
Chapter 4

Phase structure of lattice QCD

Understanding the phase structure of lattice QCD is an important pre-requisite

before starting large scale simulations [113]. As we will see below, the main result

of this chapter is that Wilson type fermions generically show a first order phase

transition around the chiral point for lattice spacings below a certain threshold.

The existence of this first order phase transition, which is due to lattice artifacts,

has important consequences for simulations with this kind of lattice fermions.

First, approaching the “physical point”, at which the pion mass assumes its

value as measured in experiment, the algorithms used in lattice simulations suffer

from a substantial slowing down, as explained in the previous chapter. Since simu-

lations are also restricted to finite lattice spacings, lattice QCD in general involves

extrapolations to the physical point and to the continuum. In order to be able to

control those extrapolations it is necessary to know whether there is indeed a smooth

extrapolation possible.

Second, numerical simulations in the vicinity of first or second order phase tran-

sitions are problematic. It is not obvious whether the algorithms correctly sample

configuration space in such a situation. And, assuming they do so, usually one

observes practical problems such as long thermalization and autocorrelation times.

Therefore, as – unlike the finite temperature case – the phase transition itself is not

the topic under investigation, one would like to avoid to simulate close to a phase

transition.

It is important to realize that the above mentioned first order phase transition

for Wilson type lattice fermions imposes a lower bound on the value of the pseudo

scalar mass that can be simulated at a given lattice spacing. The actual value of

the lower bound to the pseudo scalar mass, however, turns out to depend on the

particular gauge action discretization providing an opportunity to circumvent or at

least reduce the aforementioned complications.

We remark that strictly speaking in a finite volume with a finite number of lattice

83



CHAPTER 4. PHASE STRUCTURE OF LATTICE QCD

points there cannot exist a phase transition. Nevertheless, already in a finite, but

large enough volume the effects of a phase transition in infinite volume can be visible

and rather strong.

For QCD it is widely believed that chiral symmetry is spontaneously broken by

the ground state and one expects a first order phase transition where the scalar con-

densate jumps from negative to positive value when the mass is changed from small

negative to small positive values, or vice versa. In this chapter we are going to dis-

cuss in lattice chiral perturbation theory how the explicit chiral symmetry violations

of Wilson type fermions at non-vanishing lattice spacing will affect the continuum

picture, which will allow an interpretation of our numerical results. Thereafter, we

will present our numerical results on the phase structure of lattice QCD in a regime

of lattice spacings where so far a systematic study was missing. These results will

provide evidence for a first order phase transition, as mentioned before. Finally, we

will outline how to reduce the effects of this phase transition by choosing a different

discretization of the gauge part in the action.

4.1 Effective potential model

As we have discussed in section 1.2.2, the massless Lagrangian of QCD for two

flavors of quarks is symmetric under the chiral group SUV (2) × SUA(2), which is

spontaneously broken down to SUV (2) by the ground state of the theory. To de-

scribe reality the Lagrangian contains a quark mass term explicitly breaking the

aforementioned symmetry. Therefore the vector and axial currents are not exactly

conserved.

However, since the masses of up- and down-quark are small, also the divergence

of the currents vanishes approximately and the masses might be treated as a small

perturbation to the massless theory as is done in the chiral perturbation theory

(χPT) [135, 136, 137]. From a principle point of view lattice calculations include

all the low energy structure of QCD with the quark masses being free parameters.

Therefore, there is a priori no need for a χPT if expectation values can be computed

on the lattice on a non-perturbative level at realistic values of the quark mass.

However, nowadays lattice calculations are not yet able to provide reliable results

obtained with values of the quark masses as small as estimated in experiment.

Hence, χPT might serve as an useful tool to connect the results for physical

quantities obtained from lattice simulations performed at un-physically large quark

masses with those at the physical point. However, χPT is valid only for small quark

masses below a certain upper bound or in different words it has a finite convergence

radius, which allows to make contact to lattice calculations if and only if lattice

simulations with masses below this bound are possible. The actual value of this
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4.1. EFFECTIVE POTENTIAL MODEL

bound is unknown, but lattice simulations with pion masses below 300 MeV will

most likely be needed.

As originally χPT is an effective low energy theory of continuum QCD, it is

not valid at finite values of the lattice spacing a. However, one can also formulate

an effective theory including the lattice spacing, which is then treated as a small,

additional parameter.

