
Chapter 5

Bounding the Fréchet distance by the
Hausdorff distance

As we have already seen (c.f., Figure 3.1 and 3.2), neither the ratio between δH and δF ,
nor the ratio between δF and δ̃F is bounded in general. However, the following result from
[10] (see also [35]) shows that for certain classes of curves the three distance measures are
closely related:

Theorem 5.1 (δH vs. δF for convex closed curves, Alt et. al, [10]). For any pair of convex
closed curves P and Q,

δH(P, Q) = δ̃F (P, Q) = δF (P, Q).

In the following we will consider κ-straight curves; for these curves the arclength between
any two points is at most a constant κ times their Euclidean distance.

Definition 5.2 (κ-Straightness). A planar (closed) rectifiable curve P ∈ K0 ∪ K1 is
called κ-straight for some real parameter κ ≥ 1, if the following holds for any two points x
and y on P :

dP (x, y) ≤ κ||x − y||,

where dP (x, y) is the arclength of the shortest piece of P connecting x and y.

Examples for straight curves are the curves with increasing chords of [44], where κ ≤
2π/3, or the self-approaching curves of [6].

We will see below that the straightness condition rules out the possibility of curves with
small Hausdorff distance that have a large Fréchet distance: In section 5.1 we show that
the Fréchet distance of κ-straight curves is at most (κ + 1) times their Hausdorff distance
(c.f., Theorem 5.3 on the next page). This result gives rise to a randomized approximation
algorithm that computes an upper bound on the Fréchet distance between two κ-straight
curves that is off from the exact value by a multiplicative factor of (κ + 1). The algorithm
runs in O((m + n) log2(m + n)2α(m+n)) time for given polygonal curves P, Q with m and n



44 Bounding the Fréchet distance by the Hausdorff distance

vertices (c.f., Corollary 5.8 on page 49), and thus outperforms the fastest known algorithm
to compute the Fréchet distance exactly, which requires O(mn log(mn)) time, see [13]. In
section 5.3 we also provide the first non-trivial algorithm to decide for any κ ≥ 1, if a
given polygonal curve is κ-straight; it runs in O(n log2 n) time for a polygonal curve on n
vertices (c.f., Theorem 5.9 on page 49).

5.1 The upper bound

In this section we will show that for κ-straight polygonal curves the Fréchet distance is at
most a factor of (κ + 1) away from the Hausdorff distance.

Theorem 5.3 (δH vs. δF for κ-straight polygonal curves). For any pair of κ-
straight polygonal curves P, Q ∈ K0

δF (P, Q) ≤ (κ + 1)δH(P, Q), if max(||P (0)− Q(0)||, ||P (1)− Q(1)||) ≤ δH(P, Q).

Proof. Let δ = δH(P, Q). Since both ||P (0)−Q(0)|| and ||P (1)−Q(1)|| are bounded by δ,
we know that the points L and R in Fδ(P, Q) are white. To each x ∈ [0, 1] we assign the
value h(x) defined by

h(x) = max{y | ∃x′ ≤ x s.t. (x′, y) ∈ Fδ}.

h is a piecewise continuous monotone function consisting of of elliptic arcs and horizontal
segments. At the points of discontinuity we add vertical segments and obtain a curve ϕδ

from the graph of h (see Figure 5.1). In addition, we add the vertical segment Lh(0) such
that ϕδ starts in L and ends in R.

ϕδ

Figure 5.1: The reparametrization ϕδ in Fδ(P, Q).

The bi-monotone curve ϕδ consists of elliptical arcs and vertical and horizontal line
segments. The left endpoint of a horizontal segment coincides with the upper endpoint



5.1 The upper bound 45

of an elliptical arc and the upper endpoint of a vertical segment coincides with the left
endpoint of an elliptical arc. The line segments are always black (apart from the endpoint
they share with an elliptical arc) and the elliptical arcs are always white.

We claim that for all points (x, y) on ϕδ we have that ||P (x) − Q(y)|| ≤ (κ + 1)δ, so
that two corresponding reparametrizations yield a Fréchet distance of at most (κ + 1)δ. If
(x, y) is white we are done since ||P (x)−Q(y)|| ≤ δ in that case, so let us consider a black
point (x1, y0) on ϕδ that lies on a horizontal black segment (this implies that x1 < 1) with
the white left endpoint (x0, y0). It remains to show that ||P (x1) − Q(y0)|| ≤ (κ + 1)δ.

