
4. RELAXATION OF P@C60

Each quantum mechanical system is sensitive to its environment. When it is driven

away from thermal equilibrium, the interaction with the environment tends to restore

the initial state. This process is called relaxation or decoherence. Any quantum

computer should have long relaxation times, which means that the time needed

to perform logic gates must be much shorter than the decoherence time. At the

beginning of the development of quantum information processing (QIP) theory it was

thought that decoherence is so fast that it will hinder the physical implementation

of QIP, but after invention of the quantum error correction (QEC) this problem

could be overcome. QEC codes use ancillary qubits to store quantum information

which reduces the error in computation.

The relaxation properties of ”bulk” (diluted in polycrystalline C60) P@C60 and of a

single crystal of P@C60 in BrPOT are presented in this chapter. First the general

theory of relaxation will be shortly reviewed.

4.1 Theoretical Background

The general theory of relaxation was first developed by Bloch [89] and later gener-

alized by Redfield [90, 91], who introduced an additional term to the Liouville-von

Neumann equation (1.27) to include relaxation. The resulting ”master equation” is

written like:
dρ(t)

dt
= −i[H (t), ρ(t)] + R(ρ(t) − ρ(∞)) (4.1)

where H is the Hamiltonian of the system, R is the relaxation matrix, ρ(t) is the

density matrix at time t and ρ(∞) at equilibrium. The relaxation matrix R connects

every element of the density matrix with all other elements and accordingly R has

dimension n4. Its matrix elements are:

Rabcd = Jacbd(ωac) + Jacbd(ωdb) − δac

∑
e

Jebed(ωbe) − δbd

∑
e

Jecea(ωea) (4.2)

The spectral density J is defined as:

Jabcd(ω) =

∫ ∞

0

〈a|H ′(t)|b〉〈c|H ′(t + τ)|d〉∗ exp(iωτ)dτ
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H ′(t) is the time dependent part of the Hamiltonian responsible for relaxation, ω is

the observation frequency. The bar above the matrix element denotes an ensemble

average. Redfield’s master equation is quite general and can be used for a large

variety of decoherence processes, not only in magnetic resonance where it was first

used. Solving this system of coupled differential equations is a very difficult task,

but fortunately it is not necessary for most cases.

Usually the earlier theory of Felix Bloch [89], originally written for an ensemble of

nuclear spins, is used for the description of relaxation in magnetic resonance. Con-

sider a large number of electron spins in a magnetic field. Their motion can described

by the classical equation of motion to which phenomenologically a relaxation term

is added:

Mz

dt
= γ(B × M)z +

M0 − Mz

T1

(4.3)

Mx

dt
= γ(B × M)x − Mx

T2

(4.4)

My

dt
= γ(B × M)y − My

T2

(4.5)

here M = (Mx, My,Mz) is the net magnetization vector of the ensemble, M0 is its

equilibrium value and γ = gµB/h̄ is the gyromagnetic ratio for electron spins. There

are two relaxation times defined - T1 for spin-lattice (or longitudinal) relaxation and

T2 for spin-spin (or transverse) relaxation. When a short MW pulse is applied to

the system and it is left to evolve under the constant applied magnetic field then

T1 tends to restore the z component of the magnetization to its equilibrium value

M0 (Mz ∼ M0(1 − ce
− t

T1 )), while T2 is responsible for the decay of the x and y

components of M (Mx,y ∼ e
− t

T2 ). In the language of quantum mechanics, T1 affects

the diagonal components of the density matrix and restores them to their thermal

equilibrium value, while T2, sometimes called coherence time, accounts for the decay

of the off-diagonal components of ρ. Normally T1 ≥ T2.

In certain cases the relaxation times T1 and T2 from the Bloch equations can be

calculated analytically from the more general Redfield theory.

4.2 Spin-Lattice Relaxation

Knowing T1 and how it depends on the temperature is very important for the design

of a quantum computational experiment since T1 limits the length of any pulse

sequence. However, after an experiment is done (for example one point of a echo

decay), the system should relax to its initial state and then the next ”shot” can be

done. The delay time is called shot repetition time and must be longer than 5T1.
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Thus if T1 is too long, each measurement will take too much time, and a temperature

with optimal T1 must be found for each experiment.

