Appendix A

Semiclassical case of helium at
double-ionization threshold

In the following it will be shortly discussed why quantum chaos is expected close to
the double-ionization threshold of helium. For this we will consider the Hamiltonian of
classical helium, which can be can read as

- F, (A1)

where F is the total energy relative to the double-ionization threshold. If E is positive
both electrons can escape, which corresponds to the double-ionization of helium. The
region F/ < 0 is more interesting since it represents the region of the doubly excited
states. Taking negative energies F into account, one can scale the coordinates as

ry ~
rp=—- Pi=V-Ep;

and then, the Hamiltonian of classical helium becomes

g _Pitpy 2 2 1

- 1. (A.2)

This transformation shows that the dynamics of classical helium remains invariant under
variations of the energy since (A.2) can always be obtained by a simple scaling transfor-
mation. Under the scaling, the uncertainty principle can be given by

ﬁ:A@-Aﬁf:@Jﬁm-V%E::¢jEn (A.3)

As can be seen from (A.3), Planck constant in the rescaled coordinates, 73, approaches

zero as ¥ — 0. Therefore, according to Bohr’s correspondence, in the region close to
the double-ionization threshold, helium can be described as a semiclassical way where
quantum chaos is expected because of the non-integrability in classical helium.
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Appendix B

Random matrix theory

Random matrix theory [64, 65], developed in the nineteen fifties and sixties, is a quite
successful tool to study the level fluctuations in the quantum spectra of a chaotic system.
In this theory, the quantum chaos is accounted for by representing the Hamiltonian by
a matrix whose elements are randomly chosen; this represents the minimum knowledge
about the system. The construction of a Gaussian ensembles will be illustrated by con-
sidering real symmetric 2 X 2 matrices with O(2) symmetry as their group of orthogonal
transformations. What we are seeking is a probability density P(H) of three independent
matrix elements Hy;, Hys and Hi, under the normalization condition

/ " P(H)dH\ dHssdHs = 1. (B.1)
+o0

Two requirements, which take into account very principal physical ideas, suffice to de-
termine P(H). First, P(H) must be invariant under the orthogonal transformation of
the two-dimensional basis, i.e.

P(H)=P(H), H =O0OHO" (B.2)

Second, the three independent matrix elements must be uncorrelated. The probability
density P(H) must therefore be the product of the three densities,

P(H) = Py1(Hi1)Poo(Ho)Pra(Hi2). (B.3)

This assumption can be interpreted as one of minimum-knowledge input or of maximum
disorder. The transformation matrix O(2) can be written by

0 < c0s® —sin® ) . (B.4)

sin®  cos®

One can consider an infinitesimal (© — 0) orthogonal transformation of the basis, and
1 -0

0= . B.5

(6 1) (5.5
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Considering H' = OHO?Y, the matrix elements result in

Hil = H11 — 2@H12

HéQ == H22 + 2@H12

Hiy = Hyy+O(Hy — Hy). (B.6)
According to the invariance given in Eq. (B.2), the factorization and the invariance of
P(H) yield

P(H) = P(H) {1 e [QHH% oy, LT

d l?’LPlg
— (Hy1 — H. . (B.
dH11 12 dH22 ( 11 22) ] } ( 7)

Since the infinitesimal angle © is arbitrary, its coefficient in Eq. (B.7) should vanish, i.e.

1 dlnP12 2 <dl7’LP11 dlnP22> —0 (B 8)
Hy dHyo Hy — Hyp \ dH1y dHas '
The solution of this equation is given by Gaussian function of the form

B vanishes if the average energy, Tr(H), is properly shifted to zero, A fixes the unit of
energy, and C' is determined by the normalization. Without the loss of generality, P(H)
can be written as

P(H) = Cexp[-ATrH?. (B.10)

It can be shown the probability density (Eq. (B.10)) obtained from the 2 x 2 matrices
in fact holds also for M x M matrices with arbitrary size.

By assuming that Hamiltonian matrix elements are described according to Eq. (B.10)
the eigenvalues are given by

1

1 1/2
Ey = §(H11 + Hayo) + 5 [(Hn — Hy)* + 4H12}

(B.11)

With the help of the eigenvalues E., we obtain the diagonal matrix

E, 0
b= ("2, (B.12)

and by an orthogonal transformation given by Eq. (B.4), one can write the matrix H as
H = 0DO". (B.13)

This yields the following transformation between the elements Hi;, Hoy, Hio and the
variables F,, E_, O:

Hy,, = FE.cos*(©)+ E_sin*(0),
Hy = FE_cos*(©)+ E,sin*(0),
Hy, = (E; — E_)cosOsin®. (B.14)
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The Jacobian determinant of this orthogonal transformation is given by,

a(]—Illa H227 HlZ)

det(J) = det 2B, E_.0)

— E+ — E_.
Because of
P(E.,E_,0)= P(H)det(J)

and
TrH? = Ei + Ez,

one obtain the distribution P(E,, E_,©) in the form:

P(E,,E_)=C|E, — E_| exp[-A(E> + E*)).
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(B.15)

(B.16)

(B.17)

(B.18)

Note that this form is independent of ©. To calculate the distribution of nearest-

neighbor-spacing (NNS), we should integrate the variables F, and FE_ in the equation

(B.18)

P(E,, B = C/dE+ /dE,é(S— | By —E_|)| By — E_ | exp|—A(E? + E*)]. (B.19)

Setting the variables S = E, — E_ and the variable z = (E; + E_)/2, Eq. (B.19) can

be written as

PS) = ¢ /_°° 25 exp[—A(S?/2 + 222)]

= C/\/%S exp(—AS?/2).

A and C’ can be evaluated by the normalization condition

/Omdsp(5)=1

and with the unit of energy set such that the mean spacing is unity, namely

/OoodSSP(S)zl.

In the end, eq. (B.20) yields the Wigner distribution Py (S) given in Eq. (4.1)

T T
Py (S) = 55 exp(—ZSQ).

(B.20)

(B.21)

(B.22)

(B.23)



