
Chapter 1

Introduction

In recent years, Mass Spectrometry (MS) has emerged as a powerful technique

to identify peptides and proteins in complex biological samples (6; 7; 8; 9; 10).

Before the identification of the complex constituents, several separation steps

are required to reduce the sample complexity. The classical protein separation

method is the two-dimensional gel electrophoresis (11; 12; 13; 14), followed by

excision of the detected spots from the gel, digestion with sequence specific

proteases and extraction of the generated peptides (15; 16). Mass Spectrometric

analysis (9; 10) of the resulting mixture of peptides yields a peptide mass

fingerprint (PMF): a set of measured molecular masses of the proteolytic peptides

derived from the analysed protein (17; 18; 19). Alternatively the sequence

specific protein digest can be made prior to separation. The peptide mixture

can be separated using chromatographic techniques like capilary electrophoresis

(20) or displacement chromatography (21). In this thesis we will concentrate on

data separated by reversed-phase high performance liquid chromatography(HPLC)

and ion exchange chromatography (22; 23). The separated peptides can be

subjected to MS/MS peptide fragment ion analysis (24; 25). Prior to the mass

spectrometric measurement the peptides have to be ionized. PMF analysis is

commonly conducted by employing Matrix Assisted Laser Desorption/Ionisation

(MALDI) time of flight (TOF) instruments, while MS/MS analysis can performed

using ESI ion trap instruments. A PMF and MS/MS spectrum is a highly

specific set of peptide molecular masses derived from one isolated protein or

peptide, respectively. The combination of efficient protein and peptide separation
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techniques with mass spectrometric methods has provided a powerful approach of

rapid detection and identification of peptides and proteins in complex biological

samples (26).

Before performing database searches, the MS spectra are processed and the

most informative features, namely the locations and masses of the monoisotopic

peptide peaks are determined. A list of mass over charge (m/z) values of the

monoisotopic peaks, and either the area under or the height of those peaks, are

obtained. This set of m/z and intensity value pairs is called peak-list.

Peptide peak lists can be used to identify the analysed protein in large protein

sequence databases by matching the determined peptide molecular masses to

values calculated from the amino acid sequences in the database. In order

to indicate the significance of the assignment a score is computed which takes

into account the frequencies of the protein and peptide masses in the sequence

databases (27; 28; 29; 30; 31; 32). Other properties included in the score

concern the different sensitivity of detection for individual peptides, known

protein modifications, and/or possible mutations (33; 34; 35), although generally,

all popular search scores depend on the precise assignment of experimental to

theoretical peptide masses. Similarly, MS/MS spectra can be used for protein

identification by searching the determined peptide fragment ion masses against

the predicted ones. The prediction is based on the available amino acid sequence

data and fragmentation characteristics of the employed MS instrumentation

(36; 37; 38; 39).

The sensitivity and specificity of the peptide identification using database

searches can be increased by several methods. This usually includes: calibration

(30; 37; 40; 41), identification of non-peptide peaks (30; 32; 42; 43), identification

and removal of low-quality spectra (44; 45), validation of the search results using

machine-learning algorithms (46; 47), and the pairwise comparison of the peak-

lists (5; 37; 48; 49; 50).

In summary, protein identification using mass spectrometry starts with a

laboratory experiment where proteins are isolated, mass spectrometric samples

are prepared and a spectrum is acquired. It is followed by a computational

analysis of the obtained spectra, which includes spectra processing, calibration,
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filtering, database searches and validation of the search results. In this work we

present contribution to the in-silico part of the protein identification.

Chapter 3 introduces an analytical model to predict the masses of the peptide

cluster centres in an in silico protein database digest. Gay et al. (51) studied

the theoretical distribution of peptide masses in a theoretical digest of protein

sequences and observed that peptide masses form equidistantly spaced clusters.

The clustering is caused by the mass properties of atoms and the elemental

composition of the amino acids. Intrinsic properties of peptide mass give way

to many applications, e.g. calibration (30; 35; 41), non-peptide peak filtering

(52; 53), spectra comparison (5; 50) and database searches. All these applications

require knowing the exact distance between the peptide mass cluster centres.

We have developed an analytical model to predict the masses of the peptide

cluster centres taking into account the frequencies of the amino acids in the

sequence database (54), the average protein length of the proteins in the database,

the cleavage sites of the proteolytic enzyme and the cleavage probability. Based on

this model, we introduced a measure of the deviation of peptide masses from the

nearest cluster centre, which is a refinement of a measure proposed by Wool and

Smilansky (30). We have developed a new peptide peak-list calibration method

based on this distance measure. With this calibration method we obtained

calibration accuracies surpassing the other methods based on the property of

peptide mass clustering (30; 35). We have also used the distance measure to

identify and remove non-peptide peaks prior to database searches using the

Mascot search engine (55).

Chapter 4 introduces novel calibration methods designed to calibrate samples

acquired by parallel spectra acquisition. In case of MALDI-MS high throughput

experiments (56; 57), the samples are placed in a grid on a manoeuvrable sample

support. Then the laser rapidly shoots light pulses on the specific spot that was

moved into the laser beam position. Hence, for each spot spectra are acquired. If

the mass spectrometer used is a TOF machine the measured data is the time of

flight of the ions. This measurement has to be transformed into mass over charge

(m/z) using a quadratic calibration function where calibration coefficients need
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to be determined. Usually this is done once for all spot positions. However, the

calibration coefficients to transform the TOF into m/z differ depending on sample

position. This is due to deviations in plate flatness, sample topography changing

the size of the acceleration region (40; 56), and alterations in the strength of the

electric field on the sample support borders which influences the final energy of

the ions (58).

We have developed two novel calibration methods for PMF data. Both

calibration methods exploit similarities of peak-lists due to closeness in the

origin of the analysed samples. The first method combines the computation of

dissimilarities (50) between peak-lists with internal calibration (42; 43). The

second method employs spatial statistical methods (59) to model systematic

changes of the mass measurement error over the MALDI sample support. The

major advantage of the presented methods originates from the fact that the MS

calibration derives from samples without internal standards or external calibrants

positioned on each sample support.

Chapter 5 presents a study of multiple distance measures for the pairwise

comparison of mass spectrometric spectra. Direct peak-list comparison may be

advantageous for many applications. For example the sensitivity and specificity

of peptide and protein identification can be increased by the pairwise comparison

of the peak-lists as part of the ”subtractive analysis technique” (5; 37; 48; 49). In

our work we have reviewed a large group of dissimilarity measures and examined

how these can be extended to include the mass spectrometry specific property

of mass measurement accuracy. A new parameter weight of non-matching peaks

was introduced into the computation of distance measures. We have studied

the Euclidean and the Manhattan distance, the covariance, the sum of agreeing

intensities and the spectral angle. We have also examined the impact of the

intensity scaling on the outcome of intensity-based measures (60; 61). In addition,

we have performed a systematic study of various intensity transformations (5) in

order to determine the best variance stabilising transformation. Furthermore,

we investigated quantitative measures, i.e. Huberts Γ or the relative mutual

information measure (62). The analysis of variance method was used to provide

insight into the relevance of various factors influencing the outcome of the
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pairwise peak-list comparison. For large MS/MS and PMF data sets the

outcome of ANOVA analysis was consistent, providing a strong indication that

the results presented here might be valid for many various types of peptide mass

measurements.
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