4.1.1 Chiral perturbation theory on the lattice

In section 1.2.3 we have introduced the Symanzik effective theory, which is expected

to describe the lattice theory close to the continuum by an effective continuum

Lagrangian. The usual terms in the continuum Lagrangian are supplemented by

contributions proportional to powers of the lattice spacing. We have also discussed

in section 1.2.3 that the effective fermionic Lagrangian is of the form (see Eq. (1-44))

Leff ∼ ψ̄(γµDµ +m)ψ + cswaψ̄iσµνFµνψ +O(a2) . (4-1)

This amounts to QCD with a Pauli term. And since the Pauli term transforms under

chiral rotations exactly like a mass term [41], the corresponding chiral Lagrangian

is already known.

We will not discuss lattice χPT (LχPT) in detail, as it can for instance be found

for Wilson lattice QCD in [138], but we rather follow the qualitative discussion of

reference [41] to immediately access the phase structure of lattice QCD at small

quark masses.

In terms of a SU(2) matrix-valued field Σ, transforming under independent SU(2)

rotation UL and UR as Σ→ ULΣU †
R the kinetic part (which is the chiral Lagrangian

in absence of mass and Pauli term) can be written as

Lχ =
f 2
π

4
Tr
(

∂µΣ†∂µΣ
)

, (4-2)

and the potential energy is given by

Vχ = −c1
4

Tr
(

Σ + Σ†
)

+
c2
16

{

Tr
(

Σ + Σ†
)}2

(4-3)

with coefficients c1 ∼ mΛ3
QCD +aΛ5

QCD and c2 ∼ m2Λ2
QCD +maΛ4

QCD +a2Λ6
QCD. The

factors or ΛQCD are required by dimensional analysis and dimensionless coefficients

of order unity are dropped [41]. In the following we will be particularly interested

in the case where m′ = m − aΛ2
QCD ∼ a2Λ3

QCD. In this regime the coefficients can

be simplified to

c1 ∼ m′Λ3
QCD , c2 ∼ a2Λ6

QCD . (4-4)
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In this situation the two terms in the potential energy become comparable, since

c1 ∼ c2, and it will lead to the prediction of a non-trivial phase structure of Wilson

lattice QCD for small quark masses. Moreover, the coefficient c1 parameterizes the

bare quark mass and c2 is proportional to a2.

By denoting with A the flavor singlet component of Σ, the latter can be expressed

like

Σ = A+ i

3
∑

r=1

Brτr , (4-5)

with 1 = A2+
∑

BrBr and τr the three Pauli matrices. This constrains A, which cor-

responds to the scalar condensate, to lie between −1 and 1 inclusive. The potential

then reads

Vχ = −c1A+ c2A
2 = A(c2A− c1) . (4-6)

Note that B3 corresponds to 〈ψ̄γ5τ3ψ〉.
In order to find the ground state Σ0 the effective potential has to be minimized.

Σ can then be expanded around Σ0 and observables like pion masses can be extracted

in terms of the quark mass, c2 and the pion decay constant fπ. And it turns out that

the results depend strongly on the sign of the coefficient c2, which parameterizes the

lattice artifacts.

In case of positive c2 there exists a phase in the region of bare quark masses

defined by −2c2 < c1 < 2c2 where the flavor symmetry is broken. This expresses

itself in massless charged pions, because they are Goldstone bosons of spontaneous

flavor symmetry breaking, but a massive uncharged pion.

At the boundaries c1 = ±2c2 all three pions are massless and the system un-

dergoes a second order phase transition, while outside the phase with (|c1| > 2c2)

the flavor symmetry is preserved by the ground state and all three pions are mas-

sive. This scenario is called the Aoki scenario, because S. Aoki first predicted the

existence of such a flavor symmetry breaking phase [139, 140, 141].

The alternative is that c2 is negative. In this case the flavor symmetry is preserved

in the whole range of values for c1, but it does not exist a value of c1 where the pions

are massless, since the pion masses are given by [41]

m2
π =

1

f 2
π

(|c1|+ 2|c2|) . (4-7)

At c1 = 0 the vacuum expectation value of Σ jumps from A = −1 to A = +1. Since

this jump appears at non-zero pion mass the thermo-dynamical description of the

behavior near c1 = 0 corresponds to a first order phase transition.

This situation is called normal scenario due to its similarity to the continuum

first order chiral phase transition around zero quark mass. In the continuum, of

course, the pions as Goldstone bosons become massless in the chiral point in contrast

86



4.1. EFFECTIVE POTENTIAL MODEL

to a non-zero minimal value of the pion mass characterizing the normal scenario on

the lattice.

The minimal value of the squared pion mass is in LχPT for vanishing value of

c1 proportional to c2, which is of O(a2). This means, if a negative value of c2 is

realized in Wilson lattice QCD the minimal value of m2
π will vanish like a2 when the

continuum limit is performed. On the other hand, if the Aoki scenario is realized,

the width of the Aoki phase will vanish like ∆m ∼ a3 [41]. Unfortunately LχPT by

itself is not able to make any prediction about the sign of c2.