We first claim that there exists a white point (x2, y0) ∈ Fδ with x2 > x1. To see this,
observe that, since δ = δH(P, Q), there exists for each y an x such that (x, y) is white, so
for any ε > 0 there exists an x such that (x, y0 + ε) is white. Since (x1, y0) is white and the
region above ϕδ is black (by definition), we can conclude that for any ε > 0 there exists an
x > x1 such that (x, y0 + ε) is white, and moreover, since Fδ is closed (by definition), that
there exists an x2 > x1 such that (x2, y0) is white.

ϕδ

(x2, y0)(x1, y0)(x0, y0)

By applying the triangle inequality twice we obtain

||P (x1) − Q(y0)|| ≤ min( ||P (x0) − Q(y0)|| + ||P (x0) − P (x1)||,
||P (x2) − Q(y0)|| + ||P (x1) − P (x2)||)

≤ min( dP (P (x0), P (x1)), dP (P (x1), P (x2))) + δ.

Q

P

y0

x0

x1

x2

≤ δ ≤ δ



46 Bounding the Fréchet distance by the Hausdorff distance

So with min(dP (P (x0), P (x1)), dP (P (x1), P (x2))) ≤ 1
2
dP (P (x0), P (x2)), and

dP (P (x0), P (x2)) ≤ κ||P (x0) − P (x2)||
≤ κ(||P (x0) − Q(y0)|| + ||P (x2) − Q(y0)||)
≤ 2κδ,

it follows that ||P (x1) − Q(y0)|| ≤ (κ + 1)δ.
If the black point (x1, y0) lies on a vertical black segment we can apply the same

reasoning.

Since δH(P, Q) ≤ δ̃F (P, Q), and max(||P (0) − Q(0)||, ||P (1) − Q(1)||) ≤ δ̃F (P, Q) we can
conclude:

Corollary 5.4 (δ̃F vs. δF for κ-straight polygonal curves). For any pair of κ-
straight polygonal curves P, Q ∈ K0

δF (P, Q) ≤ (κ + 1)δ̃F (P, Q).

5.2 Computing the reparametrization

In this section we describe a divide-and-conquer algorithm that computes the
reparametrization ϕδ. Our approach makes crucial use of the following result:

Theorem 5.5 (Combination Lemma, Agarwal/Sharir, [47]). Let B be a set of mB blue Jor-
dan arcs, and R be a set of mR red Jordan arcs with the property that any two of these
arcs intersect at most a constant number of times, and let P be a set of n points with the
property that none of these points lies on one of the arcs; let N = mR + mB + n. Then
the total complexity of all the regions induced by the red and the blue arcs that contain a
point from P is O(N) and these regions can be computed in O(N log N) time.

We show the following:

Theorem 5.6 (Computation of the upper envelope of Φδ(P, Q)). Let P, Q ∈ K0 be
simple polygonal curves with n, and m vertices, and δ > 0. Then ϕδ can be computed
in O((m + n) log2(m + n)2α(m+n)) [a] time by a randomized algorithm, and in O((m +
n) log3(m + n)2α(m+n)) time by a deterministic one.

[a]Here, α(n) = min{k ≥ 1 | A(k, k) ≥ n} is the functional inverse of the Ackermann function A(k, n),
which is defined as follows:

A(1, n) = 2n, n ≥ 1
A(k, 1) = 2, k ≥ 2
A(k, n) = A(k − 1, A(k, n − 1)), k ≥ 2, n ≥ 2.

See chapter 2 in [47] for a detailed discussion.



5.2 Computing the reparametrization 47

Proof. The algorithm proceeds as follows: In a first step, we determine the intersection of
ϕδ with the vertical line in Fδ that corresponds to the midpoint Q(1/2) of Q in O((m +
n) log2(m + n)2α(m+n)) deterministic time, and O((m + n) log(m + n)2α(m+n)) randomized
time (see below); this yields a point P (y1/2) on P , c.f., Figure 5.2.

Then we split P into PB := P |[0,y1/2] and PT := P |[y1/2,1] and Q into QL := Q|[0,1/2] and
QR := Q|[1/2,1], recursively compute ϕδ(PB, QL) and ϕδ(PT , QR), and glue them together.

