
Appendix A

Semiclassical case of helium at

double-ionization threshold

In the following it will be shortly discussed why quantum chaos is expected close to

the double-ionization threshold of helium. For this we will consider the Hamiltonian of

classical helium, which can be can read as

H =
p2

1 + p2
2

2
− 2

r1

− 2

r2

+
1

r1 + r2

= E, (A.1)

where E is the total energy relative to the double-ionization threshold. If E is positive

both electrons can escape, which corresponds to the double-ionization of helium. The

region E < 0 is more interesting since it represents the region of the doubly excited

states. Taking negative energies E into account, one can scale the coordinates as

ri =
r̃i

−E
pi =

√
−Ep̃i,

and then, the Hamiltonian of classical helium becomes

H =
p̃2

1 + p̃2
2

2
− 2

r̃1

− 2

r̃2

+
1

r̃1 + r̃2

= −1. (A.2)

This transformation shows that the dynamics of classical helium remains invariant under

variations of the energy since (A.2) can always be obtained by a simple scaling transfor-

mation. Under the scaling, the uncertainty principle can be given by

˜̄h = ∆r̃i · ∆p̃i = (−E)ri ·
pi√
−E

=
√
−Eh̄. (A.3)

As can be seen from (A.3), Planck constant in the rescaled coordinates, ˜̄h, approaches

zero as E → 0. Therefore, according to Bohr’s correspondence, in the region close to

the double-ionization threshold, helium can be described as a semiclassical way where

quantum chaos is expected because of the non-integrability in classical helium.
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Appendix B

Random matrix theory

Random matrix theory [64, 65], developed in the nineteen fifties and sixties, is a quite

successful tool to study the level fluctuations in the quantum spectra of a chaotic system.

In this theory, the quantum chaos is accounted for by representing the Hamiltonian by

a matrix whose elements are randomly chosen; this represents the minimum knowledge

about the system. The construction of a Gaussian ensembles will be illustrated by con-

sidering real symmetric 2× 2 matrices with O(2) symmetry as their group of orthogonal

transformations. What we are seeking is a probability density P (H) of three independent

matrix elements H11, H22 and H12 under the normalization condition

∫

−∞

+∞

P (H)dH11dH22dH12 = 1. (B.1)

Two requirements, which take into account very principal physical ideas, suffice to de-

termine P (H). First, P (H) must be invariant under the orthogonal transformation of

the two-dimensional basis, i.e.

P (H) = P (H ′), H ′ = OHOT . (B.2)

Second, the three independent matrix elements must be uncorrelated. The probability

density P (H) must therefore be the product of the three densities,

P (H) = P11(H11)P22(H22)P12(H12). (B.3)

This assumption can be interpreted as one of minimum-knowledge input or of maximum

disorder. The transformation matrix O(2) can be written by

O =

(

cosΘ −sinΘ

sinΘ cosΘ

)

. (B.4)

One can consider an infinitesimal (Θ → 0) orthogonal transformation of the basis, and

obtains

O =

(

1 −Θ

Θ 1

)

. (B.5)
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Considering H ′ = OHOT , the matrix elements result in

H ′

11 = H11 − 2ΘH12

H ′

22 = H22 + 2ΘH12

H ′

12 = H12 + Θ(H11 − H22). (B.6)

According to the invariance given in Eq. (B.2), the factorization and the invariance of

P (H) yield

P (H) = P (H)

{

1 − Θ

[

2H12
d lnP11

dH11
− 2H12

d lnP22

dH22
− (H11 − H22)

d lnP12

dH12

]}

. (B.7)

Since the infinitesimal angle Θ is arbitrary, its coefficient in Eq. (B.7) should vanish, i.e.

1

H12

d lnP12

dH12
− 2

H11 − H22

(

d lnP11

dH11
− d lnP22

dH22

)

= 0 (B.8)

The solution of this equation is given by Gaussian function of the form

P (H) = Cexp[−A(H2
11 + H2

22 + 2H2
12) − B(H11 + H22)]. (B.9)

B vanishes if the average energy, Tr(H), is properly shifted to zero, A fixes the unit of

energy, and C is determined by the normalization. Without the loss of generality, P (H)

can be written as

P (H) = Cexp[−A TrH2]. (B.10)

It can be shown the probability density (Eq. (B.10)) obtained from the 2 × 2 matrices

in fact holds also for M × M matrices with arbitrary size.

By assuming that Hamiltonian matrix elements are described according to Eq. (B.10)

the eigenvalues are given by

E± =
1

2
(H11 + H22) ±

1

2

[

(H11 − H22)
2 + 4H12

]1/2
. (B.11)

With the help of the eigenvalues E±, we obtain the diagonal matrix

D =

(

E+ 0

0 E−

)

, (B.12)

and by an orthogonal transformation given by Eq. (B.4), one can write the matrix H as

H = ODOT . (B.13)

This yields the following transformation between the elements H11, H22, H12 and the

variables E+, E−, Θ:

H11 = E+cos2(Θ) + E−sin2(Θ),

H22 = E−cos2(Θ) + E+sin2(Θ),

H12 = (E+ − E−)cosΘsinΘ. (B.14)
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The Jacobian determinant of this orthogonal transformation is given by,

det(J) = det
∂(H11, H22, H12)

∂(E+, E−, Θ)
= E+ − E−. (B.15)

Because of

P (E+, E−, Θ) = P (H)det(J) (B.16)

and

TrH2 = E2
+ + E2

−
, (B.17)

one obtain the distribution P (E+, E−, Θ) in the form:

P (E+, E−) = C | E+ − E− | exp[−A(E2
+ + E2

−
)]. (B.18)

Note that this form is independent of Θ. To calculate the distribution of nearest-

neighbor-spacing (NNS), we should integrate the variables E+ and E− in the equation

(B.18)

P (E+, E) = C
∫

dE+

∫

dE−δ(S− | E+ −E− |) | E+ −E− | exp[−A(E2
+ + E2

−
)]. (B.19)

Setting the variables S = E+ − E− and the variable z = (E+ + E−)/2, Eq. (B.19) can

be written as

P (S) = C ′

∫

∞

−∞

dzS exp[−A(S2/2 + 2z2)]

= C ′

√

π

2A
S exp(−AS2/2). (B.20)

A and C ′ can be evaluated by the normalization condition

∫

∞

0
dS P (S) = 1 (B.21)

and with the unit of energy set such that the mean spacing is unity, namely

∫

∞

0
dS S P (S) = 1. (B.22)

In the end, eq. (B.20) yields the Wigner distribution PW (S) given in Eq. (4.1)

PW (S) =
π

2
S exp(−π

4
S2). (B.23)


