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Abstract

In the present dissertation, the double excitation states of helium including the au-

toionization decay of these states were studied experimentally and theoretically in a

broad energy region, which includes the transition from strong correlation below the low

single ionization thresholds (SIT) to the region of quantum chaos at energies very close

to the double-ionization threshold.

Two kind of experiments were performed, namely total-ion-yield measurements with

the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measure-

ments to obtain partial cross sections (PCS) as well as angular distribution parameters

(ADP). Both types of measurements were performed at the third generation synchrotron

radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I15, and

they were found to be in in excellent agreement with state-of-the-art complex-rotation

calculations performed recently by D. Delande. These experimental and theoretical data

on the TCSs were analyzed in order to study quantum chaos in doubly excited helium,

and interesting signatures of quantum chaos were found. The TOF technique allowed to

measure PCSs and ADPs in the energy regions from I5 to I9 and I7, respectively. These

experimental data provide a critical assessment of theoretical models that can be used

to explore the dynamics of strong correlation as well as quantum chaos in helium.

In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below

I4 were calculated employing the R-matrix method. The present theoretical results agree

well with a recent experimental study of l-specific PCSs below I4 by J.R. Harries et al..

An analysis of patterns in the PCSs and ADPs on the basis of the present experi-

mental and theoretical l-specific data allowed to improve the present understanding of

autoionization decay dynamics in this two-electron atom.



Zusammenfassung

In der vorliegenden Arbeit wurden sowohl experimentell als auch theoretisch Doppelan-

regungszustände des Heliums inklusive deren Zerfälle durch Autoionisation über einen

breiten Energiebereich hin untersucht. Dieser Energiebereich spiegelt den Übergang

von einem stark korrelierten System unterhalb der untersten Einfachionisationsschwellen

(SIT) zu Quantenchaos in der Nähe der Doppelionisationsschwelle von Helium wider.

Im Rahmen dieser Dissertation wurden zwei verschiedene Experimente durchgeführt.

Zum einen wurden durch Messungen des Photoionisationsstromes die totalen Wirkun-

squerschnitte (TCS) und zum anderen mit Hilfe von Flugzeit-Elektronenspektren die par-

tiellen Wirkungsquerschnitte (PCS) und Winkelverteilungsparameter (ADP) gemessen.

Diese beiden Experimente wurden an der Synchrotronstrahlungsquelle BESSY II in

Berlin durchgeführt. Die totalen Wirkungsquerschnitte wurden bis zur Einfachionisa-

tionsschwelle I15 vermessen und zeigen eine exzellente Übereinstimmung mit state-of-the-

art complex-rotation Rechnungen, die erst kürzlich von D. Delande durchgeführt wur-

den. Diese experimentellen und theoretischen Daten für den totalen Wirkungsquerschnitt

wurden dazu benutzt, den Übergang zu Quantenchaos in Helium zu studieren, wobei in-

teressante und neuartige Signaturen des Quantenchaos gefunden wurden. Die Flugzeit-

spektren ermöglichten es, die Winkelverteilungsparameter und partiellen Wirkungsquer-

schnitte für den Energiebereich von der Schwelle I5 bis zur Schwelle I7 bzw. I9 zu messen.

Diese Daten erlauben kritische Tests von Modellen, die dazu benutzt werden können, die

starke Elektronenkorrelation und – damit verbunden – das Quantenchaos in Helium zu

verstehen.

In dem theoretischen Teil dieser Arbeit wurden die n- und l-spezifischen partiellen

Wirkungsquerschnitte und Winkelverteilungsparameter bis zur Ionisationsschwelle I4 mit

Hilfe der R-Matrix-Methode berechnet. Diese theoretischen Ergebnisse stimmen gut

mit einer ersten experimentellen Untersuchung der l-spezifischen partiellen Wirkungs-

querschnitte unterhalb der Ionisationsschwelle I4 überein, die von J.R. Harris et al.

durchgeführt wurde.

Die Analyse von Mustern in den partiellen Wirkungsquerschnitten und Winkelverteil-

ungsparametern auf der Basis der l-spezifischen Daten, die sowohl experimentell als auch

theoretisch erzielt wurden, erlaubt ein verbessertes Verständnis für die Autoionisation in

dem Zweielektronenatom Helium.
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Introduction

The discovery of strong electron correlation effects in double-excitation resonant states

of helium in an experiment by Madden and Codling in the 60’s of the past century

[1] triggered the development of group-theoretical and molecular adiabatic approxima-

tion approaches to understand this unexpected strong correlation dynamics described

by a set of approximate quantum numbers in low doubly excited states. Close to the

double-ionization threshold, the spectra exhibit complicated fluctuations due to electron

correlation which finally leads to quantum signatures of chaos [2]. The aim of this dis-

sertation is to study doubly excited helium in a very broad energy range from strong

correlation dynamics below the lower ionization thresholds to quantum chaotic dynam-

ics very close to the double-ionization threshold. In addition, the present studies are

expected to improve the understanding of electron correlation, develop new concepts for

quantum chaos, and also improve the understanding of quantum mechanics from the

viewpoint of classical chaos.

Quantum chaos can be considered as the behavior of a quantum mechanical system

whose classical counterpart would be chaotic. The field is not limited to theoretical

interests related to the quantum-classical correspondence of chaos. Since the 1990’s new

techniques of fabricating semiconductor microstructures have opened a whole new active

research area, namely the field of mesoscopic physics. A large number of interesting

systems in the mesoscopic regime, e.g. quantum dots [3, 4] and tunneling devices [5],

can be well understood on the basis of quantum chaos [6]. Gutzwiller’s trace formula

[7, 8] presents the correspondence between quantum mechanics and classical nonlinear

mechanics of chaotic systems and has been successfully applied to a number of fields [9].

So far, most of the studies of chaos are limited to simple theoretical model problems

with two degrees of freedom such as the double pendulum [10]. For atomic systems,

intensive studies have been performed for the hydrogen atom in a strong magnetic field

[11, 12, 13, 14, 15]. Very recently, the first experiment on the chaotic scattering of 85Rb

atoms was achieved [16, 17]. For doubly excited helium close to the double-ionization

threshold, where h̄ → 0, quantum chaos is expected since its classical counterpart, the

classical three-body system, is a nonintegrable system. For this atom, theoretical studies

of quantum chaos are mainly focused on 1-D helium [10, 18] and 1Se doubly excited

helium [19], since these studies can be carried out with good accuracy for reasons of

simplicity as compared to the 1P o doubly excited states in 3-D helium.

In this dissertation, the 1P o doubly excited states in helium are addressed. By absorb-

ing a single photon, ground-state helium can be excited into a singly ionized continuum
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6

state 1P o by direct and indirect photoionization processes. As a consequence, Fano pro-

files [20] are observed for the resonances in the cross section due to interference between

these two processes. For the studies from strong correlation to quantum chaos in doubly

excited helium, two kinds of experiments were performed in the dissertation. One is the

measurement of total cross sections (TCS) by monitoring the total ion yield with a gas

cell [21]. This technique provides high count rates and allows to measure the spectra

with small cross sections extremely close to the double-ionization threshold, where one

expects quantum signatures of chaos. In contrast to the total ion yield measurements

of the TCS, the measurements for partial cross sections (PCS) and angular distribution

parameters (ADP) were performed by detecting photoelectron spectra with an advanced

time-of-flight (TOF) technique [22]. This technique can distinguish between the decay

channels to the different final states He+(n) by measuring the various kinetic energies

of emitted electrons. For this topic, our studies focus on strong correlation dynamics

of autoionization in doubly excited helium in the intermediate energy region, i.e. below

the single ionization thresholds (SIT) I5 to I9. The SIT IN implies the energy when the

principal quantum number of the inner electron in doubly excited states is N and the

one of the outer electron is infinite. Both kinds of measurements were performed using

third-generation synchrotron radiation light sources. High brightness of the light and the

high-resolution monochromators are prerequisites for performing these state-of-the-art

experimental studies. Some fundamental knowledge about the atomic interaction with

the electromagnetic field as well as about the properties of synchrotron radiation and

monochromators is introduced in the first part of this dissertation.

Due to strong electron correlation inside the helium atom, the spectra of the double-

excitation states cannot be described by traditional quantum numbers like e.g. the

orbital angular momentum quantum number. Instead, a set of approximate quantum

numbers were introduced for the description of the spectra [23]. It was later shown that

these approximate quantum numbers are identical to the exact quantum numbers which

describe the separable two-center Coulomb problem of H+
2 [24]. In the energy region

above I4, the most interesting features are caused by perturbers; these are low lying

resonances of Rydberg series belonging to higher ionization thresholds, which interfere

with Rydberg series that converge towards a lower ionization threshold. Predicted by

quantum defect theory [25], these perturbers will influence the energy positions of the

Rydberg resonances by an increase of the quantum defect by one within the region

of the interference; the linewidths and Fano parameters q of the corresponding Fano

resonances are also modulated. In the region close to the double-ionization threshold,

the interferences due to the overlap of several perturbers with different Rydberg series

render the observed spectra highly complicated. In this case, the approximate quantum

numbers reflecting strong electron correlation are expected to lose their physical meaning,

and the regularities in the two-electron resonance spectrum start to dissolve. If many

resonances in the spectrum are strongly overlapping and the spectra hence fluctuating,

one expects the occurrence of Ericson fluctuations [26] in the spectra; they are, together

with the loss of good quantum numbers, assumed to be features of quantum chaos. Close
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to the double-ionization threshold, the helium atom can be described in a semiclassical

way. Considering that its classical counterpart is nonintegrable, one expects to see the

manifestations of chaos in doubly excited helium from a study of quantum numbers,

spectral fluctuations, and the statistical properties of resonance parameters. Therefore,

the last eV below the double-ionization threshold has drawn considerable attention in

both experimental and theoretical studies.

Recently, Püttner et al. have performed experimental and theoretical studies on the

TCSs below the SIT I9 with the result that the statistical properties of the energy levels

revealed a transition towards quantum chaos [18]. In this dissertation, the experimental

studies on the TCS are extended up to the SIT I15, i.e. up to 6 further thresholds are

measured. These new data will be analyzed together with the results of very recent

state-of-the-art complex-rotation calculations of Delande [27] that were carried out up

to the SIT I17. This experimental and theoretical progress makes it possible to explore

the exciting physical phenomenon—quantum chaos in doubly excited helium. On the

basis of these data, the approximate quantum numbers, the question Ericson fluctuations

as well as the statistical properties of energy levels, linewidths, and Fano parameters q

will be topics in this dissertation. The statistical analysis displayed interesting precursor

quantum signature of chaos in doubly excited helium. Many unexpected results were

found and interesting questions such as the absence of Ericson fluctuations will be ad-

dressed. Semiclassical configurations [2, 28] related to the double-ionization dynamics in

helium are employed to understand the chaotic dynamics of doubly excited resonances.

Using the theoretical results, the experimental spectra will be assigned for the first time

up to the SIT I14. These highly interesting and novel results will be presented in Sect.

4 of the present dissertation. Up to now, the published experimental and theoretical

studies of the TCS were limited to regions below the SIT I9 [18, 29, 30, 31, 32, 33].

The studies of the PCSs and ADPs of doubly excited states of helium below the

SITs I5 to I9 are performed with the TOF electron spectrometers and presented in

Sect. 5 of this dissertation. These PCSs and ADPs show similarity which are called

general pattern [34, 35]. They can be understood on the basis of propensity rules for

autoionization decay [31, 33]. In this chapter, we will prove experimentally the presence

of the general patterns up to the SIT I9, but does not work well due to more and more

perturbers. Interesting features, such as the mirroring behavior [36, 37, 38] of double-

excitation resonances will also be addressed in this dissertation. Since the PCSs and the

ADPs can carry additional information on the coupling of between outgoing channels,

more resonances are expected to be observed in the PCSs than in the TCSs. Their

clarifications can improve the understanding to the decay dynamics of doubly excited

autoionization resonances. In addition, the PCSs and the ADPs provide additional tests

of the quality of the theoretical data that are employed in our statistical study of quantum

chaos [18].

Theoretical n− and l−specific PCSs and ADPs as well as corresponding TCSs below

the SIT I4 were calculated by the R-matrix method; the results are given in the last

part of dissertation. A justification of this theoretical work is the impressive agreement
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between the results of the present calculations and those of very recent measurements of

the l-specific PCSs by Harries et al. [39, 40]. On the basis of reliable l-specific PCSs and

ADPs, more general cross section patterns such as mirroring behavior and mimicking

behavior [38] are expected to appear, which can further improve the understanding of

correlation and decay dynamics in two-electron atoms.



Part I

Background and basic principles
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Chapter 1

Atomic structure and interaction

with the electromagnetic field

1.1 LS–coupling

The electronic structure of an atom is determined by the Coulomb interaction between

the electrons and the nucleus, as well as between different electrons which is commonly

called electron correlation. In the non-relativistic limit, the Hamiltonian H for an atom

with N electrons is given in atomic units by

H =
N
∑

i=1

(

−1

2
∇2

i −
Z

ri

)

+
N
∑

i<j=1

1

rij
, (1.1)

where ri denotes the relative coordinate of the electron i with respect to the nucleus and

rij = |ri − rj|. By approximating the Coulomb interaction between the electrons with a

mean effective spherical potential V (r), equation (1.1) can be written as

H = Hc + H1 (1.2)

with

Hc =
N
∑

i=1

(

−1

2
∇2

i −
Z

ri

)

+ V (ri) (1.3)

and

H1 =
N
∑

i<j=1

1

rij
− V (ri). (1.4)

H1 represents the difference between the actual and the averaged Coulomb interactions

of the electrons, and contains electron correlation effects. The term H1 is normally small

compared to the terms Z/ri and 1/rij and can, therefore, be regarded as a perturba-

tion. Due to strong electron-electron correlation in doubly excited two-electron systems,

like helium, the Hamiltonian in Eq. (1.2) cannot simply be solved with the perturbation
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1.2 Atomic photoionization process 11

method. However, the mixing of two-electron hydrogenic configurations due to the inter-

action term 1/rij can be described well by group-theoretical techniques [23] but not by

independent electron picture, resulting in new approximated quantum numbers to char-

acterize the doubly excited states instead of the orbital angular momentum quantum

numbers in two-electron systems.

In the relativistic case, other interactions have to be added, of which the spin-orbit

interaction represents the largest contribution, which is given by

H2 =
∑

i

ξ(ri)li · si, (1.5)

where ξ(ri) = 1
2ri

dV (ri)
dri

. li and si are the orbital angular momentum and spin angular

momentum of electron i, respectively. If H1 � H2, the dominating Coulomb interac-

tion preserves the spin and the orbital angular momentum and the vector sums of the

individual angular momenta

L =
∑

li and S =
∑

si. (1.6)

From these, one obtains the total angular momentum J from the coupling

J = L + S. (1.7)

This is called LS-coupling. The opposite case, H1 � H2, is called jj-coupling and requires

that

ji = li + si and J =
∑

ji. (1.8)

The case that both perturbations, H1 and H2, are of the same order of magnitude is

difficult to handle because both terms must then be treated on the same footing. This

situation is called intermediate coupling. As a rough rule, one can use LS-coupling for

the outer shells in low-Z elements, and jj-coupling for inner shells in high-Z elements.

For other cases, intermediate coupling is often required.

From these considerations, LS-coupling is expected for He, however, for the special

case of doubly excited resonances of helium very close to the He+(N = 2) ionization

threshold, recent experimental [41] and theoretical results [42] have confirmed that the

spin-orbit interaction significantly contributes to the total energy of the atom, and results

in a breakdown of LS-coupling. Since this particular energy region is not of interest in

the present work, the discussions on experimental results and theoretical calculations is

based on LS-coupling throughout this dissertation.

1.2 Atomic photoionization process

An atom can be ionized by obtaining extra energy from an incoming photon if the extra

energy is larger than the negative potential of a bound electron. The single photoioniza-

tion process of an atom can be expressed by

A + hν → A+ + e− . (1.9)
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This single photoionization process obeys mainly the dipole selection rule for an electronic

dipole transition (i.e. a change of the total orbital angular momentum ∆L = ±1 and the

parity). In the final state, one electron is free and the others remain in a positive ion

either in the ground state or in the excited state.

The interaction of a photon with an atom resulting in ionization is usually expressed

in terms of a cross section, σ, which is defined as the transition probability per unit time

and per unit target scatterer and per unit flux of incident particles with respect to the

atom. If this photoionization can lead to various channels, i.e. the remaining electrons

in the ion could be in various energy levels, we call the cross section specifying to one

channel a partial cross section (PCS). In doubly excited helium, PCSs σn or σnl describe

satellite cross sections leading to the final states He+(n) or He+(nl), respectively. A

total cross section (TCS), σT , can be regarded to be the sum of all PCSs, σn or σnl. The

parameter β is related to the scattering angle θ in Eq. (1.22), so that it is called angular

distribution parameter (ADP). The ADP together with the TCS and the PCS have

become standard quantities in the study of the interactions between photons and atoms.

In this section, we shall briefly introduce the derivations of the TCSs, the PCSs, and

the ADPs that are employed in this dissertation in order to observe electron correlations

and transitions in doubly excited helium.

1.2.1 Interaction of an atom with a photon

For an electron in the electromagnetic field, the mechanical momentum p has to be

replaced by the canonical momentum, which includes the vector potential A of the field.

The scalar potential Φ of the electromagnetic field is also added, giving

H =
(p− eA)2

2m0
+ Φ (1.10)

for the Hamiltonian. In Coulomb gauge and space-free electromagnetic field, e.g. in the

external field of monochromatized synchrotron radiation, A and Φ can be chosen

∇ · A = 0 and Φ = 0. (1.11)

Under these conditions, the synchrotron radiation field can be described by

A(ω; r, t) = A0ε
{

ei(k·r−ωt) + cc
}

, (1.12)

where ε is the polarization vector, A0 the field intensity, and cc the complex conjugate;

k, r, ω, and t have their normal meanings. One can regard the interaction with the

radiation field as an additional potential energy term, which perturbs the atom with the

vector potential A alone.

The time-dependent Schrödinger equation in an electromagnetic field then reads

ih̄
∂Ψ

∂t
=

[

(p − eA)2

2m0

+ V (r)

]

Ψ, (1.13)
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where p = −ih̄∇ and V (r) is the Coulomb potential. With the conditions given in Eq.

(1.11), this results in

(p − eA)2 Ψ =
(

p2 − 2eA · p + e2A2
)

Ψ. (1.14)

One can therefore write the Schrödinger equation (Eq. (1.13) as

ih̄
∂Ψ

∂t
=

[

Hatom +
ieh̄

m0
A · ∇ +

e2

2m0
A2

]

. (1.15)

From the full Hamiltonian given in Eq. (1.15) with three terms, only one term, namely

A · ∇, is responsible for the photon-atom interaction. For a weak vector potential A, it

can be treated as a perturbation. On the same footing, the contribution of term A2 can

also be neglected. Employing time-dependent perturbation theory and Fermi’s golden

rule for the transition rate w from an initial atomic state |i〉 to a final atomic state |f〉,
one obtains

w =
2π

h̄
|〈f |Hint|i〉|2 δ(energy conservation), (1.16)

with the time-independent interaction

Hint =
eh̄

2m0

A0e
ik·rε · ∇. (1.17)

1.2.2 Dipole transition approximation

The transition matrix between the initial state |i〉 and the final state |f〉 can be written

according to Eqs. (1.16) and (1.17) as

Dif ∝
〈

f
∣

∣

∣eik·rε · ∇
∣

∣

∣ i
〉

. (1.18)

In many cases of practical interest this matrix can be simplified by expanding the expo-

nential function eik·r as

eik·r = 1 + (ik · r) +
1

2!
(k · r)2 + · · · . (1.19)

Normally in the low-photon-energy region, the k · r term in the expression given in

(1.19) is three orders of magnitude smaller than unity. If one just includes the first term,

unity, in this expansion, it is known as the electric dipole approximation. The electric

quadrupole transitions or magnetic dipole transitions described by the second term of Eq.

(1.19) are weaker by a factor α2 for low energies (< 1000 eV), and under these conditions,

electric dipole approximation works well. Here, α is the fine structure constant. As the

photon energy increases, the electric quadrupole transition strength being proportional

to ω4α2, increases dramatically in comparison to the electric dipole transition strength

being propotential to ω2 and magnetic dipole transition being propotential to ω2α2 (for

details, see Ref. [43]). Therefore, for doubly excited resonances of helium, which all
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have excitation energies below 79 eV, the electric dipole approximation can be employed

safely throughout this dissertation. Since the magnetic dipole term is at least a factor α2

smaller than the electric dipole term, it can be neglected even in the low-energy region.

If one uses linearly polarized light in dipole approximation, the dipole transition

matrix Dif in Eq. (1.18) can be written as 〈f |∇| i〉, which is called the velocity form.

With the help of the general commutation relation

dr

dt
=

∂r

∂t
+

i

h̄
[H, r] =

i

h̄
[H, r] (1.20)

and p = ih̄∇ = m0dr/dt, one finds

〈f |∇| i〉 = m0(Ef − Ei) 〈f |r| i〉 = m0ω 〈f |r| i〉 , (1.21)

which is called the length form of the dipole matrix. These forms of the dipole matrix

are completely equivalent only for exact initial- and final-state wavefunctions since the

relations H|x〉 = Ex|x〉, with x = i and f , are used in Eq. (1.21). Therefore, the

differences of the matrix elements in these two forms are often used to check the quality

of the target wavefunctions used in calculations. In Part III of this dissertation, our

calculations employing R-matrix method will be presented in both forms, velocity form

and length form.

1.2.3 Cross sections and angular distribution parameters

For photoelectrons ejected from atoms by linearly polarized radiation, the differential

cross sections (DCS) can be written, in the electric dipole approximation, as [44, 45, 46]

dσnl

dΩ
=

σnl

4π

[

1 + βnl

(

3cos2θ − 1

2

)]

, (1.22)

where n and l are, respectively, the principal and the orbital angular momentum quantum

numbers of the residual ion, θ is the angle between the momentum of the photoelectron

and the polarization vector of the photon with both directions being in the plane per-

pendicular to the light propagation direction, which is called dipole plane. The PCS σnl,

which leads to the final state |nl〉 of the ion, can be written as

σnl =
1

3(2Li + 1)

∑

l′,Lf

|M(nll′Lf)|2 . (1.23)

The ADPs βnl can be described by [45, 46]

βnl =
5

σnl(2Li + 1)
(−1)Lil

∑

l′
1
,L1

f

∑

l′
2
,L2

f

[

(2l′1 + 1)(2l′2 + 1)(2L1
f + 1)(2L2

f + 1)
]1/2

×
(

1 1 2

0 0 0

)(

l′1 l′2 2

0 0 0

){

1 1 2

L1
f L2

f Li

}{

l′1 l′2 2

L1
f L2

f l

}

×M(nll′1L
1
f )M(nll′2L

2
f )

∗. (1.24)



1.2 Atomic photoionization process 15

Li and Lf are the orbital angular momenta of initial and final states, respectively, and

l′ is the orbital angular momentum of the photoelectron. M(nll′Lf ) is the transition

amplitude in the electric dipole approximation and includes the Coulomb phase shift

factor. From the experimental side, equations (1.23) and (1.24) for the PCSs, σ, and

the ADPs, β, are too complicated to be employed for profile analysis of the spectra.

Therefore, these expressions have to be parametrized, which will be presented in detail

in Sect. 3.1 together with the parametrization of the resonances in the TCSs, σT .

Figure 1.1: Polar plot of the angular distributions of photoelectrons for the four values β = −1,

0, 1, and 2.

From Eq. (1.22), one can derive that the βns is equal to 2 in LS-coupling. In addition,

the requirement that the DCSs in Eq. (1.22) cannot be negative results implies that the

values of the ADPs β are restricted by the inequality

−1 ≤ β ≤ 2. (1.25)

The angular distributions of photoelectrons for the four values β = −1, 0, 1, and 2 are

plotted in Fig. 1.1. The PCS can be measured directly by mounting the detector at the

magic angle, θ ≈ 54.7, since under this condition the second term in Eq. (1.22) becomes

equal to zero. From Fig. 1.1, one can also see that the photoelectron intensity at the

magic angle is independent of the β values. Due to the two unknown parameters σnl and

βnl in Eq. (1.22) at least two detectors have to be mounted at different angles in order

to obtain the ADPs from the experiment. A larger number of detectors can, however,

provide more precise values for β. Later in this dissertation, two photographs of the

experimental set-up allowing the use of up to 12 TOF spectrometers are shown, which

was used in the ADP measurements of this dissertation.
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In theory, the n-specific ADP βn are related to the nl-specific βnl by

βn =
−8πA2

n

σn
=

−8π
∑

l A
2
nl

σn
=

−8π
∑

l
A2

nl

σnl
· σnl

σn
=

∑

l βnlσnl
∑

l σnl
, (1.26)

where A2, referred to A2 in Ref. [46], is proportional to the real part of the transition

amplitude, ReM(nll′1L
1
f )M(nll′2L

2
f )

∗. Note that, experimentally, the terms
∑

l βnlσnl and
∑

l σnl are averaged over the energies; therefore, in order to compare with experimental

data, the calculated βn should be obtained by the convoluted terms
∑

l βnlσnl and
∑

l σnl,

and not by a convolution of their fraction; this fact was relevant for the present theoretical

work which will be presented in part III.



Chapter 2

Light source and experimental

techniques

The use of a third-generation synchrotron radiation (SR) light source, a high-resolution

monochromator, and advanced time-of-flight (TOF) techniques allows to measure high-

resolution vacuum ultra-violet (VUV) spectra. A modern SR light source in combination

with a undulator provides high photon flux from the infrared to hard x-rays region. The

harmonic radiation from an undulator is selected by a monochromator and results in

highly monochromatic light with high intensity, which is needed for the present pho-

toionization measurements of doubly excited helium. The well-defined time structure of

SR allows TOF electron spectrometers to measure photoelectron time spectra if the stor-

age ring is operated in a single-bunch mode. This technique is particularly well suited

for the present studies of channel- and angle-resolved measurements of doubly excited

helium because of its high-resolution and good transmission particularly for slow elec-

trons. In this chapter, I shall briefly introduce the properties of SR and monochromators

as well as the TOF techniques. In addition, I shall briefly describe the gas cell, which

was used for total ion yield measurements of doubly excited helium.