The relaxation properties of group V endohedral fullerenes were already investigated

in a number of studies [92, 93, 94, 47, 95]. The spin-lattice relaxation was measured

using the inversion recovery pulse sequence (chapter 1) for different temperatures.

There are two proposed mechanisms which cause the relaxation in N@C60 and P@C60

- fluctuation in the fine structure and fluctuation of the hyperfine interaction [93, 94,

47] corresponding to the two different relaxation rates Rhf and Rfs. The possible

relaxation pathways are depicted in Fig. 4.1. Two longitudinal relaxation times

Fig. 4.1: Relaxation pathways due to fluctuations of the fine Rfs and hyperfine Rhf struc-
ture interaction in a system with electron spin S = 3/2 and nuclear spin I = 1/2
[94]

Rhf = 1/T a
1 and Rfs = 1/T b

1 are defined and relaxation of the magnetization is

written as:

mz(t) = 1 − 2f(t) = 1 − 2fhf (t)ffs(t) (4.6)

where fhf (t) and fhf (t) are the relaxation functions depending on fluctuations of

the hyperfine and fine structures respectively [94, 47]:

fhf (t) =
1

40

[
29 + 10e−

3
2
Rhf (T )t + e−2Rhf (T )t

]
(4.7)

ffs(t) = e−
9
5
Rfs(T )t (4.8)

The endohedral atom in the fullerene cage is situated in a three dimensional potential

and behaves like a harmonic oscillator [96, 51, 92] introducing fluctuations in the

hyperfine coupling constant a as well as in the ZFS constant D. The former is

considered to be the main relaxation mechanism in P@60 [47].

The recovery of the magnetization of both polycrystalline P@C60 and P@C60 in
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BrPOT is best described by a double exponential function. The two relaxation times

T a
1 and T b

1 for the ”bulk” endohedrals are generally longer as in the endohedrals in

the solid state matrix possibly due to the neighboring protons in the latter. In

”bulk” P@C60 a mean relaxation rate was defined as Rmean = 1/T a
1 + 1/T b

1 and it is

determined by the fluctuations of the hyperfine constant:

Rmean ≈ ∆a2 (4.9)

where ∆a2(T ) = (a(T )/2πh − a0/2πh)2. The comparison of Rmean(T ) and ∆a2(T )

shows good agreement, suggesting that the fluctuations in the hyperfine structure

are a major relaxation pathway. In P@C60 in BrPOT there are also two relaxation

rates but their temperature dependence shown in Fig. 4.2 is different from P@C60

shown in Fig. 4.3. In Fig. 4.2 (left) is the temperature dependence of T a
1 , T b
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Fig. 4.2: Temperature dependence of the longitudinal relaxation rates 1/T a
1 (filled squares)

and 1/T b
1 (open squares) of P@C60 in rhombohedral BrPOT. Open triangles

denote the change of the ZFS ∆D2(T ) = (D(T ) − D0)2 (left graph) and open
circles denote the change in the hyperfine constant (∆a)2 = (a(T )−a0)2 where D0

and a0 denote correspondingly the values for D and a at the lowest temperature.
The two solid lines in the right graph fit the relaxation rate to a function f(T ) ≈
1/T 2. All other lines connect the data points.

shown together with the change of the ZFS defined as ∆D2(T ) = (D(T )−D0)
2 where

D0 is the value of ZFS as the lowest temperature. From the plot it can be seen that

there are three different temperature regions. At low temperatures 1/T a
1 and 1/T b

1

strongly increase up to T = 50 K where a jump in the ZFS occurs. For temperatures

between 50 and 200 K the relaxation rates show stronger temperature dependence,

which changes again when the size of the ZFS makes a jump at T ∼ 210 K. Above

T = 210 K, ∆D, 1/T a
1 and 1/T b

1 show somehow weaker temperature dependence. It
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Fig. 4.3: Temperature dependence of the longitudinal relaxation rates 1/T a
1 (filled squares)

and 1/T b
1 (open squares) of polycrystalline P@C60 (adapted from [47])

is thus clear that the ZFS influences the spin-lattice relaxation. In the right graph in

