
Chapter 3

Accelerating the Hybrid Monte

Carlo algorithm

In chapter 2 we have presented a scaling test of mtmQCD in the quenched approx-

imation with values of the pseudo scalar mass lower than 300 MeV. Of course, it

would be desirable to repeat such a study with two dynamical flavors of quarks and

light values of their masses, at least for a first study. But, unfortunately, simula-

tions with light dynamical quark flavors are by orders of magnitude more expensive

in terms of computer time than the corresponding simulations in the quenched ap-

proximation. The reason for this is basically that the generation of one gauge field

configuration is much more (O(100)) expensive and the gauge configurations depend

in full QCD on the values of the quark masses.

The Hybrid Monte Carlo (HMC) algorithm [75] is one widely used algorithm to

perform dynamical simulations. It is an exact algorithm, which combines molecular

dynamics evolution of the gauge fields with a Metropolis accept/reject step to correct

for discretization errors in the numerical integration of the corresponding equations

of motion. However, in its original form the HMC algorithm is even on computers

available today not able to tackle simulations with light quarks on fine lattices. Due

to increasing iteration numbers in the solvers and autocorrelation times the costs C

are expected to increase as [105]

C = K

(

mPS

mV

)−6

L5 a−7 ,

where mPS and mV are the pseudo scalar and the vector mass, L is the spatial lattice

extent and a the lattice spacing. The proportionality factor K was found to be too

large to allow for simulations with realistic mass values on fine lattices [105]. Hence,

during the last years a lot of effort has been invested to decrease K and to improve

the cost scaling behavior of the HMC. The list of improvements that were found

reaches, for instance, from even/odd preconditioning [106] over multiple time scale
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CHAPTER 3. ACCELERATING THE HMC ALGORITHM

integration [107] to mass preconditioning (Hasenbusch acceleration) [108, 109], to

mention only those that are immediately relevant for the present work. It is worth

noting that many of the known improvement tricks can be combined. In addition,

alternative multi-boson methods [74] have been suggested, which, however, appear

not to be superior to the HMC algorithm, although they have conceptual advantages

compared to the HMC algorithm.

Recently in Ref. [110] a HMC variant as a combination of multiple time scale in-

tegration with domain decomposition as preconditioner with excellent scaling prop-

erties with the quark mass was presented. In addition, the value of K seems to

be significantly lower than for other HMC variants. Thus this algorithm can be

expected to be most promising when one wants to simulate small quark masses on

fine lattices.

In this chapter we are going to present yet another variant of the HMC algorithm

similar to the one of Refs. [111, 112] comprising multiple time scale integration with

mass preconditioning. We test this algorithm for standard Wilson fermions at β =

5.6 and at pseudo scalar masses ranging from mPS = 380 MeV to mPS = 670 MeV,

which are the simulation points of Ref. [110]. We show that in this situation the

algorithm has similar scaling properties and performance as the method presented

in Ref. [110]. From the performance data obtained with our HMC variant we find

that K is reduced and the scaling of the cost with the quark mass is improved when

compared to performance data available in the literature [105, 113, 114].

3.1 HMC algorithm

The variant of the HMC algorithm we will present here is applicable to a wide

class of lattice Dirac operators, including twisted mass fermions, various improved

versions, staggered fermions, and even the overlap operator. Nevertheless, in order

to discuss a concrete example, we restrict ourselves in this chapter to the Wilson-

Dirac operator (1-26) for nf = 2 flavors of mass degenerate quarks with Wilson

parameter r set to one. We do not expect that the algorithm properties depend

significantly on the particular choice of the Dirac operator.

Since DW (cf. Eq. (1-26)) fulfills the property γ5DWγ5 = D†
W it is convenient to

define the hermitian Wilson-Dirac operator

Q = γ5DW . (3-1)

After integrating out the fermion fields (cf. Eq. (1-15)) we have to deal with

det(DW)2 = det(Q2) in the simulations. This is usually done by re-expressing the

determinant with a Gaussian integral over bosonic fields φ, φ†:

det(DW)2 = det(Q)2 ∝
∫

Dφ†Dφ exp
(

−SPF[U, φ†, φ]
)

, (3-2)
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3.1. HMC ALGORITHM

where SPF[U, φ†, φ] = |Q−1φ|2 is the so called pseudo fermion action. Formally the

φ-fields are identical to the matter fields ψ since they have the same degrees of

freedom, but follow the statistic of bosonic fields and are therefore called pseudo

fermion fields. The partition function (1-21) is then given by

Z =

∫

DU DφDφ† e−SG[U ]−SPF[U,φ,φ†] . (3-3)

In order to perform Monte Carlo simulations for this partition function the integral

over the pseudo fermion fields could be included in the important sampling process.

This is, however, not needed, since for a given gauge field

e−SPF[U,φ,φ†] = e−R
†R (3-4)

is a Gaussian distribution, which can be generated exactly. Therefore only the

gauge fields have to be generated in a Markov chain, which is implemented by the

Hybrid Monte Carlo algorithm. To set up the HMC algorithm [75] we introduce

traceless Hermitian momenta Px,µ as conjugate fields to the gauge fields Ux,µ and a

Hamiltonian

H(P,U, φ, φ†) =
1

2

∑

x,µ

P 2
x,µ + SG[U ] + SPF[U, φ, φ†] . (3-5)

The algorithm is then composed out of the following steps:

1. Global heat-bath for momenta and pseudo fermion fields.

The initial momenta are randomly produced according to a Gaussian distri-

bution exp(−P 2/2). Moreover, random fields R are produced from a distribu-

tion like exp(−R†R) and the initial pseudo fermion fields are computed with

φ = QR.

2. Molecular dynamics evolution.

Production of a proposal gauge configuration U ′ and proposal momenta P ′ by

molecular dynamics evolution (integrating Hamilton’s equations of motion) of

the gauge fields U and the momenta P at fixed pseudo fermion fields φ. If

the integration of the corresponding equations of motion can be performed

exactly, the Hamiltonian is conserved under this evolution.

3. Metropolis accept/reject step.

The proposals U ′ and P ′ are accepted with the probability min{1, exp(−∆H)},
where ∆H = H(P ′, U ′, φ, φ†)−H(P,U, φ, φ†).