2.1 Properties of synchrotron radiation

A electron that undergoes an acceleration generates electromagnetic radiation (see Fig.

2.1(a)). If the photons are created by electrons with highly relativistic velocities in

a circular orbit, this radiation is called SR (see Fig. 2.1(b)). The main difference to

Fig. 2.1(a), which displays the non-directed emission pattern of an accelerated charged

particle at non-relativistic velocities, is the strong forward direction of SR (Fig. 2.1(b)).

Due to the relativistic velocity of the circulating electrons, the emission pattern of the

radiation is dramatically pushed into forward direction (see Fig. 2.1). The opening half-

angle Θ of the cone is proportional to 1/E and given by [47]

Θ =
1

γ
=

m0c
2

E
, (2.1)
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where E is the electron energy, m0 the rest mass of the electron, and c the velocity of

light.

Figure 2.1: Emission pattern of an electron circulating with velocity v: (a) v/c � 1; (b) v/c ≈ 1

(from Ref. [47, 48]).

In SR facilities that concentrate on the production of such radiation, the accelerated

electrons are stored in a circular ring, called electron storage ring. An electron stor-

age ring is composed of many technical components like injection system, microwave

cavity for acceleration, bending magnets, focus magnets, vacuum system, and wig-

gler/undulator. The electrons are generated in an injection system consisting of an

electron source and an accelerator, either a synchrotron or a linear acceleration. When

the electrons are accelerated to the operating energy of the storage ring, they are injected

into the storage ring. The bending magnets are used to deflect the electron beam which

ensures the electrons to travel in a circular path. The bending magnets can also serve

as the source of SR. In the straight section of the storage ring, a number of focus mag-

nets such as quadrupole magnets are placed for the aim of focusing the electrons. The

quadrupole magnets act much like glass lenses in light optics. In order to compensate the

energy loss of the electrons during the SR emission, the electrons are accelerated each

time as they pass through the RF cavity installed inside the electron storage ring. At

the Berliner Elektronenspeicherring für Synchrotronstrahlung (BESSY II), a 500 MHz

cavity is operated and results in a time period of 2 ns between two adjacent bunches.

Taking 240 m circumference of the storage ring into account, a maximum number of 400

electron bunches can be injected in the multi-bunch operation mode, which was used for

our total ion yield measurements presented in chapter 4. In the single-bunch operation

mode at BESSY II, only one bunch is filled resulting in a pulse period of 800 ns, which

defines the time window for the photoemission measurements with the TOF techniques.

In a simple picture, the wiggler or the undulator can be considered to consist of a large

number of bending magnets (see Fig. 2.2), which results in high intensity radiation. When

the electrons in the storage ring fly through a bending magnet, a wiggler or an undulator

SR is generated. Physically, the undulator and wiggler have similar magnetic structures

and they are typically a couple of meters long (more than 10-meter long undulators are

operated in free-electron lasers (FEL)). In contrast to the smooth spectral distribution
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Figure 2.2: The transverse undulator with permanent magnets and iron poles providing a

magnetic field with period λu. The maximum deflection angle α of the electron beam and the

photon emission angle Θ = 1/γ at the maximum bending of the undulators are shown (From

[47, 49]).

of radiation from a bending magnet or a wiggler, the radiation from an undulator shows

characteristic maxima, which results from the periodic magnetic structure of the insertion

devices illustrated in Fig. 2.2. Since it is composed of many bending magnets, the total

photon flux radiated from a wiggler increases by a factor equal to the number of poles n

in comparison to the radiation from a single bending magnet. In contrast to the radiation

distribution of the wiggler, the undulator can produce quasi monochromatic radiation

with high brightness peaks (see Fig. 2.3), where the peak intensity is higher by a factor

of n2 as compared to a single bending magnet.

λ

P
ho

to
n 

flu
x

2nd harmonic

1st harmonic

Figure 2.3: Photon flux distribution of an undulator for the first two harmonics.

The interference between electromagnetic waves emitted by the same electron at the

different bending magnets of an undulator yields a redistribution of the spatial and

spectral intensity. For the radiation emitted at angles ∆ and Λ with respect to the
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undulator axis, one gets [47]

λn =
λuΘ

2

2n

[

1 +
K2

2
+

∆2 + Λ2

Θ2

]

, (2.2)

where λn is the wavelength of the nth harmonic radiation (n = 1 is the fundamental

radiation); λu is the magnetic period; ∆ and Λ refer to the angles of the radiation emitted

in the plane parallel to and perpendicular to the permanent magnets, respectively. K =

γα ∝ B0λu is a characteristic parameter for these devices. Here α and B0 are the

maximum deflection angle and the strength of magnetic field on the axis of the electron

beam. Due to the weak magnetic field B0 and the small period λu of the magnetic

structure, which cause a small deviation angle α, the undulator has smaller values of K

than the wiggler. The essential difference between a wiggler and an undulator lies in the

magnetic field strength B0.

The harmonics are the characteristics of an undulator spectrum as shown in Fig. 2.3,

where the first and the second harmonic are plotted. In order to collimate the undulator

light, a small size aperture is placed behind the undulator. Since harmonics with even

number are off axis, only odd ones are selected to go through the aperture. According

to the energy region required for an experiment, one can choose the harmonic, which

provides high photon flux. For doubly excited helium, photon energies from 65 to 79 eV

are required so that the 1st harmonics was applied due to its high photon flux. During

the measurement, the gap between the permanent magnets of the insertion device has to

be adjusted in order to maintain a high photon flux over the whole photon-energy range

of the measurement.

2.2 Properties of monochromator

The harmonic radiation of an undulator has to be monochromatized and focused on the

spot, where the experiment is performed, via a beamline containing some collimating

and focusing elements such as grating, slits, and mirrors.

The present measurements of the PCSs and the ADPs of doubly excited helium were

performed at beamline U125/2-SGM (BUS) of BESSY II, which employs a spherical

grating monochromator (SGM). The optical layout of the BUS beamline is schemati-

cally displayed in Fig. 2.4. The two prefocusing and refocusing mirrors M1 and M3,

respectively, are placed in the front and at the end of beamline. An exit slit S2, placed in

front of M3, can be adjusted depending on resolution and flux. For the present measure-

ments, high resolution is needed, and a small aperture of the exit slit S2 was therefore

used. In order to enhance the quality of focused light, an entrance slit S1 is normally

placed behind the prefocusing mirror M1 in the SGM beamline. The monochromator

is a key part and is located in the center of the beamline; it selects a narrow band of

the photon energies from the broad energy range of SR and, in addition, focuses the

monochromatic light on the exit slit.
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3

Figure 2.4: Optical layout of spherical grating monochromator in beamline U125/2-SGM at

BESSY II (from Ref. [50]).
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Figure 2.5: Photon flux distributions from a monochromator with the first three orders. The

total intensity contains the monochromatized light of all orders.

For a spherical or plane grating of the monochromator, the diffraction from its surface

obeys the same equation,

mλ = d · (sinζ + sinη), (2.3)

where d is the distance between successive grooves, m the diffraction order, λ the

diffracted wavelength, ζ and η the angles of incidence and diffraction, respectively. ζ and

η can be varied by a rotation of the grating, which results in a change of the diffracted

wavelength, i.e. the photon energy is selected by varying the angles of incidence and

diffraction, ζ and η. Except for the selection of light, the spherical grating has the ad-

ditional function to focus the diffracted light onto the exit slit. When the wavelength of

light is varied, the distance of the focus to the exit slit varies. This is the reason why an
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additional plane mirror (M2 in Fig. 2.4) is installed in the monochromator, which can

match the focus requirement by an adjustments of ζ and η as well as of the distance

between grating and light source without having to move the position of the exit slit. In

order to avoid a loss of flux, large angles of incidence ζ are applied in gracing-incidence

monochromators for high photon energies. In contrast to gracing-incidence monochro-

mators, a normal incidence monochromator with smaller angles ζ is used measurements

(Ephoton ≤ 30 eV) for low photon energies.

The proper choice of the numbers of grooves of a grating is mainly determined by

the energy region of interest. A spherical grating with a groove density of 1100 l/mm is

used for the present PCS and ADP measurements of doubly excited helium for photon

energies from 65 to 79 eV.

In Fig. 2.5, the photon flux distributions as a function of wavelength is given for

different diffraction orders. The first, second, and third orders of monochromatized light

are represented by m = 1, 2, and 3 in Eq. (2.3), respectively. According to experimental

needs to the flux and the resolution of interest, one can choose the first order of light to

gain the flux or the second order of light for higher resolution.

2.3 Gas ionization cell

The measurements of the total photoionization cross section were performed with an

ionization cell shown schematically in Fig. 2.6; it contains a two-plate ionization chamber

with an active length of 10 cm. The ionization cell was pumped to a pressure of ≤ 10−8

mbar and then filled with 5 − 1000 µbar of the gas under study (noble gas, N2, CO,

O2, etc.); for helium, the pressure was ∼= 0.5 − 1 mbar. One electrode, used as a

repelled electrode, is kept at about +100 V; at the other electrode, the photoionization

current in the 10−15 − 10−12 A range is recorded as a function of photon energy by a

commercial pico-Ampere-meter (Keithley 6517). The ionization chamber is separated

from the ultrahigh vacuum (UHV) of the monochromator (in the 10−10-mbar range) by

a 1500-Å-thick Aluminum or 1000-Å-thick Carbon window. In order to avoid disturbing

effects due to absorption edges of the window (e.g., Al 2p (at ∼= 73 eV) or C 1s (∼= 284

eV)), the window material was selected according to the photon-energy range studied.

For photon energies from 65 to 79 eV in care of doubly excited helium, a carbon window

was accordingly used for total-ion-yield measurements. Because the windows cannot

withstand pressure differences exceeding ∼= 10 mbar, special attention was taken during

the pump-down of the ionization chamber.

The gas cell was also used for determining the photon energy resolution. The achiev-

able energy resolution, ∆E, depending on the incident photon energy, E, the diffraction

order, m, the finite size of the exit slit, ∆Es, the finite size and stability of the beam

source, ∆Eb, as well as the finite quality of the optical elements, ∆Ee, can be expressed

by [21],

∆E ∝ E3/2m−1/2(∆E2
s + ∆E2

e + ∆E2
b )

1/2. (2.4)



2.4 Time-of-flight techniques 23

Figure 2.6: Schematic view of the ionization cell (from [21]).

In order to achieve high photon flux, the first order, m = 1, was chosen in our measure-

ments, as mentioned before. ∆Es depends linearly on the width s of the exit slit. The

actual adjustment of the exit slit is a competition between count rate and energy reso-

lution. For the total-ion-yield measurements (the TOF measurements), a photon energy

resolution (FWHM) of ∼= 1.7 meV (∼= 6 meV) were used. Normally, the resonance 2,−13

is employed for a characterization of photon resolution. It therefore serves as a bench

mark for the optimization of mirror positions, the size and position of the exit slit, etc.

2.4 Time-of-flight techniques

About 40 years ago, the pulsed nature of SR emitted from electron storage rings pro-

vided the basis for the development of time-of-flight (TOF) electron spectroscopy as an

efficient, but relatively low-resolution alternative to electrostatic or magnetostatic ana-

lyzers. Early TOF electron spectrometers were used for photoemission experiments on

solid samples where a lower absolute energy resolution could be tolerated [51]. Since the

80’s of the last century, detectors and timing electronics for TOF electron spectrometers

for gas-phase experiments were developed [22, 52]. In the present dissertation, the pho-

toelectron time spectra for studies of the PCSs and the ADPs in doubly excited helium

were taken by TOF electron spectrometers, which allow to determine the kinetic energies
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of various outgoing electrons. Consequently one can determine the principal quantum

numbers n of the remaining electron in He+(n) and in this way n-specific PCSs and

ADPs are achieved.

In the TOF technique, the kinetic energies of the photoelectrons are determined by

measuring the flight times of the electrons from the interaction region to the detector,

which are typically of the order of some tens to hundred nanoseconds. This method

inherently relies on a timing pulse directly correlated to the SR light pulse, and a signal

provided by the electron detector. The time spectra of electrons with various kinetic en-

ergies can be collected simultaneously. In oder to avoid an overlap of slow photoelectrons

originating from one pulse and fast photoelectrons coming from the next pulse, the time

window, i.e. the pulse period, has to be long enough to ensure the arrival of the electrons

with the lowest velocity. Therefore, the single-bunch mode of SR is used to match such

a time window.

One advantage of a TOF spectrometer in comparison to an electrostatic analyzer

is that it can collect the entire electron spectrum simultaneously. Due to this, the

background noise in the time spectrum is suppressed since it is evenly distributed over

the entire time spectrum; this fact greatly increases the signal-to-noise ratio for the

weak structures analyzed in this work. Another advantage of the TOF technique is that,

due to its simplicity and small size, more than one spectrometer can be mounted to

an experimental chamber. This allows to perform angle-resolved measurements without

rotating the chamber so that the available beamline can be used more efficiently. In the

“ball-chamber” used for the measurements of the ADPs (see Figs. 5.2 and 5.3), more

than 10 TOFs can be mounted in the dipole plane. In addition, TOF spectrometers have

a high transmission for photoelectrons with low kinetic energy down to ∼=50 meV.

2.4.1 Time-of-flight electron spectrometer

Flight path MCP

3

2
1

Beam

Ring

Acceptance angle

Figure 2.7: Schematic for the design of TOF electron spectrometer. The drift tube for electron

flight path contains three parts marked by 1, 2, and 3, respectively. (From M. Braune)

The TOF spectrometer employed for the measurements of the ADPs is schematically
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shown in Fig. 2.7; it is similar to the TOF spectrometer used in the PCS measurements.

Three accelerating potentials, normally less than 2 eV, can be applied to parts 1, 2, and

3 in the drift tube that has a length of 28.1 cm. The TOF spectrometers are spatially

fixed by a ring perpendicular to the beam indicated by the vertical arrow in Fig. 2.7;

the acceptance angle of the TOF spectrometer is 5◦ − 6◦. To detect the electrons, a

multi-channel plate (MCP) was installed at the end of the drift tube. For this particular

TOF spectrometer design, the total flight distance of photoelectrons from the interaction

region to the MCP is about 30.9 cm.

MCP

e
_

START
STOP

CFD TDC PC

      Bunch Marker
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Figure 2.8: Schematic of the data-acquisition electronics.

Fig. 2.8 shows schematically the electronics used for processing the MCP pulses from

one TOF analyzer. The electrons are detected by three MCPs, with diameter of ∼= 34

mm diameter, in a Z-stack arrangement. Normally, an operating voltage of 3000 V is

applied to the MCP that has a resistance of 50−100 MΩ. The signals are first amplified

using a preamplifier (PA) and then reach a constant-fraction discriminator (CFD), where

signal noise is suppressed by setting an reasonable threshold as a trigger point. The CFD

output signal is a fast timing pulse that is used for the “stop” signal for the time-to-

digital-converter (TDC). The “start” signal is provided by the bunch marker that is

correlated to the SR pulse. The time difference between “start” and “stop” is converted

in the TDC into channel numbers, which are recorded and stored by a computer. In the

single-bunch mode of BESSY II, the time window between two adjacent pulses is 800 ns.

This time period represents 13385 channels, each channel having a time resolution of ∼=
60 ps.

2.4.2 Time-to-Energy conversion

In this dissertation, the TOF photoelectron time spectra were taken at different photon

energies using a step-width of 3 meV, and they have to be first converted into photo-

electron energy spectra by a time-to-energy conversion in order to obtain differential

cross sections (DCS). Time spectra taken directly from a TOF electron spectrometer

are not linear in energy (see Eq. (2.5)) resulting in an asymmetric shape, especially for

peaks with low kinetic energies; this can be seen in Fig. 2.9. Therefore, it is necessary

to linearize the spectrum in energy without affecting the peak area (proportional to the

number of counts). The relationship between the flight time t and the kinetic energy
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Figure 2.9: Photoelectron spectrum on the time scale taken at a photon energy of 78.3 eV.

n indicate the decay channels that lead to a final state He+(n). The channel numbers are

proportional to the flight time of the photoelectron in contrast to the kinetic energy, which is

increasing in the opposite direction.

Ekin of an electron under field-free conditions is given by

Ekin =
1

2
mev

2 =
mel

2

2t2
, (2.5)

with me being the electron mass and l the distance from the interaction region to the

detector. In oder to improve the transmission, in particular for slow electrons, the spectra

were measured with an accelerating voltage (Epot), and thus Eq. (2.5) cannot be applied

without precise knowledge of all the electrical potentials in the analyzer. An empirical

expression has to be used for the relation between kinetic energy and the corresponding

channel. Considering this correspondence between a channel in the time spectrum (ch)

and the flight time (t) (t ∝(prompt-ch)), one can rewrite Eq. (2.5) as

Ekin(ch) − Epot ∝
1

(prompt − ch)2
. (2.6)

Here the prompt describes a peak in the time spectrum that originates from photons

scattered from the gas target. Due to the high velocity of light, the flight time from the

interaction center to the detector can be neglected and the corresponding peak can be

used as zero on the time axis. One can fit this formula to some peaks with known kinetic

energies in the time spectra. With the fit result, one can transform a time spectrum

into an energy spectrum by a point-to-point transformation. A precise time-to-energy
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Figure 2.10: Photoelectron spectrum on the energy scale taken at a photon energy of 78.3 eV

and obtained from the spectrum on the time scale in Fig. 2.9 by time-to-energy conversion.

The corresponding kinetic energies are marked on the upper x-axis.

conversion is difficult to obtain for low-energy electrons because the paths of the electrons

are strongly influenced by residual magnetic fields. As a result, the kinetic-energy axis

cannot be determined accurately by a simple fit based on Eq. (2.6). It is necessary to use

a polynomial fit function to obtain a complete and accurate time-to-energy conversion.

In this dissertation, the electrons with kinetic energies down to 0.3 eV were taken in the

measurements of the PCSs and the ADPs. Only high-quality fit curves can guarantee the

conservation of the spectra in the time-to-energy conversion procedure, in particular for

low-count peaks with low kinetic energies. The high accurate time-to-energy conversion

can convert the peaks, corresponding to one of final ion states He+(n) with various

photon energies, to an exactly the same binding energy scale. Then, the DCSs are

obtained automatically by the Sunny program [53] by evaluation of the counts in an

energy window on the binding energy axis containing these peaks. Otherwise, the peaks

in the energy spectra (as a function of binding energy) can experience a shift with respect

to different photon energies, which causes the loss of counts during the extraction of the

DCSs.

As an example, the spectrum taken at a photon energy of 78.3 eV at θ = 54.7◦ was

converted from the time scale given in Fig. 2.9 to the energy scale presented in Fig.

2.10. After conversion, the peaks become symmetric and their widths as well as relative

intensities vary in the spectrum on the energy scale.
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The kinetic-energy resolution, ∆E/E, of an electron TOF spectrum is given by [54]

∆E

E
=

√

√

√

√

(

2∆t

t

)2

+

(

2∆l

l

)2

+

(

2∆λ

λ

)2

; (2.7)

it depends on the relative uncertainties in the wavelength (2∆λ/λ), the flight time

(2∆t/t), and the electron flight-path length (2∆l/l). The latter is determined by the

size of the interaction region, typically 100-1000 µm, the analyzer acceptance angle (5◦),

and the variation in the length of flight path. Due to the small acceptance angle, the

total variation of the electron flight length should be less than 3 mm. In summary, the

kinetic-energy resolution is estimated to be about 2% of the kinetic energy. For a detailed

discussion of electronics, see Ref. [54].

2.4.3 Transmission function and analyzer efficiency

The slow electrons are lost more easily during the drift process towards the detector.

This can result from residual magnetic or electric fields inside the chamber. In oder to

effectively detect very slow electrons, accelerating voltages are applied to the drift tube.

However, even for this case, the counts for slow electrons may decrease dramatically,

in particular for electrons with kinetic energies below 1 eV. Therefore, a transmission

correction has to be applied in order to convert the counts for slow electrons into partial

relative cross section.
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Figure 2.11: Transmission function as a function of photoelectron kinetic energy. Solid points

are our experimental data for the satellite n = 2 of helium; the solid line is the fit to the

function given in Eq. (2.8).

Fig. 2.11 displays a typical transmission correction function for a TOF electron spec-

trometer derived from the fit to our experimental cross section for the satellite n = 2 of
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helium. Experimental data are shown as solid points below the kinetic energy of 10 eV.

Here, the transmission correction function employed for the fit has the form

y = p1 · exp(−x/p2) + p3 · x + p4 · x2 + p5 · x3, (2.8)

where p1 to p5 are free fit parameters. y and x represent the transmission correction

factor and the kinetic energy, respectively. After determining the parameters in Eq.

(2.8) by a fit, this function can be employed to correct the cross sections for any satellite

with the same kinetic energy. Above kinetic energies of 10 eV, no transmission correction

is performed, i.e. the transmission correction factor for photoelectrons with high kinetic

energies is assumed to be unity.

For a measurement of the β parameter, besides transmission correction, the TOF

efficiency has to taken into account. Due to differences in TOF spectrometer design,

the potential of MCP, and the electronics, TOF efficiencies could vary within a factor

of 2. For helium spectra, the efficiency factors for various TOFs can be extracted from

a comparison of the 1s lines. This is due to the following facts: first, the kinetic energy

of photoelectron from the 1s line is quite high (Ekin > 50 eV in the present region

concerned) and, consequently, these fast electrons are not affected by the transmission

or underlying magnetic fields; second, the efficiency of a TOF spectrometer is assumed

to be independent of the kinetic energy of the photoelectrons. In addition, the angular

distribution parameter β1s = 2 has to be taken into account. For 900 TOF in the absence

of 1s peak, one can determine its efficiency factor by a photoelectron line having a β 6= 2

such as Ne+ 2p emission line [55].



Chapter 3

Doubly excited resonances of helium

By absorbing one photon, one can reach from ground-state of helium a final state with

one electron in the continuum and the second one in the ground or excited state of the

remaining ion. These final states can be reached via two different paths as shown in

Fig. 3.1. The first path is the direct photoionization channel with excitation, i.e. one

electron is promoted to the continuum and the second one is excited to a higher orbit.

This process can be described by

He(1s2) 1Se + hν → [He+(nl) + e−] 1P o. (3.1)

Here n and l are principal quantum number and orbital angular momentum quantum

number, respectively. In the second path, both electrons are first excited to a discrete

state, which subsequently decays via autoionization. This process can be described by

He(1s2) 1Se + hν → He∗(N, Kn′) 1P o → [He+(nl) + e−] 1P o, (3.2)

where N, Kn′ is a simplified classification scheme. N , n′, and K are approximate radial

and angular quantum numbers, respectively; and a detailed discussion will be given

Figure 3.1: Schematic representation of photoionization following excitation from the 1Se

ground state of helium to a 1P o final state.

30
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in Sect. 3.2. In the energy domain, these two processes cannot be distinguished by

experiment and, therefore, according to the interference of these two decay paths, Fano

profiles are observed in the spectra. Three different cases (weak, medium, and strong)

for the dependence of the lineshape of the resonance on the coupling strength are shown

in Fig. 3.1, that will be discussed together with the Fano parameter q in Sect. 3.1.1.

The two paths mentioned occur on different time scales and one can distinguish them in

the time domain. Sub-fs extreme ultraviolet pulses and attosecond streaking techniques

can trace the buildup of a Fano resonance in the time domain; the feasibility of such

experiments has been analyzed theoretically [56].

Figure 3.2: Energy diagram of the 1P o double-excitation resonances below the SITs I4 to I9 in

He with energies taken from Ref. [31]. 2N −1 Rydberg series indicated by some horizontal lines

are converged to single ionization threshold (SIT) IN . The lines with arrows represent different

paths which lead to the final continuum states with the remaining electron in He+(n = 1, · · · , 6).
The resonances in the boxes are the perturbers.

Fig. 3.2 shows the energy level scheme of double-excitation resonances in helium

below the single ionization thresholds (SIT) I4 to I9. Two different paths leading to the

final continuum states, namely autoionization and direct photoionization with excitation,

are indicated in this figure; they were discussed above, see Fig. 3.1. As marked on the

upper x-axis in this figure, the doubly excited states N, Kn′ (N = 7) can decay to the

final continuum states with the remaining electron in the He+(n) states with n = 1 to 6.

Observably N − 1 channels with n = 1 to N − 1 are open if one scans spectra at photon

energies between IN−1 and IN , i.e. in this energy region N −1 satellites can be resolvable

from channel-resolved measurements such as experimental PCSs. These different decay

channels can be distinguished by the kinetic energies of the corresponding photoelectrons
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Figure 3.3: Experimental total cross sections below the SIT I6. The position of the perturber

6, 46 is indicated by an arrow. The figure is taken from Ref. [30]

.

that correspond to the PCSs, σn.

The most interesting feature is the occurrence of perturbers, which are indicated by

boxes in Fig. 3.2. Perturbers are low-lying resonances of a Rydberg series below IN that

lie energetically in the region of high-lying resonances below IN−1. Figure 3.2 displays

the first perturber located exactly at I4, but more and more perturbers appear in the

Rydberg series below higher single-ionization thresholds. The appearance of perturber

states dramatically modulates Fano profiles of resonances that converge towards a lower

ionization threshold. Total cross sections below the SIT I6 given in Fig. 3.3, as an

example, show how the spectrum is affected by the perturber 6, 46, which is indicated

by a vertical arrow. Clearly, in the region of the perturber, the resonances of Rydberg

series 5, 3n′ are significantly varied. In this dissertation, we are concerned with the energy

region above the SIT I8, where a large number of perturbers cause the spectra to fluctuate

and to become complicated. Therefore, one expects to observe Ericson fluctuations [26]

in the spectra, which describes the fact that it is impossible to identify each resonance

due to strong overlaps of the states. Ericson fluctuations, originally observed in nuclear

physics, have become quantum signatures of chaos in atomic system (discussed later).

3.1 Parameterizations of resonance profiles in cross

sections

In principle, one can calculate cross sections and ADPs with Eq. (1.23) and Eq. (1.24),

but these complicated formula cannot be used directly for the analysis of experimental
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data. Therefore, a parameterization of resonance profiles can clarify the physical pic-

ture of a resonance and allows one to perform a more quantitative comparison between

experimental results and calculations. In the following subsections, we shall discuss the

parameterizations of resonance profiles in the TCS, the PCS, and the ADP, that will be

used in the fit analysis of our data.