Fig. 4.2 the relaxation rate 1/T b
1 is plotted together with the change of the hyperfine

constant written as (∆a)2 = (a(T ) − a0)
2 as a function of temperature. The two

solid lines fit f(T ) ≈ 1/T 2 to the relaxation rate in two temperature regions - one

is T below T = 50 K and the other is above 50 K where the fit is better. Such a

temperature dependence is expected from the theory for Raman processes in the high

temperature limit T � TD where TD is the Debye temperature [82]. This process

for spin-lattice relaxation consists of an absorbtion of a phonon with frequency ωa,

flip of the electron spin and release of a phonon with another frequency ωb. TD can

be calculated using the formula [97]:

TD =
h̄csnd

k
(
6π2Ncell

Vcell

) (4.10)

where csnd is the sound velocity in the material, Ncell is the number of atoms per

unit cell with volume Vcell. For rhombohedral BrPOT TD = 0.13csnd and if the

velocity of sound in the fullerenes is substituted in the formula then TD = 272.4

K. Therefore the observed the spin-lattice relaxation cannot be caused by a Raman

process and possibly there are other processes which take part.

In the BrPOT encapsulated fullerenes longitudinal relaxation was measured on

transitions with mS = +3/2 ↔ mS = +1/2 (mS = −1/2 ↔ mS = +3/2) and

mS = +1/2 ↔ mS = −1/2 selectively and no significant difference was found

within the experimental error. This result suggests that the fluctuations of the fine

structure are not the main relaxation pathway similar to the ”bulk” P@C60. Thus

the reduced values of the T1 for P@C60 in BrPOT are possibly due to coupling to

the abundant protons from the solid state matrix.
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4.3 Spin-Spin Relaxation

The spin-spin relaxation time T2 is the time scale at which the off-diagonal compo-

nents of the density matrix decay, i.e. the coherence between different energy levels

decays. Accordingly, T2 is the upper time limit for coherent operation of a quantum

computer (QC), or just the time during which the computer works. If T2 is divided

by the gate time, the longest time needed to perform an operation on qubits, the

theoretical maximum number of gate operations Ngate is obtained before the QC

needs to be restarted. Certainly there will be some delays between the gates, so the

theoretical Ngate will never be reached, yet it must be as large as possible and it

serves as an indication of the potential of a particular QC implementation. For a

good quantum computer a long T2 is needed so the relaxation processes should be

well understood in order to control the decoherence and thus to achieve maximal

operation time.

The transverse relaxation time T2 is usually measured with a Hahn echo pulse se-

quence (chapter 1). The distance between the two MW pulses is increased and a

decay of the magnitude of the electron spin echo (ESE) is measured. This method

was initially introduced for NMR by Hahn [42]. This method only yields the phase

memory time Tm is obtained, in the literature often associated with the ”natural”

T2 [98, 39]. Carr and Purcell discovered later that in the presence of diffusion in

the sample the Hahn echo pulse sequence must be modified in order to measure

the real T2 [99]. They distinguished two different T2 times, calling the Hahn echo

”method A” and proposed a new pulse sequence to measure the real T2 - method B

[99]. The experiment shown in Fig. 4.4 begins with a π/2 pulse applied along the

Fig. 4.4: Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence for measuring T2.

x axis in the rotating frame, which rotates the initial magnetization to the y axis.

This is followed by a pulse train of π pulses along the same axis. It was found that

the results of this experiment are very sensitive to the amplitude of the π pulses
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and later Meiboom and Gill modified the pulse sequence by applying the π pulse

along the y axis [100]. As T2 > Tm, the condition τ � Tm must be fulfilled in order

to measure T2 accurately. The method was developed first for NMR and is now

known as the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. Later on other

multi pulse were techniques designed [101, 102, 103] consisting of repeated cycles

of pulses. They are widely used to obtain additional information about the spin

system, for example to decouple them from each other and to reduce the line width

(increase the Tm). Recently, a modified decoupling sequence was used to decouple

the 29Si nuclear spins from each other, thus increasing the Tm by several orders of

magnitude [104].