This step is needed because the integration of the equations of motion can in

practice be done only numerically and hence an acceptance step is needed to

correct for discretization errors.
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CHAPTER 3. ACCELERATING THE HMC ALGORITHM

If the integration scheme is reversible and area preserving it is possible to prove that

the HMC algorithm satisfies the detailed balance condition [75] and hence the HMC

algorithm is exact.

Since the Hamiltonian is conserved up to discretization errors, the integration

can be set up such that the acceptance rate is high while the gauge configurations

are globally updated.

3.1.1 Molecular dynamics evolution

In the molecular dynamics part of the HMC algorithm the gauge fields U and the

momenta P need to be evolved in a fictitious computer time t. With respect to t,

Hamilton’s equations of motion read

dU

dt
=
dH

dP
= P ,

dP

dt
= −dH

dU
= − dS

dU
, (3-6)

where we set S = SG + SPF and d/dU , d/dP formally denote the derivative with

respect to group elements. Since analytical integration of the former equations of

motion is normally not possible, these equations must in general be integrated with

a discretized integration scheme that is area preserving and reversible, such as the

leap frog algorithm. The discrete update with integration step size ∆τ of the gauge

field and the momenta can be defined as

TU(∆τ) : U → U ′ = exp (i∆τP )U ,

TS(∆τ) : P → P ′ = P − i∆τδS ,
(3-7)

where δS is an element of the Lie algebra of SU(3) and denotes the variation of S

with respect to the gauge fields. The computation of δS is the most expensive part

in the HMC algorithm since the variation of SPF reads

δSPF = −φ† 1

Q2
δ(Q2)

1

Q2
φ (3-8)

and thus involves the inversion of the Wilson-Dirac operator. With (3-7) one basic

time evolution step of the so called leap frog algorithm reads

T = TS(∆τ/2) TU(∆τ) TS(∆τ/2) , (3-9)

and a whole trajectory of length τ is achieved byNMD = τ/∆τ successive applications

of the transformation T .

3.1.2 Integration with multiple time scales

Consider a Hamiltonian of the form

H =
1

2

∑

x,µ

P 2
x,µ +

k
∑

i=0

Si[U ] , (3-10)
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3.1. HMC ALGORITHM

with k ≥ 1. For instance, with k = 1 S0 might be identified with the gauge action

and S1 with the pseudo fermion action of Eq. (3-5).

Clearly, in order to keep the discretization errors in a leap frog like algorithm

small, the time steps have to be small if the driving forces are large. Then, if

the forces originating from the single parts in the Hamiltonian (3-10) differ signif-

icantly in their absolute values, it might be valuable to integrate the different Si
on time scales inverse proportionally deduced from the corresponding forces. This

will maximally improve the algorithm performance if the most expensive part can

be integrated with the largest molecular dynamics steps size.

The leap frog integration scheme can be generalized to multiple time scales as

has been proposed in Ref. [107] without loss of reversibility and the area preserving

property. The scheme with only one time scale can be recursively extended by

starting with the definition

T0 = TS0(∆τ0/2) TU(∆τ0) TS0(∆τ0/2) , (3-11)

with TU defined as in Eq. (3-7) and where TSi
(∆τ) is given by

TSi
(∆τ) : P → P − i∆τδSi[U ] . (3-12)

As ∆τ0 will be the smallest time scale, we can recursively define the basic update

steps Ti, with time scales ∆τi as

Ti = TSi
(∆τi/2) [Ti−1]

Ni−1 TSi
(∆τi/2) , (3-13)

with integers Ni and 0 < i ≤ k. One full trajectory τ is then composed by [Tk]
Nk .

The different time scales ∆τi in Eq. (3-13) must be chosen such that the total number

of steps on the i-th time scale NMDi
times ∆τi is equal to the trajectory length τ for

all 0 ≤ i ≤ k: NMDi
∆τi = τ . This is obviously achieved by setting

∆τi =
τ

Nk ·Nk−1 · ... ·Ni

=
τ

NMDi

, 0 ≤ i ≤ k , (3-14)

where NMDi
= Nk ·Nk−1 · ... ·Ni.

In Ref. [107] also a partially improved integration scheme with multiple time

scales was introduced, which reduces the size of the discretization errors. Again, we

assume a Hamiltonian of the form (3-10) with now k = 1. By defining similar to T0

TSW0 = TS0(∆τ0/6) TU(∆τ0/2) TS0(2∆τ0/3) TU(∆τ0/2) TS0(∆τ0/6) , (3-15)

the basic update step of the improved scheme – usually referred to as the Sexton-

Weingarten (SW) integration scheme – reads

TSW1 =TS1(∆τ1/6)

[TSW0 ]
N0 TS1(2∆τ1/3)

[TSW0 ]
N0 TS1(∆τ1/6) ,

(3-16)
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CHAPTER 3. ACCELERATING THE HMC ALGORITHM

where ∆τ0 = ∆τ1/(2N0). This integration scheme not only reduces the size of the

discretization errors, but also sets for S0 a different time scale than for S1. Hence, it

is one special example for an integration scheme with multiple time scales and can

easily be extended to more than two time scales by recursively defining (0 < i ≤ k):

TSWi
=TSi

(∆τi/6)

[TSWi−1
]Ni−1 TSi

(2∆τi/3)

[TSWi−1
]Ni−1 TSi

(∆τi/6) .

(3-17)

The different time scales for the SW integration scheme are defined by

∆τi =
τ

(2Nk) · (2Nk−1) · ... · (2Ni)
=

τ

NMDi

, i ≤ k . (3-18)

Note that the SW partially improved integration scheme was originally invented to

make use of the fact that the computation of the variation of the gauge action is

cheap as compared to the variation of the pseudo fermion action and in addition

the time scales are chosen in order to cancel certain terms in the discretization error

exactly [107]. It can be generalized to integrators of the form

T2MN0 = TS0(λ∆τ0) TU(∆τ0/2) TS0((1− 2λ)∆τ0) TU(∆τ0/2) TS0(λ∆τ0) , (3-19)

with a real parameter λ that needs to be tuned [115], which are called second order

Minimal Norm (2MN) integration schemes. These schemes can be generalized to

multiple time scales in exactly the same way as the SW integration scheme. However,

we restrict ourselves in this work to the LF and the SW integration scheme only,

also because from the results of Ref. [115] we do not expect a large improvement of

2MN schemes when compared to the SW scheme.