Q(1/2)

P (y1/2)

QL QR

PB

PT

Figure 5.2: The first point on P (starting from p) that intersects bdδ(QL).

In order to compute P (y1/2), we imagine the following process: First we cut off the
right half of Fδ(P, Q), i.e., we only look at Fδ(P, QL). Now we start sweeping a horizontal
line from y = 1 downwards to y = 0 until it hits the first white point. This will happen
at y1/2. Another interpretation of this process is the following: We start walking on P in
P (1) towards P (0). We walk until we arrive at a point that has distance at most δ to QL.
This will happen at P (y1/2). Of course we cannot afford to compute the diagram Fδ(P, Q)
(or larger parts of it) explicitly, so we have to proceed in a different way.

Let p := P (1) be the endpoint of P . In a first step we check in O(m) time, if p is δ-close
to QL. If this is the case, we are already finished. Otherwise we consider nhδ(QL), the
δ-neighborhood of QL. This set can be described as the union of rectangles of width δ and
circles of radius δ. The boundary of nhδ(QL) will be called bdδ(QL); it consists of circular
arcs (of radius δ) and line segments. Since Q is simple, this boundary has complexity O(m)
(c.f. [38] and [41]), and can be computed in O(m log m) time, (c.f. [23]). The basic idea
of our algorithm is based on the following simple observation:

Observation 5.7. The first point on P (starting from p) that intersects bdδ(QL) is part of
the boundary of the cell C of the arrangement A induced by P and bdδ(QL), that contains
p.



48 Bounding the Fréchet distance by the Hausdorff distance

P

P (1)
bdδ(QL)

If we consider the segments and circular arcs of bdδ(QL) as a set of O(m) red, and the
segments of P as a set of O(n) blue Jordan arcs, we can conclude with Theorem 5.5 that
the cell C has complexity O(m + n).

So all we have to do is to compute the cell C, and check its boundary. For technical
reasons, we need a point p′ in this cell, that is neither part of P nor of bdδ(QL), in particular
we cannot use p itself. Instead we compute the intersection of the line supporting the last
segment of P with P ∪bdδ(QL) by brute force in O(m+n) time, and let p′ be the midpoint
between p and the intersection point that is closest to p.

Since any two of the Jordan arcs of P and bdδ(QL) intersect at most twice, the cell of
A that contains the point p′ can be computed in O(λ4(m + n) log2(m + n)) = O((m +
n) log2(m+n)2α(m+n)) deterministic time ([36], see also [47], Theorem 6.11), or in O(λ4(m+
n) log(m+n)) = O((m+n) log(m+n)2α(m+n)) randomized time ([26], see also [47], Theorem
6.15). [b]

Complexity. Let nX denote the number of vertices of the curve PX for X ∈ {T, B} and
mY denote the number of vertices of the curve QY for Y ∈ {L, R}. We have

nT + nB = n, and

max(mL, mR) ≤ m/2, so

the runtime T (n, m) of the algorithm obeys the following recursion

T (n, m) ≤ T (nB, mL) + T (nT , mR) + d · (n + m)f(n + m)

≤ T (nB, m/2) + T (nT , m/2) + d · (n + m)f(n + m),

where f(n, m) is a monotone function, and d > 0 is a suitable constant. We prove by
induction on m that T (n, m) ≤ c · (n + m)f(n + m) log m for a suitable constant c > 0.

[b]For positive integers n, s, a sequence U = 〈u1, . . . , um〉 over {1, . . . , n} is called a Davenport-Schinzel
sequence of order s over an n-element alphabet, if any two consecutive elements of U are distinct, and U
does not contain a subsequence of length s + 2 of the form ababab . . . for a 6= b. The maximum length of a
Davenport-Schinzel sequence of order s over an n-element alphabet is denoted by λs(n). It is known that
λ4(n) = O(n2α(n)), see [47] for more details.



5.3 Recognizing κ-straight curves 49

Since T (n, 1) = O(n) the induction starts readily. Now

T (n, m) ≤ c · (nB + m/2)f(nB + m/2) log(m/2) +

c · (nT + m/2)f(nT + m/2) log(m/2) +

d · (n + m)f(n + m)

≤ c · (nB + m/2 + nT + m/2)f(n + m)(log m − 1) +

d · (n + m)f(n + m)

≤ c · (n + m)f(n + m) log m, if c ≥ d.