The application of CPMG and other decoupling techniques in ESR experiments is

not straightforward since the MW electronics is less well developed. For many solid

state ESR samples, Tm is at most of the order of microseconds and in order to fulfill

τ/T2 	 1, τ must be rather short. The main obstacle is that the standard pulse

ESR (X band) spectrometers are usually equipped with traveling wave tube (TWT)

amplifiers with about 1 kW output power in order to manage short enough pulses

(and thus broad spectral excitation), but these cannot work continuously. Typically

a TWT has to be used not more than about 1 % of the time (duty cycle), otherwise

it can be damaged. There are other types of spectrometers that can be used to cir-

cumvent the problem [105], but only samples with quite long Tm can then be used.

The magnetic dipolar interaction between the electron spins under study is usually

the main processes that contributes to the spin-spin relaxation. One can define two

types of spins - A and B [39, 106, 107]. The former are excited by the MW pulse

while the latter are undisturbed. After the A spins are excited, part of their mag-

netization is transferred to the B spins through dipolar interaction and some of the

equilibrium magnetization is transferred back from the B to the A spins. Random

flips of the B spins can also cause decay of the magnetization. As a result there is an

extraneous contribution to the relaxation of the A spins, called spectral diffusion.

For this process the following expression is given for Tm [108]:

Tm = 1.4

√
4πh̄T

(B)
1

2.53µ0gAgBµ2
BCB

(4.11)

where T
(B)
1 is the spin-lattice relaxation time of the B spins and CB is their concen-

tration. Another possibility for relaxation of the non-equilibrium magnetization in

the A spins is the interaction among them. A MW pulse excites (flips) the A spins,

which leads to a change of the local field at each particular A spin. These flips induce

relaxation, a process called instantaneous diffusion [106, 109]. The contribution of
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latter to the relaxation is described by the following expression [106]:

1

TID

=
8π2

9
√

3h̄
g2µ2

BCA〈sin2(
θ

2
)〉τ (4.12)

where CA is the A-spin concentration and θ is the rotation angle of the second pulse

in the Hahn echo sequence. In order to test experimentally if instantaneous diffusion

is a major relaxation process, the ESE signal decay should be recorded for different θ

and then 1/TID should follow equation (4.12). There are several studies confirming

the validity of equation (4.12) for different systems [110, 111].

After this brief review of the basic spin-spin relaxation mechanism we note that

the CPMG pulse sequence refocuses dipolar interactions between resonant and non-

resonant electron spins, i.e. spectral diffusion, which is analogous to heteronuclear

interaction in NMR [105, 101]. It does not refocus dipolar interaction between res-

onant spins, i.e. instant diffusion. Thus contributions from instant diffusion to the

relaxation will not be refocused, in contrast to the spectral diffusion.

The complete isolation of the endohedral atom in N@C60 and P@C60 from its

environment suggests that diluted samples would have long spin-spin relaxation

times which was confirmed experimentally [92, 49]. When the spin concentration

(m(N@C60)/m(C60)) is increased, an increase in the line width is observed corre-

sponding to a reduced transverse relaxation time[92]. This effect is expected as the

magnetic dipolar interaction grows as ∼ 1/r3, where r is the distance between the

spins. Similar experiments were done for P donors in silicon, where below a certain

spin concentration T2 is constant [112].

Several polycrystalline samples of P@C60 diluted in C60 were prepared down to the

lowest measurable spin concentration of 10−8 (1013 spins/cm3). Tm and T2 were

measured with Hahn echo and CPMG pulse sequence respectively. A typical time

trace for the ESE decay is shown in Fig. 4.5 (top) and CPMG in Fig. 4.5 (bottom).

Time traces for all of the samples (measured with Hahn echo and CPMG) were

fitted with a single exponential function. When the two methods are compared it

is clear that with help of the CPMG pulse sequence the transverse magnetization

is preserved for a longer time than with the Hahn echo (see table 4.1). It must be

noted that T2 values measured by CPMG pulse sequence are only lowest estimates

due to the limited number of MW pulses. The used Bruker X-band ESR spectrom-

eter E600 has a hardware limit of 32 pulses. Tm (T2) is determined only by the

magnetic dipolar interaction between the endohedral fullerenes, thus no tempera-

ture dependence is expected. Fig. 4.6 shows the relaxation rates 1/Tm for ”bulk”

P@C60 at different temperatures measured in X-Band by ESE decay. Around room

temperature Tm ≈ 2T1 thus T1 limits Tm in that temperature region. An increase
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Fig. 4.5: Time traces of the ESE decay (top) and of the CPMG pulse sequence (bottom)
in polycrystalline P@C60.