3.2 Mass Preconditioning

The arguments presented in this section are made for simplicity only for the not

even/odd preconditioned Wilson-Dirac operator. The generalization to the even/odd

preconditioned case is simple and can be found in Ref. [108] and the appendix B.1.

Mass preconditioning [108] – also known as Hasenbusch acceleration – relies on

the observation that one can rewrite the fermion determinant as follows

det(Q2) = det(W+W−)
det(Q2)

det(W+W−)

=

∫

Dφ†
1Dφ1 Dφ†

2Dφ2 e
−φ†1

1
W+W− φ1−φ

†
2W

+ 1
Q2W

−φ2

=

∫

Dφ†
1Dφ1 Dφ†

2Dφ2 e
−SPF1

−SPF2 .

(3-20)
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3.2. MASS PRECONDITIONING

The preconditioning operators W± can in principle be freely chosen, but in order

to let the preconditioning work W+W− should be a reasonable approximation of

Q2, which is, however, cheaper to simulate. Moreover, to allow for Monte Carlo

simulations, det(W+W−) must be positive. The generalized Hamiltonian (3-5) cor-

responding to Eq. (3-20) reads

H =
1

2

∑

x,µ

P 2
x,µ + SG[U ] + SPF1 [U, φ1, φ

†
1] + SPF2 [U, φ2, φ

†
2] , (3-21)

and it can of course be extended to more than one additional field.

Note that a similar approach was presented in Ref. [116], in which the intro-

duction of n pseudo fermion fields was coupled with the n-th root of the fermionic

kernel.

One particular choice for W± is to take for W+ and W− the one flavor compo-

nents of a two flavor twisted mass operator

W± = Q± iµ , (3-22)

which can be written as a two flavor operator as known from Eq. (1-47)

(

W+

W−

)

= γ5

[(

DW

DW

)

+ iµγ5τ3

]

(3-23)

One important property of this choice is that W+W− = Q2 + µ2 and that (W+)† =

W−. For small values of µ the product W+W− is certainly a reasonable approxi-

mation for Q2, but due to the mass shift µ2 it is cheaper to invert. We remark that

in general also Q itself can be a twisted mass operator.

In Ref. [109, 117] it was argued that the optimal choice for µ is given by µ2 =√
λmaxλmin. Here λmax (λmin) is the maximal (minimal) eigenvalue of Q2. The

reason for the above quoted choice is as follows: the condition number of Q2 + µ2 is

approximately λmax/µ
2 and the one of Q2/(Q2 + µ2) approximately µ2/λmin. With

µ2 =
√
λmaxλmin these two condition numbers are equal to

√

λmax/λmin, both of

them being much smaller than the condition number of Q2 which is λmax/λmin.

Since the force contribution in the molecular dynamics evolution is supposed to

be proportional to some power of the condition number, the force contribution from

the pseudo fermion part in the action is reduced and therefore the step size ∆τ can

be increased, in practice by about a factor of 2 [108, 109]. Therefore Q2 must be

inverted only about half as often as before and if the inversion of W+W−, which is

needed to compute δSPF1 , is cheap compared to the one of Q2 the simulation speeds

up by about a factor of two [108, 109].

One might wonder why the reduction of the condition number from K to
√
K

gives rise to only a speedup factor of about 2. One reason for this is that one cannot
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CHAPTER 3. ACCELERATING THE HMC ALGORITHM

make use of the reduced condition number of Q2/(Q2 + µ2) in the inversion of this

operator, because in the actual simulation still the badly conditioned operator Q2

must be inverted to compute the variation of SPF2 = φ†
2
W+W−

Q2 φ2.

3.2.1 Mass preconditioning and multiple time scale integra-

tion

In the last subsection we have seen that mass preconditioning is indeed an effec-

tive tool to change the condition numbers of the single operators appearing in the

factorization (3-20) compared to the original operator. But, this reduction of the

condition numbers only influences the forces and not the number of iterations to

invert the physical operator Q2.

Therefore, it might be advantageous to change the point of view: instead of

tuning the condition numbers in a way à la Refs. [108, 109] we will exploit the

possibility of arranging the forces by the help of mass preconditioning with the

aim to arrange for a situation in which a multiple time scale integration scheme is

favorable, as explained at the beginning of section 3.1.2.

The procedure can be summarized as follows: use mass preconditioning to split

the Hamiltonian in different parts. The forces of the single parts should be adjusted

by tuning the preconditioning mass parameter µ such that the more expensive the

computation of δSPFi
is, the less it contributes to the total force. This is possible

because the variation of (Q2 + µ2)/Q2 is, for |µ| < 1, (formally) reduced by a factor

µ2 compared to the variation of 1/Q2. In addition, W+W− = Q2+µ2 is significantly

cheaper to invert than Q2. Then integrate the different parts on time scales chosen

according to the magnitude of their force contribution.

The idea presented in this chapter is very similar to the idea of separating infrared

and ultraviolet modes as proposed in Ref. [118]. This idea was applied to mass

preconditioning by using only two time scales in Refs. [111, 112] in the context of

clover improved Wilson fermions. However, a comparison of our results presented

in the next section to the ones of Refs. [111, 112] is not possible, because volume,

lattice spacing and masses are different.

3.3 Numerical results

3.3.1 Simulation points

In order to test the HMC variant introduced in the last sections, we decided to

compare it with the algorithm proposed and tested in Ref. [110]. To this end we

performed simulations with the same parameters as have been used in Ref. [110]:
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κ mq [MeV] mPS [MeV] mV [MeV] r0/a

A 0.1575 66(3) 665(17) 947(20) 6.04(10)

B 0.1580 34(1) 485(13) 836(24) 6.18(07)

C 0.15825 22(1) 380(17) 839(33) 6.40(15)

Table 3.1: The (un-renormalized) quark mass mq, the pseudo scalar mass mPS and the

vector mass mV are given in in physical units at the three simulation points A, B and

C. We use Wilson fermions at β = 5.6 on 243 × 32 lattices. The scale was set by the

use of r0 = 0.5 fm and we give the value of r0/a at each simulation point. The values of

all the quantities agree within the errors with the numbers quoted in Refs. [110, 68, 114],

apart from the value for r0/a at simulation point B, which disagrees by two sigmas to the

value quoted in Ref. [68]. This is presumably due to the different methods to measure

this quantity. For the measurements we used at each simulation point 100 thermalized

configurations separated by 5 trajectories.

