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Abstract

Recent advances in genomics, which outstanding achievements were exemplified

by the complete sequencing of the human genome provided the infrastructure

and information enabling the development of several proteomic technologies.

Currently no single proteomic analysis strategy can sufficiently address the

question of how the proteome is organised in terms of numerical complexity and

complexity generated by the protein-protein interactions forming supramolecular

complexes within the cell. In order to bring a detailed structural/functional

picture of these complexes in whole genomes, cells, organelles or in normal and

pathological states several proteomic strategies can be utilised. Combination

of technologies will bring a more detailed answer to what are the components

of certain cellular pathways (e.g.: targets of kinases/phosphatases, cytoskeletal

proteins, signalling molecules), how do they interconnect, how are they modified

in the cell and what are the roles of several complex components in normal and

disease conditions. These types of studies depend on fast and high throughput

methods of protein identification. One of the most common methods of analysis

is mass spectrometric technique called peptide mapping. Peptide mapping is the

comparison of mass spectrometrically determined peptide masses of a sequence

specific digest of a single protein or peptide of interest with peptide masses

predicted from genomic databases. In this work several contributions to the

computational analysis of mass spectrometric data are presented. During the

course of my studies I looked at the distribution of peptide masses in sequence

specific protein sequence digests and developed a simple mathematical model

dealing with peptide mass cluster centre location. I have introduced and studied

the methods of calibration of mass spectrometric peak-list without resorting to

internal or external calibration samples. Of importance is also contribution of

this work to the calibration of data produced in high throughput experiments. In

addition, I studied how filtering of non-peptide peaks influences the identification

rates in mass spectrometric instruments. Furthermore, I focused my studies

on measures of spectra similarity which can be used to acquire supplementary

information, increasing the sensitivity and specificity of database searches.
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