With an algorithm of Alt et al. [9] we can compute δ = δH(P, Q) in O((m+n) log(m+
n)) time. Combining this with Theorems 5.3 and 5.6, we can find a (κ + 1)-approximation
to δF (P, Q), together with a reparametrization ϕapp that witnesses this fact, within the
time bounds stated in Theorem 5.6.

Corollary 5.8 (δF -approximation for κ-straight polygonal curves). For any pair
of κ-straight polygonal curves P, Q ∈ K0 with max(||P (0) − Q(0)||, ||P (1) − Q(1)||) ≤
δH(P, Q), we can compute a (κ + 1)-approximation to δF (P, Q), together with a
reparametrization ϕapp by a deterministic (randomized) algorithm in O((m + n) log3(m +
n)2α(m+n)) (O((m + n) log2(m + n)2α(m+n))) time.

5.3 Recognizing κ-straight curves

In this section we describe an efficient algorithm to decide whether a given polygonal curve
P is κ-straight. The results are summarized in the following Theorem.

Theorem 5.9 (Recognition of κ-straight curves). Let P ∈ K0 ∪ K1 be a simple
(closed) polygonal curve on n vertices, and κ ≥ 1. One can decide in O(n log2 n) time
whether P is κ-straight.

The Theorem is a combination of Lemmas 5.13 and 5.15; they will be proved in the
next two subsections. If P is κ-straight, it is also κ′-straight for any κ′ ≥ κ. The smallest
κ such that P is κ-straight is called the detour of P .

Definition 5.10 (Detour of a polygonal curve). Let P be a simple polygonal curve,
and x, y ∈ P with x 6= y. Then

δP (x, y) :=
dP (x, y)

||x − y||

denotes the P -detour between x and y. For X, Y ⊆ P

δP (X, Y ) := sup
x∈X,y∈Y,x 6=y

δP (x, y)



50 Bounding the Fréchet distance by the Hausdorff distance

denotes the P -detour between X and Y . Finally

δ(P ) := δP (P, P )

denotes the detour of P . If P is understood from the context, we will write δ instead of δP .

The decision problem version of the detour computation problem is equivalent to the
problem of recognizing κ-straight curves.

5.3.1 Simple polygonal curves

Let us first consider the case where P ∈ K0 is a simple polygonal curve. The detour
problem in that setting has been studied before by Ebbers-Baumann et al., [31]. They give
an (1 + ε)-approximation algorithm for computing the detour of P that runs in O(n log n)
time. Their approach makes use of the fact that the detour of a curve is always attained
at a vertex of the curve. We will also exploit that property in the proof of Lemma 5.12
below.

Lemma 5.11 (Ebbers-Baumann et al., [31]). Let P ∈ K0 be a simple polygonal curve, and
let L ⊆ P and R ⊆ P be two subcurves of P . Then δ(L, R) = max

(
δ(L0, R), δ(L, R0)

)
.

We first show the following technical Lemma which is of independent interest, and will
be used in the next section, too.

Lemma 5.12 (Bichromatic disjoint subcurve detour). Let P ∈ K0 be a simple
polygonal curve, and let κ ≥ 1. Let L ⊆ P and R ⊆ P be two disjoint subcurves of P with
|L| = mL and |R| = mR, and let m = mL+mR. Assume that for two vertices (l, r) ∈ L×R
the distance dP (l, r) can be computed in O(1) time, and that max

(
δP (L), δP (R)

)
≤ κ. Then

one can decide in O
(
m log m

)
time whether δP (L, R) ≤ κ.

Proof. From Lemma 5.11, we know that δ(L, R) = max
(
δ(L0, R), δ(L, R0)

)
. Therefore it is

sufficient to test if δ(L0, R) ≤ κ and δ(L, R0) ≤ κ. Let (l, r) ∈ (L, R0), and m be a vertex
on P that separates L and R. Then

δ(l, r) ≤ κ ⇐⇒ dP (l, r)

||l− r|| ≤ κ

⇐⇒ dP (l,m) + dP (m, r)

||l − r|| ≤ κ

⇐⇒ dP (l,m)

κ
≤ ||l − r|| − dP (m, r)

κ
.