Wilson-Dirac operator with plaquette gauge action at β = 5.6 on 243 × 32 lattices.

We have three simulation points A, B and C with values of the hopping parameter

κ = 0.1575, κ = 0.1580 and κ = 0.15825, respectively. The trajectory length was

set to τ = 0.5. The details of the physical parameters corresponding to the different

simulation points can be found in table 3.1. Additionally, this choice of simulation

points allows at the two parameter sets A and B a comparison to results published

in Ref. [114], where a HMC algorithm with a plain leap frog integration scheme was

used.

In addition to the three simulation points A, B and C we have one additional

point D with κ = 0.15835. According to Ref. [119] this value of κ corresponds to a

pseudo scalar mass of about 294 MeV. Unfortunately, the history of our run is too

short to be really conclusive, nevertheless we will use run D to get a preliminary

idea of the performance of our algorithm towards even smaller quark and pseudo

scalar masses.

3.3.2 Details of the implementation

We have implemented a HMC algorithm for two flavors of mass degenerate quarks

with even/odd preconditioning and mass preconditioning with up to three pseudo

fermion fields (cf. appendix B.1 on page 109). The boundary conditions are periodic

in all directions apart from anti-periodic ones for the fermion fields in time direction.

For the gauge action the usual Wilson plaquette gauge action (1-25) is used. The

implementation is written in C and uses double precision throughout.

For the mass preconditioning we use

W±
j = γ5(DW[U,m0]± iµjγ5) , (3-24)
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with j = 1, 2 for the factorization in Eq. (3-20), where the µj are the additional

(unphysical) twisted mass parameters. Therefore, the pseudo fermion actions SPFj

are given by

SPFj
[U ] =































φ†
1

(

1
W+

1 W
−
1

)

φ1 j = 1 ,

φ†
j

(

W+
j−1W

−
j−1

Q2

)

φj j = NPF ,

φ†
j

(

W+
j−1W

−
j−1

W+
j W

−
j

)

φj otherwise ,

(3-25)

where we always chose µj > 0 and µj+1 > µj for all values of j. NPF denotes the

actually used number of pseudo fermion fields.

We have implemented the leap frog (LF) and the Sexton-Weingarten (SW) in-

tegration schemes with multiple time scales each as described by Eq. (3-13) and

Eq. (3-17), respectively, where k in both equations has to be identified with NPF.

The time scales are defined as in Eq. (3-14) for the LF integration scheme and as

in Eq. (3-18) for the SW scheme, with N0 corresponding to the gauge action and Nj

to SPFj
for NPF ≥ j > 0. Note that for the LF integration scheme for one trajectory

there are NNPF
· . . . ·Nj + 1 inversions of the corresponding operator needed, while

for the SW integration scheme there are 2NNPF
· . . . · 2Nj + 1 inversions needed.

For the inversions we used the CG and the BiCGstab iterative solvers. As

reported in section 2.4.1 the CG iterative solver is best suited for the even/odd

preconditioned twisted mass operator. Thus we used for all inversions of mass pre-

conditioning operators exclusively the CG iterative solver.

For the pure Wilson-Dirac operator DW the BiCGstab iterative solver is known

to perform best [120]. In case of dynamical simulations, however, usually the squared

hermitian operator needs to be inverted and in this case the CG is comparable to

the BiCGstab. Only in the acceptance step, where γ5DW (or rather the even/odd

preconditioned version of it) needs to be inverted to a high precision, the usage of

the CG would be wasteful. For this work we used the BiCGstab iterative solver for

all inversions of either the pure Wilson-Dirac operator itself or (γ5DW)2.

The accuracy in the inversions was set during the computation of δSPFj
to ǫj,

which means that the inversions were stopped when the approximate solution ψj of

Ajψj = φj fulfills
‖φj − Ajψj‖
‖φj‖

≤ ǫj ,

where Aj denotes the operator corresponding to SPFj
. During the inversions needed

for the acceptance step the accuracy was set to ǫ̃ = 10−10 for all pseudo fermion

actions. The inversions in the acceptance step must be rather precise in order not

to introduce systematic errors in the simulation, while for the force computation the

precision can be relaxed as long as the reversibility violations are not too large. The
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Int. NPF Ntherm N{0,1,2,3} ǫ1, ǫ2, ǫ3 µ1, µ2 Pacc

A SW 3 600 3, 2, 1, 3 10−7, 10−8, 10−8 0.29, 0.057 0.86

B SW 3 1000 3, 2, 1, 3 10−8, 10−8, 10−8 0.25, 0.057 0.81

C LF 2 1500 5, 6, 10, - 10−8, 10−8, - 0.054, - 0.80

Table 3.2: HMC algorithm parameters for the three simulation points. We give the inte-

gration scheme, the number of pseudo fermion fields NPF, the number Ntherm of trajectories

of length 0.5 used to thermalize the systems, the number Ni of molecular dynamics steps

for the multiple time scale integration scheme, the residues ǫi used in the solver for the force

computation, the preconditioning mass parameter µi and the acceptance rate. We remind

that N0 corresponds to the gauge action.

values of ǫj and ǫ̃ have been set such that the reversibility violations, which should

be under control [121, 122, 123, 124], are on the same level as reported in Ref. [110],

which means that the differences in the Hamiltonian are of the order∗ of 10−5. The

values for ǫj can be found in table 3.2.

The errors and autocorrelation times were computed with the so called Γ-method

as explained in section 1.4.3, Eq. (1-103) on page 33 and in Ref. [78] (see also

Ref. [77]).

