Appendix A

Conventions

A. 1 Dirac matrices

The following convention for the the Euclidean γ matrices is used:

$$
\begin{array}{ll}
\gamma_{0}=\left(\begin{array}{cccc}
0 & 0 & +1 & 0 \\
0 & 0 & 0 & +1 \\
+1 & 0 & 0 & 0 \\
0 & +1 & 0 & 0
\end{array}\right), \quad \gamma_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & +i \\
0 & 0 & +i & 0 \\
0 & -i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right), \tag{A-1}\\
\gamma_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & +1 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
+1 & 0 & 0 & 0
\end{array}\right), \quad \gamma_{3}=\left(\begin{array}{cccc}
0 & 0 & +i & 0 \\
0 & 0 & 0 & -i \\
-i & 0 & 0 & 0 \\
0 & +i & 0 & 0
\end{array}\right) .
\end{array}
$$

They are hermitian and satisfy the anti-commutation relation

$$
\begin{equation*}
\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \delta_{\mu \nu} . \tag{A-2}
\end{equation*}
$$

With the above choice for γ_{0} we have chosen the chiral representation where $\gamma_{5}=$ $\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{0}$ is diagonal:

$$
\gamma_{5}=\left(\begin{array}{cccc}
+1 & 0 & 0 & 0 \tag{A-3}\\
0 & +1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

The projection operators on left- and right-handed chirality then read

$$
\begin{equation*}
P_{-}=\frac{1}{2}\left(1-\gamma_{5}\right), \quad P_{+}=\frac{1}{2}\left(1+\gamma_{5}\right), \tag{A-4}
\end{equation*}
$$

respectively.

Appendix A Conventions

A. 2 Generators of $\mathrm{SU}(3)$

The 3×3 traceless hermitian generator matrices of $\mathrm{SU}(3)$ in the fundamental representation may be chosen to have the standard form (Gell-Mann, 1962):

$$
\begin{array}{ll}
\lambda^{1}=\frac{1}{2}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \lambda^{2}=\frac{1}{2}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \lambda^{3}=\frac{1}{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \\
\lambda^{4}=\frac{1}{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad \lambda^{5}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \tag{A-5}\\
\lambda^{6}=\frac{1}{2}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \lambda^{7}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \quad \lambda^{8}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right),
\end{array}
$$

They are normalized according to

$$
\begin{equation*}
\operatorname{Tr}\left(\lambda^{a} \lambda^{b}\right)=\frac{1}{2} \delta_{a b} \tag{A-6}
\end{equation*}
$$

and obey the commutation relation

$$
\begin{equation*}
\left[\lambda^{a}, \lambda^{b}\right]=i f^{a b c} \lambda^{c} \tag{A-7}
\end{equation*}
$$