3.1.1 Fano profiles for the total cross sections

The resonances in the absorption spectra exhibit pronounced Fano profiles that origi-

nate from an interference between direct photoionization and indirect photoionization

channels as discussed before. This leads to Fano profiles of the form [20, 57]:

σT (E) = σa
(q + ε)2

1 + ε2
+ σb, with reduced energy ε = 2

E − Er

Γ
. (3.3)

Here, Er is the resonance energy and Γ the natural width given by the decay rate of

the autoionization resonance. The Fano parameter q represents the discrete/continuum

mixing strength, i.e. coupling strength. With |i〉, |ν〉, and |f〉 describing the initial,

intermediate (discrete state), and final continuum state, respectively, the linewidth can

be written as

Γ = 2π |〈f |V |ν〉|2 , (3.4)

where V represents the Coulomb interaction. σa and σb represent the non-resonant

background cross sections for transitions to continuum states that interact or do not

interact, respectively, with discrete autoionization states [57]. Therefore, σa is affected

by the interaction whereas σb is constant. The Fano parameter q is given by

q =
〈ν|r|i〉

π〈ν|V |f〉〈f |r|i〉, (3.5)

which represents the ratio of the dipole matrix element of a transition to a discrete state

to that of a transition to the continuum, which interacts with the discrete state. As

demonstrated in Fig. 3.1, for the case that the coupling strength between the final state

|f〉 and the discrete state |ν〉 is very weak, the value for q in Eq. 3.5 becomes large and a

Lorentz lineshape is observed in the cross section; for a strong coupling strength, q is close

to zero and one can see a window dip; for all other cases of the coupling strength, the

variation in the cross section caused by a resonance is described by a Fano-like lineshape.

If q is negative, the minimum in the absorption cross section occurs on the high-energy

side of the line and otherwise on the low-energy side, as can be seen in Fig. 3.4 by the

simulations to Eq. (3.3).

By setting σa/(σa +σb) = ρ2 and σ0
T = σa +σb, the σT in Eq. (3.3) can also be written

as [57, 58]

σT = σ0
T

(

ρ2 (q + ε)2

1 + ε2
+ 1 − ρ2

)

. (3.6)

Here, ρ2 is the fractional part of the TCS that interacts with the resonance [58] and it

is called correlation parameter. σ0
T represents the off-resonance TCS.
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Figure 3.4: Simulations of Fano lineshapes as a function of q for various values of q = −1, 0, 1,

2, 3, and 4. The values of the other parameters used in the simulations are given in the figure.

3.1.2 Starace’s formula for partial cross sections

In Ref. [59], Starace used the observed channels to describe the resonance profiles in the

PCS. A PCS denoted by P can be described analytically by

σP = σ0
P +

σ0
P

1 + ε2
{2ε(qRe〈α〉P − Im〈α〉P )

−2qIm〈α〉P − 2Re〈α〉P + (q2 + 1)〈|α|2〉P}. (3.7)

Here, σ0
P is the PCS in the absence of a resonance and the second term describes the

Fano-like lineshape of the resonance in σP . α is the Starace parameter [59] and represents

the fraction of the dipole amplitude. Setting C1 = qRe〈α〉P − Im〈α〉P and C2 = 1 −
2qIm〈α〉P − 2Re〈α〉P + (q2 + 1)〈|α|2〉P , the above equation can be written as

σP =
σ0

P

1 + ε2
{ε2 + 2εC1 + C2}. (3.8)

This equation depends on only two independent linear combinations, C1 and C2, of the

three parameters 〈|α|2〉P , Re〈α〉P , and Im〈α〉P . As a consequence, one may only deter-

mine C1 and C2 by fitting Eq. (3.8) to the experimental data, but 〈|α|2〉P , Re〈α〉P , and

Im〈α〉P cannot be determined from the fit. Interestingly, one may note that the formula

for describing the resonances in the PCS given in Eq. (3.8) has the same mathematical

structure as the Fano formula (Eqs. (3.3) and (3.6)) for the TCS. Therefore, it is possible

to describe the PCSs by the Fano formula, but in this case q as well as C1 and C2 rep-

resent only effective parameters without deeper physical meaning. The relation between

these parameters is [60]

C1 = ρ2(q2 − 1) + 1 =
σaq + σb

σb
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C2 = 2qρ2 =
σa

σb

σ0
P =

σ0
T

ρ2
= σb. (3.9)

The Fano formula given in Eqs. (3.3) and (3.6), together with Eq. (3.8), can be used to

fit the experimental TCSs or PCSs.

3.1.3 Kabachnik’s formula for the angular distribution param-

eters

The transition matrix elements in Eq. (1.24), which characterize excitation and autoion-

ization decay, have to be parameterized, so that they can be used in the fit analysis of

the experimental data. To this purpose, Kabachnik [46] parameterized the ADPs β given

in Eq. (1.22) in the following way:

β = −2
Xε2 + Y ε + Z

Aε2 + Bε + C

= −2
X

A
· ε2 + Y

X
ε + Z

X

ε2 + B
A
ε + C

A

, (3.10)

with

A =
σa + σb

4π

B =
2qσa

4π

C =
σaq

2 + σb

4π
. (3.11)

The parameters X, Y , and Z are related to the transition amplitudes and the phase

shifts given in Eq. (49) in Ref. [46]. They are considered to be slowly varying functions

of energy and may be regarded as correlation constants in the vicinity of a resonance.

With the off-resonance value β0 = −2X/A and the relations given in Eq. (3.11), one can

write Eq. (3.10) as

β = β0

(ε2 + Y
X

ε + Z
X

)(σa + σb)

σa(ε + q)2 + σb(ε2 + 1)
. (3.12)

With the new parameters F = Y/X and G = Z/X, Eq. (3.12) becomes

β = β0
ε2 + Fε + G

σT

· σa + σb

ε2 + 1

= β0
ε2 + Fε + G

ρ2(ε + q)2 + (1 − ρ2)(ε2 + 1)
. (3.13)

In the measurements, PCSs together with other DCSs are measured, and these data are

used to derive the corresponding ADPs. Due to possible fluctuations caused by other
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DCSs, the PCSs become more reliable with respect to the ADP. Therefore, with Eq.

3.13, a parallel fit for β is recommended by sharing the two parameters q and ρ2 with

the PCS, but not F , G, and β0. We shall apply this procedure to our ADP data in the

near future.

One can also simply write the ADP in Eq. (3.10) as

β = β0
ε2 + a1ε + b1

ε2 + a2ε + b2
. (3.14)

In this case, a1, b1, a2, and b2 can also be regarded as correlation constants in an isolated

resonance. During a fit process, one has to take into account the conditions b2 = (q2σa +

σb)/(σa + σb) > 0 and a2 = (2qσa)/(σa + σb). Indeed, according to the large number

of parameters (5 independent parameters in addition to the Fano parameters q, Γ, and

Er) in Eq. (3.14), it is quite difficult to extract them correctly from a fit to experimental

data, particularly in case of overlapping resonances. In the vicinity of a resonance, the

terms in the numerator and denominator of Eq. (3.10) change differently, so that their

extrema are at different excitation energies and, as a result, β can vary rapidly. From

simulations performed with Eq. (3.14), the variations in β show strong dependence on

the parameters in the denominator.

3.2 Classification schemes for doubly excited reso-

nances of helium

In this dissertation, we introduce two different classification schemes to describe doubly

excited resonances in helium. The first is based on a molecular adiabatic description

of helium, which uses the quantum numbers nλ, nµ, and m. These quantum numbers

are equivalent to the approximate quantum numbers N(K, T )A
n′ which were derived from

group theory by Herrick and Sinanoǧlu [23, 61]. In this dissertation, both classification

schemes will be employed to understand the dynamics of doubly excited resonances in

a two-electron system. The transformations between molecular quantum numbers and

Herrick’s approximate quantum numbers will also be presented in this section.

3.2.1 Molecular adiabatic approximation

In order to fully understand the decay dynamics of doubly excited states, Feagin and

Briggs [24] introduced in 1986 an adiabatic approximations similar to the Born-Oppenhei-

mer approximation for H+
2 , but with a reversed role of electrons and nuclei (see Fig.

(3.5)).

The most important feature of the molecular adiabatic approximation is the fact that

the two-center Hamiltonian is separable in prolate spheroidal coordinates that are plotted

in Fig. 3.6. In this case, individual resonances are obtained by calculating vibrational

eigenstates according to the Schrödinger equation,
(

− ∂2

∂R2
+ Vnλ,nµ,m − En′

)

fn′(R) = 0, (3.15)



3.2 Classification schemes for doubly excited resonances of helium 37

P2

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �r r

r
r

r
r

eR R

1
2

1
2

e

e

P1

Z(b)(a)

Figure 3.5: (a) Schematic of H+
2 and (b) of the helium atom with reversed roles for the electrons

and nucleus. ~r1 and ~r2 are the two possible distances between electrons and nuclei. ~r is the

distance between electron (nucleus) and the center of two nuclei (electrons). P and e represent

the proton and electron, respectively, and ~R is the distances between the two identical particles.
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Figure 3.6: Schematic of the prolate coordinates λ and µ.

where R is the distance between the two identical particles, i.e. the electrons in case

of helium. The quantum numbers nλ and nµ count the nodes along the respective

coordinates λ and µ. m is the angular quantum number corresponding to the rotation

angle along the Z axis in Fig. 3.6. The potentials Vnλ,nµ,m lead to a set of adiabatic

avoided-crossing potential curves, which represent Rydberg series. n′ are vibrational

energies in these potential curves, but in doubly excited states they specify the excitation
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of one electron to a Rydberg series, i.e. they represent the index of a Rydberg series.

So far, a complete classification of doubly excited state can be described by quantum

numbers nλ, nµ, m, and n′.

3.2.2 Herrick’s classification schemes

The classification scheme N(K, T )A
n′ [23, 61], which is identical to the molecular scheme

with quantum numbers nλ, nµ, and m, is often employed to identify an isolated doubly

excited resonance with N and n′, respectively, standing for the ionization threshold of a

given channel and the running index of the considered Rydberg series. In an independent

particle picture, N(n′) may be understood as the principal quantum number of the inner

(outer) electron; K is one of the angular-correlation quantum numbers and proportional

to the average value of r1cosθ12, where r1 refers to the inner electron and θ12 is the

angle between the two electrons. T , the second angular-correlation quantum number,

represents the relative orientation between the orbitals of the two electrons, which is

equivalent to quantum number m in molecular approximation. A is called the radial

correlation quantum number, which reflects a symmetry (the wave function of A = +1

states has an antinode and A = −1 states with a node) with respect to the x-y-plane

(µ = 0, i.e. r1 = r2) in Fig. 3.6. Close to the double-ionization threshold (N and n′ are

quite large), one obtains

K → −N〈cosθ12〉 (3.16)

from

〈cosθ12〉 → −K

N
+

N2 − 1 + K2 − T 2 + 2ll′

2Nn′
, (3.17)

where l (l′) is the orbital angular quantum number for the inner (outer) electron, respec-

tively. For a given L and N , the ranges for K and T are given as follows [23]:

T = 0, 1, · · · , min(L, N − 1),

±K = N − T − 1, N − T − 3, · · · , 1(or 0). (3.18)

For 1P o double-excitation resonance of helium, T is limited to 1 and 0 and K has 2N −1

values below a given ionization threshold IN . N, K = N − 2 is the principal Rydberg

series, which carries most intensity in the spectra, with resonances that have larger line

widths.

Herrick’s quantum numbers N(K, T )A
n′ correspond to the molecular quantum numbers

[nλnµm]n′ by the following relations:

molecular Herrick

nλ =
1

2
(N − K − 1 − T )

[nµ/2] =
1

2
(N + K − 1 − T ) (3.19)

m = T

(−1)nµ (=) A.
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Here, N = nλ + [nµ/2] + m + 1 and K = nλ − [nµ/2]. The notation [nµ/2] stands

for the closest integer lower than nµ/2; In the two-center adiabatic approach, the fact

that A = 0 does not occur is implied in the last equality in parentheses of Eq. (3.19)

(for details see Ref. [31]). The approximate quantum numbers [nλnµm]n′ and N(K, T )A
n′

imply the nodal structure of the wave function, which in turn leads to the propensity

rules of radiative and non-radiative transitions (see Sect. 5.3.2).
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Chapter 4

Photoionization cross sections in the

ion yield

Due to its simplicity, the three-body system helium, in its doubly excited states, has

become a highly exciting atom for the study of quantum chaos. Quantum chaos can

be considered as the behavior of a quantum system whose classical counterpart behaves

chaotic. Doubly excited helium approaches the semiclassical limit, i.e. h̄ → 0, in the

region close to the double-ionization threshold (for details see App. A). The classical

counterpart of the helium atom, the classical three-body system, is a nonintegrable sys-

tem, i.e. it can behave chaotic. Therefore, one expects quantum chaos to emerge in

the spectra of doubly excited resonances in He close to the double-ionization threshold.

In other words, close to double-ionization threshold, the signatures of classical mechan-

ics in doubly excited helium will be magnified by the observation of quantum-chaotic

spectra. Richter et al. [28] showed that classical helium exhibits a mixed phase space

with regular and chaotic regions by using the Poincaré section of the Wannier ridge

(explained later). Chaotic dynamic in classical helium is independent of the total en-

ergy. However, the spectra in doubly excited helium carry a transition (reflecting strong

electron correlations) to chaotic behavior while the photon energy is increased close to

the double-ionization threshold. The strong electron correlations in this two-electron

atom are reflected in a set of new approximate quantum numbers N, Kn′ instead of tra-

ditional quantum numbers like l. These approximate quantum numbers work quite well,

particularly in the low energy region. In the region of high doubly excited states, an

increasing number of perturbers render the spectra very complicated and fluctuating.

As a consequence, the approximate quantum numbers N, Kn′ start to dissolve. At the

double-ionization threshold, the helium atom may be described by classical mechanics.

From this point of view, one can assume that there might not be enough good quantum

numbers to describe the spectra close to double-ionization threshold of helium. In the

previous work of our group [18], statistical studies of nearest-neighbor spacings (NNS)

of energy levels carried out, with the results that the onset of a transition to quantum

chaos in the region below the SIT I9 could be identified. From the studies presented in

this dissertation, we shall see that the transition region from integrability to full chaos in

42
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1P o helium is much larger, in agreement with the recent findings for 1Se doubly excited

helium [19].

So far, most measurements of TCSs of doubly excited resonances in helium were

limited to the energy region below the SIT I9 [18, 30, 62]. Many advanced theoretical

methods [29, 31, 32, 33, 63] have been developed during last 20 years. However, these

theoretical studies were performed only in the region below the SIT I9 as well. In

this chapter, we shall present our recent experimental progress on the TCS up to the

SIT I15. It is worthwhile to mention here that very recently state-of-the-art complex-

rotation calculations for the TCS in three-dimensional helium by our cooperation partner

D. Delande (Universite Pierre et Marie Curie, Paris) have reached the SIT I17 [27];

they are confirmed very well up to I15 by the present measurements. In this part,

we shall first discuss the approximate quantum numbers N, Kn′ by using theoretical

results and then study statistical properties of the energy levels, Fano parameters q, and

linewidths of the resonances in doubly excited helium. Preliminary statistical studies

for this atom displayed interesting precursor quantum signatures of chaos. Note that

detailed statistical studies have to be performed predominantly with theoretical data

due to the extremely low intensities of most of the Rydberg series, which give rise to

the situation that only a small fraction of the doubly excited states can be observed

experimentally.

4.1 Wigner distribution and Poisson distribution for

energy levels

There are two different types of motion in classical mechanics: the regular motion of

integrable systems and the chaotic motion of non-integrable systems. To distinguish

these two motions, one may have a look at a bundle of trajectories in the phase space

originating from a very narrow cloud of starting points. In the chaotic case, the dis-

tances between any of two trajectories in phase space increase exponentially in time. For

a regular motion, these distances may grow in a power of time, but never exponentially.

A simple example for classical integrable system, given in Fig. 4.1, is given by a one-

dimensional accelerated motion with constant accelerations. X and PX represent the

spatial coordinate and the corresponding momentum of a particle, respectively. Using

different values of acceleration for the calculation of the two trajectories, the distances,

d(ti), between two trajectories in phase space increase in t2, as can be seen in Fig. 4.1. In

contrast, the distances between two trajectories grow linearly or remain constant in time

if one varies the initial velocities or the initial positions of the trajectories, respectively.

There are no possibilities to change the initial conditions so that one obtains an exponen-

tial increase of d(ti) in this integrable case. Therefore, the “exponential sensitivity” is the

typical character for a classical chaotic behavior. When turning to quantum mechanics,

the classical description of the exponential sensitivity to the initial conditions cannot be

used any more to characterize quantum chaos. One reason is that one cannot directly

observe quantum chaos in phase space due to the uncertainty principle in quantum me-
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chanics. However, this results in one possibility to study quantum chaos in the phase

space of its classical counterpart. A second reason is given by the fact that the wave

function Ψ(t) in Schrödinger’s wave equation can always be calculated uniquely, and it

is of a simple periodic form in t, i.e. Ψ = Ψ0exp(−i
h̄

Et). This means that the exponential

sensitivity in time is “suppressed” in the wave function of a quantum chaotic system.

Nevertheless, most researchers agree that the deterministic features of quantum chaos

should be manifested in some ways in the quantum observables such as the energy levels,

line widths, and Fano parameters q of resonances in doubly excited helium.

x

P
x

d (t  3
)

d (t  2
)

d (t 1)

Figure 4.1: Phase space for one-dimensional accelerated motions with constant accelerations.

Two trajectories that are obtained using different values of acceleration are plotted by filled

circles and filled squares. The solid lines represent the distances between these two trajectories

at three different times.

This raises the question how quantum chaos is manifested in the spectra. One typical

manifestation is the spacing of energy levels, which will be discussed in the following.

According to Heisenberg, the operators of quantum mechanics can be represented by ma-

trices. It is then natural to conjecture that the observables of a chaotic quantum system

should be represented by random matrices, i.e. the energy levels in a chaotic quantum

system can be described as random elements of matrices. Some conditions based on very

basic principles of physics are assumed for matrices, like the invariance of the probability

density for the Hamiltonian under orthogonal transformation. Besides that the matrix

elements described by the Hamiltonian must be uncorrelated. According to the invari-

ance and the uncorrelation of the Hamiltonian, the probabilities of Hamiltonian elements

are of Gaussian form, and the statistical properties of the nearest-neighbor spacings S

(NNS) of energy levels are given by the Wigner distribution

PW (S) =
π

2
S exp(−π

4
S2). (4.1)

The derivation of the Wigner distribution, given in Eq. (4.1), on the basis of random

matrix theory [64, 65] is described in App. B; this theory was developed in the nineteen
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Figure 4.2: Probabilities P(S) (a) and integrated probabilities N(S) (b) as a function of the

nearest-neighbor spacings (NNS) S. Solid lines and dashed lines represent Wigner distribution

and Poisson distribution, respectively. Dotted lines in (a) and (b) represent a δ-function and a

step function, respectively.

fifties and sixties in order to understand the distribution of energy levels in nuclei. Note

that the spacings S are calculated from effective quantum numbers, which are obtained

from the resonant energies Er with the formula

µN(E) =

√

R
IN − Er

, (4.2)

where R is the Rydberg constant. A level density in the scaled spectra is independent

of photon energy.

In the spectra of an integrable system, the most probable spacing between resonances

that belong to different independent Rydberg series can be zero, since these energy levels

are uncorrelated. The probability distribution of the NNSs for this case is predicted to

be a Poisson distribution

PP (S) = exp(−S) (4.3)

and the energy levels exhibit a level clustering, i.e. PP (S) has its maximum at S = 0.

This is because the energy levels from various independent subsystems are decoupled

from each other. In contrast to the level clustering of a Poisson distribution, the energy

levels in a Wigner distribution exhibit a level repulsion

PW (S → 0) ∼ S, (4.4)

as derived from Eq. 4.1. The maximum probability in Wigner distribution appears for a

mean value of S, not at S → 0.

In the present case, we analyzed the statistical properties of the NNSs in helium based

on the theoretical results. Since the number of resonances is limited, we used integrated

Wigner or Poisson distribution for the NNSs in order to reduce statistical fluctuations.

In this way we obtain

NW (S) = 1 − exp(−π

4
S2) (4.5)
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and

NP (S) = 1 − exp(−S) (4.6)

for a Wigner and a Poisson distributions, respectively, with N(S) =
∫ S
0 dS ′P (S ′).

The Wigner and Poisson distributions given by Eqs. (4.1) and (4.3) as well as their

integrated forms given by Eqs. (4.5) and (4.6) are plotted in Fig. 4.2. In order to better

understand the NNS distributions, we additionally added the NNS distribution for one

regular Rydberg series presented by a dotted line in this figure. In classical integrable

systems, the number of constants of motion is equal to the degrees of freedom. A system

with fewer constants of motion than degrees of freedom becomes non-integrable and has

regions in phase space, where the dynamics is chaotic. In a transition from a classical to

a quantum system, the constants of motion become quantum numbers. Therefore, one

could study the chaotic dynamics by the quantum numbers of the system. In Fig. 4.2,

three curves, δ-function or step function, Poisson distribution, and Wigner distribution,

correspond to three different systems taking their quantum numbers into account. δ-

function or step function indicate that the resonances belong to one regular Rydberg

series. The reason is that quantum defect numbers should be equal for all resonances in

a regular Rydberg series, which results in the unity of the NNSs [25] according to the

Rydberg formula. Poisson distribution demonstrates the character of several independent

subsystems. These subsystems can be regular Rydberg series or chaotic subsystems [10].

In this case, one can assume that there are still some good quantum numbers, which

allow to identify separately the independent subsystems, and the corresponding system

is not fully chaotic. In contrast to the δ-function and Poisson distribution, the Wigner

distribution describes a chaotic system without good quantum numbers.

The Wigner distribution of NNS is a typical and universal characteristics of energy

level fluctuations of chaotic quantum spectra, which is called BGS conjecture by Bohigas,

Giannoni, and Schmit [66]. So far, Wigner distributions for the NNSs were observed in a

variety of very different chaotic systems, ranging from atom to microwave billiard. Fig.

4.3 presents a collection of NNS distributions that result from a number of very different

systems, e.g. the NNS distributions for the Sinai billiard1 [66], the hydrogen atom in

a strong magnetic field [67], for the excitation spectrum of a NO2 molecule [68], for

the acoustic resonance spectrum of a Sinai-shaped quartz block [69], for the microwave

spectrum of a three-dimensional chaotic cavity [70], and for the vibration spectrum of

a quarter-stadium shaped plate [71]. For all these examples including quantum and

classical cases, excellent agreement with a Wigner distribution is found. Obviously, the

BGS conjecture is independent of the quantum mechanical systems, but remains valid

in a much more general context. Therefore, the search for a Wigner distribution of

energy levels has become a standard tool to study the manifestation of chaos, i.e. many

researchers regard it as a fundamental signature of quantum chaos [9].

Throughout this part of the dissertation, the Wigner distribution, the Poisson distri-

bution, and the step function will be employed to study the dynamics of doubly excited

1The billiard with a reflecting disk located in the center.
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Figure 4.3: Level spacing distributions for (a) a Sinai billiard [66], (b) a hydrogen atom in a

strong magnetic field [67], (c) the excitation spectrum of a NO2 molecule [68], (d) the acoustic

resonance spectrum of a Sinai-shaped quartz block [69],(e) the microwave spectrum of a three-

dimensional chaotic cavity [70], and (f) the vibration spectrum of a quarter-stadium shaped

plate [71]; (from Stöckmann [9])

resonances in helium in the region close to the double-ionization threshold, where quan-

tum chaos is expected, to occur.

4.2 Ericson fluctuations and autocorrelation func-

tion

As discussed in the previous section, the Wigner distribution of the NNSs of the res-

onances is considered to be a standard characteristic for chaotic quantum spectra. As

an additional characteristic of quantum chaos, the concept of Ericson fluctuations was

developed by Ericson in 1960 [26]; it was originally related to investigations of fluctuat-
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ing nuclear spectra. Nowadays, these Ericson fluctuations are considered to be a general

fingerprint for quantum chaotic scattering rather than only a nuclear phenomenon [10].

Figure 4.4: Simulated spectrum of Ericson fluctuations characterized by Λ = Γ̄/S̄ � 1. The

spectrum convoluted with a Gaussian function of 1.5 meV (FWHM) is plotted as a function

of relative excitation energy. The energy positions of resonances are indicated by the vertical

bars.

The Ericson fluctuations can be observed if the resonances in the spectra are strongly

overlapping and the intensities of these resonances are randomly distributed, i.e. can be

considered to be of the same order of magnitude. The strong overlap means that the

average decay width, Γ̄, of the resonances is much larger than their average energy spac-

ing, S̄. This can be quantified by defining the Ericson parameter, Λ = Γ̄/S̄. The above

described case of Λ = Γ̄/S̄ � 1 is defined as Eriscon regime. If these two prerequisites,

Λ � 1 and a comparable intensity of all resonances, are fulfilled, a spectrum consists

of fluctuations which cannot be identified with single resonances. These Ericson fluctu-

ations can be observed in a simulated spectrum in Fig. 4.4 with an Ericson parameter

of Λ ∼= 25. About 1000 Fano-resonances, with an average width of Γ̄ = 5 meV, are

randomly distributed in an energy region of 200 meV, and this spectrum was convo-

luted with a Gaussian function of 1.5 meV (FWHM). It should be mentioned that the

intensities of all resonances are random, i.e. they are comparable.

Ericson [26] predicted that spectra with Ericson fluctuations display a autocorrelation

function, C(ε),

C(ε) =
1

σ̄2

∫ E2

E1

[σ(E + ε) − σ̄] [σ(E) − σ̄] dE, (4.7)

with a Lorentzian form. Here, σ̄ is the average cross section in the energy interval E1 ≤
E ≤ E2 and ε the displacement. From these autocorrelation function one can estimate

the average width of resonances by a fit analysis. So far, it became a common method

to analyze fluctuating spectra not only in the case of nuclear reactions [72] but also in
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atomic scattering [16, 73]. Finally, we have to emphasize that an autocorrelation function

with a Lorentzian form cannot be considered as an unambiguous evidence for Ericson

fluctuations in a spectra. For a clear confirmation of Ericson fluctuations one has to

ensure that the intensities of the resonances are randomly distributed. By neglecting this,

one can easily to obtain wrong conclusions about the existence of Ericson fluctuations;

this topic will be addressed in more details in combination with our TCS data in the

Sect. 4.5.