3.3.3 Force contributions

The force contributions to the total force from the separate parts in the action we

label by FG for the gauge action and by Fj for the pseudo fermion action SPFj
. Since

the variation of the action with respect to the gauge fields is an element of the Lie

algebra of SU(3), we used ‖X‖2 = −2 TrX2 as the definition of the norm of such

an element.

In order to better understand the influence of mass preconditioning on the HMC

algorithm we computed the average and the maximal norm of the forces FG, F1, F2

and F3 on a given gauge field after all corresponding gauge field updates:

‖F‖aver =
1

4L3T

∑

x,µ

‖F (x, µ)‖ ,

‖F‖max = max
x,µ
{‖F (x, µ)‖} ,

(3-26)

and averaged them over all measurements, which we indicate with 〈.〉. Examples of

force distributions for different runs can be found in figure 3.1. These investigations

lead to the following observations generic to our simulation points:

∗In case of 80% acceptance rate the average value of
√

∆H2 is about 0.1. Therefore, a reversibil-

ity violation of the order 10−5 is supposed to be safe.
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Maximal force
Average force〈‖F (x, µ)‖〉

FG F1 F2 F3

10

1

0.1

0.01

(a) Forces for run B.

Maximal force
Average force〈‖F (x, µ)‖〉

FG F1 F2

10

1

0.1

0.01

(b) Forces for run C.

Figure 3.1: Average and maximal forces for simulation points B and C. The statistical

errors are too small to be visible due to the large number of measurements.

• With the choice of parameters as given in table 3.2 the single force contribu-

tions are strictly hierarchically ordered with

‖FG‖aver,max > ‖F1‖aver,max > ‖F2‖aver,max > ‖F3‖aver,max.

• The maximal force is up to one order of magnitude larger than the average

force. This can only be explained by large local fluctuations in this quantity.

These fluctuations become larger the smaller the mass is.

Moreover, the force ordering and sizes look very similar to the one reported in

Ref. [110].

In a next step we performed some test trajectories without mass preconditioning

in order to compare the fermionic forces with and without mass preconditioning.

For the value of κ = 0.15825 (run C) the result can be found in figure 3.2. The

bars labeled with F correspond to the fermion force without mass preconditioning.

The labels F1 and F2 refer to the two fermionic forces for the run C with mass

preconditioning. The following ratios are of interest:

‖F‖aver

‖F1‖aver

≈ 1 ,
‖F‖aver

‖F2‖aver

≈ 42 ,

‖F‖max

‖F1‖max

≈ 1.3 ,
‖F‖max

‖F2‖max

≈ 29 .

These ratios show that the average and maximal norm of F2 is strongly reduced

compared to the average and maximal norm of F . We observe that the maximal
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Maximal force
Average force〈‖F (x, µ)‖〉

F F1 F2

10
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Figure 3.2: Comparison between the fermionic forces of run C (F1 and F2) and a run with

κ = 0.15825 without mass preconditioning and multiple time scales (F ). The statistical

errors are too small to be visible.

norm is slightly less reduced than the average norm and, by varying µ1, we could

confirm that the norm (average and maximal) of F2 is roughly proportional to µ2
1.

As a further observation, one sees from figure 3.2 or from the ratios quoted above

that the norm of F1 is almost identical to the norm of F , which is the case for both

the average and the maximal values.

From these investigations we think one can conclude the following: in the first

place it is possible to tune the value of µ1 (and possibly µ2) such that the most

expensive force contribution of F2 (or F3) to the total force becomes small. Secondly,

since in the example above the force contributions for F and F1 are almost identical

– even though the masses are very different – we conclude that the norm of the

forces does not explain the whole dynamics of the HMC algorithm. For this point

see also the discussion in the next subsection.

3.3.4 Tuning the algorithm

As mentioned already in section 3.2.1 the tuning of the different mass parameters

and time scales could become a delicate task. Therefore we decided to tune the

parameters µ1 and possibly µ2 such that the molecular dynamics steps number

NNPF
for the LF or 2NNPF

for the SW integration scheme – the number of inversions

of the original Wilson-Dirac operator in the course of one trajectory – is about the

same as the corresponding values in Ref. [110]. The values we have chosen for the

mass parameters µi and the step numbers Ni can be found in table 3.2 and one can
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κ Nmeas 〈P 〉 τint(P )

A 0.1575 740 0.57250(3) 6(2)

B 0.1580 1020 0.57339(3) 7(2)

C 0.15825 905 0.57384(4) 10(4)

Table 3.3: For the three runs this table contains the number of measurements for the pla-

quette Nmeas, the mean plaquette expectation values and the corresponding autocorrelation

times.

see by comparing to Ref. [110] that the step numbers Ni (or 2Ni) are indeed quite

similar.

The computation of the variation of SG is, compared to the variations of the

other action parts, almost negligible in terms of computer time. Therefore we set N0

always large enough to ensure that the gauge part does not influence the acceptance

rate negatively and we leave the gauge part out in the following discussion.

If one compares e.g. for simulation point C the average norm of the fermionic

forces, then one finds that it increases like 1 : 40 (‖F2‖ : ‖F1‖). The maximal

norm of the forces is accordingly strongly ordered, approximately like 1 : 20. The

corresponding relations in the step numbers we had to choose (see the values in

table 3.2) increase only like 1 : 6.

This indicates that the norm of the forces can indeed serve as a first criterion to

tune the time scales and the preconditioning masses, by looking for a situation in

which ∆τi‖Fi‖max is a constant independent of i. But, it cannot be the only criterion.

Finally, the acceptance rate is determined by 〈exp(−∆H)〉, which depends in a more

complicated way on the forces, see e.g. Ref. [125].

It is well known that simulations with the HMC algorithm in particular for

small quark masses become often unstable if the step sizes are too large. It is an

important result that with the choice of parameters as can be found in table 3.2 our

simulations appear to be very stable down to quark masses of the order of 20 MeV.

We did encounter only few large, but not exceptional, fluctuations in ∆H during

the runs. A typical history of ∆H and the average plaquette value can be found in

figure 3.3 for run C. Note that even a pion mass of about 380 MeV might be still

to large to observe the asymptotic behavior of the algorithm.

