
Chapter 3

Doubly excited resonances of helium

By absorbing one photon, one can reach from ground-state of helium a final state with

one electron in the continuum and the second one in the ground or excited state of the

remaining ion. These final states can be reached via two different paths as shown in

Fig. 3.1. The first path is the direct photoionization channel with excitation, i.e. one

electron is promoted to the continuum and the second one is excited to a higher orbit.

This process can be described by

He(1s2) 1Se + hν → [He+(nl) + e−] 1P o. (3.1)

Here n and l are principal quantum number and orbital angular momentum quantum

number, respectively. In the second path, both electrons are first excited to a discrete

state, which subsequently decays via autoionization. This process can be described by

He(1s2) 1Se + hν → He∗(N, Kn′) 1P o → [He+(nl) + e−] 1P o, (3.2)

where N, Kn′ is a simplified classification scheme. N , n′, and K are approximate radial

and angular quantum numbers, respectively; and a detailed discussion will be given

Figure 3.1: Schematic representation of photoionization following excitation from the 1Se

ground state of helium to a 1P o final state.
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in Sect. 3.2. In the energy domain, these two processes cannot be distinguished by

experiment and, therefore, according to the interference of these two decay paths, Fano

profiles are observed in the spectra. Three different cases (weak, medium, and strong)

for the dependence of the lineshape of the resonance on the coupling strength are shown

in Fig. 3.1, that will be discussed together with the Fano parameter q in Sect. 3.1.1.

The two paths mentioned occur on different time scales and one can distinguish them in

the time domain. Sub-fs extreme ultraviolet pulses and attosecond streaking techniques

can trace the buildup of a Fano resonance in the time domain; the feasibility of such

experiments has been analyzed theoretically [56].

Figure 3.2: Energy diagram of the 1P o double-excitation resonances below the SITs I4 to I9 in

He with energies taken from Ref. [31]. 2N −1 Rydberg series indicated by some horizontal lines

are converged to single ionization threshold (SIT) IN . The lines with arrows represent different

paths which lead to the final continuum states with the remaining electron in He+(n = 1, · · · , 6).

The resonances in the boxes are the perturbers.

Fig. 3.2 shows the energy level scheme of double-excitation resonances in helium

below the single ionization thresholds (SIT) I4 to I9. Two different paths leading to the

final continuum states, namely autoionization and direct photoionization with excitation,

are indicated in this figure; they were discussed above, see Fig. 3.1. As marked on the

upper x-axis in this figure, the doubly excited states N, Kn′ (N = 7) can decay to the

final continuum states with the remaining electron in the He+(n) states with n = 1 to 6.

Observably N − 1 channels with n = 1 to N − 1 are open if one scans spectra at photon

energies between IN−1 and IN , i.e. in this energy region N −1 satellites can be resolvable

from channel-resolved measurements such as experimental PCSs. These different decay

channels can be distinguished by the kinetic energies of the corresponding photoelectrons
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Figure 3.3: Experimental total cross sections below the SIT I6. The position of the perturber

6, 46 is indicated by an arrow. The figure is taken from Ref. [30]

.

that correspond to the PCSs, σn.

The most interesting feature is the occurrence of perturbers, which are indicated by

boxes in Fig. 3.2. Perturbers are low-lying resonances of a Rydberg series below IN that

lie energetically in the region of high-lying resonances below IN−1. Figure 3.2 displays

the first perturber located exactly at I4, but more and more perturbers appear in the

Rydberg series below higher single-ionization thresholds. The appearance of perturber

states dramatically modulates Fano profiles of resonances that converge towards a lower

ionization threshold. Total cross sections below the SIT I6 given in Fig. 3.3, as an

example, show how the spectrum is affected by the perturber 6, 46, which is indicated

by a vertical arrow. Clearly, in the region of the perturber, the resonances of Rydberg

series 5, 3n′ are significantly varied. In this dissertation, we are concerned with the energy

region above the SIT I8, where a large number of perturbers cause the spectra to fluctuate

and to become complicated. Therefore, one expects to observe Ericson fluctuations [26]

in the spectra, which describes the fact that it is impossible to identify each resonance

due to strong overlaps of the states. Ericson fluctuations, originally observed in nuclear

physics, have become quantum signatures of chaos in atomic system (discussed later).