4.3 The classical configurations

In the past 30 years, a modern semiclassical theory was developed to understand quan-

tum chaos with the help of classical configurations. From the Bohr-Sommerfeld quan-

tization condition, we know that there exits a strong classical-quantum correspondence

in integrable systems. M. Gutzwiller [7, 8] realized that it is impossible to use a Bohr-

Sommerfeld type of quantization to deal with chaotic systems. He introduced an entirely

new semiclassical approach that abandoned the attempt to find individual chaotic states.

A remarkable result of these considerations is Gutzwiller’s trace formula [7, 8], which es-

tablishes a bridge between quantum states and classical periodic orbits, i.e. this formula

can be utilized to calculate the density of quantum states from classical periodic orbits

in a chaotic system and vice versa. These classical periodic orbits can be identified us-

ing a Fourier transformation of the quantum spectra. So far, one realizes that strong

classical-quantum correspondences exist even in chaotic systems. However, this issue is

beyond the topics in this dissertation. In the following, we shall introduce three classical

configurations, which are necessary to understand the changes of approximate quan-

tum numbers N, Kn′. These quantum numbers will be used to assign doubly excited

resonances in helium as discussed before.

For doubly excited states in helium, the following three configurations in the classical

space are of particular interests:

(A) eZe configuration: θ12 ≡ π; pθ12
≡ 0

(B) Zee configuration: θ12 ≡ 0; pθ12
≡ 0 (4.8)

(C) Wannier ridge: r1 ≡ r2; pr1
≡ pr2

.

r and p are the coordinates and the momenta of electrons, respectively, while 1 and 2

label two different electrons, and θ12 is the angle between two electrons. (A) and (B)

are collinear configurations, i.e. all particles move on one line; this is equivalent to a

one-dimensional helium atom.

In the collinear configuration (A), all three particles move along one axis, with both

electrons on opposite sides of the nucleus. It is called eZe configuration and shown in Fig.

4.5(b). In contrast to the eZe configuration, the Zee configuration, shown in Fig. 4.5(a),

describes a motion with both electrons on the same side of the nucleus. The configuration

(C) is a Wannier ridge, which shows the symmetric electron motion in a symmetry plane.

The resonances corresponding to Wannier classical orbits are expected to appear only
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Figure 4.5: The two collinear configurations: (a) the stable Zee configuration and (b) the eZe

configuration, which is chaotic in radial direction.

in the limit of double excitation very close to the double-ionization threshold [2, 74, 75].

The Wannier ridge, together with the eZe configuration, is predicted to contain the

decay channels for double-ionization [76]. For detailed studies of the dynamics of these

classical configurations, see Ref. [2] and references, therein.

Figure 4.6: Poincaré map of helium for the two collinear configurations at r2 = 0: (a) θ = 0;

(b) θ = π (taken from Ref. [2]).

Choosing r2 = 0, one plots the phase space (Poincaré map) of the two collinear

configurations in Fig. 4.6, i.e. the momentum of the outer electron is given as a function of

its position. In the Zee configuration, surprisingly, the three-body Coulomb interaction

leads to a stabilization of the dynamics in helium, which can be demonstrated well by

a large stable island in the Poincaré map given in Fig. 4.6(a) [77]. The large stable

island indicates that the outer electron in the Zee configuration is frozen at a finite

distance from the nucleus, i.e. the outer electron cannot penetrate the inner electron

and, therefore, cannot hit the nucleus. Due to the electron-electron and electron-nucleus

interactions, the outer electron performs an oscillation at a frozen distance. In contrast,

the inner electron can move between the nucleus and the outer electron. Therefore,

the Zee is a quite stable configuration. In contrast to the stable Zee configuration, no

stable islands can be found in the eZe configuration in the Poincaré map given in Fig.

4.6(b), particularly as r1 → 0, where the Poincaré map is completely structureless. In
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this configuration, triple collision (r1 = r2 = 0) can occur. This, in turn, results in large

momentum transfer among the three bodies (two electrons and the nucleus), and has

been considered as the origin of chaos in the eZe configuration.

In summary, for perturbations in the direction of the electron-nucleus axis, the 1-

dimensional helium is unstable in the eZe configuration but stable in the Zee configura-

tion. Both configurations are stable with respect to perturbations perpendicular to the

collinear phase space, i.e. stable in the angular direction. In this dissertation, the two

classical configurations eZe and Zee will be employed to understand the existence and

loss of the approximated quantum numbers N, Kn′ , where N and n′ (K) describe the

radial (angular) directions.

4.4 Complex-rotation method

As we mentioned before, the statistical studies were performed using the theoretical

results D. Delande obtained with the complex-rotation method. This procedure is due

to the extremely low intensity of most of the Rydberg series which give rise to the fact

that only a very small fraction of doubly excited states can be observed experimentally.

Therefore, the complex-rotation method will be described briefly.

The method of complex-rotation [78, 79] is quite different with other methods in de-

termining the resonant state; normally, these resonances are obtained by diagonalization

of a Hamiltonian matrix. The difference of the complex-rotation method is due to the

complex scalings of the radial coordinates and momenta, r → reiθ and p → pe−iθ. In

this way, the expectation value of the Hamiltonian becomes

〈nθ|H|nθ〉 = En − iΓn/2, (4.9)

where |nθ〉 is the complex scaling wave function for the double-excitation states, and En

and Γn represent the positions and the linewidths of resonances, respectively. The dipole

transition matrix has the complex form

〈i|D|nθ〉 = Bn + iCn, (4.10)

with |i〉 being the ground state. Using the complex parameters Bn and Cn together with

En and Γn, the Fano-shape parameterization of the cross section yields

σT = σ0
T +

∑

n

(qn + εn)2

1 + ε2
n

µ2
n − µ2

n, (4.11)

where

εn = 2
E − En

Γn
,

qn = −Bn

Cn
,

and µ2
n =

2C2
n

πΓn
. (4.12)
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The cross section and Fano parameters can be directly derived from the two matrix

elements given in Eqs. 4.9 and 4.10. This is a substantial advantage of the complex-

rotation method compared to other methods, since the resonant parameters En, Γn, and

qn as well as the expectation value 〈cosθ12〉, can be obtained directly from calculations;

they do not have to be derived by a fit analysis of the calculated cross section, which is

impossible in the present case of strongly overlapping resonances. The value 〈cosθ12〉 is

related to the approximate quantum number K by Eq. (3.16). Therefore, the complex-

rotation method is very well suited to provide data for statistical studies of the resonant

parameters En, Γn, and qn.

In the late 1990’s, complex scaling photoabsorption calculations for helium performed

by Gremaud and Delande [32] covered the energy regime up to the SIT I9 and have been

used by our group to perform statistical studies on the NNSs of energy levels in that

region [18]. Very recently, Delande [27] further extended these calculations up to the

SIT I17, i.e. up to 150 meV below the double-ionization threshold of helium. These

calculated data will be employed for the studies of quantum chaos in the next section of

the dissertation.

4.5 Quantum signatures of chaos in highly excited

states of helium

4.5.1 Experimental total cross sections up to I15

The high-resolution photoionization spectra presented in Fig. 4.7 were measured up to

the SIT I15 using a gas cell described in chapter 2. The experiments were performed

at the high-resolution undulator beamline UE56-2/PGM2 of the Berliner Elektronen-

speicherring für Synchrotronstrahlung (BESSY II) using a photon energy resolution of

Ω ∼= 1.7 meV (FWHM). A pressure of ∼= 1 mbar was used in the gas cell, and an operat-

ing voltage of 100 V was applied to the plates within the gas cell. The spectra were taken

with a step width of 250 µeV, and six scans were recorded for each energy region in order

to ensure reproducibility and to improve the signal-to-noise ratio. The backgrounds of

the spectra were simulated and subtracted from the spectra. The photon energies of the

spectra were calibrated by the result of the calculations of Delande [27].

In Fig. 4.7, the present experimental data, and the results of theoretical calculation

employing the complex-rotation method [27], as well as the results of previous measure-

ments by Püttner et al. [18] for the TCSs are plotted as solid lines in three different

colors. The vertical bars mark the positions of the SITs up to I14. The theoretical data

were convoluted by a Lorentzian function with a FWHM of 1 meV. A comparison of

the recent experimental and theoretical results shows an impressively good agreement

for the entire spectrum. The present spectra show an improved signal-to-noise ratio and

higher resolution than the previous measurements [18]. The present experimental and

theoretical data above 78.28 eV are the first ones in this energy region, i.e. data below

6 new ionization thresholds were obtained. The complex features the spectra indicate
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Figure 4.7: Total cross section of doubly excited helium below the SIT I15. The present experimental data, complex-rotation calculations [27],

and previous measurements [18] are plotted by solid lines in red, blue, and green colors, respectively. The vertical bars indicate the positions

of the SITs up to the I14.
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Figure 4.8: Calculated linewidths of doubly excited states in helium below the SIT I10. The

resonance linewidths are normalized to the mean value of spacings between the resonance energy

positions. Ericson (Γ � S), Wigner (Γ ≈ S), and Rydberg (Γ � S) regimes are indicated.

in the presence of a large number of perturbers in this energy region. These perturbers

render the spectra significantly irregular (see Fig. 3.3) and it is therefore an interesting

question whether or not the spectra can be assigned with isolated resonances. From the

experimental point of view, it is really hard to take spectra in this energy region because

the amplitudes of the resonances amount to only 0.2% to 0.04% of the signal background.

The variations in the pressure and insufficient normalization to the photon flux could

render the observation of these resonances impossible. From the theoretical point of

view, many challenges are also faced due to the calculation model, accuracy, and conver-

gence. The present state-of-the-art measurements and calculations of the TCS make it

possible to study for the first time chaotic behavior in doubly excited helium very close

to double-ionization threshold. The theoretical data obtained by D. Delande [27] are

strongly confirmed by the present measurements and can be used as a reliable basis for

further data analysis. As mentioned before, we have to use theoretical data for these

detailed statistical studies because only a relatively small number of resonances can be

observed in the experiments; this will be further illustrated by our fit results described

in the following section.

Close to the double-ionization threshold, the mean linewidth of the resonances is

much larger than the mean spacing of the resonances, i.e. Γ � S (Ericson regime),

where the resonances are strongly overlapping. In this case, the spectra are assumed

to fluctuate and cannot be identified. Generally, the Ericson regime together with the

comparable intensities of the spectra are assumed to be the conditions for observing

Ericson fluctuations in the spectra as mentioned in Sect. 4.2. In this part, the main aim
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Figure 4.9: Total cross section below the SIT I9: The present experimental data are given by

solid points, the fit result by the solid curve through the data points. The result of the complex-

rotation calculations is given by the dashed curve. The fit components for the principal and

secondary Rydberg series are represented by the dash-dotted and dotted lines. The vertical-bar

diagrams in the upper part of the figure give the assignments of the resonances belonging to

the Rydberg series 9, 7n′ .

of the analysis of the experimental data is to figure out whether Ericson fluctuations are

present in the studied energy region. In Fig. 4.8, the normalized linewidths of doubly

excited states in helium below the SIT I10 are plotted as a function of photon energy.

These linewidths are normalized to the mean value of the spacings between the resonance

energy positions. These data were calculated with the complex-rotation method by

D. Delande [27]. There are three classes of resonances below each SIT, which can be

identified by a comparison of the linewidths and energy level spacings. They are, in the

order of increasing energy, Ericson (Γ � S), Wigner (Γ ≈ S), and Rydberg (Γ � S)

regimes, respectively, which have been identified below I10 and are indicated in Fig.

4.8. Later, the analysis of experimental spectra will focus on the region, where the

corresponding resonances are in the Ericson regime, i.e. Γ � S.

A detailed comparison between the experimental and theoretical TCSs in the region

up to the SIT I14 are given in Figs. 4.9 to 4.14. In these figures, the experimental

TCSs are plotted as solid points and the dashed lines represent the theoretical results.

The fit results are displayed by solid lines through the data points. As an example, the

contributions of individual resonances for the principal and secondary Rydberg series are

plotted by dash-dotted and dotted lines, respectively, in the lower part of Fig. 4.9. The

vertical bars in the upper part of each figure mark the energy positions of the resonances.

In the fit process, we fixed the resonance positions, linewidths, and Fano parameters q to
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Figure 4.10: Total cross section below the SIT I10. For details, see caption of Fig. 4.9.
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Figure 4.11: Total cross section below the SIT I11. For details, see caption of Fig. 4.9.

the values of the calculations by D. Delande [27]. The intensities are treated as the only

free parameters and the obtained relative intensities for most of the resonances agree

with the calculated ones within a factor of 2. Due to possible tiny mechanical problems

of the used monochromator [80], which could lead to small non-linearities, the photon

energies of the individual resonances were allowed to have shift linearly up to 1 meV. The

aim of the fits is to determine the number of resonances that are needed to reasonably

describe the spectra. This is closely related to the question whether Ericson fluctuations

are present in this region of the spectrum or not. Therefore, the spectra are described

by fit routines using the smallest number of resonances, which lead to a sufficiently good

description; such a fit procedure can be called ”describing fit”.

For the spectra below the SITs I9 to I14, 15 to 25 resonances were used in the

describing fits. Most of these resonances can be assigned to members of the principal

series (K = N − 2), while a much smaller fraction belongs to the secondary series (K =
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Figure 4.12: Total cross section below the SIT I12. For details, see caption of Fig. 4.9.
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Figure 4.13: Total cross section below the SIT I13. For details, see caption of Fig. 4.9.

N −4); this can be seen from the fit components shown in Fig. 4.9, as an example. With

these finite numbers of resonances, the experimental spectra can already be described

quite well. Note that there are 17−27 Rydberg series with more than 300 resonances in

the corresponding energy regions below each of the SITs I9 to I14. In addition, we point

out again that Fig. 4.8 gives clear evidence that the spectra studied in this dissertation

are in the Ericson regime, i.e. Γ � S. However, the present describing fits indicate clearly

that the spectra are still dominated by essentially a single Rydberg series, namely the

principal series (N = K − 2); this means that Ericson fluctuations caused by a large

number of overlapping resonances are essentially absent in the spectra. This indicates

that some approximate quantum numbers N, Kn′ should be still valid, a fact that will

be proven later on by analyzing the calculated K values and by a statistical analysis

of energy spacings between the resonances. So far, we can conclude that the Ericson
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Figure 4.14: Total cross section below the SIT I14. For details, see caption of Fig. 4.9.

regime is not a unique condition for observing Ericson fluctuations in the spectra. The

amplitudes of transitions have to be distributed randomly.

We further point out that the agreement between the measurements, the fits, and the

calculations becomes worse with increasing photon energies according to the increasing

noise. On the basis of the describing fits and theoretical data, we assigned for the first

time the experimental spectra up to the SIT I14 . The symbol “?” in Figs. 4.13 and 4.14

implies that a particular resonance could not be identified since its K-value could not be

obtained from the calculations due to convergence problem. The theoretical convergence

problem close to each SIT does not affect the reliability of the TCS [27], however. Due

to missing resonance parameters close to each SIT, it was not possible to analyze the

entire spectrum presented in Figs. 4.7 by the describing fits, which are presented in Figs.

4.9 to 4.14.

Although it has been proven that Ericson fluctuations are absent in the present

spectrum, in the following we want to discuss its autocorrelation function since such a

autoionization function was employed by G. Stania and H. Walther [16] as an evidence

for Ericson fluctuations in the photoionization spectra of 85Rb atom. To this end we

compare the TCS of helium without Ericson fluctuations in Fig. 4.9 with a simulated

spectrum in Fig. 4.4 that clearly displays Ericson fluctuations. We first want to point

out that these two spectra exhibit similar features so that it is not possible to identify

Ericson fluctuations by the variations in the cross section. For these both spectra the au-

tocorrelation functions defined by Eq. (4.7) are calculated and presented in Fig. 4.15(a)

and (b). The dashed lines in this figure are the results of a fit to a Lorentzian function,

which is prediction for Ericson fluctuations. For small displacements, i.e. ε close to 0,

the autocorrelation functions agree quite well with the Lorentzian function. For larger

displacements, oscillations around zero are observed. The average widths of resonances

of ∼= 2 and 5 meV for the spectra in Figs. 4.9 and 4.4, respectively, are in good agree-

ment with the ones of ∼= 3 and ∼= 4 which were derived from the fits. The observed

features of the autocorrelation function are quite similar to that observed by G. Stania
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Figure 4.15: (a) Autocorrelation functions for the spectra given in Fig. 4.9 and (b) in Fig. 4.4.

The dashed lines represent the fit results to a Lorentzian function, and the dotted horizontal

lines indicate the value of zero.

and H. Walther. As stated before, the TCS given in Fig. 4.9 does not exhibit Ericson

fluctuations. This is due to the fact that the spectrum is dominated by the principal

Rydberg series although the Ericson regime (Λ = Γ̄/S̄ ∼= 3) is fulfilled. In addition,

for small ε the autocorrelation function displays a Lorentzian shape (see Fig. 4.15(a)).

Similar autocorrelation functions were also found for the TCSs in the other regions up

to I13 where the Ericson parameter, Λ, has larger values. These considerations show

that Ericson fluctuations in a spectrum can neither be identified by the shape of the

spectral variations nor by the autocorrelation function. It is, therefore, essential to en-

sure that the intensities are also randomly described with a large number of overlapping

resonances. Nevertheless, the average width of the resonances in a fluctuating spectrum

can be estimated by fitting the autocorrelation function to a Lorentzian function; this

can be seen from our simulated chaotic spectrum in Fig. 4.4 as well as its autocorrelation

function in Fig. 4.15(b).

In the work of G. Stania and H. Walther [16] as well as J. Madronero and A. Buch-

leitner [17], an autocorrelation function with a Lorentzian shape for small displacements

was used to prove the observation of Ericson fluctuations. However, the the question of

comparable amplitudes for the transitions was not carefully addressed. The present case

of helium shows that this omission may lead to wrong conclusions if there is – contrary
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to an assumption – an unexpected hierarchy in the intensities of the different resonances.

4.5.2 Calculated K values up to I17

In the last section, we concluded from the describing fits that Ericson fluctuations do

not occur although the conditions for the Ericson regime is fulfilled, as shown in Fig.

4.8; i.e. the spectra are still dominated by the principal series N, Kn′, with K = N − 2,

at least up to the SIT I14. The spectral features in this energy region were assigned

using the approximate quantum numbers N, Kn′. However, this does not mean that

approximate quantum numbers are still valid for all resonances. As mentioned before,

the complex-rotation method has the advantage that the K values for each resonance

can be calculated directly. With this theory, Delande [27] has performed calculations for

K values up to the SIT I17, as well as for the TCS below the SIT I14. The accuracy

of these calculations is confirmed by our recent experimental results as discussed in the

previous section. Here, we shall discuss the approximate quantum numbers N, Kn′ on
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Figure 4.16: Angular correlation quantum numbers K calculated by D. Delande [27] below

the SITs I9 and I10 as a function of effective quantum number. Each point represents one

resonance and the horizontal lines imply Rydberg series specified by individual K values.
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Figure 4.17: Calculated angular correlation quantum numbers K below the SITs I11 and I12

as a function of the effective quantum number. For details, see Fig. 4.16.

the basis of reliable K values. This will help to understand the statistical properties of

the NNSs between the resonances, which will be presented in the next section.

The calculated angular correlation quantum numbers K for the doubly excited reso-

nances from the SITs I8 to I17 as a function of the effective quantum numbers neff are

plotted in Figs. 4.16 to 4.20. Each solid point in these figures represents a resonance

specified by the K-value and the energy given in units of the effective quantum number.

The horizontal lines indicate Rydberg series, which can be identified by individual K

values. The spectra were rescaled to the effective quantum numbers by Eq. (4.2) in

order to study the radial quantum numbers N and n′. According to quantum defect

theory [25], all resonances in a regular Rydberg series, which are specified by various n′,

should have the same quantum defect. This results in the energy level spacings to be

equal to one on the rescaled energy axis, and implies the radial quantum numbers N

and n′ to be good quantum numbers. Otherwise, for irregular level spacings, N and n′

are assumed to be strongly mixed, i.e. N and n′ loose their meanings as the principal

quantum numbers of the inner and outer electron in an independent particle picture.
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Figure 4.18: Calculated angular correlation quantum numbers K below the SITs I13 and I14

as a function of the effective quantum number. For details, see caption of Fig. 4.16.

From these figures it can be clearly seen that−for the resonances with K values

close to Kmax−the angular correlation quantum number K has well-defined value. This

is indicated by horizontal lines in Figs. 4.16 to 4.20 and allows to define independent

Rydberg series. Therefore, in these cases K can be considered to be a good quantum

number. The second top horizontal lines represent the principal series with K = N − 2

below the various SITs, IN . From the expression (3.16), the angle between two electrons

θ12 → 180◦ as K → Kmax, and this corresponds to the classical eZe configuration. As

discussed in Sect. 4.3, this configuration is stable towards a perturbation in the angular

direction, which results in K being a good quantum number. Therefore, theoretical

results for K values agree well with this prediction for the eZe configuration. The energy

level spacings of the resonances, which belong to the Rydberg series with constant K, are

irregular; they are not equal to unity, which indicates that the radial quantum numbers

N and n′ start to dissolve for these Rydberg series. This can also be understood by

the classical eZe configuration, since this configuration is unstable against perturbations

along the axis defined by the two electrons and the nucleus. Interestingly, the number
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Figure 4.19: Calculated angular correlation quantum numbers K below the SITs I15 and I16

as a function of the effective quantum number. For details, see caption of Fig. 4.16.

of Rydberg series with good K values in the region of K → Kmax does not decrease

dramatically up to the SIT I17 as expected before. The basis for this expectation was

the assumption K could break down rather quickly above the SIT I9.

K is also found to be a good quantum number for Rydberg series in the region of

K → Kmin, in particular for the higher photon energy region above the SIT I10 (see

Figs. 4.17 to 4.20). This is indicated by horizontal lines in the lower parts of the figures.

In addition to that, the energy level spacings of these Rydberg series are always close

to one, which proves that the radial quantum numbers N and n′ are good quantum

numbers. θ12 → 0◦ and K → Kmin correspond to the classical Zee configuration. The

Zee configuration is also identified by the frozen planet orbits [2] and is stable with

respect to perturbations in both directions, namely the angular direction and the radial

direction. Therefore, the classical Zee configuration allows us to understand why K and

N are good quantum numbers for Rydberg series in the region of K → Kmin. Note

that the calculations below the SIT I17, shown in Fig. 4.20, were not yet completely

carried out, i.e. only data for the effective quantum number neff < 24 are available
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Figure 4.20: Calculated angular correlation quantum numbers K below the SIT I17 as a function

of the effective quantum number. For details, see caption of Fig. 4.16.

at the moment. From the figures showing data for lower SITs, one can see that the

corresponding Rydberg series with Kmin values start at relatively high effective quantum

numbers. This is the reason why the resonances for K → Kmin are not yet available

below the SIT I17, but we expect them to have good K quantum numbers.

It is obvious from Figs. 4.17 to 4.20 that there is a strong mixing of K in the regions

arround K = 0, i.e. θ12
∼= 90◦. More studies are needed to figure out the behavior

of quantum number N . The present results on changes of the approximate quantum

numbers N, Kn′ are in agreement with the discussion for 1Se doubly excited state of

helium below the SIT I10 given by Bürgers et al. [81], but they explore the energy region

much closer to the double-ionization threshold.

In Fig. 4.21, all calculated 〈cosθ12〉 below the SIT I17, related to K-values by the

expression (3.16), are plotted as a function of photon energy. The principal Rydberg

series is marked by a solid curve through the resonance points. From this figure, one

can clearly conclude that K does not break down as a good quantum number in the

energy regions below the SITs I9 to I17, as expected before; this is particularly true

for the regions K → Kmax. In addition, we note that the K values for the Rydberg

series in the regions K → Kmax increase slowly but constantly. This can be caused by

the influences of perturbers with large K values that belong to Rydberg series below

the next higher threshold. An increase is also observed at each threshold, which can

be understood from the formula given in Eq. (3.16). The same data as in Fig. 4.21 are

plotted in Fig. 4.22 in a polar coordinate representation. From this figure, we can see

that K is a good quantum number for the regions θ12 > 100◦ and θ12 < 50◦, but mixes

strongly in the region from 60◦ < θ12 < 100◦. We note that θ12 for the resonances of

the principal Rydberg series vary from the angles 135◦ to 150◦ in the present energy

region. This energy-dependent angular correlation distribution of the principal Rydberg

series is related to that of doubly ionized states, which will be presented later. The
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Figure 4.21: Calculated 〈cosθ12〉 values as a function of photon energy below the SIT I17. Each point represents one resonance, and the

positions of single photoionization thresholds IN are marked by thick vertical bars in the lower part of the figure. The principal Rydberg series

is indicated by a solid black line.
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Figure 4.22: Calculated θ12 as a function of photon energy below the SIT I17 in a polar coordinate scheme. The principal Rydberg series is

indicated by a solid black curve. This figure displays the same data as Fig. 4.21.
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present discussion on the approximate quantum numbers N, K will be confirmed by the

statistical analysis of the NNSs between resonances presented in the next section.

Under the assumption that all resonances are of comparable intensities, the cross

section cannot be described by individual resonances. Instead, the cross section consists

of fluctuations with a width equal to the typical linewidth, and it is composed of a large

number of individual resonances. For helium, the prerequisite for Ericson fluctuations

to be observed, which is the condition that the mean linewidth is much larger than the

mean level spacing, is already fulfilled below the SIT I9 [32]; this can be seen from an

inspection of the data below the SIT I10 presented in Fig. 4.8. Therefore, the existence of

Ericson fluctuations depends additionally on the condition that all resonances contribute

equally to the spectra. From the previous discussion we know, however, that the spectra

up to the SIT I14 are still dominated by the principal series (K = N − 2), and its

K value is still a good quantum number. This is the reason why Ericson fluctuations

cannot be found in this moment although the region concerned is in the Ericson regime.

As mentioned before, we conclude in this dissertation it is very dangerous to discuss the

Ericson fluctuations by an autocorrelation function fitted by a Lorentizian form before

one is able to really comfirm the prerequisites of the Ericson fluctuations, in particular

for comparable intensities of resonances.