Spin concentration (g/cm−3) Tm (µs), ESE decay T2 (µs), CPMG
2.0 × 1015 11.2 11.1
6.3 × 1014 68.7 151.6
1.9 × 1014 106.5 287.5
6.3 × 1013 113.25 416.6

Tab. 4.1: Spin-spin relaxation for magnetically diluted polycrystalline samples P@C60 at
T = 10 K measured with ESE decay and CPMG pulse sequences.
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in Tm is observed as the temperature is lowered, but not as strong as by T1, and Tm

is constant below 40 K in contrast to T1.

The data for 1/Tm and 1/T2 of polycrystalline P@C60 samples with different spin
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Fig. 4.6: Temperature dependence of the mean spin-lattice (triangles) and spin-spin re-
laxation (squares) rates of polycrystalline P@C60 (adapted from [47]).

concentrations measured with ESE decay and the CPMG pulse sequence are plotted

in Fig. 4.7 and listed in table 4.1. The solid lines are exponential function which fit

1/Tm and 1/T2 experimental data points. From the figure it can be seen that for

samples with lower spin concentration the difference between Tm and T2 increases.

The concentration dependence predicted by equation (4.11) is observed for the first

three points with the lowest concentration. The dashed line shows a fit according

to equation (4.11), from which TB
1 = 63 ms is calculated. This value is comparable

with T a
1 = 95 ms for P@C60 at this temperature. Therefore it can be assumed that

the second hyperfine line of P@C60 play the role of B spins in the spectral diffusion.

The contribution of instantaneous diffusion to the spin-spin relaxation was tested

using the π/2−τ −θ pulse sequence where θ is the rotation angle of the second MW

pulse [111]. Tm should depend on sin2(θ) according to equation (4.12) if instanta-

neous diffusion makes a strong contribution to the relaxation. 1/Tm as a function

of sin2(θ) for polycrystalline P@C60 is shown in Fig. 4.8. The measured relaxation

times are shown together with error bars to highlight that there is no dependence (or

a very weak one) of Tm on sin2(θ). This result suggests that instant diffusion does

not make a significant contribution to the transverse spin relaxation as expected at

this low spin concentration [105].

The spin-spin relaxation of P@C60 encapsulated in BrPOT should differ from that

of ”bulk” P@C60. Due to the small size of the available samples the relaxation
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Fig. 4.7: Dependence of the spin-spin relaxation rates on the spin concentration of poly-
crystalline P@C60 measured by ESE decay (crosses) and by the CPMG pulse
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where c is the spin concentration. The dashed is a fit with f(c) ∼ √
Bc to the

first three points according to equation (4.11).
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measurements were performed in W-Band. Thus strictly speaking no direct com-

parison between the relaxation of the bulk and encapsulated P@C60 is possible.

The spin concentration of P@C60 (m(P@C60)/m(C60)) used for the production

of the BrPOT crystal was about 10−4. In Fig. 4.9 the spin-spin relaxation rate

(measured with the Hahn echo pulse sequence) is plotted together with the ZFS

parameter as a function of the temperature. It can be seen that generally the
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Fig. 4.9: Temperature dependence of the spin-spin relaxation rates of P@C60 in rhombohe-
dral BrPOT and of the zero-field splitting parameter D. Crosses denote 1/Tm for
the transition ms = +1/2↔ms = −1/2, circles for the ms = +1/2↔ms = −3/2
transition and squares the ZFS. The line connect the data points as a guide to
the eye.

