆(m)/m ·106
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computed for a mass window of 15Da. In addition the dotted, dashed, and dot

dashed line show the deviation ∆ppm(m), at which clusters of mass spectrometric

matrices are expected.

The standard deviation of ∆ppm(m) is symmetric and does not change for

m > 1500. We were interested to determine the distribution of ∆ppm around the

peptide mass cluster centres. To determine the type of distribution we use qqplots

(111) shown in Figure 3.6. We compared the distribution of the residues ∆ppm(m),

observed for four different mass windows (m ∈ (500 − 530), m ∈ (1000 − 1110),

m ∈ (2000 − 2200) and m ∈ (3400 − 3700)) with the normal distribution and

t-distributions with various degrees of freedom. The t-distribution with degrees

of freedom µ ∈ (15, 25) is a good approximation of the empirical distribution of

∆ppm for masses > 2000,.
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Figure 3.6: qqplot - of ∆ppm = mM − c1 · mN − c0 versus the t-distribution with 19

degrees of freedom for four mass ranges m ∈ (500 − 530),m ∈ (1000 − 1110),m ∈
(2000− 2200)andm ∈ (3400− 3700).
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3.3.4 Sensitivity analysis

The input parameters to the model of the peptide mass cluster centres included:

� fi – frequencies of the amino acids.

� cleavage specificity of the protease RC

� |P | - Protein length

� pc - cleavage probability

To examine how the output of the model is influenced by these factors we

varied the protein length |P | in steps of 100 from 300 to 800 amino acids per

protein. We determined the amino acid frequencies fi for 9 sequence databases

(cf. Methods) and used them as inputs to the model. Furthermore, six cleavage

specificities (shown in Table 3.4) were examined and the cleavage probability pc

was changed from 0.4 to 1 in increments of 0.2.

Enzyme RC

1 Trypsin/P K,R/P

2 Arg.C R/P

3 CNBR + Trypsin F,Y,M

4 Lys-C K/P

5 PepsinA F,L

6 CNBr M

Table 3.4: Cleavage sites of proteolytic enzymes (4)

The box-plots, of Figure 3.7, Panel A demonstrate that the values of the

intercept coefficient c0 (Equation 3.37) mainly depend on the cleavage probability

pc and on the cleavage specificity of the proteolytic enzyme. The relatively small

height of the boxes indicates that the differences in amino acid frequencies fi

for the databases examined, and the average protein length |P | have a negligible

effect on the intercept coefficient. The slope coefficient c1 (see Equation 3.36)

depends only on the cleavage site specificities of the proteolytic enzyme and the

amino acid frequencies f . The box-plots 3.7 Panel B show that the model output

is highly sensitive to the cleavage specificity of the proteolytic enzyme.
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Figure 3.7: Panel A – Box plots of the intercept coefficient c0 (Equation 3.37) itemised

according the cleavage specificity and cleavage probability. Panel B – Box plots of the

slope coefficient c1 (Equation 3.36) itemised according the cleavage specificity.

3.3.5 A measure of distance to cluster centres

Given an experimentally determined mM we were interested to estimate the

deviation ∆ from the closest predicted cluster centre. The model of the

monoisotopic mass is:

c0 + c1 ·mN + ∆ = mM , (3.38)

where c0, c1 can be obtained using the Equations 3.37 and 3.36, mN is the

nominal mass (an integer).

Therefore, for a given mM , c0 and c1 we can determine the deviation ∆

from the closest cluster centre of smaller mass by using the modulo operator

as suggested by Wool and Smilansky (30):

(mM − c0)(modc1) = (c1 ·m + ∆)(modc1) = ∆ . (3.39)

However, in order to determine the distance to the closest cluster centre we

considered two cases:

∆λ(mi, 0) =

{
(mi − c0)(modc1) if (mi − c0)(modc1) < 0.5
−1 + (mi − c0)(modc1) otherwise .

(3.40)
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The units of ∆λ(mi, 0) are in [m/z]. The magenta dot dashed curves in

Figure 3.3 indicate the maximum detectable distance from cluster centres in

ppm (±0.5Da/m · 106[ppm]). Deviations from the cluster centres outside the

range enclosed by these two curves are assigned to the wrong cluster. In case of

theoretical peptide masses and experimental masses calibrated to high precision,

such distances are observed only for masses greater than 2500Da. Fortunately,

the majority of tryptic peptide masses detected in a mass spectrometric peptide

fingerprint experiment are below this mass.

3.3.6 Applications

3.3.6.1 Linear Regression on Peptide Mass Rule LR/PR

The limitations of calibration methods based on the property of peptide mass

clustering are a mass accuracy of only 0.2Da, its sensitivity to non-peptide peaks

in the spectra, and that it completely fails if the number of peptide peaks in the

peak list is small (30; 35; 43). Hence, in practice, the method is used to confirm

the results of internal calibration only (43; 112). However, the advantage of the

calibration methods based on the property of peptide mass clustering, over other

calibration methods (41), is that no internal or external calibrants are required

in order to calibrate the peptide mass lists.