Although the just discussed phase structure for Wilson lattice QCD from LχPT

is known already quite some time [41], the corresponding investigation for the Wil-

son twisted mass formulation of lattice QCD was missing. It was published in

Refs. [142, 97, 143] only after we published parts of the results that will be pre-

sented in this chapter. The introduction of a twisted mass term in the low energy

effective Lagrangian turns out to be straightforward. The only difference is one

additional term in the effective potential energy

Vχ = −c1A− c3B3 + c2A
2 . (4-8)

The new coefficient c3 ∼ µ is parameterizing the twisted mass in the effective theory

while the other coefficients are given as in the former discussion. If we now consider

values of m′ ∼ µ ∼ a2Λ3
QCD we again have to distinguish between negative and

positive values of c2. The sign of c3 depends on the value of µ, which we choose to

be positive, since it does not influence the qualitative picture of the phase structure.
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Figure 4.1: Phase diagram in the m− µ plane for the Aoki scenario.

For c2 > 0 and µ 6= 0 fixed the Aoki scenario changes as follows: charged

and uncharged pions are massive for all values of c1, even though the flavor SU(2)

symmetry is explicitly broken. The value A changes continuously as a function

of c1 and there is no phase transition. The situation for c2 > 0 is summarized

schematically in figure 4.1. For µ = 0 the two second order phase transition points

are indicated by the filled circles. On the line between these two circles the charged

pions are massless and the uncharged pion is massive. Note that this line corresponds

to a first order transition line where B3 jumps when the values of µ sweep across

zero.
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Figure 4.2: Phase diagram and jump in Σ for the normal scenario (c2 < 0).

In the case of c2 < 0 the influence of a non-zero value for the twisted mass

parameter µ is different. Here µ plays the rôle of a “magnetic field” and shifts away

the minimum of the potential Vχ from the values A = ±1. As indicated in figure

4.2(a) B3 adopts a non-zero value and |A| < 1. With increasing modulus of µ the

two minima of the potential approach each other and the transition line has an

endpoint for

µc ∼ a2 . (4-9)

For µ 6= 0 flavor and parity symmetry are explicitly broken and at µ = µc the un-

charged pion becomes massless while the charged pions remain massive. At c1 = 0

and µ < µc a first order phase transition takes place. The corresponding phase dia-

gram is schematically represented in figure 4.2(b), where we indicate the endpoints

of the first order transition line at µc by filled circles.

Before turning to a numerical check of LχPT it is useful to summarize what was

known in the literature so far about the phase structure of Wilson lattice QCD. In

a recent re-investigation [144, 145] of the Aoki phase with the Wilson gauge action

for values of the coupling β < 5 the authors found in agreement with previous

publications [146, 141, 147, 148, 149] evidence for an Aoki phase only for values of

β < 4.6. On the other hand, for values of β = 4.6 and β = 5 they found no evidence

for the realization of an Aoki scenario.

For values of β > 5 (Wilson plaquette gauge action), however, a systematic

investigation of the phase structure was missing. Even though there exist several

indications in the literature (see for instance [150]) for the realization of the normal

scenario in this region of β values the connection to the aforementioned results from

LχPT was never explicitly mentioned.
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4.2 Numerical results

4.2.1 Simulation points

We have chosen three values of the bare coupling constant β to study the phase

structure of lattice QCD with Wilson plaquette gauge action and Wilson twisted

mass fermions. The simulation parameters can be found in table 4.1. The values of

aµ were chosen such that r0µ is roughly constant for all values of β. Moreover, the

lattice sizes were taken to have a physical volume of at least 2 fm in order to allow

for save extraction of meson physics.

The values of the lattice spacing quoted in table 4.1 are estimates to give an

orientation. At β = 5.2 we have in addition to the lattice size quoted in table 4.1

results for 163 × 32 lattices to check for finite volume effects.

β L3 × T aµ a [fm]

5.1 123 × 24 0.013 0.20

5.2 123 × 24 0.010 0.16

5.3 163 × 32 0.008 0.14

Table 4.1: Simulation points for Wilson plaquette gauge action.

For the next subsections we will mainly concentrate on the results obtained at

β = 5.2, because the results are qualitatively the same for the three values of β.

After this description of the first order phase transition phenomenon we will in a next

step analyze also the scaling with the lattice spacing. For all these investigations

we used the hopping parameter representation of the Wilson twisted mass lattice

action in the twisted basis as given by Eq. (1-46).