Now look at the bi-variate function

Cr,m,κ :

{
R

2 → R

x 7→ ||x − r|| − dP (m, r)/κ.



5.3 Recognizing κ-straight curves 51

If r = (rx, ry), the graph of Cr,m,κ is a cone in R
3 with apex (rx, ry,− dP (m, r)/κ), apex

angle π/2 and its principal axis parallel to the z-axis. If l = (lx, ly) then

δ(l, r) ≤ κ ⇐⇒ (lx, ly, dP (l,m)/κ) lies below Cr,m,κ.

Consider the lifting map

Λm,κ :

{
L → R

3

l = (lx, ly) 7→ (lx, ly, dP (l,m)/κ).

The image of L under this lifting map is a polygonal curve in R
3 whose projection to the

xy-plane is L. Now we have

δ(L, r) ≤ κ ⇐⇒ Λm,κ(L) lies below Cr,m,κ, and therefore

δ(L, R0) ≤ κ ⇐⇒ Λm,κ(L) lies below Cr,m,κ for all r ∈ R0.

If Cm,κ := minr∈R0Cr,m,κ denotes the lower envelope of all Cr,m,κ, then

δ(L, R0) ≤ κ ⇐⇒ Λm,κ(L) lies below Cm,κ.

The minimization diagram of Cm,κ, i.e., the projection of the edges of this lower envelope to
the xy-plane, is the additively weighted Voronoi diagram AVDm,κ(R0) of the points r ∈ R0

with weights −dP (m, r)/κ. This diagram can be computed in O(mR log mR) time, c.f.
[34]. For a vertex r ∈ R0 let V(r) denote the Voronoi cell of r. Let LV(r) be the set of
maximal connected edge segments of L inside V(r). Then

δ(L, R0) ≤ κ ⇐⇒ Λm,κ(e) lies below Cr,m,κ for all r ∈ R0 and for all e ∈ LV(r).

Let A denote the arrangement that results from superimposing AVDm,κ(R0) with the polyg-
onal curve L. For a vertex r ∈ R0 let A(r) denote the cell of A that contains r. Let LA(r)
be the set of maximal connected edge segments of L on the boundary of A(r). Then

δ(L, R0) ≤ κ ⇐⇒ Λm,κ(e) lies below Cr,m,κ for all r ∈ R0 and for all e ∈ LA(r).

To see this, pick some e ∈ LV(r) and a point z on e, see Figure 5.3. Since V(r) is star
shaped wrt r, the line segment s from r to z lies completely inside V(r). Assume that s
crosses the segments e1, . . . , ek = e from LV(r) in that order. In particular e1 ∈ LA(r),
i.e., e1 lies on the boundary of A(r). Let r = p0, p1, . . . , pk = z denote the corresponding
points of intersection with ei for 1 ≤ i ≤ k.



52 Bounding the Fréchet distance by the Hausdorff distance

A(r)

r = p0

p1

p2
p3

p4
e3

e2

L

e = e5 z = p5

e4

e1

V (r)

Figure 5.3: The cell A(r) in the superposition of AVDm,κ(R0) and L.

We have that ||z− r|| = |s| =
∑

i ||pi − pi+1|| and dP (z, r) ≤
∑

i dP (pi, pi+1), so

δ(z, r) ≤
∑

i dP (pi, pi+1)∑
i ||pi − pi+1||

.

Observe that for any two sequences of positive numbers x1, . . . , xn and y1, . . . , yn we have
that ∑

i xi∑
i yi

≤ maxi
xi

yi

.

This is easily seen, since if

maxixi/yi = x1/y1

then

1∑
i yi

∑
i

xi ≤
1∑
i yi

∑
i

yi

y1
x1 = x1/y1.

Thus

δ(z, r) ≤
∑

i dP (pi, pi+1)∑
i ||pi − pi+1||

≤ maxi
dP (pi, pi+1)

||pi − pi+1||
≤ max

(
δ(p1, r), δ(L)

)
≤ max

(
δ(e1, r), δ(L)

)
≤ max

(
δ(LA(r), r), δ(L)

)
.