4.5.3 Statistical analysis of nearest-neighbor spacings

In the previous section, we concluded that K is a good quantum number for resonances

with K → Kmax and K → Kmin, but not for resonances with K → 0. In addition,

we found that N and n′ are good quantum numbers only for resonances with K →
Kmin. In this section, we shall employ statistical tools for the analysis of NNSs between

resonances, linewidths, and Fano q parameters of resonances in order to further confirm

these findings.

The integrated NNS distributions from a global analysis of resonances below the

different SITs up to the SIT I16, together with Wigner and Poisson distributions, are

plotted in Fig. 4.23. For a clearer presentation, only curves for N = even are plotted.

Note that the thresholds with N = odd exhibit the same distribution. In this context,

“global” means that all resonances below a given ionization threshold, IN , are taken

into account without any restrictions for K. For example, the dotted line marked with

N = 10 in the text of the figure is extracted from the NNSs between all resonances below

the SIT I10. In order to avoid misleading results from possibly missing resonances caused

in the region close to each SIT, IN , or in the beginning of each threshold, which can be

caused by convergent problems in the calculations, only the resonances in the middle

values of the neff range were considered in the statistical analysis. Below I10, the dotted

line was constructed only from resonances with neff = 11 to 20. An additional reason

could be that the Rydberg series become more and more regular due to a small number

of perturbers in the region extremely close to each SIT. However, the present calculated

data cannot yet reach this region, which can be seen in Fig. 4.8 from the data below

the I10. All global NNS distributions below the SIT I16, presented in Fig. 4.23, reveal a
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Figure 4.23: Integrated nearest-neighbor spacings (NNS) distributions N(s) for the resonances

below the SIT I16 using a global analysis. The global NNS distributions N(s) for the resonances

below the various SIT IN are displayed together with a Wigner and a Poisson distribution

representing a chaotic and a regular system, respectively.

Poisson form, which indicates that there are still independent subsystems, which can be

classified by quantum numbers. From the discussion in the previous section, we know that

K and N do not break down completely; there are some regions where they work quite

well. In this case, the resonances can be considered to constitute several Rydberg series

that are uncorrelated and may be distinguished by different quantum numbers K. Note

that although K is mixed for the resonances with K → 0, all of them can be regarded

as one special ”Rydberg series” equal to the one with a good K value. In summary,

independent and uncorrelated Rydberg series constitute a “regular” system, whose the

NNS distribution has a Poisson form. These independent and uncorrelated Rydberg

series can be regular or chaotic [10]. In this way, the highest probability P (S) for the

NNSs of resonant energy levels occurs at S = 0, and then global NNS distributions exhibit

a Poisson from (for details, see Sect. 4.2). In previous experimental and theoretical

studies for the TCSs, Püttner et al. found a transition towards quantum chaos below

the SIT I9 [18]. The Poisson form of the NNSs up to I16 in the present study indicates

that the transition region from integrability to chaos is much larger, since the quantum

number K seem to dissolve rather slowly. Full chaos in 1P o doubly excited helium may

appear at the double-ionization threshold. The trend approaching chaos is analogous to

the situation in 1Se doubly excited helium [19].

The integrated individual NNS distributions for the resonances with K → Kmax below

the SIT I16 are given in Fig. 4.24. In addition, the curve for the regular Rydberg series
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Figure 4.24: Integrated nearest-neighbor spacings (NNS) distributions for the resonances

K → Kmax below the SIT I16 using an individual analysis. The individual NNS distributions

obtained for the resonances below the various SIT IN , classified by good quantum numbers K,

are shown together with a Wigner distribution representing a chaotic system. For comparison,

the integrated NNS distribution for the regular Rydberg series 13,−12n′ is also shown.

13,−12n′ is also displayed in this figure. In this context, “individual” means that the

NNS distributions were obtained from the resonances below a given ionization threshold

IN that belong to a Rydberg series N, Kn′ with well-defined N and K. In a first step,

the NNS distribution is obtained individually for each Rydberg series with well-defined

K in the region of K → Kmax. In order to improve the statistics, the results obtained

for the different Rydberg series are added, which results in the plots given in Fig. 4.24.

For comparison, the NNS distribution for the regular Rydberg series 13,−12n′ is also

given, which shows a perfect step function. The NNS distributions for the individual

analysis of the Rydberg series with K close to Kmax below the SITs I10 to the I16 exhibit

a form between a step function and a Wigner function. Moreover, the NNS distributions

approach a Wigner-like form with increasing ionization threshold IN , which indicates

that the radial quantum numbers N and n′ dissolve completely in this region and lose

their physics meanings. Since one K-selected Rydberg series, i.e. with the angle between

the two electrons and nucleus fixed, can be considered to be a “1-D” case in 3-D helium,

a Wigner-like form of K-selected NNS distributions for Rydberg series with K → Kmax

values is a quantum signature of chaos for the “1-D” case in real 3-D helium. These “1-

D” cases in 3-D helium agree very well with those obtained from 1-D helium presented

by Püttner et al. [18] and confirm their predictions that full Wigner distribution will be

found around I17.

In the region for K → 0, Rydberg series with well-defined K values cannot be iden-
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Figure 4.25: Integrated nearest-neighbor spacings (NNS) distributions N(s) for the resonances

K → 0 below various thresholds up to the SIT I16. The NNS distributions N(s) for the

resonances with −4 < K < 2 below a given SIT IN are displayed together with a Wigner

distribution and a Poisson distribution representing a chaotic and a regular system, respectively.

tified (see Figs. 4.16 to 4.20). Therefore, one would expect that a perfect Wigner dis-

tribution should be found in a statistical NNS analysis. Fig. 4.25 presents the NNS

distributions for the resonances in the region of K → 0 (−4 < K < 2) below the various

SITs up to the SIT I16. The NNS distribution for resonances below I10 is in quite good

agreement with the Wigner form. Interestingly, the NNS distributions of resonances

below higher ionization thresholds match a Poisson form quite well, see e.g. the curve

obtained for the region below I16. This is not understood at present.

In very recent calculations by Le et. al. [19], statistical studies of the NNSs for 1Se

doubly excited states were performed up to the SIT I19, and the rate approaching a

Wigner distribution was found to be slow, in agreement with the present situation for
1P o doubly excited states; this means that the transition region from integrability to

chaos is much broader than previously expected.

4.5.4 Porter Thomas distribution of linewidths

The wave function of discrete states describing the doubly excited resonances can be

regarded as representing the eigenvector in a Gaussian orthogonal ensemble (GOE), i.e.

it can be described as the random element of matrices. Each eigenvector is of unit norm,

and the statistical properties for the components of the eigenvector display a Porter-

Thomas distribution [64, 82]. Since the widths Γ of the resonances are related to the

eigenvector by Eq. (3.4), one has to assume that the probability N(x) for width Γ exhibits
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Figure 4.26: Statistical distributions N(x) of resonant linewidths as a function of reduced

width in the region below the SIT I16. An integrated Porter-Thomas distribution, representing

a chaotic system, is also plotted (solid line).

also a Porter-Thomas distribution [64, 82, 83] given by

P (x) =
1√
2πx

exp(−x/2), (4.13)

where x = Γ/〈Γ〉 is the reduced linewidth. One can easily see that the smallest widths

have the highest probability. This means that the strong statistical fluctuations in the

random matrix tend to compensate each other, and the most probable value of a matrix

element is zero. In order to improve statistics, we analyze the integrated form N(x) =
∫ x
0 dx′P (x′).

In Fig. 4.26, the statistical probability for the linewidth as a function of reduced

width is displayed for the regions below the SITs I3 and I10 up to I16, together with the

Porter-Thomas distribution that is plotted as a solid line. The shape of the distributions

above I10 are almost identical and exhibit a fair agreement with the Porter-Thomas

curve. Note that−for a clearer presentation−these statistical distributions are given

only for thresholds IN with N = even; the curves for N = odd would show very similar

shapes. The N = 3 region is regular, with five regular Rydberg series and no perturbers.

The statistical probability distribution of the linewidths for the N = 3 region is quite

different from the results below higher SITs. Interestingly, the eigenvector statistics for

a kicked top under conditions that leads to a regular motion in the classical limit, which

was presented in Fig. 4.3 of Ref. [65] shows a similar shape as the results for the N = 3

region of doubly excited helium given in Fig. 4.26. The lithium atom in a magnetic field

was studied in Ref. [83], and the statistical properties of the observed linewidths were

also well described by random matrix theory. So far, there are only rather limited data

available for statistical studies of linewidths.
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4.5.5 Lorentzian distribution of Fano q parameters

So far, we have focused on the statistics of level spacings and linewidths. A distribution

of Fano q parameters in a chaotic system had been first derived by W. Ihra in 2002

[84]. According to Ihra’s studies, the distribution of Fano q parameters can be derived

under two prerequisites: First, the classical motion of high double-excitation resonances

has to be chaotic. This ensures that the eigenstates of double-excitation resonances

can be described by matrices taken from a Gaussian orthogonal ensemble in random

matrix theory [84]. The statistical properties of the Fano q parameter are assumed

to be determined by that of the eigenstates. Second, the excitation process and the

coupling between a discrete state and final continuum states are assumed to be separated.

Therefore, x ≡ 〈ν | r | i〉/〈f | r | i〉 and y ≡ π〈ν | V | f〉 can be taken as statistically

independent random variables [84], where q = x/y given in Eq. (3.5) and i, ν, and f

are initial state, discrete state, and final continuum state, respectively. r represents the

dipole operator, and the Coulomb operator V controls the autoionization process. The

probability distribution for q is given by a Lorentz distribution [84]

P (q; w) =
1

π

w

w2 + (q − q)2
, (4.14)

where w ≡ σx/σy is the width of the probability related to the coupling strength V

between the discrete states and the continuum states as well as the ratio of the dipole

transition matrix to the discrete state and the final continuum states. σx(σy) are the

variances of the variables x(y). For a strong coupling to the continuum state, i.e. for σy

being large, the Lorentzian distribution has a small width centered around q. The same

holds if direct photoexcitation dominates over the indirect process because of small σx.

Of course, in most cases the change of w depends on the competition between direct
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Figure 4.27: Statistical distributions of Fano q parameters (a) below I14 and (b) below the SIT

I3. The statistical distribution of q below the SIT I14 is fitted by a Lorentzian function plotted

as a solid line.



4.6 The angular correlation mechanism around the double-ionization threshold 73

photoexcitation and indirect photoexcitation paths because normally the variations in

both decays follow the same direction.

Table 4.1: Widths w and average value q extracted from Lorentzian fits to the distributions of

Fano q parameters for the various SITs up to I17. The values for the Fano q parameter were

taken from the results of the complex-rotation calculations [27].

SITs w q

I9 2.7 −0.28

I10 2.1 −0.02

I11 2.3 −0.09

I12 2.7 0.10

I13 2.2 0.03

I14 2.5 0.09

I15 2.2 −0.07

I16 2.0 0.15

I17 2.1 −0.05

Statistical distributions of Fano q parameters up to the SIT I17 were performed;

the results obtained for the SIT I14 are shown in Fig. 4.27(a), as an example. The

distribution of q below the SIT I14 can be described quite well by a Lorentzian function,

with q close to 0, as predicted by W. Ihra [84]. The distributions in the region between

I9 and I17 also match quite well a Lorentzian distribution, with q close to 0. In contrast

to the distribution of q in the regions of high doubly excited helium, the distribution of q

below the SIT I3 is plotted in Fig. 4.27(b). This statistical distribution is dominated by

three peaks around q values of −1.5, 1.0, and 1.5, which correspond to the three regular

Rydberg series 3,−2n′ , 3, 0n′, and 3, 1n′, respectively. Normally, all members of a regular

Rydberg series have similar values of q and, therefore, their distributions do not match a

Lorentzian form. The widths w of the statistical distribution for all regions below I9 to

I17 are obtained from the fits, and they are summarized in Tab. 4.1. Due to increasing

coupling strength to continuum states, w slowly decreases with increasing ionization

threshold. These spectra are predicted by Eq. (4.14), while the corresponding classical

system is chaotic. To our knowledge, this is the first confirmation of this prediction, and

further detailed studies have to be done in the near future.

4.6 The angular correlation mechanism around the

double-ionization threshold

The study of electron correlation in the photon-induced double-ionization process of

helium has been a topic of considerable interest in the last couple of decades [85−101].



4.6 The angular correlation mechanism around the double-ionization threshold 74

In particular in the vicinity of the double ionization threshold (DIT), it is expected that

the double-ionization process is related to a single-ionization process enhanced by the

doubly excited states. In 1999, Qiu and Burgdörfer [97] extended the group-theoretical

approach for a classification of doubly excited states below the DIT, discussed in Sect.

3.2, to two-electron continuum states above this threshold. This extension allows an

extrapolation of angular correlation properties of doubly excited states beyond the DIT,

with the result that they can be used to describe doubly ionized states. The propensity

rules for the A = +1 or −1 symmetries, known for doubly excited resonances, were also

found to be suited to perfectly describe the near-threshold behavior of the photon-induced

double-ionization process [94]; an interpretation of the quantum number A has been given

in Sect. 3.2.2. In this dissertation, we shall show how the angular correlation behavior of

doubly excited states below the DIT is extrapolated to doubly ionized states beyond the

DIT. Here, we first discuss the triple differential cross section (TDCS) patterns for the

double ionization process, from which the angular correlation patterns can be derived.

For linearly polarized light, Huetz et al. [90] first established the TDCSs as

dσ(E1, E2, θ12) = |a+(E1, E2)(cosθ1 + cosθ2) + a−(E2, E1)(cosθ1 − cosθ2)|2 , (4.15)

where θ12 is the angle between the two outgoing electrons. The angles θi (i = 1 and 2)

are the angles of the two electrons with respect to the polarization vector of the light and

E1,2 are their respective kinetic energies. The amplitudes a+ and a− describe transitions

to states with A = +1 and −1, respectively. Note that quantum number A corresponds

to the symmetry of the wave function for doubly excited states under the exchange

r1 ↔ r2, and that it has the same value as for doubly ionized states under the equivalent

exchange E1 ↔ E2 [98]. Here, r1,2 represent the absolute values of the distances between

the two electrons and the nucleus. For equal energy sharing, i.e. E1 = E2 = Eex/2, it

has been observed [92, 93, 96, 99] that the second amplitude in Eq. (4.15) vanishes if

one approaches the DIT , in agreement with the Wannier law [85, 87, 91]. Therefore, for

equal energy sharing the TDCSs, given in Eq. (4.15), are written as

dσ(Eex, θ12) = CEex
(θ12)(cosθ1 + cosθ2)

2. (4.16)

The correlation factor,

CEex
∝ exp(−4ln2(θ12 − 1800)2/θ2

FWHM), with θFWHM = θ0E
1/4
ex , (4.17)

has a Gaussian distribution with a width θFWHM that is related to the excess energy,

Eex. The value of the scaled width parameter, θ0, obtained by different authors, varies

from θ0 = 103 deg (eV)−1/4 [86] to 66.7 deg (eV)−1/4 [88]. Equation (4.16) for the case of

equal energy sharing can also used as a good approximation for unequal energy sharing

if Eex → 0 [98]; this has been confirmed by experimental data [90, 92, 93, 96, 99]. It

implies that in this region the amplitude a− in Eq. (4.15) is much smaller than a+, and

in addition, a+ is insensitive to E1/E2, i.e. a+(E1 = E2) ∼= a+(E1 6= E2). Here, the cases

of equal energy sharing (E1 = E2) and of unequal energy sharing (E1 6= E2) of doubly
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Figure 4.28: Angular correlation parameter, θ12, as a function of energy close to the double-

ionization threshold. The filled points represent the calculated doubly excited resonances of

the principal Rydberg series K = N − 2 from the SITs I9 to I17; these were indicated in Figs.

4.21 and 4.22 by solid lines. The solid line represents the angular correlation parameter of

doubly ionized states taken from Eq. (4.16) by setting θ0 = 80 deg (eV)−1/4. Experimental

data for doubly ionized states with Eex = 2E1 = 2E2 = 0.1, 0.6, and 1.0 eV, respectively, are

given by a star [99], an open diamond [93], and an open box [96]; in addition, an open circle

represents the result of theoretical calculations by Qiu and Burgdörfer [97]. The positions of

single photoionization thresholds, IN , are marked by vertical bars in the upper part of this

figure.

ionized states are equivalent to doubly excited states for two electrons with the same

and the different values of the principal quantum numbers N and n′, respectively.

In the previous section, we confirmed that the cross section below the DIT is domi-

nated − at least up to the SIT I14 − by the principal series K = N−2, which corresponds

to the classical collinear eZe configuration. Close to the double-ionization threshold, the

angle θ12 for the principal series K = N − 2 increases strongly and reaches 1800 directly

at the DIT (see Fig. 4.22). Therefore, the collinear eZe configuration can be considered

to be the most likely one in the vicinity of the DIT. We want to point out that the wave

function for the principal series K = N − 2 is of A = +1 symmetry matching perfectly

with the most intense double ionization channels above the DIT, where the amplitude

with A = +1 symmetry dominates the TDCSs resulting in Eq. (4.16).

In the following, We discuss similarities in the angular correlation properties of the

doubly excited states below the DIT and of the doubly ionized states above this threshold.

Figure 4.28 displays the energy-dependent angular distribution near the DIT, i.e. the

value of θ12 as a function of the relative energy, |hν−EDIT |, for an approach from above

and below this threshold. EDIT
∼= 79 eV is the DIT of helium. The filled points represent

the calculated doubly excited resonances of the principal Rydberg series K = N −2 from
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below the SITs I9 to I17, which are indicated in Figs. 4.21 and 4.22 by solid lines. The

changes of θ12 for the principal Rydberg series of the doubly excited states are in good

agreement with theoretical values for the doubly ionized states, which is given by the

solid curve taken from Eq. (4.16) by setting θ1 = 900 and θ0 = 80 deg (eV)−1/4. The

value θ0 = 80 deg (eV)−1/4 agrees with the experimental [93] and theoretical [89] values

at Eex
∼= 0.6 eV. The experimental data for Eex = 0.1, 0.6, and 1.0 eV, respectively, are

represented in this figure by a star [99], an open diamond [93], and an open box [96]. The

open circle is taken from the theoretical predictions for the doubly ionized states given

by Qiu and Burgdörfer [97]. We note from Eq. (4.16) that θ12 depends only slightly on

θ1, but shows a strong dependence on Eex. The simulation on the basis of this equation

showed that θ12 has a maximum value at θ1 = 900 for a constant value of Eex. The

experimental TDCSs of Ref. [93] were not measured at θ1 = 900, which have resulted in

smaller values of θ12 as indicated by the open diamond in Fig. 4.28. In fact, the angular

distribution parameter, β, has been confirmed to approach −1 by approaching the DIT

from both above [94, 95] and below [102], i.e. the highest probability for the outgoing

electrons is at θ1 = 900 with respect to the polarization of light.

In addition, the excess energies, Eex, of the two ionized electrons above the DIT

correspond to the binding energies of the doubly excited states below the DIT. Therefore,

the doubly excited resonances close to single ionization, i.e. the ones with n′ � N , can be

regarded as the counterpart of unequal energy sharing in the double-ionization process.

The theoretical results for doubly excited states, presented in Fig. 4.28, show that θ12 does

not change much below one single ionization threshold. This observation corresponds to

the fact that for doubly ionized states close to the DIT θ12 is also insensitive to the ratio

E1/E2 [92, 93]. Considering all these facts, the available experimental results above the

DIT and the theoretical results below the DIT are in agreement with those derived from

the analytical expression given in Eq. (4.16). Figure 4.28 shows clearly that the angular

correlation around the DIT has a mirroring behavior taking the DIT as the mirroring

axis. This mirroring angular correlation dynamics around the DIT further improves

the understanding to the double-ionization dynamics of helium: the preferential double-

ionization path should be the one where the two electrons escape symmetrically and

back-to-back. In order to confirm this prediction on the mirroring angular correlation

dynamics, more experimental and theoretical work on the TDCSs at Eex ≤ 1 eV is

needed, in particular for θ1 = 900.

Because of the 1P o symmetry, θ12 for the equal-energy-sharing case is not equal to

1800, even at the DIT, i.e. the TDCSs have a node at θ12 = 1800 on the basis of stan-

dard quantum mechanics [98]. As mentioned in Append. A, in the limit of the DIT, the

quantum description of helium should lead to a classical mechanical case (Bohr’s corre-

spondence principle). This may be considered to be the signature of classical mechanics

in the quantum helium system, when E approaches the DIT.



Chapter 5

Photoionization spectroscopy by

TOF measurements

In the preceding chapter, we have discussed the present experimental results for the TCS

up to the SIT I15 along with theoretical calculations up to the SIT I17 of helium. The

most important physics is the observation of features caused by quantum chaos in the

simplest multibody system, namely the two-electron system such as He atom. However,

all these studies were performed with statistical tools, such as the NNS distribution of

energy levels, the Lorentzian distribution of Fano q parameters, and the Porter-Thomas

function of resonant linewidths. Since only a small fraction of the resonances can be

observed experimentally, most of these statistical studies were made on the basis of

theoretical results. Therefore, experimental studies of the PCSs σn and ADPs βn can

substantiate theoretical methods and assure the validity of these statistical analysis de-

rived from theoretical data. In addition, since the PCSs and ADPs carry additional

coupling information of the outgoing channels, quantum chaos is expected to manifest

itself more easily or in different ways than in the TCSs. Vice versa, the success of the

present experimental and theoretical studies on the TCSs in this highly excited region

will encourage studies of PCSs and ADPs.

Due to various couplings among the outgoing channels, the PCSs, σn and the ADPs,

βn, are more sensitive to the quality of the wave functions and theoretical methods than

the TCS, σT , and therefore represent the most critical assessment of the theoretical

methods. Moreover, because each decay channel can be influenced in a different way, the

σn and βn are more sensitive to the influences of perturbers. As a result, more resonances

with pronounced variations are expected in σn than σT . As an example, the resonance

8, 410 of the secondary series is resolved in the present PCS measurements in contrast to

the TCS data, although latter were measured with better resolution and signal-to-noise

ratio [30].

Similarities in the variations of the PCSs and the ADPs caused by the resonances

in the energy region up to the SIT I5 were observed for the first time by Menzel et al.

[34, 35]. These so-called ’general patterns’ can be well understood by the propensity

rules for autoionization based on the molecular adiabatic approximations [33] (see Sect.

77
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5.3.3). As the photon energy increases, the structures in the PCSs get more compli-

cated due to interferences caused by an increasing number of perturbers, and the general

patterns begin to dissolve. An experimental confirmation of these theoretical predic-

tions requires high-resolution photoemission measurements at the energies beyond the

ionization threshold I5.

In addition, in the photon energy region below the SIT I6, the mirroring behavior

in the PCSs for the double-excitation resonances has become an interesting topic in

recent years since Liu and Starace developed an analytical expression for it [36]. The

mirroring behavior means that the variations in the vicinity of a resonance between any

two PCSs exhibit a very similar behavior. The sum of these two PCSs is the TCS. In

this dissertation, we shall extend the analytical expression of Ref. [36] to a general case,

which allows us to understand completely the mirroring behavior in the n-specific PCS

as well as in the l-specific PCS given in last chapter of the dissertation.

Due to the reasons mentioned above, the PCSs in region of the last eV below the

double-ionization threshold have drawn considerable attention both in experimental and

theoretical studies. The incentive for the present work was the insight that an analysis

of the propensity rules and of the mirroring behavior of PCSs as well as the ADPs of

autoionizing double-excitation states in helium can provide a deep understanding of the

decay dynamics of two-electron atoms. First measurements of PCSs of He had been

performed by Lindle et al. [103]; these studies, however, were limited to excitations

approaching the ionization limit I3, due to the low photon intensities achieved at the

first-generation light sources available at that time. Menzel at al. then reported on

the measurements of PCSs and ADPs up to the SIT I5 employing two spherical-sector-

plate electrostatic analyzers [34, 35]. Czasch et al. [102] studied the photon energy

region from the SITs I9 to I16. In the present dissertation, we extend the experimental

studies of PCSs up to the SIT I9 [37, 104] and of ADPs up to the SIT I7, filling the gap

between Menzel’s measurements and the experimental results of Czasch et al.. The PCSs

and ADPs presented in this dissertation were derived from photoemission spectra taken

by a TOF electron spectrometer. The results of state-of-the-art R-matrix calculations,

performed by T. Schneider and partly presented in Ref. [33], are also displayed along

with the experimental results for the PCSs. Other calculations were performed by van

der Hart et al. [63], who published their results for σn up to the SIT I9. To our

knowledge, no calculations and measurements are available for a comparison with the

present experimental results for the ADPs above the SIT I5.

5.1 Experimental set-up

State-of-the-art high-resolution monochromators in combination with TOF photoelec-

tron spectrometers allow one to explore the autoionization of resonances in the highly

excited region. Here, we present photoelectron emission measurements and extract the

various PCSs below the SIT I9 and the ADP below the SIT I7 from the recorded spec-

tra. The experiments were performed at the undulator beamline U125/2-SGM (BUS-
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beamline) [50] of the Berliner Elektronenspeicherring für Synchrotronstrahlung (BESSY)

using a photon energy resolution of Ω ∼= 6 meV (FWHM). The optical layout of the BUS

beamline is displayed in Fig. 2.4, and the exit slit was set to a value of ∼= 40 µm. A

needle (10 cm long, less than 500 µm inner diameter) directs an effusive jet of gas to

the interaction region; the background pressure in the chamber was ∼= 10−4 mbar. From

the count rate and calculated cross sections, we estimate the pressure in the interaction

region to be of the order of 10−2 mbar.

For the measurements of the PCS, one TOF spectrometer [22] was mounted at the

magic angle, i.e. in the dipole plane at an angle of θ = 54.7◦ relative to the polarization

direction of the incoming light. The schematics of the experimental set-up for a mea-

surement of PCSs and a corresponding photograph from the inside of the experimental

chamber is displayed in Fig. 5.1. The TOF spectrometer shown in this figure was used

for the PCS measurements. For this geometry equation (1.22) reveals that the angular

distribution causes no effect on the derived PCSs.

TOF
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Figure 5.1: Schematics of the experimental set-up for PCS measurements and corresponding

photograph from the inside of the experimental chamber. The propagation direction of the

light is out of the paper plane; the polarization is horizontal as shown in the drawing on the

left hand side.