We propose here a novel method for the calibration of PMF data, based on

robust linear regression and the distance measure introduced in the Equation

3.40. To determine the slope of the mass measurement error we computed the

deviation from the peptide mass rule for every pair of peak masses (mi, mj) within

a peak-list, employing the following equation:

∆λ(mi,mj) =

{
|mi −mj |(modc1) if |mi −mj |(modc1) < 0.5
−1 + (|mi −mj |(modc1)) otherwise ,

(3.41)

with c1 given by Equation 3.36.

Figure 3.8 left top panel shows the distance ∆λ(mi, mj) (Equation 3.41) as a

function of ∆d = |mi − mj|, computed for all pairs (mi, mj) ∈ peak-list, which

adhere to the additional constraint that ∆d = |mi−mj| < mmax. This constraint
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Figure 3.8: Principle and results of linear regression on peptide rule LR/PR calibration.

Panel A: Scatter-plot of ∆PR(mi,mj) (Equation 3.41) in dependence of ∆d = |mi−mj |.
The slope, obtained by robust regression, is shown by the red line. Panel B: Histogram

(black with diagonals) of dPR(mi, 0). The continuous vertical red line denotes the

average (d̄PR(mi, 0)) and the dotted vertical lines denote d̄PR(mi, 0) ± SN . The

histogram in gray is showing the distribution of dPR(mi, 0) previous to removing the

slope error (see text). Panel C & D: Strip-charts of the data-set for a mass range

of 2210 − 2212Da and 842 − 843Da, including the tryptic autolysis peaks 842.508Da

and 2211.100Da. Gray triangles – raw data; blue “+” – Wool Smilansky algorithm (cf.

Appendix); red “o” – LR/RP algorithm for tryptic peaks.

is necessary because the measure ∆λ is only able to assign deviation smaller than

0.5Da to the correct cluster centre. For large values of ∆d, ∆λ increases, if c1 6= 0

and assignments to wrong clusters may occur. If a systematic dependence of

∆λon∆d is observed it indicates a mass measurement error. We determined the

slope ĉ1 using robust linear regression (113) with the intercept fixed at 0. To

correct the peak-list masses we applied

mcorrected = mexperimental · (1− ĉ1) .

To determine the intercept coefficient of the mass measurement error we

subsequently computed ∆λ(mcorrected, 0) (using Equation 3.40), for all peak-list
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masses. Figure 3.8 Panel B shows the distribution of ∆λ(mi, 0) before correcting

for the slope error (gray histogram) and afterwards (black histogram). The red

vertical line indicates the mean ∆̄λ(mi, 0), computed for the corrected data, which

we used to approximate the intercept ĉ0 of the mass measurement error.

The strip charts (Figure 3.8, Panel C and D) visualises the experimental

masses of two trypsin peptides 842.508Da and 2211.100Da observed in most of

the samples of the dataset with 380 peak-lists. The result of LR/PR calibration

(red circles) is compared with raw masses (gray triangles) and the output of

the Wool and Smilansky calibration method (blue crosses). The LR/PR-method

is able to calibrate mass spectrometric peak-lists to an accuracy of 0.1Da. This

measurement accuracy surpasses the other published calibration methods (30; 35)

at least two-fold.

3.3.6.2 Filtering of non-peptide peaks using the peptide mass rule

Non-peptide peaks can be recognised according to their deviation from the cluster
centres. The amino acids that have the most extreme λ values are I, L and K
(because of their large fraction of Hydrogen H (1.007825) atoms) and C (Cysteine
- because of the heavy sulfur atom S (31.97207)). If we plot the position after
the decimal point given by n · (λi − 1)(mod1) with n ∈ N , for i = L and i = C,
and connect the points for readability purposes by a line (the red and green lines
in Figure 3.9 respectively), we obtain the range enclosing any possible decimal
point a theoretical peptide mass can have. If a mass with a decimal point lying
in the dashed region is detected it can not be a peptide peak. For peptide peaks,
the following inequalities hold:

−413[ppm] = (λC−λDB)·106 < ∆λ(m, 0)·106/m = ∆ppm
λ (m, 0) < (λL−λDB) = 241[ppm] ,

(3.42)

where λDB = 1.000511 (Equation 3.12). We used the relative deviation of ∆ppm

from the cluster centre in parts per million instead of using absolute values.

Figure 3.3 shows that only very short peptides approach the lower bound of

−413ppm. This is due to the low frequency of Cysteine (C). The high frequencies

of K, L, I (whose λ ≈ 1.00074) mean that the theoretical upper bound of 241ppm

can indeed be reached by some peptides with a mass of ≈ 1000Da. Peptides

of higher mass never approach the upper and lower theoretical bound due to the

rapidly decreasing probability to consist of K, LorI, or of C only. The lines for the
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Figure 3.9: Schema of non-peptide mass filtering. Abscissae - peptide mass, ordinate

– m mod 1, dashed region – non-peptide masses. Green line – decimal part of poly-

(L(lys),I(ile)) peptide masses as a function of their mass. Red line – decimal part of

poly-(C(cys)) peptide masses as function of their mass. Black line – Predicted cluster

centres using the Equation 3.12.

standard deviation of SN (orange lines) and of the 1% and 99% quantile (green

lines) in Figure 3.3 indicate that it is an exceedingly rare event to encounter

a peptide mass for which ∆ppm
λ (m, 0) will deviate more than 200ppm from the

peptide cluster centre predicted by our model. Therefore, we use 200ppm as

a filtering threshold. An essential requirement, to apply this filtering method

successfully is, that peak-list must be calibrated to high precision (41).