3.1 Parameterizations of resonance profiles in cross

sections

In principle, one can calculate cross sections and ADPs with Eq. (1.23) and Eq. (1.24),

but these complicated formula cannot be used directly for the analysis of experimental
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data. Therefore, a parameterization of resonance profiles can clarify the physical pic-

ture of a resonance and allows one to perform a more quantitative comparison between

experimental results and calculations. In the following subsections, we shall discuss the

parameterizations of resonance profiles in the TCS, the PCS, and the ADP, that will be

used in the fit analysis of our data.

3.1.1 Fano profiles for the total cross sections

The resonances in the absorption spectra exhibit pronounced Fano profiles that origi-

nate from an interference between direct photoionization and indirect photoionization

channels as discussed before. This leads to Fano profiles of the form [20, 57]:

σT (E) = σa

(q + ε)2

1 + ε2
+ σb, with reduced energy ε = 2

E − Er

Γ
. (3.3)

Here, Er is the resonance energy and Γ the natural width given by the decay rate of

the autoionization resonance. The Fano parameter q represents the discrete/continuum

mixing strength, i.e. coupling strength. With |i〉, |ν〉, and |f〉 describing the initial,

intermediate (discrete state), and final continuum state, respectively, the linewidth can

be written as

Γ = 2π |〈f |V |ν〉|2 , (3.4)

where V represents the Coulomb interaction. σa and σb represent the non-resonant

background cross sections for transitions to continuum states that interact or do not

interact, respectively, with discrete autoionization states [57]. Therefore, σa is affected

by the interaction whereas σb is constant. The Fano parameter q is given by

q =
〈ν|r|i〉

π〈ν|V |f〉〈f |r|i〉
, (3.5)

which represents the ratio of the dipole matrix element of a transition to a discrete state

to that of a transition to the continuum, which interacts with the discrete state. As

demonstrated in Fig. 3.1, for the case that the coupling strength between the final state

|f〉 and the discrete state |ν〉 is very weak, the value for q in Eq. 3.5 becomes large and a

Lorentz lineshape is observed in the cross section; for a strong coupling strength, q is close

to zero and one can see a window dip; for all other cases of the coupling strength, the

variation in the cross section caused by a resonance is described by a Fano-like lineshape.

If q is negative, the minimum in the absorption cross section occurs on the high-energy

side of the line and otherwise on the low-energy side, as can be seen in Fig. 3.4 by the

simulations to Eq. (3.3).

By setting σa/(σa +σb) = ρ2 and σ0
T = σa +σb, the σT in Eq. (3.3) can also be written

as [57, 58]

σT = σ0

T

(

ρ2
(q + ε)2

1 + ε2
+ 1 − ρ2

)

. (3.6)

Here, ρ2 is the fractional part of the TCS that interacts with the resonance [58] and it

is called correlation parameter. σ0
T represents the off-resonance TCS.
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Figure 3.4: Simulations of Fano lineshapes as a function of q for various values of q = −1, 0, 1,

2, 3, and 4. The values of the other parameters used in the simulations are given in the figure.

3.1.2 Starace’s formula for partial cross sections

In Ref. [59], Starace used the observed channels to describe the resonance profiles in the

PCS. A PCS denoted by P can be described analytically by

σP = σ0

P +
σ0

P

1 + ε2
{2ε(qRe〈α〉P − Im〈α〉P )

−2qIm〈α〉P − 2Re〈α〉P + (q2 + 1)〈|α|2〉P}. (3.7)

Here, σ0
P is the PCS in the absence of a resonance and the second term describes the

Fano-like lineshape of the resonance in σP . α is the Starace parameter [59] and represents

the fraction of the dipole amplitude. Setting C1 = qRe〈α〉P − Im〈α〉P and C2 = 1 −

2qIm〈α〉P − 2Re〈α〉P + (q2 + 1)〈|α|2〉P , the above equation can be written as

σP =
σ0

P

1 + ε2
{ε2 + 2εC1 + C2}. (3.8)

This equation depends on only two independent linear combinations, C1 and C2, of the

three parameters 〈|α|2〉P , Re〈α〉P , and Im〈α〉P . As a consequence, one may only deter-

mine C1 and C2 by fitting Eq. (3.8) to the experimental data, but 〈|α|2〉P , Re〈α〉P , and