4.2.2 Thermal cycles

We started our investigation of the phase diagram of zero temperature lattice QCD

by performing thermal cycles in κ while keeping fixed β = 5.2 and the value of the

twisted mass parameter aµ. These cycles are performed such that a starting value of

κstart is chosen and then κ is incremented, without performing further intermediate

thermalization sweeps, until a final value of κfinal is reached. At this point the

procedure is reversed and κ is decremented until the starting value κstart is obtained

back. At each value of κ 150 configurations are produced and averaged over.

In fig. 4.3 we show three such thermal cycles, performed at aµ = 0, aµ = 0.01

and aµ = 0.1 from bottom to top. In the cycles signs of hysteresis effects can

be seen for aµ = 0 and aµ = 0.01 while for the largest value of aµ = 0.1 such
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Figure 4.3: Thermal cycles in κ on 83 × 16 lattices at β = 5.2. The plaquette expectation

value is shown for aµ = 0.1, aµ = 0.01 and aµ = 0 (top to bottom). The triangles refer to

increasing κ-values, the diamonds to decreasing ones. The errors are the naive statistical

errors, without taking the autocorrelation time into account.

effects are hardly visible. Hysteresis effects in thermal cycles may be signs of the

existence of a first order phase transition. However, they should only be taken as

first indications. Nevertheless, they provide most useful hints for further studies to

search for meta-stable states.

4.2.3 Meta-stabilities

Guided by the results from the thermal cycles, we next performed simulations at

fixed values of aµ and κ, starting with ordered and disordered configurations, staying

again at β = 5.2. In fig. 4.4 we show the Monte Carlo time evolution of the plaquette

expectation value, in most cases on a 123 × 24 lattice. For several values of κ we

find coexisting branches with different average values of the plaquette. The gap (the

“latent heat”) appears to be rather large. At κ = 0.1717 we show the history of the

plaquette expectation value also on a larger (163 × 32) lattice. It seems that the

gap in the plaquette expectation value does not depend much on the lattice size,

suggesting that the meta-stability we observe here is not a finite volume effect. In

most cases the twisted mass is aµ = 0.01, except for the picture right in the upper
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Figure 4.4: Meta-stable states at β = 5.2. The plaquette value is plotted as a function of

the HMC time, i.e. the number of trajectories. The lattice size is 123 × 24 except for the

bottom figure where it is 163 × 32. The value for the twisted mass parameter is aµ = 0.01

except for the rightmost figure where it is aµ = 0.

line where it is aµ = 0. Since the meta-stabilities are also observed with aµ = 0 it

is already excluded that the phenomenon is only due to the twisted mass term.

The lifetime of a meta-stable state, i.e. the time before a tunneling to the stable

branch occurs, depends on the algorithm used. In fact, one may wonder, whether the

appearance of the meta-stable states seen in fig. 4.4 may not be purely an artefact

of our algorithms. We cannot completely exclude this possibility but we believe it is

very unlikely: we employed two very different kinds of algorithms in our simulations

as explained in subsection 1.4.2. We observe the meta-stable states with both, the

HMC and the TSMB algorithm. We also inter-changed configurations between the

two algorithms: a configuration generated with algorithm A was iterated further

with algorithm B and vice versa. We find that in such situations the plaquette

expectation value remains in the state where it has been before the interchange of

configurations took place. In addition, as we shall see below, the two states can be

characterized by well defined and markedly different values of basic physical quan-

tities. We therefore conclude that the meta-stable states are a generic phenomenon

of lattice QCD in the Wilson or Wilson twisted mass formulation. This conclusion

is strongly supported by the fact that it is consistent with the picture provided by
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Figure 4.5: The pseudo scalar mass squared in lattice units as a function of 1/(2κ) on two

lattice sizes measured separately on configurations in the two (meta)stable states. These

runs were performed at β = 5.2 and aµ = 0.01.

LχPT, which we discussed in section 4.1.1.

4.2.4 Pseudo scalar and quark masses

While in the preceding paragraph we looked at the plaquette expectation value

indicating a first order phase transition we will discuss this phenomenon in the

following paragraph in terms of pseudo scalar and quark masses. To this end we

selected separately configurations with high and with low plaquette expectation

value and measured the pseudo scalar mass mPS and the untwisted PCAC quark

mass mPCAC
χ , which we obtained as explained in section 1.3.

In fig. 4.5 we show the pseudo scalar mass squared in lattice units as a function

of 1/(2κ). We observe that the pseudo scalar mass is rather large and the most

striking effect in the graph is that it can have two different values at the same

κ value. Moreover, the minimal value of the pseudo scalar mass is not zero, but

assumes a rather large value.

If we consider the quark mass mPCAC
χ in fig. 4.6, we see that in the states with

a low plaquette expectation value the mass is positive while for high values of the

plaquette expectation it is negative. These quark masses with opposite sign coexist

for some values of κ.