All our runs reproduce the average plaquette expectation values quoted in Ref. [110]

and, where available, in Ref. [114] within the statistical errors. Our results together

with the number of measurements Nmeas and the integrated autocorrelation time

can be found in table 3.3. We also measured the values of the pseudo scalar, the

vector and the current quark mass and our numbers agree within errors with the
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(a) Monte Carlo history of ∆P .
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(b) Monte Carlo history of ∆H.

Figure 3.3: Monte Carlo histories of the deviation ∆P of the average plaquette from its

mean value and of ∆H, both for simulation point C.

values quoted in Refs. [110, 114]. These measurements were done on 100 configu-

rations separated by 5 trajectories at each simulation point and we computed the

aforementioned quantities with the methods explained in section 1.3. In order to

improve the signal we used Jacobi smearing and random sources. Our results in

physical units can be found in table 3.1. Note that the value for mV at simulation

point C has to be taken with some caution, because the lattice time extend was a

bit too small to be totally sure about the plateau.

In order to set the scale we determined the Sommer parameter r0/a [59] as

defined and explained in section 1.3.4 on page 28. For our calculation of r0/a in this

chapter we used the HYP static action† [64, 66], the tree-level improved force and

potential [59] and we enhanced the overlap with the ground state of the potential

using APE smeared [60] spatial gauge links. The results can be found in table 3.1.

For run A and B our values for r0/a agree very well within the errors with the value

quoted in Ref. [68, 69]. One should keep in mind, however, that the values for r0/a

are computed on rather low statistics‡.

3.3.5 Algorithm performance

Any statement about the algorithm performance has to include autocorrelation

times. Since different observables can have in general rather different autocorre-

lation times, also the algorithm performance is observable dependent. However, in

the following we will use the plaquette integrated autocorrelation time τint(P ) to

determine the performance.

†First results applying an improved static action in the computation of the static potential

already appeared in [63, 69].
‡The computation of the values for r0/a was performed by A. Shindler and U. Wenger.
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κ ν ν from [110] ν from [114]

A 0.15750 0.09(3) 0.69(29) 1.8(8)

B 0.15800 0.11(3) 0.50(17) 5.1(5)

C 0.15825 0.23(9) 0.28(9) -

Table 3.4: Values of the cost figure ν compared to the corresponding values of Refs. [110]

and [114], where available.

The values we measured for τint(P ) can be found in table 3.3. It is interesting to

observe that for runs A and B the values for τint(P ) are smaller than the one found

for the domain decomposition method. An explanation for this may be that in the

algorithm of Ref. [110] a subset of all link variables is kept fixed during the molecular

dynamics evolution, while in our HMC variant all link variables are updated.

Our value for τint(P ) for run A is almost identical to the corresponding one

found in Ref. [114]. In contrast, for simulation point B our value is a factor of three

smaller, which is – we think – partly due to the significantly smaller acceptance rate

of about 60% quoted in Ref. [114] for this point and partly due to the algorithmic

improvements presented in this chapter.

A measure for the performance of the pure algorithm, which is implementation

and machine independent, but incorporating the autocorrelation times is provided

by the cost figure

ν = 10−3(2n+ 3)τint(P ) (3-27)

that has been introduced in Ref. [110]. n in Eq. (3-27) stands for either NNPF
in

case a LF integration scheme is used or 2NNPF
in case a SW integration scheme is

used. ν represents the average number of inversions of the Wilson-Dirac operator

with the physical mass in units of thousands as needed to generate a statistically

independent value of the average plaquette. Hence, in giving values for ν, we neglect

the overhead coming from the remaining parts of the Hamiltonian.

Our values for ν together with the corresponding numbers from Ref. [110] and

Ref. [114] are given in table 3.4. Compared to Ref. [110] our values for ν are smaller

for simulation points A and B and comparable for run C. In contrast, the cost

figure for the HMC algorithm with plain leap frog integration scheme is at least a

factor 10 larger than the values found for our HMC algorithm variant. This gain

is, of course, what we aimed for by combining multiple time scale integration with

mass preconditioning and hence confirms our expectation. Unfortunately, due to

the large statistical uncertainties of the ν values it is not possible to give a scaling

of the cost figure with the mass. This holds for our values of ν as well as the ones

of Ref. [110].
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NMV τint(P ) ·∑NMV

SPF1 SPF2 SPF3 this work Ref. [114]

A 3800 4600 6600 90000 190750

B 6000 6900 11900 173600 1280000

C 31000 25500 - 565000 –

Table 3.5: Rounded number of matrix vector multiplications needed during one trajectory

of length 0.5 for the different pseudo fermion actions without the usage of a chronological

solver guess. We give also the sum of our numbers multiplied by the plaquette autocorrela-

tion time and as a comparison the corresponding number from Ref. [114], where available.

3.3.6 Simulation cost

Although the value of ν is a sensible performance measure for the algorithm itself,

since it is independent of the machine, the actual implementation and the solver, it

cannot serve to estimate the actual computer resources (costs) needed to generate

one independent configuration. Assuming that the dominant contribution to the

total cost stems from the matrix vector (MV) multiplications, we give in table 3.5 the

average number of MV multiplications NMV needed for the different pseudo fermion

actions to evolve the system for one trajectory of length τ = 0.5. In addition we give

the sum of these MV multiplications multiplied with the plaquette autocorrelation

time together with the corresponding number from Ref. [114].

In order to compare to the numbers of Ref. [114] we remark that the lattice

time extent is T = 40 in Ref. [114] compared to T = 32 in our case, but we

do not expect a large influence on the MV multiplications coming from this small

difference. Large influence on the MV multiplications, however, we expect from

ll-SSOR preconditioning [126] that was used in Ref. [114] in combination with a

chronological solver guess (CSG) [127].

Initially, when one compares the values of the cost figure for our HMC algorithm

with the one of the plain leap frog algorithm as used in Ref. [114], one might expect

that the number of MV multiplications shows a similar behavior as a function of

the quark mass. However, inspecting table 3.5, we see that in terms of MV multi-

plications at simulation point A the HMC algorithm of Ref. [114] is only a factor

of 2 slower than the variant presented in this chapter, while the values of ν are by

a factor of about 20 different. The reason for this is two-fold: On the one hand

ll-SSOR preconditioning together with a CSG method is expected to perform better

than only even/odd preconditioning. On the other hand we think that the quark

mass at this simulation point is still not small enough to gain significantly from

multiple time scale integration. This illustrates that indeed the value of ν is not
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immediately conclusive for the actual cost of the algorithm.