5.3 Recognizing κ-straight curves 53

Since z was a arbitrary point of LV(r) this implies

δ(LV(r), r) ≤ max
(
δ(LA(r), r), δ(L)

)
.

So with δ(L) ≤ κ we get

δ(LV(r), r) ≤ κ ⇐⇒ δ(LA(r), r) ≤ κ.

Thus for all r ∈ R0

Λm,κ(e) lies below Cr,m,κ for all e ∈ LV(r) ⇐⇒
Λm,κ(ẽ) lies below Cr,m,κ for all ẽ ∈ LA(r).

The edges in LA(r) are part of the boundary of the cell of A that contains r. Therefore
the total number of these edges is bounded by the total complexity of all cells of A that
contain some r ∈ R0. We will now show that the total complexity of all these cells is
O(m), and that the boundaries of all these cells (and therefore all the edges in LA(r)) can
be computed in O(m log m) time.

To this end, consider the segments of L as a set of mL blue Jordan arcs, and the edges
of AVDm,κ(R0) as a set of O(mR) red Jordan arcs. Any two of these Jordan arcs intersect
at most twice, and none of the points in R0 lies on one of them.

The total complexity of all the regions induced by the red arcs that contain a point
from R0 is O(mR); moreover we have an explicit description of these regions, since they
correspond to the Voronoi regions of the vertices from R0. The total complexity of all the
regions (this is in fact only one region) induced by the blue arcs that contain a point from
R0 is O(mL); again we have an explicit description of this region.

With Lemma 5.5 we can conclude that the total complexity of all the regions induced
by the red and blue arcs that contain a point from R0 is O(mL + mR) = O(m) and that
these regions can be computed in O(m log m) time.

The following Lemma contains the main result of this section.

Lemma 5.13 (Detour of a polygonal curve). Let P ∈ K0 be a simple polygonal curve
on n vertices, and let κ ≥ 1. Then one can decide in O(n log2 n) time whether δ(P ) ≤ κ.

Proof. In a preprocessing step we traverse P in O(n) time, starting from P (0), and store in
each vertex P (i) the distance dP (P (0), P (i)). This will enable us to determine the distance
on P between any pair of vertices of P in O(1) time (this is required in order to apply
Lemma 5.12).

Now we split P into two subcurves L := P |[0,bn/2c] and R := P |[bn/2c,n] with m =
P (bn/2c) as a split vertex; observe that δ(P ) = max

(
δ(L), δ(R), δ(L, R)

)
. Then we check

recursively whether δ(L) ≤ κ and δ(R) ≤ κ. If this is not the case then δ(P ) > κ.
Finally we run the algorithm from the proof of Lemma 5.12 to decide in O(n log n) time, if
δ(L, R) ≤ κ. The recursion only adds an additional logarithmic factor to this runtime.



54 Bounding the Fréchet distance by the Hausdorff distance

5.3.2 Simple closed polygonal curves

Let us now consider the case where P ∈ K1 is a simple closed polygonal curve. We are not
aware of any related work on the problem of computing the detour for closed curves. For
a closed rectifiable curve P and two points x, y ∈ P with x 6= y the distance on P between
these two vertices, dP (x, y), is the length of the shortest subcurve of P connecting x and
y. The detour between two points on P and the detour of P itself are definied in the same
manner as for open curves.

Since the statement of Lemma 5.11 is not valid anymore for closed curves we take
a different approach, and use a recursive partition technique to enable us to apply our
previous techniques to solve the detour problem for curves appropriately; we first prove a
technical result:

Lemma 5.14 (Top-Bottom detour of a closed polygonal curve). Let κ ≥ 1, and
let P ∈ K1 be a simple closed polygonal curve with four vertices tL, tR, bR, bL on P (in that
order) such that

1. dP (tL, tR) = dP (bR, bL),

2. dP (tR, bR) = dP (bL, tL), and

3. max
(
δP (T ∪ R), δP (R ∪ B), δP (B ∪ L), δP (L ∪ T )

)
≤ κ,

with T := P |[tL,tR], R := P |[tR,bR], B := P |[bR,bL], and L := P |[bL,tL]. Let n be the total
number of vertices of T and B. Assume that for two vertices (l, r) ∈ P the distance
dP (l, r) can be computed in O(1) time. Then one can decide in O

(
n log2 n) time whether

δP (T, B) ≤ κ.