Equation (1.22) contains the two parameters, σn and βn. For a measurement of the

β-parameters, at least two TOF detectors are needed to take differential cross sections

(DCS) dσ/dΩ. To improve the statistics and to reduce systematic errors, more analyzers

can be mounted and used for taking data simultaneously. Figures 5.2 and 5.3 show

photographs of the experimental ball chamber from the outside and from the inside,

respectively; this chamber was used for the measurements of β-parameter below the SIT

I7. A number of TOF spectrometers [22] were mounted at various angles in the dipole

plane perpendicular to the propagation of light. The TOF spectrometers mounted on

the upper half of ball chamber can be seen in Figs. 5.2. The structure of these TOF
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TOF

Figure 5.2: The outside of the ball-chamber for the measurements of the DCSs and ADPs. 8

TOF photoelectron spectrometers are seen in the figure.

spectrometers is identical, and the flight tube inside the chamber is about 30 cm long.

A ring centered inside the chamber ensures that all TOF spectrometers are mounted at

equal distances. One of the TOF spectrometers is normally mounted at the magic angle,

and can be used to determine the PCSs directly.

To increase the transmission for the electrons with low kinetic energies, three ac-

celerating voltages were applied on each TOF spectrometers, and normally their values

were set individually between 1 and 3 V (see Fig. 2.7). In addition, a potential of ∼=
0.5 V could be applied to the needle of gas inlet in order to increase the transmission.

To compensate the earth magnetic field, three pairs of Helmholtz coils were installed.

This is necessary because the order of the magnetic field of the earth in the interaction

region would strongly reduce the photoelectron transmission, in particular for those pho-

toelectrons with low kinetic energy. With β2
∼= 0 [105], the n = 2 satellite of the time

spectrum of helium in the photon energy region directly above the SIT I2 can be used for

the adjustments of the magnetic compensation since the corresponding electrons have

a very low kinetic energy and a quite high count rate. For the ADP measurements, a

number of TOFs was mounted at various angles. Under this condition, the adjustment of

magnetic field compensation leads normally to an increase in the transmissions of some

TOF spectrometers, while for others the transmission gets worse. Therefore, after the

general adjustment of magnetic fields, the relative transmission of each individual TOF
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Needle

TOF

Figure 5.3: The inside of the ball-chamber with 12 TOF photoelectron spectrometers mounted.

has to be determined; this will be discussed later.

5.2 Data acquisition

In order to eliminate the influences caused by the decrease of the ring current and

fluctuations of the gas pressure in the interaction region during data taking, the time

spectra have to be normalized before converted into energy spectra by the time-to-

energy conversion introduced in Sect. 2.4.3. Ideally, we could use the 1s-line of the

various TOF spectrometers, mounted at different angles to normalize the intensities of

the other satellite lines, since σ1 can be assumed to be structureless. However, according

to β1s = 2, the 1s-line is absent in the 90◦-TOF spectrum. Assuming that the count

rates of all satellites in all TOF spectra are influenced in the same way by the photon

flux and the target pressure, one can also use the intensity of the 1s-line of any TOF

spectrum for normalization of the time spectrum of the 90◦-spectrometer. In practice,

the 1s-line of the 0◦-TOF spectrometer is used for normalization because of the highest

count rate. Based on theoretical results which show some weak resonances in σ1, we can

estimate that the error produced by this procedure is ≤ 10% for measurements below
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Figure 5.4: The spectrum along the binding energy axis represents an experimental photoemis-

sion spectrum recorded at hν = 76.2 eV, with the satellites n = 2 to 4 representing the ionic

final states of He+(n). The solid curve through the data points represents the PCS σ3 that

can be derived from a large number of such photoemission spectra (not shown here) recorded

at different photon energies. For details see text.

the ionization threshold I5, ≤ 6% below I6, ≤ 7% below I7, ≤ 3% below I8, and ≤ 2%

below I9.

After normalization, the second step of the data analysis procedure is to determine the

efficiency factors for the different TOF spectrometer. This is particularly important for

measurement of the β parameter. These efficiency factors are determined by comparing

the intensities of the 1s line due to its high kinetic energy and the energy independence

of the efficiency factor of a TOF (see Sect. 2.4.3).

As an example, an experimental photoemission spectrum (PES), taken with hν =

76.2 eV, is presented in Fig. 5.4 in form of a three-dimensional plot. From the PES, the

integral intensities of the satellite peaks, i.e. n ≥ 2, can be extracted and plotted as a

function of photon energy, resulting in the PCS σn. As shown in Fig. 5.4 for the example

of σ3, the PCS was derived from approximately one hundred PESs, and each point in

the PCS corresponds to one PES with different photon energies. Since the measuring

time for one PES spectrum is of the order of 5 to 10 minutes, the data acquisition for

the PCSs below one ionization threshold takes several ten hours.

5.3 Channel-resolved measurements up to I9

In this section, we present the results of PCS measurements below the SITs I5 to I9 of

He. General pattern and mirroring behavior in the PCSs will be the topics in this part of
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the dissertation. With these PCS studies, we are expecting to improve the understanding

for electron correlations and autoionization decay dynamics in this two-electron system.

5.3.1 Partial cross sections
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Figure 5.5: Experimental partial cross sections, σ5
n, leading to the final states He+(n), with

n = 2, 3, and 4, along with the results of the eigenchannel R-matrix calculations performed

by T. Schneider [33]. The data were taken in the photon-energy region between 75.68 eV and

76.77 eV. The two vertical-bar diagrams in the upper part of the figure give the assignments of

the double-excitation resonances by specifying n’; with the widths of bars being proportional

to the linewidths of the corresponding resonances [31]. The vertical arrow in the upper right

corner marks the calculated energy of the perturber 6, 46. The filled data points are the present

experimental results, with the solid curves through the data points representing the fit results.

The dashed curves represent the data by Menzel et al. [34] and the dash-dotted curves the

results of the R-Matrix calculations convoluted with a Gaussian of 6 meV width (FWHM) to

simulate finite experimental resolution.

As mentioned before, the Fano formula given in Eq. (3.3), which has been devel-

oped for describing the lineshapes of resonances in the TCS, has the same mathematical

structure as the exact formula by Starace given in Eq. (3.8) for describing the resonances
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in the PCS [59]. As a consequence, it is possible to describe the PCS by the Fano for-

mula, but in this case, q represents only an effective parameter without a deeper physical

meaning. In analyzing our data, we fitted the various PCSs for a given energy region

by the Fano formula in a parallel least-squares fit procedure using a single Gaussian to

simulate the experimental resolution function. In this way, the σn leading to different

final states of He+(n) were fitted to Eq. (3.3) with the same experimental resolution Ω,

energy position Er, and linewidth Γ, but different Fano q parameters. The results of

this fit procedure are given as solid curves through the data points in Figs. 5.5 to 5.9.

The data below the SITs I5 to I7 were calibrated at the energy of resonance 5, 36 (76.083

meV) as given by Domke et al. [30], and photon energies below the SITs I8 and I9 were

calibrated to theoretical results [32].

The present experimental data together with theoretical calculations from the eigen-

channel R-matrix calculations by Schneider et al. [33] and previous measurements by

Menzel et al. [34] are presented in Figs. 5.5 to 5.9 by the solid points, dash-dotted curves,

and dashed curves, respectively. The least-squares-fit results are described by solid lines

through the data points in these figures. The results of R-matrix calculations are con-

voluted with a Gaussian of 6 meV width (FWHM) to simulate experimental resolution;

they are given in units of kb on the right ordinate. The basic idea of the R-matrix

method has been described in chapter 6.1, and the details for the configurations of the

target are in the publication of Schneider et al. [33]. Note that, in order to match the

experimental data to the theoretical PCSs below the SITs I6 to I9, the latter had to be

shifted to higher energy by 4 meV, 12 meV, 12 meV, and 10 meV, respectively.

Note that for convenience we employ in our discussion the notation σN
n to label the

different PCSs. As defined above, the lower index n (n = 1, 2, 3, ..., N − 1) refers to

the principal quantum number of the single electron in the ionized final state, He+(n).

N is the quantum number of the inner electron in the doubly excited states, i.e. the

corresponding data are measured below the ionization threshold IN . Fig. 5.5 displays

the results of the present work for the PCSs σ5
n (with n = 2, 3, and 4). The error bars in

the cross sections were estimated in the least-square fit procedures to be ± 2% for σ5
2, ±

10% for σ5
3, and ± 15% for σ5

4 . This behavior can be readily understood on the following

facts: (i) the lower decay channels have larger cross sections; (ii) the corresponding pho-

toelectrons have higher kinetic energies leading hence to a higher transmission through

the TOF spectrometer. Both facts give rise to higher count rates and therefore to smaller

error bars. The principal series 5, 3n′ is observed up to resonance n′ = 15. The present

relative measurements agree well with those of Menzel et al. with respect to lineshapes

and energy positions of the resonances in all three decay channels. The previously in σ5
3

and σ5
4 unobserved resonances 5, 36 and 5, 37 are related to photoelectrons with relatively

low kinetic energies, demonstrating the enhanced capability of the TOF analyzers used

here in detecting photoelectrons with kinetic energies as low as 350 meV at sufficiently

high count rates. In the n = 2 channel, the resonances n′ = 6, 7, and 8 of the sec-

ondary series 5, 1n′ could be detected in the fit analysis with the present monochromator

resolution of ∼= 6 meV (FWHM).
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Figure 5.6: Experimental partial cross sections σ6
n leading to the final states He+(n), with

n = 2, 3, 4, and 5, respectively, in the energy region from 76.85 eV to 77.56 eV, along with the

results of the eigenchannel R-matrix calculations; for details, see the caption of Fig. 5.5.

The PCSs below the ionization threshold I6, with the perturbers 7, 58 and 7, 59,

and below the ionization threshold I7, with the perturber 8, 610, are shown in Figs.

5.6 and 5.7, respectively. The principal series 6, 4n′ and 7, 5n′ are observed up to the

resonances n′ = 16 and 19, respectively. Note that the resonances 7, 510 and 7, 515 are

almost completely suppressed due to interferences with the perturbers 8, 68 and 8, 69,

respectively. These findings agree well with the results of earlier studies of the total

photoionization cross sections [30]. The error bars in the PCS curves were estimated to

be ± 1% (σ6
2), ± 1% (σ7

2), ± 3% (σ6
3), ± 2% (σ7

3), ± 6% (σ6
4), ± 5% (σ7

4), ± 11% (σ6
5),

and ± 10% (σ7
5). Again, the resonances 6, 27, 6, 28, and 7, 38 of the secondary series are

observed in the fit analysis of σ6
2 and σ7

4, respectively. Due to small partial cross sections



5.3 Channel-resolved measurements up to I9 86

4

5

0.8

1.2

1.6

2.0

0.0

0.5

1.0

7,3
n’

7,5
n’10

9

8,6
8

8,6
9

8,6
10

22

23

24

25

14
16
18
20

6

8

10

2
3
4
5

72

76

80

77.6 77.7 77.8 77.9
Photon Energy (eV)

0

2

4

666

669

672

675

n=1

n=3

n=4

n=5

P
ho

to
io

ni
za

tio
n 

Y
ie

ld
 (

104  C
ou

nt
s)

T
he

or
et

ic
al

 C
ro

ss
 S

ec
tio

n 
(k

b)

n=2

n=6

Figure 5.7: Experimental partial cross sections σ7
n leading to the final states He+(n), with

n = 2, 3, 4, and 5, respectively, in the energy region from 77.56 eV to 77.92 eV, along with

the results of the eigenchannel R-matrix calculations. Note that the plotted theoretical results

were shifted by 12 meV to lower energies; for details, see the caption of Fig. 5.5.

and relatively low transmission rate of the TOF spectrometer for slow electrons, the PCS

σ6
5 in the energy region below 77.155 eV (Fig. 5.6) and the PCS σ7

6 (Fig. 5.7) could not

be obtained from the present measurements.

Figures 5.8 and 5.9 display for the first time the experimental PCSs σ8
n and σ9

n (with

n = 2 − 6). The energy positions of the perturbers 9, 79, 9, 710, 10, 810, and 10, 811

are also marked in the figures. In general, there is good agreement for the variations

in the lineshape, the amplitudes, and the relative positions of the resonances between

the experimental and theoretical spectra. Statistical error bars in the PCS curves were

estimated to be ≤ ± 1% (σ8
2 and σ9

2), ± 1% (σ8
3 and σ9

3), ± 3% (σ8
4), ± 2% (σ9

4), ±
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Figure 5.8: Experimental partial cross sections, σ8
n, leading to the final states He+(n), with

n = 2−6, respectively, in the photon-energy region between 77.84 eV and 78.15 eV, along with

the results of the eigenchannel R-matrix calculations. The energy position of the resonance

8, 410 of the secondary series is marked with grey bars. For details, see the caption of Fig. 5.5.

6% (σ8
5), ± 4% (σ9

5), ± 11% (σ8
6), and ± 7% (σ9

6). Note that the possible systematic

fluctuations caused by normalizing the spectra to σ1 are not taken into account in these

numbers. The increase of the error bar with higher excitation can also be understood

by taking into account its lower cross section and correspondingly lower transmission

through the TOF spectrometer, which is consistent with the results below the SIT I7.

Due to small PCSs and the relatively low transmission rate of the TOF spectrometer

for very slow electrons, the PCSs σ8
7, σ9

7, and σ9
8 could again not be obtained from the

present measurements.

Energy position and width of the resonance 8, 410 of the secondary series are marked

by grey bars in figure 5.8, which is zoomed out together with the resonance 8, 610 in

figure 5.10. The experimental total cross section [30] in the region was also plotted in
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Figure 5.9: Experimental partial cross sections, σ9
n, leading to the final states He+(n), with

n = 2−6, respectively, in the photon-energy region between 77.84 eV and 78.15 eV. For details,

see the caption of Fig. 5.5.

this figure. Interestingly, although the TCS displays good statistics and high resolution,
∼= 4 meV for TCS and ∼= 6 meV for PCS, the resonance 8, 410 is observed clearly in all

decay channels below the SIT I8 in contrast to its absence in the TCS, which could be

completely suppressed due to interferences with the perturbers. This is due to the fact

that the resonance 8, 410 shows quite different lineshapes in the partial cross sections

which cancel out in the TCS. These different lineshapes are due to different coupling

to various σn. In figure 5.10(f), the signal-to-noise ration is therefore very low, which

traces of the resonance 8, 410 can only be identified by the fit curve. The present PCS

measurements below the SITs I7 and I9 were published in Refs. [37] and [104].
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Figure 5.10: Experimental partial cross sections σ8
n for resonances 8, 610 and 8, 410 in the energy

region from 77.85 eV to 77.93 eV.(a) for previous total cross section [30], (b) for σ8
2 , (c) for σ8

3 ,

(d) for σ8
4 , (e) for σ8

5, and (f) for σ8
6. For details see figure 5.5.

5.3.2 General pattern

In 1995, Menzel et al. [35] found from their experimental PCSs for doubly excited helium

below the SIT I5 that the resonances below different ionization thresholds exhibit similar

variations when N − n is of the same value; this observation is called ’general pattern’.

Later, these patterns in the PCSs were discussed theoretically up to the SIT I9 by

Schneider et al. [33] and van der Hart et al. [63]. With propensity rules that can be

derived from the molecular adiabatic approximation introduced in Sect. 3.2.1, Schneider

et al. [33] were able to understand these general patterns in the PCSs very well. In the

present work, we shall confirm these general patterns experimentally and discuss them

on the basis of the propensity rules.

As we discussed before in Sect. 3.2.1, the adiabatic avoided-crossing potential curves

can be identified by the approximate quantum numbers [nλnµm] in a molecular picture.

The mechanism of autoionization relies on the nonadiabatic transitions between these

adiabatic avoided-crossing potential curves, in full analogy to electronic transition in

molecules. Radial transition are sensitive to the change of the wave function as a function

of R, i.e. via the change of nµ. Therefore, these transitions occur preferentially through

an avoided-crossing of two potential curves. The second kind of non-adiabatic transitions

due to rotational coupling, the change of m between potential curves. Finally, there is no

explicit mechanism to change nλ. Hence, decays with ∆nλ 6= 0 are strongly suppressed.
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In this way, three propensity rules for the autoionization process can be derived. The

different propensity rules caused by different decay mechanisms are given in the order of

the efficiency of the underlying decay mechanism [31, 33]:

(A) reduction of [nµ/2]

(B) change of m (5.1)

(C) reduction of nλ.

The propensity rules (A), (B), and (C) of Eq. (5.1) group the 1P o resonant states of

helium into three classes I-III with typical widths separated by at least two orders of

magnitude, ΓI : ΓII : ΓIII ≈ 104 : 102 : 1. According to Eq. (3.19), the two classi-

fication schemes [nλnµm]n′ and N, Kn′ are equivalent. Therefore, the propensity rules

(A) given in expression (5.1) can be transformed into “reduction of N”. One can apply

the approximate quantum numbers N, Kn′ to describe not only bound states but also

continuum states. Thus for the principal Rydberg series K = N − 2, the decay from

bound states N, K to continuum states n, k can occur via the propensity rule (A) by

∆N = N − n = ∆K = K − k = 1, 2, .... The differences in the efficiency of the decay

mechanisms are so strong that a decay via rule (B) or (C) shows only visible influence on

the spectra if the decay processes on the basis of the preceding propensity rule (A) are

not possible [31, 33]. The coupling matrix elements, which lead to the propensity rules,

are essentially very similar to the matrix elements that are relevant for the resonance

parameters [106]. We can, therefore, conclude that resonances, which decay via the same

propensity rule and have the same change in nodal structure, show similar lineshapes.

In particular, most of the spectral features in doubly excited helium are governed by

propensity rule (A). In this case, we expect similar lineshapes for the resonances in dif-

ferent PCSs if the decay leads to the same change in ∆N and ∆K, i.e. the changes of

the nodal structure in the radial wave functions are identical. For example, propensity

rule (A) results in the expectation that the principal series in the PCS σ6
4 exhibits the

same resonance profile as that in the PCS σ5
3. This expectation was confirmed by Menzel

et al. [35] for resonances up to the ionization thresholds I5.

Fig. 5.11 presents examples of such cross section patterns, namely σ4
2, σ5

3, σ6
4, and σ7

5;

in these PCSs, the resonances of the principal series decay by ∆N = N −n = 2. In order

to demonstrate the ’general patterns’, the photon energies were scaled to the effective

quantum numbers µN by the Rydberg formula given in Eq. (4.2). The similarities of the

cross section curves are evident except for the energy regions of perturber states indicated

by vertical arrows. As mentioned above, the perturber states affect the resonance energies

and linewidths of the various resonances and, as a consequence, the regularities fade out

in the vicinity of perturber states, but further away, the ’general pattern’ is restored. In

the present measurements below the ionization threshold I9, similar general patterns were

observed in σ5
4 and σ6

5, with ∆N = 1, in σ5
2, σ6

3 , σ7
4 and σ8

5 with ∆N = 3 in σ6
2, σ7

3 , σ8
4,

and σ9
5 with ∆N2 = 4, σ7

2 , σ8
3 , and σ9

4 with ∆N = 5, as well as σ8
2 and σ9

3 with ∆N = 6.

However, in the energy region of the higher ionization thresholds, such as in the SITs
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Figure 5.11: Partial photoionization cross sections σN
n as a function of scaled photon energy.

For details see figure 5.5.

I8 and I9, the general patterns become very weak due to the complex structures caused

by interferences with two additional perturber states that interact with the principal

Rydberg series.

5.3.3 Mirroring behavior

The TCS consists of a number of PCSs, which are defined by the quantum numbers of

the outgoing electron and the remaining ion. After dividing the PCSs in any two groups

P and Q, experimental and theoretical studies found that the variations in the vicinity of

a resonance between the PCSs P and Q showed a similar variation [33, 36, 37, 38, 104].

This was called ’mirroring behavior’ by Liu and Starace [36, 38], who first discussed it

with an analytical expression for approximate conditions. Here, the energy axis is taken

as the mirroring plane. These authors assume that this analytical expression can be

used to understand mirroring behavior for any general case, not only in photoionization
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process but also in photodetachment of negative ions [36, 38]. However, this explanation

does not work for doubly excited helium.

If the TCS is regarded as the sum of two random groups of PCSs, denoted by P and

Q, the PCS P can be expressed by Eq. (3.7), and for the PCS Q the same formula with

P replaced by Q can be used. Note that the PCS P and the PCS Q can be individual

PCSs or the sum of a number of individual PCS, which in the present case are the σn.

By using Starace formula [59] which establishes relations between the parameters ρ and

σ0
T in the Fano formula given in Eq. (3.6) for the TCS and the parameters σ0

P , σ0
Q, and

α used in Eq. (3.7), namely,

σ0
P 〈|α|2〉P + σ0

Q〈|α|2〉Q = ρ2σ0
T , (5.2)

σ0
P Re〈α〉P + σ0

QRe〈α〉Q = ρ2σ0
T , (5.3)

σ0
P Im〈α〉P − σ0

QRe〈α〉Q = 0, (5.4)

Liu and Starace derived the PCS σQ [36]

σQ = σ0
Q − σ0

P

1 + ε2
{2εqRe〈α〉P − 2qIm〈α〉P + q2〈|α|2〉P}

+
q2ρ2σ0

T

1 + ε2
, (5.5)

with the approximation qρ2 → 0 when ρ2 → 0, but with q2ρ2 remaining finite. This

has been shown by Nora Berrah and coworkers for two resonances of doubly excited Ar

that are extremely weak in the TCS; in the PCSs, however, the resonances are clearly

visible [107]. Although ρ2 → 0 is required for a mirroring behavior to occur, it has

been observed in the theoretical photoionization cross section of Li− even for ρ2 as high

as 0.3 [36]. In contrast to this, two sets of PCSs for helium in the double excitation

region do not always mirror each other even for ρ2 ∼= 0.001 (see theoretical part in the

dissertation), which can be understood well with a more general expression without any

approximations

σQ =
σ0

Q

1 + ε2
{ε2 + 2ε(qRe〈α〉Q − Im〈α〉Q)

+(1 − 2qIm〈α〉Q − 2Re〈α〉Q + (q2 + 1)〈|α|2〉Q)}

= σ0
Q +

σ0
Q

1 + ε2
{2ε(qRe〈α〉Q − Im〈α〉Q)

+(−2qIm〈α〉Q − 2Re〈α〉Q + (q2 + 1)〈|α|2〉Q)}

= σ0
Q +

σ0
P

1 + ε2
{2ε(−qRe〈α〉P + Im〈α〉P + qρ2σ0

T /σ0
P ) + (2qIm〈α〉P

+2Re〈α〉P − 2ρ2σ0
T /σ0

P − (q2 + 1)〈|α|2〉P ) + (q2 + 1)ρ2σ0
T /σ0

P}

= σ0
Q − σ0

P

1 + ε2
{2ε(qRe〈α〉P − Im〈α〉P )

−2qIm〈α〉P − 2Re〈α〉P + (q2 + 1)〈|α|2〉P}

+
2qρ2σ0

T

1 + ε2
ε +

q2ρ2σ0
T

1 + ε2
− ρ2σ0

T

1 + ε2
. (5.6)
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Comparing Eq. (3.7) with Eqs. (5.5) and (5.6), one can realize that the second term

plays a key role for the mirroring on the lineshape of the resonance between σP and

σQ. The last three terms described the Fano-like variation of the resonances in the TCS

determine whether the resonances in the PCS P and PCS Q exhibit a mirroring behavior.

The resonances in the two groups P and Q of the PCSs mirror each other if the second

term of Eq. (5.6) is dominant as compared to the last three terms. If |q| >> 1 and

ρ2 → 0, the third and fifth terms in Eq. (5.6) can be neglected in comparison with the

fourth term. In this case, Eq. (5.6) results in Eq. (5.5) if one omits, in addition to the

third and fifth term, all contributions of the second term that do not include q or q2.

As discussed in Ref. [36], in this case the resonances display a Lorentzian profile in the

TCS.

78

79

68

69

76.9 77.0 77.1 77.2 77.3 77.4
Photon Energy (eV)

7

8

9

10

11

70

71

σΤ

σ
P

σ
P

σ
Q

σ
Q

C
ro

ss
 S

ec
tio

ns
 (

104 ba
rn

)

(a)

(b1)

(b2)

(c2)

(c1)

Figure 5.12: Cross sections below the ionization threshold I6 obtained from eigenchannel R-

matrix calculations [33] and convoluted with a Gaussian resolution function of 6 meV width

(FWHM). (a) Total cross section σT . In (b) and (c) the PCS σP and σQ were established in

different ways: (b1) σP = σ1 and (b2) σQ = σ2 + σ3 + σ4 + σ5; (c1) σP = σ1 + σ3 + σ4 + σ5

and (c2) σQ = σ2.

In the region between the SITs I5 and I7 of He+, the Fano parameter ρ2 is of the order

of 0.01 for the principal series (see Fig. 5.12 (a) for the theoretical TCS below I6 [33]). In

the other tablets of Figs. 5.12, we plot two examples, with the TCS σT = σP + σQ being
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separated into two groups. In the first example σP = σ1 and σQ = σ2 +σ3 +σ4 +σ5 (b1,

b2); in the second example, σP = σ2 and σQ = σ1 + σ3 + σ4 + σ5 (c1, c2). In the second

example, the PCS σP mirrors the PCS σQ very well [Figs. 5.12 (c1) and (c2)]. In contrast

to this, the mirroring behavior is not well expressed in the first example [Fig. 5.12 (b1)

and (b2)]. This can be understood as follows: A mirroring behavior is expected if the

amplitudes of the resonances in the TCS are small compared to variations in the PCS,

i.e. if terms three to five in Eq. (5.6) are small compared to term two. In helium, however,

each single PCS σn exhibits amplitudes that are of the same order of magnitude as in

σT . Since this holds for all ionization thresholds IN up to N = 9 (see Fig. 3 in Ref. [33]),

no general mirroring behavior will be expected in the double-excitation region of helium.