Im〈α〉P cannot be determined from the fit. Interestingly, one may note that the formula

for describing the resonances in the PCS given in Eq. (3.8) has the same mathematical

structure as the Fano formula (Eqs. (3.3) and (3.6)) for the TCS. Therefore, it is possible

to describe the PCSs by the Fano formula, but in this case q as well as C1 and C2 rep-

resent only effective parameters without deeper physical meaning. The relation between

these parameters is [60]

C1 = ρ2(q2 − 1) + 1 =
σaq + σb

σb
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C2 = 2qρ2 =
σa

σb

σ0

P =
σ0

T

ρ2
= σb. (3.9)

The Fano formula given in Eqs. (3.3) and (3.6), together with Eq. (3.8), can be used to

fit the experimental TCSs or PCSs.

3.1.3 Kabachnik’s formula for the angular distribution param-

eters

The transition matrix elements in Eq. (1.24), which characterize excitation and autoion-

ization decay, have to be parameterized, so that they can be used in the fit analysis of

the experimental data. To this purpose, Kabachnik [46] parameterized the ADPs β given

in Eq. (1.22) in the following way:

β = −2
Xε2 + Y ε + Z

Aε2 + Bε + C

= −2
X

A
·
ε2 + Y

X
ε + Z

X

ε2 + B
A
ε + C

A

, (3.10)

with

A =
σa + σb

4π

B =
2qσa

4π

C =
σaq

2 + σb

4π
. (3.11)

The parameters X, Y , and Z are related to the transition amplitudes and the phase

shifts given in Eq. (49) in Ref. [46]. They are considered to be slowly varying functions

of energy and may be regarded as correlation constants in the vicinity of a resonance.

With the off-resonance value β0 = −2X/A and the relations given in Eq. (3.11), one can

write Eq. (3.10) as

β = β0

(ε2 + Y
X

ε + Z
X

)(σa + σb)

σa(ε + q)2 + σb(ε2 + 1)
. (3.12)

With the new parameters F = Y/X and G = Z/X, Eq. (3.12) becomes

β = β0

ε2 + Fε + G

σT

·
σa + σb

ε2 + 1

= β0

ε2 + Fε + G

ρ2(ε + q)2 + (1 − ρ2)(ε2 + 1)
. (3.13)

In the measurements, PCSs together with other DCSs are measured, and these data are

used to derive the corresponding ADPs. Due to possible fluctuations caused by other
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DCSs, the PCSs become more reliable with respect to the ADP. Therefore, with Eq.

3.13, a parallel fit for β is recommended by sharing the two parameters q and ρ2 with

the PCS, but not F , G, and β0. We shall apply this procedure to our ADP data in the

near future.

One can also simply write the ADP in Eq. (3.10) as

β = β0

ε2 + a1ε + b1

ε2 + a2ε + b2

. (3.14)

In this case, a1, b1, a2, and b2 can also be regarded as correlation constants in an isolated

resonance. During a fit process, one has to take into account the conditions b2 = (q2σa +

σb)/(σa + σb) > 0 and a2 = (2qσa)/(σa + σb). Indeed, according to the large number

of parameters (5 independent parameters in addition to the Fano parameters q, Γ, and

Er) in Eq. (3.14), it is quite difficult to extract them correctly from a fit to experimental

data, particularly in case of overlapping resonances. In the vicinity of a resonance, the

terms in the numerator and denominator of Eq. (3.10) change differently, so that their

extrema are at different excitation energies and, as a result, β can vary rapidly. From

simulations performed with Eq. (3.14), the variations in β show strong dependence on

the parameters in the denominator.

3.2 Classification schemes for doubly excited reso-

nances of helium

In this dissertation, we introduce two different classification schemes to describe doubly

excited resonances in helium. The first is based on a molecular adiabatic description

of helium, which uses the quantum numbers nλ, nµ, and m. These quantum numbers

are equivalent to the approximate quantum numbers N(K, T )A
n′ which were derived from

group theory by Herrick and Sinanoǧlu [23, 61]. In this dissertation, both classification

schemes will be employed to understand the dynamics of doubly excited resonances in

a two-electron system. The transformations between molecular quantum numbers and

Herrick’s approximate quantum numbers will also be presented in this section.