Figure 3.10 visualizes the result of non-peptide peak filtering in case of a

dataset of 380 calibrated peak-lists. Spots removed by applying the filtering

criterion ∆ppm
λ (m, 0) > 200 are shown in green. Peptide masses removed due to

filtering of abundant masses (41) are shown in red.

We studied how the non-peptide peak filtering influences the Probability

Based Mascot Score (PBMS) (55). In theory, for example one cystein rich

53



3.3 Results and Discussion
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Figure 3.10: Scatter plot : abscissae - peptide mass mi, ordinate - mimodλ with

λ = 1.000495. In red are highlighted peaks removed from the dataset because of their

high frequencies. In green, peaks removed due to the strong deviation from the peptide

mass cluster centres.

peptide strongly deviating from the peptide mass rule and with a unique mass

in the database digest, if properly assigned is sufficient to identify the protein

unambiguously (30). In case of PBMS, which requires multiple matches to peptide

masses, a single match of a unique peptide mass, even if properly assigned, will

not give a score indicating reliable identification of the protein. Furthermore,

this scoring scheme takes into account the number of non-matching peaks. If

many unassigned peaks are observed, the score is decreased and the assignment

is interpreted as insignificant. Therefore, the removal of non-peptide peaks should

increase the identification sensitivity.

Table 3.5 demonstrates that an increase of 2.5% in the number of identified

samples can be obtained by removing all peaks with a distance ∆ppm
λ (m, 0) >

200ppm from the peptide peak-lists. Row 8 of Table 3.5 shows that non-peptide

peak filtering increases the PBMS score in 30−55% of cases. Removal of peptide

peaks due to filtering caused a decrease of the PBMS score in less than 1% of

samples.

We concluded that non-peptide peak filtering increases the sensitivity of

protein identification if using the PBMS scoring schema. However, the extend
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3.3 Results and Discussion

Arabidopsis t. Rhodopirelulla b. Mus musculus

1 Identification no PR filtering 423 1009 872

2 Identification with PR filtering 432 1017 894

3 Change in identification (Percent) 2.13 0.79 2.52

4 Total nr. of samples* 818 1169 1709

5 Nr. samples with PBMS increase 240 622 724

6 Nr. samples with no change of PBMS 571 542 982

7 Nr. samples with PBMS decrease 7 5 3

8 Percent increase of PBMS score 29.34 53.21 42.36

9 Percent decrease of PBMS score 0.86 0.43 0.18

Table 3.5: Results for filtering of non-peptide masses. Columns: Arabidopsis t.,

Rhodopirelulla b., Mus musculus – peptide mass fingerprint datasets (cf.

Methods). Row 1 – number of samples with a significant PBMS score prior to

filtering of non-peptide peak masses. Row 2 – number of samples with a significant

PBMS score for peak-lists with non-peptide removed. Row 3 – relative change

of the identification rate (Row 2−Row 1)/Row1 · 100. Row 4 – Total number of

samples which produced a PBMS score. Row 5 – number of samples for which an

increase of the PBMS score due to non peptide peak filtering was observed. Row 6

– number of samples for which no change of the PBMS score due to non-peptide

peak filtering was observed. Row 7 – number of samples for which a decrease

of the PBMS score due to non-peptide peak filtering was observed. Row 8-9 –

relative increase and decrease of the PBMS score, respectively.

to which extend these results can be reproduced is dependent on the database

search algorithm used.

Conclusions

We introduced here a simple model to predict the cluster centres of peptide

masses. The input parameters of the model can be easily determined for the

sequence databases. We studied how these parameters influence the location of

cluster centres, concluding that the cleavage specificity of the enzyme used for

peptide digestion and the cleavage probability are the main factors. The change

of the cluster centre location due to changes in average protein length or due

to variability of amino acid frequencies among the databases is relatively small.

However, our analysis also illustrates that, due to combinatorial constraints, the
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3.3 Results and Discussion

location of the cluster centres for masses smaller than 1000Da can differ from the

average location.

Based on the model of the peptide mass cluster centres we derived a measure

to determine the deviation of an experimental peptide mass from the nearest

cluster centre. We used this distance measure to calibrate the peptide peak-lists

and to recognise non-peptide peaks. The calibration method, linear regression

on peptide rule, is a robust and accurate method to calibrate single peak lists

without resorting to internal calibrants. With this method higher calibration

precision was obtained in comparison to other calibration methods, which also

employ the property of peptide mass clustering.

The same distance measure was used to recognise non-peptide peaks and

to remove them from the peak-lists. Due to their removal, an increase of the

identification rate of up to 2.5% for the PBMS scoring schema was observed.
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