Mirroring behavior occurs only accidentally, namely if the PCS σP already mirrors σT

[see Fig. 6 (a) and (c1)]. In this cases, the second term in Eq. (5.6) mimics σT and a

mirroring behavior is observed. Even in cases where σP is established by a number of

σn, no general mirroring behavior is expected since the amplitude of the variation in σP

will still not be large as compared to the variation in σT . In summary, for the existence

of a general mirroring behavior the condition ρ2 → 0 is not sufficient. In addition to

this it is also necessary that the amplitudes of resonances in the PCS are considerably

larger than those in the TCS. However, as observed in the theoretical cross sections up

to ionization threshold I9 [33], the amplitudes in the PCS decrease by the same amount

with increasing N as the amplitudes in the TCS. As a consequence, we do not expect

a general mirroring behavior in helium below higher-N ionization thresholds IN with ρ2

even much smaller than 0.01. This conclusion will be further confirmed by the studies

of the secondary and third Rydberg series below the SITs I4 in the theoretical part of

this dissertation.

Since the sum of any two PCSs can be expressed mathematically by the Fano formula,

the analysis given above can also be employed to discuss and understand the mirroring

behavior of any two individual PCSs although the sum of these will not be the TCS, such

as in case of σ6
2 and σ6

4 as well as σ6
3 and σ6

5 (see Fig. 5.6). In these cases, the resonances

in σS = σ6
2 + σ6

4 and σS = σ6
3 + σ6

5 are almost canceled out, and the σS are expected

to be quite structureless. On the other hand, if any σS shows considerable structure,

the contributing individual partial cross sections do not show mirroring behavior. In

addition, the perturbers have no effect on the mirroring behavior between the PCS P

and PCS Q. In addition, it should be noted that below the SITs I5 to I7, the PCS σN
2

mirrors the PCS σN
4 and the PCS σN

3 mirrors the PCS σN
5 (not for N = 5). This behavior

might be due to a relation between the propensity rules and the mirroring behavior and

can be an interesting topic for future studies.

5.4 Angle-resolved measurements up to I7

The ADP, βn, and the PCS, σn, show different dependences on the dipole matrix element

for excitation and the Coulomb matrix element for decay as well as on the phase shifts of

various outgoing channels. Therefore, resonances can be clearly seen in the ADP, βn, but
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not in the PCS, σn, or vice versa. Consequently, the ADP can be used for an additional

check on theoretical models, and one expects that additional resonances are resolved from

the ADP. From the point of view of complete measurements, the ADP measurements

are also necessary for a complete check on quantum mechanics.

5.4.1 Differential cross sections and β parameter
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Figure 5.13: Differential cross sections, dσ2/dΩ, measured at angles (b) 0◦, (c) 55◦, and (d)

90◦ below the SIT I6 and (a) corresponding angular distribution parameter β6
2 . Solid points

represent the present experimental results and solid lines though the data points serve as the

guides to the eye. The two vertical-bar diagrams in the upper part of the figure give the

assignments of the double-excitation resonances specified by n’, with the widths of bars being

proportional to the linewidths of the corresponding resonances [31].
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Figure 5.14: Angular distribution parameters β5
n with (a) n = 2, (b) n = 3, and (c) n = 4,

respectively, together with (d) the PCS σ5
2 below the SIT I5; the measurements of Menzel et

al. were displayed by dash lines. For details see Fig. 5.13.

As an example, the differential cross sections (DCS) ,dσ2/dΩ, measured at angles 0◦,

55◦, and 90◦ below the SIT I6 are presented in Fig. 5.13(b), (c), and (d) together with

the corresponding ADP β6
2 in Fig. 5.13(a). The solid points represent the measurements

and the solid lines are a guide to the eyes. In general, the resonances cause quite similar

variations in the DCS, i.e. only slight differences were found in Fig. 5.13(b)-(d). Note

that the same scale was used on the ordinate in this figure. The dσ2/dΩ taken at 55◦

exhibits the strongest variations caused by the resonance, but the direct ionization cross

section which causes the constant background is almost identical to that at 0◦. The direct

ionization cross section at 90◦ is by a factor 2 smaller than those at the other two angles.

This is due to the positive mean value of the ADP β6
2 = 0.47; its angular distribution

of intensity is shown in Fig. 1.1. Indeed, the variations caused by the resonances and

its absolute value of β are quite sensitive to those in the DCSs, dσ2/dΩ. The resonance

structures seem quite pronounced in dσ2/dΩ, but sometimes they can lead to quite weak
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Figure 5.15: Angular distribution parameters β6
n with (a) n = 2, (b) n = 3, and (c) n = 4,

respectively, together with (d) the PCS σ5
2 below the SIT I6; for details see Fig. 5.13.

variations in β. This is also the reason why more TOF spectrometers are needed in the

experiments to improve the precision of the measurement.

The results of preliminary measurements of the β parameters below the SITs I5 to

I7 are presented given in Figs. 5.14, 5.15, and 5.16. For a better identification of the

resonances, the present PCSs σN
2 are also plotted in these figures. Our measurements

below the SIT I5 agree well with the experimental results of Menzel et al. [35]. The

first two members 5, 36 and 5, 37 of the principal series below the SIT I5 were observed

in the β5
2 and β5

3 curves for the first time. These resonances could not be observed in β5
4

due to the low cross section in combination with a low transmission rate for this slow

electrons. Systematic errors could result in large fluctuations of the absolute values of
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Figure 5.16: Angular distribution parameters β7
n with (a) n = 2, (b) n = 3, and (c) n = 4,

respectively, together with (d) the PCS σ7
2 below the SIT I7; for details see Fig. 5.13.

β as mentioned before. The error bars for the absolute value of β can easily reach more

than 50% if only two TOFs are employed. For the results presented in Figs. 5.14, 5.15,

and 5.16, three or four TOFs were employed, and the error bars on absolute value of β

are estimated to be less than 15%. Considering these error bars, the present absolute

values of β5 are in agreement with previous measurements and calculations published in

Ref. [35].

For β6 and β7, presented in Figs. 5.15 and 5.16, neither experimental nor theoretical

results are available in the literature for comparison. Interestingly, the variations of the

resonance 6, 28 are clearly observed in β6
2 and β6

3 for the first time. In contrast to the

variations in β, resonance 6, 28 is strongly suppressed in σ2 as shown in Fig. 5.15(d),

as well as in the experimental and theoretical PCSs σn presented in Fig. 5.6. This

can be understood by the different dependences of β and σ on the matrix elements for

excitation and decay of the autoionization states as well as on the phase shifts of the

various outgoing channels.

In oder to improve the signal-to-noise ratio, the regions below the SITs I6 to I7 was

again studied in our with 12 TOFs mounted at various angles in the dipole plane. These

data are expected to have better statistics and higher transmission rate. However, they

are not fully analyzed so far and, therefore, cannot be presented in this dissertation.



Part III

Theoretical work on photoionization

with excitation in helium
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Chapter 6

Theoretical calculation of n− and

l−specific partial cross sections

The fact that direct photoionization and the autoionization of the highly correlated

doubly-excited states can interfere renders these process a challenge for theory. This is

particularly valid for the evaluation of l-specific partial cross sections (PCS), σnl, and

angular distribution parameters (ADP), βnl, which are much more sensitive to small

deficiencies in the used wave functions than the total cross section (TCS). In addition,

some Rydberg series that are weak in the TCS and n-specific PCSs can be much more

intense in the l-specific PCSs and ADPs; this fact can be very helpful in resolving reso-

nance patterns such as the mirroring behavior discussed in Sect. 5.3.3. These facts have

caused substantial interest in l-specific PCSs and ADPs both from a theoretical and an

experimental point of view. Very recently, Harries et al. reported on the first analysis

of l-specific PCSs below the N = 4 ionization threshold using a lifetime-resolved fluo-

rescence technique [39, 40]. These measurements of l-specific PCSs allow a critical test

of the theoretical approach, the results of which can be employed to further discuss the

mirroring behavior and the mimicking behavior. In addition, reliable l-specific ADPs are

expected to represent a guidance for future experiments, in regions where measurements

still are not available.

In section 5.3.3, the mirroring behavior in the PCSs first developed by Liu and Starace

[36] was already discussed. We did not find a general mirroring behavior in the PCSs of

doubly excited helium, and extended the analytical expression given by Liu and Starace

to a more general case in order to understand this finding. We realize that ρ2 → 0 is

not a sufficient condition for mirroring behavior. It is additionally necessary that the

variations in the PCS are considerably larger than those in the TCS. In the principal

series of helium, the variations of the PCSs and those of the TCS are of comparable

magnitude, i.e. the observation of a mirroring behavior in some special cases is only

accidental, e.g. if one PCS mimics the TCS (see Sect. 5.3). In the following theoretical

work, we shall examine the second and third Rydberg series, which that possess ρ2-

values that are much smaller than these of the principal series. In this way, we are able

to further confirm our predictions given in Sect. 5.3.3.
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In the following we will discuss shortly the mimicking behavior, which is the opposite

of the mirroring behavior and can be found for the case of ρ2 → 1. If ρ2 → 1, C1 and

C2 in Eq. 3.8 are equal to q and q2, respectively [38, 59]. Then, with Eq. (3.8), the two

groups of resonances in the PCSs, σP and σQ, can be written as

σP

σ0
P

=
σQ

σ0
Q

=
(q + ε)2

1 + ε2
. (6.1)

Obviously, the resonances in the two PCSs, σP and σQ, mimic each other, and according

to this the observation was called mimicking behavior by Liu and Starace [38]. Such a

mimicking behavior in the n and l-specific ADPs of the principal series can be understood

on the basis of that of the l-specific PCSs. Besides this, one can understand on the

basis of such mimicking behavior and an analytical expression of the ADPs, why some

resonances cause only rather small variations in the l-specific ADP in some cases, while

− on the other hand − they exhibit pronounced variations in the respective l-specific

PCS. A study of mirroring as well as mimicking behavior can improve the understanding

of correlation and decay dynamics in two-electron atoms.

In this chapter, we report on R-matrix calculations of the PCSs, σnl, and ADPs,

βnl, below the single ionization threshold I3 and I4 for the photoionization process de-

scribed with Eq. (3.2). The calculations were performed in LS coupling, although recent

experimental and theoretical studies have shown that spin-orbit interaction has an im-

portant influence on the photoionization spectrum very close to the SIT I2 [42]. However,

experimental PCSs and ADPs are not available close to threshold, and the present cal-

culations were restricted to the energy region where the LS-coupling scheme is a good

approximation.

6.1 R-matrix method

The R-matrix method, which is based on the theory developed by Burke et al. [108],

has become a quite powerful tool to calculate the interaction of electrons and photons

with isolated atoms and their ions. R-Matrix theory [108] starts by partitioning the

configuration space into two regions by a sphere of radius a centered on the target nucleus.

In the internal region r ≤ a, electron exchange and correlation between the scattered

electron and the N -electron target are taken into account. The (N + 1)-electron wave

function

ΨE =
∑

k

BEkΨk (6.2)

in the internal region is expanded in terms of energy-independent basis Ψk,

Ψk = A
∑

ij

cijkφ̄i(x1, ..., xN ; r̂N+1σN+1)
1

rN+1
uij(rN+1) (6.3)

+
∑

j

djkχj(x1, ..., xN+1),
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where A is the antisymmetrization operator which accounts for electron exchange be-

tween the target electrons and the free electron. Note that the energy dependence is

described by the coefficients BEk. φ̄i are channel functions of the target terms that are

included in the close-coupling (CC) expansion and are coupled to the angular and spin

functions of the scattered electron. The χj in the second sum, which vanish at the surface

of the internal region, are formed from the bound orbitals of the (N +1) system and are

included to ensure completeness of the total wave function. The cijk and djk coefficients

in Eq. (6.3) are determined by diagonalizing the (N + 1)-electron Hamiltonian.

The continuum orbitals uij in Eq. (6.3) for each angular momentum li are normally

obtained by solving the model single-channel scattering problem

(
d2

dr2
− li(li + 1)

r2
+ V0(r) + k2

ij)uij(r) =
∑

n

ΛijnPnli(r) (6.4)

subject to the fixed boundary conditions

uij(0) = 0 (6.5)
(

a

uij(a)

)(

duij

dr

)

r=a

= b. (6.6)

The Lagrange multipliers Λijn ensure that the continuum orbitals are orthogonal to the

bound orbitals Pnli(r) of the same angular symmetry. V0(r) is a zero-order potential

chosen to be the static potential of the target. k2
ij and a are the eigenvalues and the

radius of the sphere defining the internal region, respectively. The constant b is arbitrary,

and normally set to zero.

The orbital functions Pnl(r) are expressed in slater-type analytical form

Pnl(r) =
∑

jnl

Cjnlr
Pjnl exp (−ξjnlr) (6.7)

and they satisfy the orthonormality conditions:
∫

∞

0
Pnl(r)Pn′l′(r)dr = δnn′ . (6.8)

Cjnl, ξjnl and Pjnl are the Clementi-Roetti parameters [109]. In the external region, the

colliding electron is outside the atom and a set of coupled differential equations, satisfied

by the reduced radial wave functions, are solved subject to the boundary conditions as

r → ∞. The two regions are linked by the R-matrix on the boundary (r = a) [108].

The R-Matrix method uses the same target orbitals to deal with the initial and final

(N + 1)-electron in the photoionization calculations. The choice of these orbitals for

the (N + 1)-electron system in the first sum of Eq. (6.3) as well as a configuration-

interaction expansion for each target state is very crucial. In this dissertation, the CC

expansion of the He+ target is represented by 20 states obtained from the configurations

nl, n = 1, 2, 3, 4, 5 and l = s, p, d, f, g as well as 6̄s, 6̄p, 6̄d, 6̄f , 6̄g, 6̄h. The 1s − 5g are

exact hydrogen-like wave functions of He+ that limit the present calculation below the

SIT I4. The 6̄l are polarized correlation orbitals of He+ and represent electron correlation
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Table 6.1: Radial function parameters for He+ targets.

orbitals (nl) Cjnl Pjnl ξjnl

1s − 5g hydrogen-like orbitals

6̄s 3.72615 1 0.99478

-12.31193 2 1.01114

15.65776 3 0.99832

-7.40524 4 0.99084

0.68349 5 0.48055

-0.37439 6 0.37308

6̄p 1.57314 2 2.22668

-1.28440 3 1.69799

1.60044 4 0.50277

-2.42762 5 0.47997

1.06946 6 0.45202

6̄d 1.00608 3 3.69850

-0.14955 4 1.02029

0.21028 5 0.42455

-0.17955 6 0.41004

6̄f 0.99998 4 4.78402

-0.01674 5 0.57790

0.01191 6 0.44364

6̄g 1.00000 5 5.95148

-0.00036 6 0.43459

optimized on the ground state using the CIVPOL code [110]. The optimized parameters

are shown in Table 6.1.

The polarized orbitals included in the target states provide a faster convergence of

the wave function in Eq. (6.3) and a better value for the ground state energy. Their

effects on photoionization cross sections and resonance properties for the doubly excited

states 1P o of helium have been discussed in detail in Ref. [111]. In the present case they

improve the agreement between the results in length and velocity forms. A crucial choice

of the target terms is provided by a calculation of the ground state. The ground state

has an energy of E = −4 + I1 in Rydberg obtained from the variational principle. Table

6.2 lists ionization energies I1 calculated by the use of different sets of target functions

in Refs. [111, 112, 113, 114]. Our calculations lead to an energy of −1.80243 Ry for I1,

which can be compared with the non-relativistic limit (Pekeris’s result) of −1.8074 Ry
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[112]; the present calculations give obviously better results than other calculations using

different target terms.

Table 6.2: Results for the energy of the SIT I1 of Helium.

States included in expansion I1[Ry] Refs.

1s -1.7450 Ref. [113]

1s, 2̄p, 3̄d -1.7817 [113]

1s, 2s, 2̄p, 2p, 3̄d -1.8007 [113]

1s, 2s, 2p, 3̄p, 3̄d -1.7868 [114]

1s, 2s, 2p, 3s, 3p, 3d -1.7732 [111]

1s, 2s, 2p, ..., 4f -1.7741 [111]

1s, 2s, 2p, ..., 5g -1.7742 [111]

1s, 2s, 2p, 3s, 3p, 3d, 4̄s, 4̄p, 4̄d -1.7908 [111]

1s, 2s, 2p, ..., 5g, 6̄s, ..., 6̄h, -1.8024 present work

Pekeris’s result -1.8074 [112]

Table 6.3: Results of the present calculations for the effective quantum numbers of the singly

excited states 1sns (1Se) and 1snp (1P o) of helium. Comparison with experimental results of

Moore [115], and the results of calculations based on the R-matrix method by Fernley et al.

[114].

n 1sns (1Se) 1snp (1P o)

theor. results exp. theor. results exp.

present Ref. [114] exp. [115] present Ref. [114] exp. [115]

1 0.74485 0.7481 0.7439

2 1.85205 1.8579 1.8509 2.01016 2.0101 2.0095

3 2.85799 2.8637 2.8568 3.01203 3.0120 3.0113

4 3.85972 3.8657 3.8585 4.01254 4.0125 4.0118

5 4.86051 4.8593 5.01276 5.0120

6 5.86090 5.8596 6.01287 6.0121

7 6.86115 6.8598 7.01294 7.0121

8 7.86131 7.8602 8.01299 8.0117

9 8.86142 8.8595 9.01302 9.0117

10 9.86149 9.8596

Tab. 6.3 provides the present effective quantum numbers for the 1sns (1Se) and 1snp

(1P o) of Rydberg series along with the R-Matrix calculations of Fernley et al. [114] and
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experimental values of Moore [115], which reveals a good agreement. Further confirma-

tion on the convergence of the CI expansion is provided by the agreement of the length

and velocity forms of the present results; this will be discussed in more detail on the basis

of the data in the following section. The present configurations and optimized parame-

ters were employed in the calculations of the DCSs below I5 [116]. In this dissertation,

the calculations will be extended to n− and l−specific PCSs and ADPs.

6.2 Photoionization spectra below I3

The l−specific PCSs, as compared to the n−specific PCSs, are much more sensitive to

the transition matrix elements, a fact that can be used to further explore the mirroring

behavior in l−specific PCSs. In this section, the mimicking behavior in the ADPs is

explained for the first time on the basis of the same behavior in the PCSs.

6.2.1 Partial cross sections σnl

Below the SIT I3 of He+, the channels n = 1 and 2 are open resulting in He+(n = 1)

and He+(n = 2) final states. In Fig. 6.1, we show the results of the present calculations

for the PCSs to these channels and for the total photoionization cross section. The good

agreement of the PCSs obtained in the length (solid line) and velocity gauge (dashed line)

is due to the high quality of the chosen target wave function. In the discussed energy

region, the spectrum includes five resonance series that−in the independent-electron

limit−are linear combinations of the configurations 3sn′p, 3pn′s, 3pn′d, 3dn′p, 3dn′f . σ1

consists of ∼= 90% background cross section due to the strong direct ionization, which

decreases strongly with increasing photon energy. The different variations in σ1 and σ2

caused by the principal series 3, 1n′ can be regarded as a consequence of different changes

of the nodal structure of the wave function in the decay process according to the so-called

propensity rules [33, 31], which were discussed in more details in Sect. 5.3.2.

The resonances 3,-13 and 3, 24, which is plotted in magnified form in the inset, are

good examples for testing our predictions for mirroring behavior. Although ρ2 is very

small, namely 0.016 for 3,-13 and 0.001 for 3, 24, the two resonances do not show mir-

roring behavior between σ1 and σ2, in contrast to the prediction of Liu and Starace

[36]. Moreover, 3,−13 shows mimicking behavior. As described above, the absence of

mirroring behavior can be understood on the basis of the analytical expression derived

in Sect. 5.3.3 as well as by the fact that the variations in the TCS caused by these two

resonances are of the same order of magnitude as those of σ1. Compared to previous

calculations, the present results−shown in Fig. 6.1−are in good agreement with the K-

matrix L2-basis-set calculations of Moccia and Spizzo [117]. They are in between the

results of calculations in the length form and in the velocity form obtained by Salomoson

[118], with many-body perturbation theory.

In Fig. 6.2, the theoretical results are convoluted with a Gaussian describing the

appropriate photon band pass in order to facilitate a comparison with experimental
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spectra. In Fig. 6.2(a), results of two measurements of the TCS, taken with a resolution

of 4 meV (FWHM) [30] and 35 meV [34], respectively, are given. For the data of Domke

et al. [30], taken with higher resolution and better signal-to-noise ratio, the cross section

is given only in arbitrary units. Figure 6.2(b) and (c) show the experimental PCSs of

Menzel et al. [34] measured with a resolution of 35 meV (FWHM). In Fig. 6.2(c), the

results of Ref. [103], obtained with a resolution of 170 meV, are also plotted. It can be

seen that the result of the present calculations agree well with the experimental data

what resonance position, lineshape, and width are concerned. The TCS and the PCS σ1

are about 5% larger than the only existing absolute experimental cross sections reported

9

10

11

9

10

C
ro

ss
 S

ec
tio

ns
 (

10-1
M

b)

69 70 71 72
Photon Energy (eV)

0

1

3,1
n’ 3,-1

n’
3,2

n’ 3,0
n’

9.7

9.8

8.75
8.80
8.85

0.9

1

3

4
3

σ
T

σ1

σ2

(c)

(b)

(a) 5

Figure 6.1: (a) Total photoionization cross section σT in the photon-energy region from 69.1

to 72.8 eV. In (b) and (c), the partial cross sections σ1 and σ2 are displayed. The solid lines

and dashed lines represent the results obtained in the length form and in the velocity form,

respectively. The insets give the resonance 3, 24 in the energy region from 71.22 to 71.25 eV

on a magnified scale. The vertical bar diagrams in the upper part of the figure represent the

assignment of the double-excitation resonances as obtained from theoretical calculations [31].

The widths of the vertical bars are proportional to the resonant linewidths.
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Figure 6.2: (a) Total cross section convoluted with a Gaussian of 4 meV (FWHM) (upper

curves related to the right axis) and 35 meV (lower curve, related to left axis) in the energy

region from 69.1 to 72.8 eV. (b) and (c) Partial cross sections σ1 and σ2 convoluted with a

Gaussian of 35 meV. ×, relative experimental data from Ref. [30], •, from Ref. [34], 4, from

Ref. [103]; further, for details, see Fig. 6.1.

by Menzel et al. [34]. However, excellent agreement is also found between the present

calculations and the hyperspherical close-coupling calculations reported by Menzel et al.

[34]. The resonance 3,-13 is better resolved in the experimental cross section σ2, which

means that this resonance has a stronger coupling to the ionization channel n = 2.

Figure 6.3(b) and (c) displays the PCSs leading to the final ionic states He+(2s) and

He+(2p). These calculated PCSs exhibit excellent agreement with recent data of Harries

et al. [40]. Compared with the cross section σ2 in Fig. 6.3(a), the PCSs σ2s and σ2p

exhibit clearer and richer resonance structures. The clearer resonance structures in the

PCSs σ2s and σ2p of the various secondary series are accompanied by a mirroring behavior

for these resonances. This can be understood by the fact that the sum of any two PCSs

can be expressed by the Fano formula. Note that in this case ρ2 can still be regarded
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Figure 6.3: Partial photoionization cross sections (a) σ2, (b) σ2s, and (c) σ2p in the energy

region from 69.1 to 72.8 eV. The left insets show the resonance 3, 24 in the energy region from

71.20 to 71.25 eV in magnified form, while the right insets show the 3, 04 resonance in the

energy region from 71.70 to 71.75 eV. For further details, see Figs. 6.1 and 6.2.

as the maximum fractional depth of the minimum in the vicinity of a resonance in the

sum of two individual PCSs. It loses its physical meaning defined by the Fano profiles

for the TCSs, however. As a result, the analysis given in Sect. 5.3 can be employed to

discuss and understand the mirroring and mimicking behaviors of any two individual

PCSs although the sum of them are not the TCS, such as obtained in case of σ2s and

σ2p (see Fig. 6.3). Because of ρ2 → 1, the resonances of the principal series 3, 1n′ mimick

each other in σ2s and σ2p, as expected by Liu and Starace [36]. Most of the secondary

series exhibit ρ2 → 0 and show much stronger variations in σ2s and σ2p than in σ2, so

that the prerequisites for mirroring behavior are fulfilled [37, 36]. The insets in Fig. 6.3

show that the resonances 3, 24 and 3, 04 actually display a mirroring behavior.
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6.2.2 Angular distribution parameters βnl

As compared to the PCSs, the ADPs show different dependences on the matrix elements

for excitation and decay of the autoionization states. This can lead to the situation that

a resonance is clearly seen in the PCSs but not in the ADPs or vice versa. In particular,

the ADPs depend also on the phases of the matrix elements. In the LS-coupling scheme,

the l-specific ADPs, βnl, depend on the matrix elements and phase differences between

the two different partial waves ε(l−1) and ε(l +1) of the outgoing electrons. The ADPs

can be expressed in an effective spherically symmetric potential by [119]

βnl =
l(l − 1)R2

nl,ε(l−1) + (l + 1)(l + 2)R2
nl,ε(l+1)

(2l + 1)[lR2
nl,ε(l−1) + (l + 1)R2

nl,ε(l+1)]
(6.9)

−6l(l + 1)Rnl,ε(l−1)Rnl,ε(l+1)cos(δl+1 − δl−1)

(2l + 1)[lR2
nl,ε(l−1) + (l + 1)R2

nl,ε(l+1)]
, (6.10)

with Rnl,ε(l±1) being the radial integrals and δl±1 the background phases that can be

considered to be constant in the region of the resonance [46]. Note that σnl ∝ lR2
nl,ε(l−1)+

(l + 1)R2
nl,ε(l+1).

The interaction of a bound state with a continuum leads to an increase in the phase

of the continuum wave function. The resulting effects on σnl and βnl are described by

the Rnl,ε(l±1), which − in the vicinity of a resonance − depend strongly on energy; the

corresponding variations in R2
nl,ε(l±1) can be parametrized by the Fano formula. In the

following we shall briefly discuss the possibility of different behaviors of σnl and βnl in

the vicinity of a resonance. By assuming perfect mimicking of a resonance in σnl,εl+1 and

σnl,εl−1, i.e. σnl,εl−1 = c2 ·σnl,εl+1 and Rnl,εl−1 = c ·Rnl,εl+1, with c being a constant value,

one obtains

βnl =
[l(l − 1) · c2 + (l + 1)(l + 2) − c · 6l(l + 1)cos(δl+1 − δl−1)]

(2l + 1)(c2 · l + l + 1)

= const. (6.11)

From this we can conclude that resonances with strong variations in σnl may cause only

small variations in βnl if σnl,εl+1 mimics σnl,εl−1. A good example for this is the resonance

4, 04 that exhibits a strong variation in σ3d (see Fig. 6.9), but only small variations in

β3d (see Fig. 6.11), as discussed above. Unfortunately, the corresponding PCSs σ3d,εp

and σ3d,εf are not available from calculations so that the assumed mimicking behavior

cannot be verified. If σnl,ε(l+1) and σnl,ε(l−1) show a mirroring behavior, the numerator

and denominator of equation (6.10) change independently. Under these conditions we

found in simulations that βnl can vary strongly in the resonance region although there

are no variations in σnl.