At simulation point B the relative factor between the MV multiplications needed

by the two algorithms is already about 7. And finally, it is remarkable that for

simulation point C the costs with our HMC variant are still a factor of 2 smaller

than the costs for simulation point B with the algorithm used in Ref. [114], even

though the masses are very different.

From this comparison we conclude that especially in the regime of small quark

masses the HMC algorithm presented in this work is significantly faster than a HMC

algorithm with single time scale leap frog integration scheme.

By looking at table 3.5 one notices that especially for simulation point C the

number of MV multiplications needed for preconditioning is larger than the one

needed for the physical operator. This comes from the fact that with the choice of

algorithm parameters we have used the number of molecular dynamics steps for the

mass preconditioned operator is large. This possibly indicates potential to further

improve the performance by tuning the preconditioning masses and time scales.

We stress here again that the number of matrix vector operations is highly solver

dependent, and therefore, every improvement to reduce the solver iterations will

decrease the cost for one trajectory. Promising improvements are for instance the

use of a chronological inversion method [127] (or similar methods [128]) or the use

of a solver based on domain decomposition as adopted for QCD in Ref. [129]. We

tested the chronological inversion method and found in total not more than 20%

gain in matrix vector operations.

Finally, it is interesting to compare the number of matrix vector multiplications

reported in table 3.5 with a HMC algorithm where mass preconditioning and multi-

ple time scale improvements are switched off and CSG is not used. For instance for

a simulation with a Sexton-Weingarten improved integration scheme at κ = 0.15825

there are 120 molecular dynamics steps needed to get acceptance. This corresponds

to 240 inversions of Q2, which amounts to about 720000 matrix vector multiplica-

tions. Compared to run C this is at least a factor 10 more. We did only a few

trajectories to get an estimate for this number, so we cannot say anything about

autocorrelation time.

Of course it would be interesting to compare also to a HMC algorithm with mass

preconditioning but without multiple time scale integration. This, however, needs

again a tuning of the mass parameters and would therefore be quite costly and we

did not attempt to test this situation here.
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(a) Comparison to Ref. [114].
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Figure 3.4: Computer resources needed to generate 1000 independent configurations of

size 243 × 40 at a lattice spacing of about 0.08 fm in units of Tflops · years as a function of

mPS/mV. In (a) we compare our results represented by squares to the results of Ref. [114]

represented by circles. The lines are functions proportional to (mPS/mV)−4 (dashed) and

(mPS/mV)−6 (solid) with a coefficient such that they cross the data points corresponding

to the lightest pseudo scalar mass. The diamond represents the preliminary result of run D

(see text). In (b) we compare to the formula of Eq. 3-28 [105] (solid line) by extrapolating

our data with (mPS/mV)−4 (dashed) and with (mPS/mV)−6 (dotted), respectively. The

arrow indicates the physical pion to rho meson mass ratio. Additionally, we add points

from staggered simulations as were used for the corresponding plot in Ref. [113]. Note that

all the cost data were scaled to match a lattice time extend of T = 40.

3.3.7 Scaling with the mass

An important property of an algorithm for lattice QCD is the scaling of the costs

with the simulated quark mass. The naive expectation is that the number of solver

iterations grows like m−1
q and also the number of molecular dynamics steps is pro-

portional to m−1
q , see for instance Ref. [130] or Ref. [105]. Since also the integrated

autocorrelation time is assumed to grow like m−1
q , it is expected that the HMC al-

gorithm costs scale with the quark mass as m−3
q or equivalently as m−6

PS. In contrast,

for our HMC algorithm variant we expect a much weaker scaling of ∆τ and also of

the number of solver iterations. Indeed, we see that the costs for our HMC algorithm

variant is consistent with a m−2
q or m−4

PS behavior when the autocorrelation time is

taken into account.

We have translated the number of matrix vector multiplications from table 3.5

into costs in units Tflops ·years and plotted the computer resources needed to gener-

ate 1000 independent configurations of size 243×40 at a lattice spacing of ∼ 0.08 fm
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as a function of mPS/mV in figure 3.4(a) together with the results of Ref. [114]. Note

that we have scaled our costs like (40/32)1.25 corresponding to the expected volume

dependence (cf. [105]) to match the different time extents and, moreover, we used

the plaquette autocorrelation time as an estimate for the autocorrelation time.

The solid (dashed) line is not a fit to the data, but a function proportional

to (mPS/mV)−4 ((mPS/mV)−6) with a coefficient that is fixed by the data point

corresponding to the lightest pseudo scalar mass. These functional dependencies on

(mPS/mV) describe the data reasonably well. However, from our few data points it

is not possible to decide on the value of the exponent in the quark mass dependence

of the costs. But, it is clear from the figure that with multiple time scale integration

and mass preconditioning the “wall” – which renders simulations at some point

infeasible – is moved towards smaller values of the quark mass.

An additional indication for the scaling properties of the algorithm towards

smaller masses is given by the preliminary result of run D. It is represented in

figure 3.4(a) by the single diamond. For this point we used our current number

of MV multiplications as measured for run D and the value for mPS as given in

Ref. [119]. Moreover, we extrapolated the value amV in κ and the value of τint in

1/m2
PS. The result as we plot it in the figure thus has certainly a significant error.

Nevertheless, even if the “true” result will be a factor of two larger, the point is still

in excellent agreement with the anticipated scaling proportional to (mPS/mV)−4.