Proof. Let us assume wlog that T contains more than n/2 vertices; call this number nT .
We claim that the following algorithm correctly decides if δP (TR, BL) ≤ κ.

Algorithm TB Closed Curve Detour(P, tL, tR, bL, bR, κ)
1. Choose a point t ∈ P on T so that TL := P |[tL,t] and TR := P |[t,tR] contain nT /2

vertices each.
2. Split B with a (possibly new) vertex b into BL := P |[b,bL] and BR := P |[bR,b], such that

dP (bR, b) = dP (tL, t) and dP (b, bL) = dP (t, tR).
3. Check if δPL

(TL, BL) ≤ κ, where PL := TL ∪ L ∪ BL.
4. Check if δPR

(TR, BR) ≤ κ, where PR := TR ∪ R ∪ BR.
5. Recursively call the algorithm with

t′L = tL, t′R = t, b′R = bR, b′L = b

to check that δP (TL, BR) ≤ κ.
6. Recursively call the algorithm with

t′′L = t, t′′R = tR, b′′R = b, b′′L = bL

to check that δP (TR, BL) ≤ κ.



5.3 Recognizing κ-straight curves 55

w

h

w1 w2

w1w2

w

L R

TL

BR

T

TR

B

BL

tL tR

bRbL

t

b

Correctness: First we prove that δP (PL) ≤ κ whenever δPL
(TL, BL) ≤ κ. To see this,

observe that dP (u, v) = dPL
(u, v) for u, v ∈ PL and therefore δP (TL, BL) = δPL

(TL, BL) ≤
κ; similarly δP (TR, BR) = δPR

(TR, BR) ≤ κ. Now since

δP (TL, BL) ≤ κ,

δP (L) ≤ δP (L ∪ T ) ≤ κ,

δP (L, TL) ≤ δP (L ∪ TL) ≤ δP (L ∪ T ) ≤ κ,

δP (L, BL) ≤ δP (L ∪ BL) ≤ δP (L ∪ B) ≤ κ,

δP (TL) ≤ δP (L ∪ TL) ≤ δP (L ∪ T ) ≤ κ, and

δP (BL) ≤ δP (L ∪ BL) ≤ δP (L ∪ B) ≤ κ,

we can conclude that δP (PL) ≤ κ. A symmetric argument yields that δP (PR) ≤ κ if
δPR

(TR, BR) ≤ κ.
In order to apply induction we have to argue that the subproblems created in Steps 5

and 6 of the algorithm meet the preconditions of Lemma 5.14: To this end, observe that

dP (tL, t) = dP (bR, b), and dP (t, bR) = dP (b, tL).

With

T ′ = TL, R′ = TR ∪ R, B′ = BR, and L′ = BL ∪ L

it follows that

• δP (T ′ ∪ R′) ≤ κ, since T ′ ∪ R′ = T ∪ R, and δP (T ∪ R) ≤ κ,



56 Bounding the Fréchet distance by the Hausdorff distance

• δP (R′ ∪ B′) ≤ κ, since R′ ∪ B′ = PR, and δP (PR) ≤ κ,

• δP (B′ ∪ L′) ≤ κ, since B′ ∪ L′ = B ∪ L, and δP (B ∪ L) ≤ κ, and finally

• δP (L′ ∪ T ′) ≤ κ, since L′ ∪ T ′ = PL, and δP (PL) ≤ κ.

Similarly,

dP (t, tR) = dP (b, bL), and dP (tR, b) = dP (bL, t),

and with

T ′′ = TR, R′′ = R ∪ BR, B′′ = BL, and L′′ = L ∪ TL

it follows that

• δP (T ′′ ∪ R′′) ≤ κ, since T ′′ ∪ R′′ = PR and δP (PR) ≤ κ,

• δP (R′′ ∪ B′′) ≤ κ, since R′′ ∪ B′′ = R ∪ B and δP (R ∪ B) ≤ κ,

• δP (B′′ ∪ L′′) ≤ κ, since B′′ ∪ L′′ = PL and δP (PL) ≤ κ, and finally

• δP (L′′ ∪ T ′′) ≤ κ, since L′′ ∪ T ′′ = L ∪ T and δP (L ∪ T ) ≤ κ.