In LS coupling, all ADPs βns are identical to 2. Therefore, in Fig. 6.4 we only display

the results for β2 and β2p below the SIT I3. In this figure, the results for β2 and β2p of

both calculations (length form and velocity form) are almost identical, revealing again

the quality of the target states used in the calculations. All five Rydberg series can
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Figure 6.4: Angular distribution parameters (a) β2 and (b) β2p in the energy region from 69.1

to 72.8 eV. For further details, see Fig. 6.1.

be clearly seen in the curves for β2 and β2p. Because of the mimicking behavior of σ2s

and σ2p in the series 3, 1n′, i.e. ρ2 → 1, we readily obtain from Eq. (6.1) the relation

β2 = (2σ0
2s+σ0

2pβ2p)/σ
0
2. Based on this expression, we then realize that β2 and β2p exhibit

a similar energy dependence, and the mimicking behavior of β2 and β2p for the principal

series 3, 1n′ can be readily understood. The mimicking of resonance 3,-13 in β2 and β2p,

however, is expected to be accidental due to the accidental mirroring behavior of σ2s

and σ2p. Compared to previous theoretical calculations [117, 118], the present results

generally reflect good agreement in magnitudes, peak positions, and line shapes. It

should be noted that in the calculations of Sánchez and Mart́ın [120], the principal series

3, 1n′ show an almost symmetric variation in the β2p, while we find a rather asymmetric

profile for these series.

The present results for the angular distribution parameters, convoluted with a Gaus-

sian of 12 meV width, and the previously published results of the high resolution mea-

surements of β2 by Menzel et al. [34] are presented in Fig. 6.5. The experimental results

of Zubek et al. [122], measured with a resolutions of 60 meV, and those of Lindle et

al. [103], recorded with a resolution of 170 meV, are also given. In general, a good

agreement between theory and experiments can be observed. However, with increasing

photon energy, the values of Menzel et el. decrease in magnitude as compared to those of

Zubek et al.. Close to the N = 3 ionization threshold, the ADPs of Menzel et al. are by
∼= 0.2 lower than those of Zubek et al., with the latter agreeing better with the present

theoretical results. It should be noted that recent studies proved the geometry to be
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convoluted with a Gaussian of 12 meV. •, experimental data from Ref. [34], 4, from Ref. [103],

◦, from Ref. [122]. For further details, see Fig. 6.1.

important for measurements of the β-parameter. In particular, for a β determination,

the measurements have to be done in the plane perpendicular to the direction of the

photon beam. Contributions from out of this plane, caused by non-dipolar effects, can

lead to wrong values of β [123, 124]. These non-dipolar effects in the angular distribution

have been utilized by Krässig et al. [125] to detect the dipole-forbidden doubly excited

resonances 1D2(2p
2) of helium. Such contributions of non-dipolar effects cannot be ex-

cluded as an explanation for the difference between theory and experimental by Menzel

et al., since no information was provided on the detection geometry in Ref. [35]. The

present results and all available experimental data confirm clearly the observation of the

state 3,-13 in the spectrum.

6.3 Photoionization spectra below I4

6.3.1 Partial cross sections σnl

The TCS σT and PCSs σ1, σ2, σ3 for the photoionization processes below the SIT I4 that

lead to the channels n = 1, 2, and 3 are presented in Fig. 6.6(a-d). The results obtained

in the velocity form are by ∼=0.4 to 3.8% larger in magnitude than those calculated in the

length form; the shapes of the two curves, however, are almost identical. As observed for

the states below the ionization threshold I3, the channel n = 1 is the most intense one

due to strong contributions of direct photoionization dominating the TCS. Analogous to

the situation below I3, the PCS σ1 decreases quickly with increasing photon energy. All

other resonance series besides the principal series are quite weak in the PCSs σn.

In Fig. 6.7(a), we show convoluted theoretical TCS and PCSs below I4, together with

experimental results: the cross section in the upper part is convoluted with a Gaussian

of 4.0 meV (FWHM) in order to allow a comparison with the relative experimental cross

sections of Domke et al. [30]; in the lower part, the theoretical cross section is convoluted

with a Gaussian of 35 meV (FWHM) to compare with the absolute cross sections of
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Figure 6.6: (a) Total cross section σT , (b) to (d) partial cross sections σ1 to σ3 in the energy

region from 73.4 to 75.5 eV. For further details, see Fig. 6.1.

Menzel et al. [34]. The theoretical results agree well with the experimental results of

Domke et al., that revealed an asymmetric line shape with q > 0 for the principal series

4, 2n′. In the experiments of Menzel et al., however, the resonance profiles of the 4, 2n′

series exhibit a ‘window-like’ lineshape, i.e. q ∼= 0. In a direct comparison, the present

theoretical cross sections agree within 6% with the only available absolute experimental

results. This deviation slightly exceeds the combined error bars of the experimental and

the theoretical data. The accuracy in the measurement of Menzel et al. is about 2% for

σ1, 10% for σ2, and 13% for σ3. In addition, the present theoretical resonance positions
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Figure 6.7: (a) TCS convoluted with a Gaussian of 4 meV (FWHM) (upper curves with scale

on right ordinate) and 35 meV (lower curves with scale on left ordinate) in the energy region

from 73.4 to 75.5 eV. (b) to (d), PCSs σ1, σ2, and σ3 convoluted with a Gaussian of 35 meV.

×, related experimental data from Ref. [30], •, from Ref. [34]. For further details, see Figs. 6.1.

are shifted slightly to higher energies by about 40 meV as compared to the experimental

data. The present theoretical result as well as the calculations of Ref. [34] agree very well

with regard to intensities, line widths, and shapes of the resonances; however, Menzel et

al. gave no details of their calculations.

The theoretical l-specific PCSs σ2s, σ2p, σ3s, σ3p, and σ3d are displayed in Figs. 6.8 and

6.9, together with the corresponding n-specific PCSs σ2 and σ3. The PCSs σnp dominate

the PCSs σ2 and σ3 in Figs. 6.8 and 6.9 because of the strong coupling of the ground
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Figure 6.8: Partial photoionization cross sections (a) σ2, (b) σ2s, and (d) σ2p in the energy

region from 73.4 to 75.5 eV. The insets show the resonance 4, 35 in magnified form in the energy

region from 74.41 to 74.43 eV. For further details, see Figs. 6.1 and 6.2.

state and the continuum states 2pn′l′ and 3pn′l′. The expected similarities in the σnl of

the principal series have also been shown in Figs. 6.8 and 6.9, which can be explained by

mimicking behavior. The overall agreement with the calculations of Sánchez and Mart́ın

[120] and with those of Hayes and Scott [121] is reasonable. However, in our calculations,

σ3d dominates over σ3s in the entire energy region, while in the calculations of Hayes and

Scott, the σ3d partial cross section was consistently smaller than the σ3s cross section at

energies above 74.6 eV. Sánchez and Mart́ın reported completely opposite results.

Very recently, Harries et al. [39] reported on a the first measurements of l-specific

PCSs σ2s, σ2p, σ3s, σ3p, and σ3d below I4 using a lifetime-resolved fluorescence technique;

statistically improved data were later presented in Ref. [40]. The measurements of Ref.

[39] are displayed in Fig. 6.10 along with the present calculations convoluted with a

Gaussian of 10 meV (FWHM) in order to simulate the experimental resolution of the

experiments. The relative intensities of the measurement are given on the right ordinate

axis. The excellent agreement between theory and experiment confirms the high quality
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Figure 6.9: Partial photoionization cross sections (a) σ3, (b) σ3s, (c) σ3p, and (d) σ3d in the

energy region from 73.4 to 75.5 eV. For further details, see Figs. 6.1 and 6.2.

of the performed calculations. In the PCS σ3d, the secondary series 4, 0n′ shows the

strongest coupling to this ionization channel. Therefore, the resonances 4, 0n′ can be

observed from n′ = 4 to 8, which is shown in Fig. 6.10(e), with good agreement between

experiment and theory. The experimental observations of the first resonance of the

series 4,-2n′ also agree well with the present calculations. The first resonance of the

4, 3n series, namely 4, 35, is clearly visible in the theoretical partial cross section σ3s

convoluted with a Gaussian of 10 meV (FWHM); it also seems to be reproduced in the

experimental results, although it is not discussed by the authors. However, the noise in

the experiment is comparable to the expected intensity of the resonance 4, 35, i.e. the
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Figure 6.10: (a) l-specific partial photoionization cross sections σ2s, σ2p, σ3s, σ3p, and σ3d

convoluted with a Gaussian of 10 meV (FWHM) in the energy region from 73.4 to 75.5 eV

(scale on left ordinate). The data points, connected by straight solid line (scale on right

ordinate), represent experimental data from Ref. [39]. For further details, see Figs. 6.1 and 6.2.

observation of this resonance is not unambiguous. More recent experimental results [40],

with improved signal-to-noise ratio, however, confirm the existence of the resonance 4, 35.

These recent data also show in general a better agreement with the present theoretical

results. This is in particular valid for the resonance 4, 05 in σ3p. The lineshapes of the

present calculations agree better with these measurements than those of Sánchez and
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Mart́ın shown in Ref. [39], in particular in case of σ3d. The relative magnitudes from the

measurements demonstrate that the PCS σ3d always dominates over σ3s, an observation

that agrees well with our results, as discussed above.

6.3.2 Angular distribution parameters βnl
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Figure 6.11: Angular distribution parameters (a) β2, (b) β2p, (c) β3, (d) β3p, and (e) β3d in the

energy region from 73.4 to 75.5 eV. For further details, see Fig. 6.1.

The theoretical ADPs β2, β2p, β3, β3p, and β3d below I4 are presented in Fig. 6.11(a-e).

The 7 overlapping resonance series cause all comparable variations in β and this makes

it very difficult to discuss the resonances separately, in particular in the l-specific β3l.
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to 75.5 eV, convoluted with a Gaussian of 12 meV. •, experimental data from Ref. [34]; ◦, those

from Ref. [122]. For further details, see Fig. 6.1.

Hayes and Scott [121] have also performed calculations of β2, β3, β3p, and β3d. However,

considerable differences can be found between the two available calculations, e.g. some

narrow peaks are missing in the calculated angular distribution parameters β3, β3p, and

β3d of Hayes and Scott, such as the resonance 4, 15. The mimicking behavior of β2 and

β2p as well as of β3 and β3l of the resonance of the principal series 4, 2n′ is shown in Fig.

6.11. It can also be understood on the basis of the mimicking behavior of the corre-

sponding PCSs, as discussed before. With increasing energy, the overlap of 7 Rydberg

series destroys the mimicking behavior. Although the present results are a considerable

improvement compared to previously available theoretical calculations and experimen-

tal measurements, further advanced calculations and high-resolution measurements for

l-specific ADPs are still necessary for this energy region.

In Fig. 6.12, the convoluted results for β2 and β3 are displayed together with exper-

imental results of Menzel et al. [34] and Lindle et al. [103]. The present convoluted

angular distribution parameters agree well with the theoretical results given in Ref. [34],

which were obtained with the hyperspherical closed-coupling method. The β-values for

both calculations are between the results of the two measurements presented in Fig.

6.12(a). The overall difference of 0.23 units between both experiments exceeds the given

systematic experimental errors; as explained above, this could be due to non-dipolar

effects. It should be mentioned that the energy positions of the resonances in β2 and β3

obtained in the present calculations show very good agreement with the experimental

results of Lindle et al..
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The present theoretical results have been published in Ref. [126]. Due to the absence

of calculations for the n-specific ADPs below the SITs I6 and I7, where our experiments

had been performed (see previous chapter), the R-matrix method will be employed to

calculate those ADPs in the near future.





Summary and Outlook

In this dissertation, the photoexcitation process and the subsequent autoionization decay

of doubly excited helium were studied experimentally and theoretically in a broad photon

energy region, where the spectra exhibit a characteristic change from strong electron

correlation to quantum chaos.

On the experimental side, two different types of experiments were performed. The

first type was the experimental study of the total cross sections (TCS) by measuring

the total ion yield using a gas cell. With a high-resolution monochromators at the

third generation synchrotron radiation sources the present studies of the TCSs were

first extended to the single ionization threshold (SIT), I14, of He+. These new data

agree remarkably well with the results of very recent state-of-the-art complex-rotation

calculations by Delande [27], which could be performed up to the SIT I17. The present

experimental spectra together with these confirmed theoretical results were employed to

study signatures of quantum chaos in doubly excited helium in the region very close to

double-ionization threshold.

The experimental spectra below each threshold can be described well by a describing

fit using only few number (about 15) of resonances, where most of these resonances belong

to the principal Rydberg series. Since there are normally several hundred of resonances

in the region chosen for the fits, the resonances are strongly overlapping, a situation

that in principle results in so-called Ericson fluctuations [26], i.e. one of the features of

quantum chaos. On the basis of theoretical data, we found that the angular correlation

quantum numbers K for the principal Rydberg series are still good quantum numbers at

least up to the SIT I17. Since the resonances with K = N −2 carry most of the intensity

of the cross sections, we can understand why the Ericson fluctuations were not observed

in doubly excited helium although the spectra studied are in the Ericson regime, i.e.

they are strongly overlapping. The present conclusions demonstrate that the conditions

of comparable intensities for the resonances are needed to observe Ericson fluctuations.

It is not reliable to prove the Ericson fluctuations only by the autocorrelation function

with a Lorentzian form. The calculated K values are found to be good quantum numbers

for resonances with K → Kmax and K → Kmin, but not for K → 0. These can be well

understood by the classical collinear eZe and Zee configurations. On the basis of the

present calculated K values for the principal Rydberg series, we analyzed the angular

correlation mechanisms below and above the double-ionization threshold, which shows

the photon double-ionization process is described by the same mechanism with photon

single ionization, particularly for the regions very close to double-ionization threshold.

121
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The assignment of the spectra was done for the first time up to I14 in this dissertation.

Statistical properties of the energy levels, linewidths, and Fano q parameters can also

demonstrate quantum signatures of chaos. These statistical properties were studied on

the basis of theoretical data [27], since only a small fraction of the resonances can be

observed experimentally. In order to derive different aspects of quantum chaos different

kinds of the nearest-neighbor spacings (NNS) were performed. First, a global analysis

of the NNSs, i.e. all resonances were taken into account without further restriction. The

distribution derived from this analysis results in a Poisson distribution up to the SIT I16.

This indicates that there are still independent subsystems, which can be identified by

good quantum numbers like K. These studies prove the transition region from integrabil-

ity to quantum chaos to be much large than expected before, since the quantum number

K dissolves rather slowly. Full chaos in 1P o doubly excited helium may occur only at the

double-ionization threshold. The slow transition towards chaos is analogous to the situ-

ation observed theoretically in doubly excited helium with 1Se symmetry [19]. Second,

the Rydberg series with a well-defined K-value were analyzed individually. In this way,

the loss of quantum numbers N can be confirmed for Rydberg series with K → Kmax by

the NNS distributions that clearly develop towards a Wigner distribution. The statistical

NNS distribution below I17 matches almost a Wigner form, so that the transition from

a Poisson-like distribution for a regular system towards a Wigner-like distribution for a

chaotic system is almost completed. Since for Rydberg series with a well-defined K-value

the angle between the two electrons and nucleus is constant, the 3-D helium atom can be

considered to represent a stretched 1-D character with both electrons on opposite sites

of the nucleus for K → Kmax. The Wigner-like form of K-selected NNS distributions for

Rydberg series with K → Kmax shows a quantum signature of chaos for the stretched

“1-D” cases of real 3-D helium. These “1-D” cases in 3-D helium agree very well with

those obtained for 1-D helium as presented by Püttner et al. [18], and we confirm the

prediction that a full Wigner distribution will be found around I17. We also employed

statistical tools for studies of the linewidths and the Fano q parameters, which exhibit a

Porter-Thomas distribution and a Lorentzian form, respectively. Both distributions are

considered to be characteristics of a chaotic systems, and the present statistical studies

for the Fano q parameters are the first confirmation of the theoretical predictions [84].

In summary, a number of features typically for chaotic systems are found for the doubly

excited states of helium. In order to answer the open question if Ericson fluctuations

are present in the spectra of doubly excited helium, the cross section below a number of

additional thresholds have to be studied experimentally and theoretically.

With time-of-flight electron spectrometer, the partial cross sections (PCS) below the

SITs I5 to I9 [37, 104] and the angular distribution parameters (ADP) below the SITs

I5 to I7 were performed. The measurements for the PCS below the SITs I6 to I9 were

performed for the first time and show a very good agreement with eigenchannel R-matrix

calculations [33]. It was shown that the PCSs display additional information about the

doubly excited states of helium. For example, the resonance 8, 410 of the secondary series

was resolved for the first time in the present PCS in contrast to the TCS, although the
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latter one was measured with higher resolution and better signal-to-noise ratio. For the

lower ionization thresholds we confirmed so-called general pattern in the PCSs which

were explained theoretically by Schneider et. al. [33] with the propensity rules derived

from a molecular description of helium. We also showed experimentally that these general

patterns disappear with an increasing number of perturbers. In addition, an analytical

expression for the mirroring behavior [36] was extended to a more general case. This

allowed us to understand the mirroring behavior in doubly excited helium and to discuss

it in a more general way: we realized that the mirroring behavior between two groups

of PCSs can only occur accidentally, although ρ2 → 0. This is due to the fact that

the amplitudes of the variations in the PCS and in the TCS are of the same order of

magnitude. Further, the ADPs below the SITs I5 to I7 were measured, and the data

below the SITs I6 to I7 are new. The additional resonance 6, 28 was observed in the

present ADP measurements for the first time. All statistical studies for quantum chaos

had to be done on the basis of theoretical results. The present experimental results for

these PCSs and ADPs can however substantiate the applied theoretical methods, and,

in this way, assure the validity of these statistical analysis on the basis of theoretical

data. In addition, since the PCSs and the ADPs carry additional coupling informations

of the outgoing channel, quantum chaos is expected to manifest itself more clearly or

in different ways in these data as compared to the TCS. Vice versa, the success of the

present experimental and theoretical study of TCSs in such a high excited region will

initiate further studies of PCSs and ADPs.

In the last part of dissertation, detailed R-matrix calculations on the n- and l-specific

PCSs and ADPs leading to all possible accessible ionization channels (nl) were performed

for the energy regions below the SITs I3 and I4. In these regions, the approximate

quantum numbers reflecting the strong electron correlation can be used to identify the

spectra with physical meaning. The good agreement with the measurements proves the

quality of the used target wave functions. In particular, it is encouraging to find almost

perfect agreement between the present calculations [126] and very recent measurements

[39, 40] of l-specific PCSs below the SIT I4. Mirroring behavior for other series were

also analyzed and similarity to the principal series were found with respect to mirroring

behavior. As ρ2 → 1, we observe that the principal series below the SITs I3 and I4 mimick

each other in the l-specific PCSs, which is also the reason why mimicking behavior is

found for the principal series among the n- and l-specific ADPs.

In the near future, with the ball chamber which was used to measure the ADPs in

this moment the no-dipole effect of doubly excited helium will be studied. The expected

forward-backward asymmetry of the outgoing electrons relative to the propagation di-

rection of light will allow to access the final states with a total symmetry different from
1P o. In addition, the set-up of metastable helium source is on the way, which can be

used for the observations of photoionization process of 3P o doubly excited helium.
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Appendix A

Semiclassical case of helium at

double-ionization threshold

In the following it will be shortly discussed why quantum chaos is expected close to

the double-ionization threshold of helium. For this we will consider the Hamiltonian of

classical helium, which can be can read as

H =
p2

1 + p2
2

2
− 2

r1

− 2

r2

+
1

r1 + r2

= E, (A.1)

where E is the total energy relative to the double-ionization threshold. If E is positive

both electrons can escape, which corresponds to the double-ionization of helium. The

region E < 0 is more interesting since it represents the region of the doubly excited

states. Taking negative energies E into account, one can scale the coordinates as

ri =
r̃i

−E
pi =

√
−Ep̃i,

and then, the Hamiltonian of classical helium becomes

H =
p̃2

1 + p̃2
2

2
− 2

r̃1

− 2

r̃2

+
1

r̃1 + r̃2

= −1. (A.2)

This transformation shows that the dynamics of classical helium remains invariant under

variations of the energy since (A.2) can always be obtained by a simple scaling transfor-

mation. Under the scaling, the uncertainty principle can be given by

˜̄h = ∆r̃i · ∆p̃i = (−E)ri ·
pi√
−E

=
√
−Eh̄. (A.3)

As can be seen from (A.3), Planck constant in the rescaled coordinates, ˜̄h, approaches

zero as E → 0. Therefore, according to Bohr’s correspondence, in the region close to

the double-ionization threshold, helium can be described as a semiclassical way where

quantum chaos is expected because of the non-integrability in classical helium.
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Appendix B

Random matrix theory

Random matrix theory [64, 65], developed in the nineteen fifties and sixties, is a quite

successful tool to study the level fluctuations in the quantum spectra of a chaotic system.

In this theory, the quantum chaos is accounted for by representing the Hamiltonian by

a matrix whose elements are randomly chosen; this represents the minimum knowledge

about the system. The construction of a Gaussian ensembles will be illustrated by con-

sidering real symmetric 2× 2 matrices with O(2) symmetry as their group of orthogonal

transformations. What we are seeking is a probability density P (H) of three independent

matrix elements H11, H22 and H12 under the normalization condition

∫

−∞

+∞

P (H)dH11dH22dH12 = 1. (B.1)

Two requirements, which take into account very principal physical ideas, suffice to de-

termine P (H). First, P (H) must be invariant under the orthogonal transformation of

the two-dimensional basis, i.e.

P (H) = P (H ′), H ′ = OHOT . (B.2)

Second, the three independent matrix elements must be uncorrelated. The probability

density P (H) must therefore be the product of the three densities,

P (H) = P11(H11)P22(H22)P12(H12). (B.3)

This assumption can be interpreted as one of minimum-knowledge input or of maximum

disorder. The transformation matrix O(2) can be written by

O =

(

cosΘ −sinΘ

sinΘ cosΘ

)

. (B.4)

One can consider an infinitesimal (Θ → 0) orthogonal transformation of the basis, and

obtains

O =

(

1 −Θ

Θ 1

)

. (B.5)
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Considering H ′ = OHOT , the matrix elements result in

H ′

11 = H11 − 2ΘH12

H ′

22 = H22 + 2ΘH12

H ′

12 = H12 + Θ(H11 − H22). (B.6)

According to the invariance given in Eq. (B.2), the factorization and the invariance of

P (H) yield

P (H) = P (H)

{

1 − Θ

[

2H12
d lnP11

dH11
− 2H12

d lnP22

dH22
− (H11 − H22)

d lnP12

dH12

]}

. (B.7)

Since the infinitesimal angle Θ is arbitrary, its coefficient in Eq. (B.7) should vanish, i.e.

1

H12

d lnP12

dH12
− 2

H11 − H22

(

d lnP11

dH11
− d lnP22

dH22

)

= 0 (B.8)

The solution of this equation is given by Gaussian function of the form

P (H) = Cexp[−A(H2
11 + H2

22 + 2H2
12) − B(H11 + H22)]. (B.9)

B vanishes if the average energy, Tr(H), is properly shifted to zero, A fixes the unit of

energy, and C is determined by the normalization. Without the loss of generality, P (H)

can be written as

P (H) = Cexp[−A TrH2]. (B.10)

It can be shown the probability density (Eq. (B.10)) obtained from the 2 × 2 matrices

in fact holds also for M × M matrices with arbitrary size.

By assuming that Hamiltonian matrix elements are described according to Eq. (B.10)

the eigenvalues are given by

E± =
1

2
(H11 + H22) ±

1

2

[

(H11 − H22)
2 + 4H12

]1/2
. (B.11)

With the help of the eigenvalues E±, we obtain the diagonal matrix

D =

(

E+ 0

0 E−

)

, (B.12)

and by an orthogonal transformation given by Eq. (B.4), one can write the matrix H as

H = ODOT . (B.13)

This yields the following transformation between the elements H11, H22, H12 and the

variables E+, E−, Θ:

H11 = E+cos2(Θ) + E−sin2(Θ),

H22 = E−cos2(Θ) + E+sin2(Θ),

H12 = (E+ − E−)cosΘsinΘ. (B.14)
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The Jacobian determinant of this orthogonal transformation is given by,

det(J) = det
∂(H11, H22, H12)

∂(E+, E−, Θ)
= E+ − E−. (B.15)

Because of

P (E+, E−, Θ) = P (H)det(J) (B.16)

and

TrH2 = E2
+ + E2

−
, (B.17)

one obtain the distribution P (E+, E−, Θ) in the form:

P (E+, E−) = C | E+ − E− | exp[−A(E2
+ + E2

−
)]. (B.18)

Note that this form is independent of Θ. To calculate the distribution of nearest-

neighbor-spacing (NNS), we should integrate the variables E+ and E− in the equation

(B.18)

P (E+, E) = C
∫

dE+

∫

dE−δ(S− | E+ −E− |) | E+ −E− | exp[−A(E2
+ + E2

−
)]. (B.19)

Setting the variables S = E+ − E− and the variable z = (E+ + E−)/2, Eq. (B.19) can

be written as

P (S) = C ′

∫

∞

−∞

dzS exp[−A(S2/2 + 2z2)]

= C ′

√

π

2A
S exp(−AS2/2). (B.20)

A and C ′ can be evaluated by the normalization condition

∫

∞

0
dS P (S) = 1 (B.21)

and with the unit of energy set such that the mean spacing is unity, namely

∫

∞

0
dS S P (S) = 1. (B.22)

In the end, eq. (B.20) yields the Wigner distribution PW (S) given in Eq. (4.1)

PW (S) =
π

2
S exp(−π

4
S2). (B.23)
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2. Y. H. Jiang, R. Püttner, M. Martin, R. Follath, J. M. Rost, and G. Kaindl, Phys.

Rev. A 69, 052703 (2004),

Isotope shifts of double-excitation resonances in helium
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