Figs. 4.4-4.6 clearly reveal that for small enough values of µ meta-stabilities show

up in the quantities we have investigated, such as mPS, m
PCAC
χ and the average

plaquette, if m0 is close to its critical value. What “small enough µ” means is
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Figure 4.6: The PCAC quark mass mPCAC
χ in lattice units as defined in Eq. (1-80) as

a function of 1/(2κ) on two lattice sizes measured separately on configurations in the two

(meta)stable states. The values of β = 5.2 and aµ = 0.01 are fixed.

likely to change with β, see below. As a matter of fact, when m0 is significantly

larger (smaller) than mcrit we find mPCAC
χ to be positive (negative) and no signal of

meta-stabilities.

Of course, one might ask the question how we can know that the values of m0 are

close to its critical value, since we do not observe any value for m0 where mPCAC
χ = 0.

The answer to this question is that – as argued already above – in a finite volume

there exist no phase transition and therefore, mPCAC
χ must be an analytical function

of m0. Only due to the disability of the algorithm to correctly sample configuration

space in this region of m0 values, we get the impression (on the remnant) of a

first order phase transition. Analyticity in turn implies that in the region of meta-

stabilities an optimal algorithm would find a value of m0 where mPCAC
χ = 0, which

is, however, a finite volume effect: in infinite volume physical observables such as

mPCAC
χ jump at the phase transition point and hence, mPCAC

χ does not become zero.

The chiral point is then defined at the phase transition point.

The remark that meta-stabilities take place for m0 close to its critical value is

important for the interpretation of the observed phenomenon. As we explained in

section 4.1, LχPT predicts two different scenarios for the phase structure at small

quark masses. The so called normal scenario is characterized as follows: firstly, a first

order phase transition appears when the untwisted quark mass sweeps across zero

as long as the twisted mass parameter is smaller than a critical value µc. Secondly,

the pseudo scalar mass has a minimal value that is larger than zero.
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As meta-stabilities are expected to take place in the vicinity of a first order

phase transition, we therefore conclude that at this value of β the normal scenario

is realized.

Even though we discussed in this subsection only one value of β, the same phe-

nomenon appears for β = 5.1 and for β = 5.3: we observe meta-stabilities and a

non-zero value of the minimal pseudo scalar mass. In order to simplify the language,

we denote simulation points in the phase with high plaquette expectation value with

“high”, and correspondingly the simulation points with low plaquette expectation

value with “low”.

The dependence of the phase transition on the lattice spacing will be the topic

of the following subsection.

4.2.5 The phase transition as a function of the lattice spac-

ing

As mentioned already before, we have apart from β = 5.2 also simulation points

with β = 5.1 and β = 5.3. The details for all our simulation points can be found in

tables 4, 5, and 6 of Ref. [151]. The values of aµ were fixed for each β value such

that r0µ ≈ 0.03 for all values of β. Note that the value of r0/a depends on the value

of the quark mass and therefore, we had to choose a reference value for r0/a. We

have chosen this reference point to have (r0mPS)
2 = 1.5 and interpolated our data

for β = 5.1 and β = 5.3 to this point, while for β = 5.2 a short extrapolation was

necessary. We again used the ROOT and MINUIT packages from CERN to perform

the corresponding fits. The parameters are summarized in table 4.1.

In figure 4.7 we have plotted the plaquette expectation value 〈P 〉 as a function

of 1/(2κ) for the three values of β. The β-dependence shows that the gap in the

plaquette expectation value ∆P decreases substantially when moving from β = 5.1

(a ≈ 0.20 fm) to β = 5.3 (a ≈ 0.14 fm). One possible definition for the quantity

∆P is the difference between low and high phase plaquette expectation value at the

smallest value of κ where a meta-stability occurs. Moreover, one can see in figure 4.7

that the meta-stability region in 1/(2κ) gets narrower with increasing values of β.

Other quantities than ∆P show a similar behavior. Also the gap in mPCAC
χ between

positive and negative values shrinks significantly with increasing values of β.

We remark that the first order phase transition exists also in the continuum limit

where it occurs as the jump of the scalar condensate as a consequence of spontaneous

chiral symmetry breaking. Of course, in the continuum limit, the phase transition

occurs only for µ = 0 and the jump in 〈P 〉 will disappear.

An interesting practical question is, at what value of the lattice spacing a the

minimal pseudo scalar mass mmin
PS that can be simulated without meta-stability as-
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β r0/a r0µ ∆P mmin
PS [MeV]

5.1 2.497(29) 0.0327 0.0399(1) & 600

5.2 3.124(85) 0.0312 0.0261(1) & 630

5.3 3.628(60) 0.0290 0.0077(4) & 470

Table 4.2: Reference values for r0/a together with r0µ, the plaquette gap ∆P and mmin
PS

for the three β values.

sumes a value of, say, 300 MeV. At such a value contact to χPT could be established.