The correctness of the Algorithm therefore follows inductively.

Complexity: Let nX denote the number of vertices of the curve X, where X ∈ {T, B, TL,
TR, BL, BR}. We have

n = nT + nB = nTL
+ nTR

+ nBL
+ nBR

= 2nTL
+ nBL

+ nBR
, and (5.1)

n/2 ≤ nT = nTL
+ nTR

= 2nTL
= 2nTR

. (5.2)

Observe that in order to decide if δPL
(TL, BL) ≤ κ and δPR

(TR, BR) ≤ κ in Steps 3 and
4 of Algorithm TB Closed Curve Detour we can use the result of Lemma 5.12, since

max(δPL
(TL), δPL

(BL)) ≤ κ, and

max(δPR
(TR), δPR

(BR)) ≤ κ.

This follows, since (as noted before) dP (u, v) = dPL
(u, v) for u, v ∈ PL, and therefore

δPL
(TL) = δP (TL) ≤ δP (T∪B) ≤ κ. The other inequalities can be deduced in the same way.

So the costs of Steps 3 and 4 are O((nTL
+nBL

) log(nTL
+nBL

)), and O((nTR
+nBR

) log(nTR
+

nBR
)), respectively. Therefore the runtime T (n) of Algorithm TB Closed Curve Detour

obeys the following recursion:

T (n) ≤ T (nTL
+ nBR

) + T (nTR
+ nBL

) +

c(nTL
+ nBL

) log(nTL
+ nBL

) +

c(nTR
+ nBR

) log(nTR
+ nBR

)

≤ T (nTL
+ nBR

) + T (nTR
+ nBL

) + cn log n



5.3 Recognizing κ-straight curves 57

for some constant c > 0. The size of each subproblem is reduced to at least 3/4, since (5.1)
and (5.2) imply that

n/4 ≤ nTL
≤ nTL

+ nBR
= nTL

+ n − 2nTL
− nBL

= n − nTL
− nBL

≤ 3n/4 − nBL
≤ 3n/4,

and the total size of the subproblems remains the same at each level of the recursion. Thus
the recursion tree has logarithmic depth and the total work amounts to

T (n) = O(n log2 n).

Lemma 5.15 (Detour of a closed polygonal curve). Let P ∈ K1 be a simple closed
polygonal curve on n vertices, and let κ ≥ 1. Then one can decide in O(n log2 n) time
whether δ(P ) ≤ κ.

Proof. In a preprocessing step we pick an arbitrary vertex P0 on P , and handle P as if it
was an open polygonal curve P ′ with starting and ending point P0; we traverse P ′ in O(n)
time, starting from that vertex, and store in each vertex v the distance dP ′(P0, v), together
with the total arclength of P . This will enable us to determine the distance on P between
any pair of vertices on P , and the distance between any pair of vertices on a subcurve of
P in O(1) time (this is required in order to apply Lemma 5.14).

Now we proceed as follows: First we split P into four consecutive pieces P1, . . . , P4

of equal arclength. Since δ(P ) = max1≤i≤j≤4(δP (Pi, Pj)) we have that δ(P ) ≤ κ ⇐⇒
δP (Pi, Pj) ≤ κ for all 1 ≤ i ≤ j ≤ 4.

Next we define four overlapping polygonal curves Qi := Pi ∪ Pi+1 (mod 4) for 1 ≤ i ≤ 4.
Observe that dP (u, v) = dQi

(u, v) for u, v ∈ Qi, and

δ(Qi) = max(δP (Pi), δP (Pi+1), δP (Pi, Pi+1)) ≤ δP (P )

for all 1 ≤ i ≤ 4. Now we check if δ(Qi) ≤ κ for 1 ≤ i ≤ 4 with the algorithm from
Lemma 5.13. If this is not the case we are done, since δP (P ) ≥ δ(Qi) > κ. Otherwise
we know that δP (Pi) ≤ κ and δP (Pi, Pi+1) ≤ κ for 1 ≤ i ≤ 4, so it remains to verify
whether δ(Pi, Pi+2) ≤ κ for i = 1, 2. This can be decided in O(n log2 n) time by running
the algorithm from the proof of Lemma 5.14 twice.



58 Bounding the Fréchet distance by the Hausdorff distance