On a larger scale we can compare the extrapolations of our cost data to the

formula given in Ref. [105]

C = K

(

mPS

mV

)−zπ

LzL a−za , (3-28)

where the constant K can be found in Ref. [105] and zπ = 6, zL = 5 and za = 7. The

result of this comparison is plotted in figure 3.4(b), which is an update of the “Berlin

Wall” figure that can be found in Ref. [113]. We plot the simulation costs in units of

Tflops ·years versus mPS/mV, where we again scaled the numbers in order to match

a lattice time extend of T = 40. The dashed and the dotted lines are extrapolations

from our data proportional to (mPS/mV)−4 and (mPS/mV)−6, respectively, again

matching the data point corresponding to the lightest pseudo scalar mass. The

solid line corresponds to Eq. (3-28) with K taken from Ref. [105]. In addition we

plot data from staggered simulations as were used for the plot in Ref. [113]. That

the corresponding points lie nearly on top of the dotted line is accidental.

Conservatively one can conclude from figure 3.4(b) that with the HMC algorithm

described in this chapter at least simulations with mPS/mV ≈ 0.3 are feasible, even

though L = 1.93 fm is too small for such values of the masses. Taking the more

optimistic point of view by assuming that the costs scale with zπ = 4, even simulation

78



3.4. CONCLUSION

with the physical mPS/mV ratio and a lattice spacing of 0.08 fm become accessible,

with again the caveat that L/a needs to be increased.

Independent of the value for zπ, figure 3.4(b) reveals that the costs for simulations

with staggered fermions and with Wilson fermions in a comparable physical situation

are of the same order of magnitude, if for the simulations with Wilson fermions an

algorithm like the one presented in this work is used. It would be interesting to

see whether the techniques applied in this work perform similarly well for staggered

fermions.

We would like to point out that we did not try to tune the parameters to their

optimal values. The aim of this work was to give a first comparison of mass precondi-

tioned HMC algorithm with multiple time scale integration to existing performance

data, i.e. data for a HMC algorithm preconditioned by domain decomposition [110]

and data for the HMC algorithm variant of Ref. [114]. We are confident that there

are still improvements possible by further tuning of the parameters in our variant

of the HMC algorithm.

3.4 Conclusion

In this chapter we have presented and tested a variant of the HMC algorithm com-

bining multiple time scale integration with mass preconditioning (Hasenbusch ac-

celeration). It is based on the idea to arrange mass preconditioning such that the

force contributions from the different parts in the Hamiltonian are strictly ordered

with respect to the absolute value of the force and that the most expensive part has

the smallest contribution to the total force. Then the most expensive part can be

integrated on the largest time scale.

Our aim was to perform a first investigation of the performance properties of this

HMC algorithm by comparing it to other state of the art HMC algorithm variants

in the same physical situation, i.e. for pseudo scalar masses in the range of 380

to 670 MeV, a lattice spacing of about 0.08 fm and a lattice size of L ≈ 2 fm with

two flavors of mass degenerate Wilson fermions. We verified our implementation by

comparing results for the plaquette and for the pseudo scalar, the vector and the

current quark mass to results available in the literature finding full agreement.

We have shown that indeed the aforementioned idea can be realized by tuning

the additional (unphysical) mass parameters introduced for mass preconditioning.

In this set-up the performance of our variant in terms of the cost figure in Eq. (3-27)

is compatible to the one observed for the HMC algorithm with multiple time scales

and domain decomposition as preconditioner introduced in Ref. [110] and clearly

superior to the one for the HMC algorithm with a simple leap frog integration

scheme as used in Ref. [114].
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While the cost figure provides a clean algorithm performance measure we also

compare the simulation costs in units of Tflops · years to existing data. This com-

parison is summarized in an update of the “Berlin wall” plot of Ref. [113], which

can be found in figure 3.4. We could show that with the HMC algorithm presented

in this chapter the wall is moved towards smaller values of the quark mass and that

simulations with a ratio of mPS/mV ≈ 0.3 become feasible at a lattice spacing of

around 0.08 fm and L ≈ 2 fm. We have preliminary results for a simulation point

with a pseudo scalar mass of around 300 MeV and mPS/mV ≈ 0.3, which is in excel-

lent agreement with all the results mentioned above. In particular this simulation

point seems to confirm that the algorithm costs scale proportional to (mPS/mV)−4.

The HMC variant presented here has the advantage of being applicable to a

wide variety of Dirac operators, including in principle also the overlap operator. In

addition its implementation is straightforward, in particular in an already existing

HMC code. We remark that the parallelization properties of our HMC variant

and the one of the algorithm presented in [110] can be very different depending on

whether a fine- or a coarse-grained massively parallel computer architecture is used.

From a stability point of view our results reveal that even for Wilson fermions it

is very well possible to simulate quark masses of the order of 20 MeV when using the

algorithmic ideas presented in this work. The presently ongoing simulation with even

smaller quark mass is also running without any practical problems, but the statistics

is not yet adequate to say something definite. However, it is a remarkable result by

itself that there are now at least two algorithms available allowing for stable simula-

tions with Wilson fermions at low values of the quark masses. Remarkable, because

only short time ago this was thought to be hardly possible and it immediately raises

the question for an explanation: one can speculate that the observed stability is

mainly due to noise reduction provided by the additional pseudo fermion fields and

former simulations yielded problems, because the stochastic approximation for the

determinant was not sufficient.

The results presented in this chapter are mostly based on empirical observations

and on simulations for only one value of the coupling constant β = 5.6. It remains to

be seen how our HMC variant behaves for larger values of β, which, as well as smaller

quark masses and theoretical considerations about the scaling properties with the

quark mass needs further investigations. Moreover, a more systematic study of the

interplay between integration schemes, step sizes, (preconditioning and physical)

masses and the simulation costs is needed. Those investigations will hopefully also

provide a better understanding of the algorithm itself and its dynamics. Of course,

the algorithm should also be tested for tmQCD, even though we do not expect a

large difference to the pure Wilson case.

Finally, we think that there are further improvements possible by the usage of a

Polynomial HMC (PHMC) algorithm [131, 132, 133, 134]. With such an algorithm
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one could treat the lowest eigenvalues of the Dirac operator exactly and/or by re-

weighting. In this set-up the large fluctuations in the force might be significantly

reduced, if the lowest eigenvalues are responsible for those. Then it might be possible

to further reduce the number of inversions of the badly conditioned physical operator

needed to evolve the system. In addition, a PHMC algorithm would immediately

allow for simulations with three or more flavors of quarks.
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