Unfortunately, the precise determination of the meta-stability region in κ and of a

minimal pseudo scalar mass is very difficult. We can estimate the meta-stability

region in κ from our data by including all κ values where meta-stabilities occur. A

lower bound for the minimal pseudo scalar mass in the low plaquette phase (high

plaquette phase) is then represented by the value of mPS at the lower (higher) end

of this κ interval. In the following we will mainly focus on the low plaquette phase

since this is the natural choice for studying lattice QCD.

We give in table 4.2 estimates for the minimal pseudo scalar masses in the low

plaquette phase in physical units. In addition, we provide estimates for ∆P . In

principle, it would be the natural next step to extrapolate the minimal pseudo scalar

mass and ∆P as a function of the lattice spacing. However, our present data do

not allow for a reliable and safe extrapolation. First of all, the determination of the

minimal pseudo scalar mass has a large ambiguity in itself since we do not know for

sure, which simulation point is stable or meta-stable. Second, the only three values

of β we have used give a too short lever arm to perform a trustworthy extrapolation.

And, last, the values of r0/a are very different in the two phases, which makes it

particularly difficult to follow ∆P as a function of the lattice spacing, since ∆P

contains information from both phases.

Nevertheless, an estimate on a more qualitative level yields a value of the lattice

spacing of a ∼ 0.07 fm − 0.1 fm where simulations with pseudo scalar masses of

about 300 MeV can be performed without being affected by the first order phase

transition∗.

At this point we can complete the picture of the phase structure of lattice QCD

with Wilson type quarks. It is schematically plotted in figure 4.8 in the β-µ-κ-space

on the basis of the predictions of LχPT and the numerical findings as presented in

this section and in the literature. For values of β smaller than about five it was

found that the Aoki scenario is realized [144, 145]. The phase is located around

the critical value of κ, its width in κ diminishes with increasing values of β and, as

∗We remark that we have indications for meta-stabilities even at the parameters of run D from

the last chapter, i.e. a ∼ 0.08 fm, µ = 0 and mPS ∼ 300 MeV. However, this might turn out to be

a thermalization phenomenon.
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Figure 4.7: Evolution of the gap in the plaquette expectation value for the three values of

β.

discussed in section 4.1, the Aoki phase disappears for non-vanishing values of µ.

The resulting area is plotted in dark-gray in figure 4.8. On the boundaries of this

area a second order phase transition takes place.

Since the first order phase transition in the normal scenario takes place for κ

equal to its critical value and values of |µ| smaller than the critical value µc, the

corresponding area of first order phase transition points is orthogonal to the Aoki

phase area. It is plotted in light-gray in figure 4.8. As discussed in section 4.1 the

value of µc goes to zero as a2 when the continuum limit is approached. Therefore

the width of the first order phase transition area gets correspondingly smaller. On

the boundary of this area are second order endpoints located.

In the region of β values between the two scenarios there are no data available

describing how the crossover exactly looks like. The design of this crossover as it

is plotted in figure 4.8 is a guess under the assumption that the two scenarios do

not exist in parallel for the same set of parameters and that the crossover is smooth

in β. However, this brings the discussion to the question how reliable predictions

of LχPT are, when the lattice spacing is larger than 0.15 fm. If LχPT to order a2

would explain the phase structure for the whole above mentioned range of lattice

spacings, the sign of c2 must change as a function of β.

We cannot answer this question, even though we think that it is very likely that

higher order lattice artefacts contribute significantly to the phase structure if the

lattice spacing is large. These higher order effects could then also avoid the necessity

of a sign change in c2, because the crossover can then be explained by higher order

lattice artifacts.

Finally, let us discuss the implications of the observed phase structure on simu-

lations in lattice QCD with Wilson like fermions. First of all the understanding of
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Figure 4.8: Schematic phase-diagram of Wilson twisted mass lattice QCD. The light-gray

surface is the area where a first order phase transition takes place (c2 < 0) when κ is

crossing its critical value. At the boundary of this area a second order endpoint is located.

The dark-gray area is the parameter region where the Aoki scenario is realized (c2 > 0). At

the border line of this area a second order phase transition takes place. At the value of β

where the two areas touch each other, c2 is supposed to be identically zero.

the phase structure is (or should be) an important pre-requisite for any large scale

simulation in lattice QCD, a piece of information that was missing so far.