absolute values for T2 at low temperature are of the same order as in polycrys-

talline P@C60, in contrast to T1. Since the degeneracy in the electron spin S = 3/2

system is lifted, Tm can be selectively measured on each transition correspond-

ing to different elements of the relaxation matrix given in equation (4.2). Tm for

the two transitions ms = −1/2 ↔ ms = −3/2 and ms = +3/2 ↔ ms = +1/2

was found to be equal as expected and will be denoted as T
3/2
m . For Tm of the

mS = +1/2 ↔ mS = −1/2 transition the notation T
1/2
m will be used. T

3/2
m could

not be measured from room temperature down to 150 K, where a value of 50 ns was

obtained. Detection of smaller T
3/2
m is hindered experimentally by the spectrometer

dead time. Therefore no Hahn echo could be observed in this temperature region

for the ms = +1/2↔ms = −3/2 (ms = −3/2↔ms = +1/2) transition although

the corresponding ESR lines are visible in the CW spectrum. T
3/2
m increases with

decreasing the temperature and below T = 50 K it is constant. The echo decays

from 50 K up to 150 K are well described by an exponential function while below 50
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K, a fit with f(2τ) ∼ (2τ/T
3/2
m )2, where τ is the inter-pulse distance, was used. For

the transition with mS = +1/2 ↔ mS = −1/2 the same fit function had to be used

already at T = 100 K. This echo decay function is predicted for systems where the

spin-spin relaxation is caused only by pure magnetic dipolar broadening [109, 108].

It seems that this process becomes the most important one at lower temperatures.

From Fig. 4.9 it can be clearly seen that T
3/2
m > T

1/2
m , similar to what has been

observed in polycrystalline ”bulk” P@C60 [47]. In the latter T
1/2
m was measured by

selectively pulsing on the main line (transition mS = +1/2 ↔ mS = −1/2) and T
3/2
m

by selective excitation of the broad satellite lines. A ratio T
3/2
m : T

1/2
m = 4 : 3 was

found, where in the encapsulated P@C60 the ratio is 3 : 2. The difference in the two

relaxation rates suggests that the magnetic dipolar interaction is different for the

two transitions.

The rate 1/T
1/2
m shows a maximum at T = 225 K, similar to 1/Tm of bulk N@C60

(measured at W-Band but the maximum appears at T = 160 K) [93, 94]. The

latter maximum was ascribed to a resonance between the molecular jump reorien-

tation frequency of the C60 cage and the size of the fine structure. This suggestion

was supported with 13C NMR [113] data and µSR measurements [114]. These ex-

periments were not performed with BrPOT, so there is no information about the

motion of the encapsulated C60 molecules. However, the temperature dependence

of the size of the zero-field splitting shows a jump at T ≈ 220 K which can be con-

nected to the maximum of 1/T
1/2
m . This jump of both ZFS and 1/T

1/2
m at the same

temperature indicates a change in the crystal structure. The strong variation of the

ZFS is accompanied by larger fluctuations of its mean value which increase the spin-

spin relaxation. Thus at temperatures above 50 K, these fluctuations determine the

coherence time.

4.4 Conclusions

The transversal spin relaxation of magnetically diluted polycrystalline P@C60 has

been investigated at T = 10 K. Hahn echo and CPMG pulse sequences were used

to measure Tm and T2 respectively. It was found that spectral diffusion is the main

relaxation mechanism and not contribution from instant diffusion was found. The

longest measured value for T2 was estimated to be 0.4µs, which corresponds to

Ngate = 8000 if the average gate time is tgate = 50 ns.

The spin-lattice relaxation of P@C60 in rhombohedral BrPOT has been measured

at various temperatures. Two relaxation rates 1/T a
1 and 1/T b

1 with similar temper-

ature dependence were found. Fluctuations of both hyperfine interaction and ZFS

parameters were found to influence the longitudinal relaxation.
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The large ZFS in encapsulated P@C60 allow the selective excitation of all ESR tran-

sition in this spin S = 3/2 system in contrast to the bulk P@C60. While 1/T1 was

found not to depend on the transition, the spin-spin relaxation time Tm is different

for transitions involving |mS| = 3/2 than for transition with |mS| = 1/2. The two

coherence times T
3/2
m and T

1/2
m have different temperature dependences. T

3/2
m could

be measured first at T = 150 K and increases with decreasing the temperature and

below T = 50 K it is longer than T
1/2
m . The latter shows a sharp minimum at

T = 220 K where the size of the ZFS changes abruptly. Thus the fluctuations of the

ZFS determine the spin-spin relaxation in this temperature regime.