3.2.1 Molecular adiabatic approximation

In order to fully understand the decay dynamics of doubly excited states, Feagin and

Briggs [24] introduced in 1986 an adiabatic approximations similar to the Born-Oppenhei-

mer approximation for H+
2 , but with a reversed role of electrons and nuclei (see Fig.

(3.5)).

The most important feature of the molecular adiabatic approximation is the fact that

the two-center Hamiltonian is separable in prolate spheroidal coordinates that are plotted

in Fig. 3.6. In this case, individual resonances are obtained by calculating vibrational

eigenstates according to the Schrödinger equation,
(

−
∂2

∂R2
+ Vnλ,nµ,m − En′

)

fn′(R) = 0, (3.15)
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Figure 3.5: (a) Schematic of H+
2 and (b) of the helium atom with reversed roles for the electrons

and nucleus. ~r1 and ~r2 are the two possible distances between electrons and nuclei. ~r is the

distance between electron (nucleus) and the center of two nuclei (electrons). P and e represent

the proton and electron, respectively, and ~R is the distances between the two identical particles.
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Figure 3.6: Schematic of the prolate coordinates λ and µ.

where R is the distance between the two identical particles, i.e. the electrons in case

of helium. The quantum numbers nλ and nµ count the nodes along the respective

coordinates λ and µ. m is the angular quantum number corresponding to the rotation

angle along the Z axis in Fig. 3.6. The potentials Vnλ,nµ,m lead to a set of adiabatic

avoided-crossing potential curves, which represent Rydberg series. n′ are vibrational

energies in these potential curves, but in doubly excited states they specify the excitation
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of one electron to a Rydberg series, i.e. they represent the index of a Rydberg series.

So far, a complete classification of doubly excited state can be described by quantum

numbers nλ, nµ, m, and n′.

3.2.2 Herrick’s classification schemes

The classification scheme N(K, T )A
n′ [23, 61], which is identical to the molecular scheme

with quantum numbers nλ, nµ, and m, is often employed to identify an isolated doubly

excited resonance with N and n′, respectively, standing for the ionization threshold of a

given channel and the running index of the considered Rydberg series. In an independent

particle picture, N(n′) may be understood as the principal quantum number of the inner

(outer) electron; K is one of the angular-correlation quantum numbers and proportional

to the average value of r1cosθ12, where r1 refers to the inner electron and θ12 is the

angle between the two electrons. T , the second angular-correlation quantum number,

represents the relative orientation between the orbitals of the two electrons, which is

equivalent to quantum number m in molecular approximation. A is called the radial

correlation quantum number, which reflects a symmetry (the wave function of A = +1

states has an antinode and A = −1 states with a node) with respect to the x-y-plane

(µ = 0, i.e. r1 = r2) in Fig. 3.6. Close to the double-ionization threshold (N and n′ are

quite large), one obtains

K → −N〈cosθ12〉 (3.16)

from

〈cosθ12〉 → −
K

N
+

N2 − 1 + K2 − T 2 + 2ll′

2Nn′
, (3.17)

where l (l′) is the orbital angular quantum number for the inner (outer) electron, respec-

tively. For a given L and N , the ranges for K and T are given as follows [23]:

T = 0, 1, · · · , min(L, N − 1),

±K = N − T − 1, N − T − 3, · · · , 1(or 0). (3.18)

For 1P o double-excitation resonance of helium, T is limited to 1 and 0 and K has 2N −1

values below a given ionization threshold IN . N, K = N − 2 is the principal Rydberg

series, which carries most intensity in the spectra, with resonances that have larger line

widths.

Herrick’s quantum numbers N(K, T )A
n′ correspond to the molecular quantum numbers

[nλnµm]n′ by the following relations:

molecular Herrick

nλ =
1

2
(N − K − 1 − T )

[nµ/2] =
1

2
(N + K − 1 − T ) (3.19)

m = T

(−1)nµ (=) A.
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Here, N = nλ + [nµ/2] + m + 1 and K = nλ − [nµ/2]. The notation [nµ/2] stands

for the closest integer lower than nµ/2; In the two-center adiabatic approach, the fact

that A = 0 does not occur is implied in the last equality in parentheses of Eq. (3.19)

(for details see Ref. [31]). The approximate quantum numbers [nλnµm]n′ and N(K, T )A
n′

imply the nodal structure of the wave function, which in turn leads to the propensity

rules of radiative and non-radiative transitions (see Sect. 5.3.2).