Unfortunately, from an only practical point of view the actual phase structure

makes simulations with Wilson gauge action and Wilson like fermions difficult, if

not unfeasible. The reason is the following: due to the meta-stability phenomenon

simulations with pseudo scalar masses of the order of 300 MeV must be performed

with lattice spacings of a<∼ 0.1 fm and correspondingly large volumes in lattice

units. To perform then a reliable continuum extrapolation simulations with at least

two even smaller lattice spacings with the same physical volumes are needed. All

together large scale simulations in this setup become rather demanding, and are

therefore not realistic.

Note that in the two dimensional Gross-Neveu model [152] it is possible to

compute the phase structure analytically. Depending on the parameters the out-

come is very similar to the phase structure as observed for Wilson lattice QCD

[153, 154, 155, 156].
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(a) High plaquette phase.
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(b) Low plaquette phase.

Figure 4.9: Eigenvalues λ of the Wilson twisted mass fermion matrix with small absolute

value in case of the Wilson plaquette action at β = 5.2, µ = 0.01, κ = 0.1715 on a 123 × 24

lattice. Both high plaquette and low plaquette spectra are shown.

4.2.6 Changing the gauge action

As explained above we think that simulations with Wilson plaquette gauge action

and Wilson like fermions are not feasible due to the existence of the first order phase

transition. This is of course a rather un-satisfactory result and a cure is needed if

one wants to stick to Wilson twisted mass fermions in order to use the automatic

O(a) improvement property of mtmQCD.

If one compares the infra-red end of the eigenvalue spectrum of the twisted mass

operator at identical parameters, but on gauge configurations from the high and the

low plaquette phase separately as we show it in figure 4.9†, one can see that the

first order phase transition is visible as a strong difference in infra-red spectrum.

Therefore, the phase structure might be influenced by changing the infra-red eigen-

value spectrum, which is well known to be possible by changing the discretization

of the gauge action (see for instance [157, 158, 159, 160]). In fact, the JLQCD col-

laboration reported in Refs. [150, 161] for lattice QCD Nf = 3 non perturbatively

improved flavors of quarks that the meta-stability phenomenon disappears when the

Iwasaki gauge action [162, 163] or the tadpole improved Symanzik gauge action [13]

is used instead of the Wilson plaquette gauge action.

In order to check the effect of changing the gauge action on the phase structure

our collaboration performed simulations with two additional gauge actions: the

DBW2 gauge action [164, 165] and the tree level Symanzik (tlSym) improved gauge

†In the figure one can nicely see the eigenvalue free strip around the real axis, which is due to

the twisted mass term serving as an infra-red cut-off to the spectrum.
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action [166, 167]. Both of these belong to a one-parameter family of gauge actions

and include, besides the usual (1 × 1) Wilson plaquette term, planar rectangular

(1× 2) Wilson loops:

Sg =
∑

x

(

c0

4
∑

1≤µ<ν;µ,ν=1

1

3
{1− Re Tr(U2)}

+c1

4
∑

µ 6=ν;µ,ν=1

1

3
{1− Re Tr(U1×2

x,µ,ν)}
)

,

(4-10)

with the normalization condition c0 = 1− 8c1. (The notation c0, c1 is conventional.

c1 should not be confused with the parameter c1 in the effective potential model).

The coefficient c1 in Eq. (4-10) takes different values for the two choices of gauge

actions mentioned above:

c1 =

{

−1.4088 DBW2 gauge action

−1/12 tlSym gauge action .
(4-11)

Clearly, c1 = 0 corresponds to the original Wilson plaquette gauge action. Note that

the value of c1 = −0.331 corresponds to the Iwasaki gauge action [162, 163].

The c1 value for the DBW2 gauge action was determined by renormalization

group considerations. The value of c1 = −1/12 corresponds to the value computed

at tree level in order to improve the gauge action à la Symanzik. Thus, the tlSym

gauge action is in between the DBW2 and the Wilson plaquette gauge action, even

though the numerical value of c1 suggests that it is closer to the Wilson gauge action.

Our collaboration obtained very promising results for the DBW2 gauge action,

which are published in Ref. [168]. If we tune the parameters with the DBW2 gauge

action such that the lattice spacings are comparable to the one measured with Wilson

plaquette gauge action at β = 5.2, we find that the strength of the phase transition

is significantly reduced. Moreover, for even smaller lattice spacings, in a situation

now comparable to the one with Wilson plaquette gauge action at β = 5.3, we do

not find evidence for a first order phase transition. For the tlSym gauge action the

investigations are still ongoing, but the preliminary results are similar to the one

observed with the DBW2 gauge action. We summarize the results in figure 4.10,

where we show the plaquette expectation value as a function of κ for the DBW2, the

tlSym and the Wilson plaquette gauge action at approximately the same value for

a = 0.2 fm. For all of the three actions meta-stabilities are visible. The value of aµ

was only for the Wilson plaquette gauge action different from zero, which should,

however, decrease the effect for the plaquette gauge action.

Passing in figure 4.10 from the Wilson over the tlSym to the DBW2 gauge action

the jump in the plaquette expectation value becomes clearly smaller. In addition,
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Figure 4.10: Plaquette expectation values as a function of κ for the three different gauge

actions at approximately identical value of the lattice spacing a = 0.2 fm. For the DBW2

and the tlSym gauge action the value of µ was identical zero, whereas for the Wilson gauge

action we used aµ = 0.013. The continuous lines only connect the points and are meant to

guide the eyes. The meta-stable region is indicated by connecting high and low phase at

the first and the last meta-stable point.

the difference between DBW2 and tlSym is much smaller than the difference between

tlSym and Wilson plaquette. This outcome, if confirmed, is surprising, since one

could expect the effect to “scale” with c1.

Nevertheless, these results make us confident that changing the gauge action is

indeed a tool to weaken the effects of the first order phase transition, in agreement

with earlier findings [150, 161]. With a different gauge action than the Wilson

plaquette gauge action dynamical simulation with twisted mass fermions at maximal

twist might then become possible with lattice spacings equal or lower than 0.16 fm

and pseudo scalar masses small enough.

4.3 Conclusion

The main result of this chapter is that close enough to the continuum the phase

structure in lattice theories with Wilson or Wilson twisted mass fermions is the

expected continuum phase structure of QCD distorted by lattice artifacts.

In detail, we have explored the phase structure of lattice QCD with Wilson

twisted mass fermions and the Wilson plaquette gauge action. We have investigated

three values of the bare coupling β = 5.1, 5.2, 5.3 each with fixed value of aµ. By

changing the hopping parameter κ we encountered strong meta-stabilities for all

three values of β, visible in long living meta-stable states with either a low or a high
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plaquette expectation value. The PCAC quark mass mPCAC
χ in the different meta-

stable branches is positive for the branch with low plaquette expectation value and

negative for the branch with high plaquette expectation value. At the same time,

the pseudo scalar mass does not vanish at the chiral point but has a minimum at

a rather large value, which is at β = 5.3 still about 500 MeV. We stress here that

the aforementioned lower bound for the pseudo scalar mass does not originate from

algorithmic or technical problems, but it is a physical property of the lattice theory.

In fact, it would be interesting to investigate the phase structure of lattice QCD

with different formulations, such as the staggered or even the overlap formulation.

This phenomenon finds a natural interpretation in the effective potential model

from lattice chiral perturbation theory, both for pure Wilson fermions with µ = 0

[41] and for Wilson twisted mass fermions with µ 6= 0 [142, 97, 143]: the so-called

normal scenario with a first order phase transition and a non-vanishing pseudo scalar

mass at the chiral point is realized for the β value that we investigated.

We clearly observe that this first order phase transition weakens substantially,

when β is increased. Unfortunately, we cannot quantitatively locate the value of the

lattice spacing, where the effects of the first order phase transition becomes negligible

and where a minimal pseudo scalar mass of, say, 300 MeV can be reached. As an

estimate of such a value of the lattice spacing we give a ≈ 0.1 fm. Of course, this

would mean that a continuum extrapolation of physical results obtained on lattices

with linear extent of at least L = 2 fm would be very demanding, since the starting

point for such simulations would already require large lattices. It is therefore very

important to find alternative actions such that the value of the lattice spacing can

be lowered without running into problems with the first order phase transition.

With our results together with results available in the literature we were able

to draw a schematic picture of the phase structure of lattice QCD with Wilson

like fermions. While for values of β smaller than 5.0 there is evidence for the Aoki

scenario, in the range of β values between 5.1 and 5.3 we find evidence for the normal

scenario. The phase diagram is summarized in fig. 4.8.

Our collaboration also investigated the change of the observed phase structure

with two different gauge actions to replace the Wilson plaquette gauge action. These

are the DBW2 and the tree level Symanzik improved gauge actions, both of which

belong to a one-parameter family of gauge actions. The results we obtain are very

promising in a sense that it seems to become possible to reduce significantly the

effects of the first order phase transition at lattice spacings comparable to the one

used in this chapter (see Ref. [168] for details). This makes us confident that indeed

with a different gauge action than the Wilson plaquette gauge action dynamical sim-

ulations with automatic O(a) improved Wilson twisted mass fermions are feasible.

Finally, we remark that in the twisted mass formulation also non-degenerate
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quark flavors can be simulated without loosing the property of automatic O(a)

improvement [169, 46]. Together with the twisted mass parameter serving as an

infra-red cut-off for the eigenvalue spectrum, the twisted mass formulation then

becomes a promising candidate for large scale simulations with dynamical up-, down-

and strange quark.
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