
Chapter 3

Measuring the Hausdorff distance of
point sets in R

d

In this chapter we will develop efficient algorithms to measure the one-sided Hausdorff
distance of a d-dimensional point set P to a set Q of n geometric objects of constant
’size’ each. To be more precise, in section 3.1, we look at the case where Q is a set of
n semialgebraic sets in R

d , each of constant description complexity, i.e., we look at the
following problem:

Problem 3.1 (δ̃H-measure problem: point set vs. semialgebraic set in R
d).

Given a point set P ⊆ R
d of m points, and a set Q ⊆ R

d of n semialgebraic
sets, each of constant description complexity.

Compute δ̃H(P, Q).

Of course one can always compute the distance of each point x ∈ P to each set y ∈ Q
in O(1) time (c.f., Lemma 3.3 on the next page) and thus solve the problem in O(mn)
time; we will refer to this algorithm as the ’brute-force approach’. We will present a

randomized algorithm that computes δ̃H(P, Q) in Oε(mnε log m + m1+ε− 1
2d−2 n) expected

time (c.f., Theorem 3.8 on page 20). This is – to the best of our knowledge – the first
result that constitutes an improvement upon the brute-force approach.

3.1 The one-sided Hausdorff distance of a point set

to a semialgebraic set

In this section we look at the problem of computing the one-sided Hausdorff distance
from a set of m points P in R

d to a set Q of n semialgebraic sets of constant description
complexity each (c.f., page 8). We will first consider the corresponding decision problem,
and apply a randomized technique afterwards to compute δ̃H(P, Q). The following result
will turn out to be a crucial ingredient in our algorithms:

Theorem 3.2 (Point location among real-algebraic varieties, Chazelle et al., [25]). Let T
be a set of k d-variate polynomials of bounded degree. A data structure of size Oε(k

2d−2+ε)

18 Measuring the Hausdorff distance of point sets in R
d

that allows O(log k) time queries among the varieties defined by the set T can be built in
Oε(k

2d−2+ε) randomized expected time.

We first describe how to determine δ̃H(P, Q) by ’brute-force’ in O(mn) time by com-
puting all pairwise distances from the points in P to the sets in Q. Later we will use this
result as a subroutine in a randomized reduction that turns the algorithm for the decision
problem into an algorithm that computes δ̃H(P, Q).

Lemma 3.3 (Computing δ̃H(P, Q) by brute-force). We can compute δ̃H(P, Q) in
O(mn) time.

Proof. It suffices to show how the distance d(p, Γ) between a semialgebraic set Γ ∈ Q of
constant description complexity and a point p ∈ P can be computed. The claim then
follows, since we can compute δ̃H(P, Q) by simply computing the mn distances from the
points in P to the sets in Q.

Let Γ(x) be a polynomial expression that defines Γ. Consider the following Tarski
sentence[a]:

HDΓ,p(z) := ∀ε∃y
(
Γ(y) ∧ ||p− y||2 ≤ z2 + ε2

)
.

When δ ∈ R satisfies HDΓ,p, this means that the distance between p and Γ is at most
|δ|. We can transform HDΓ,p to prenex form and eliminate quantifiers with the algorithm
of Collins, c.f., [30] to get a polynomial expression which we will also denote by HDΓ,p.
The runtime of this algorithm is doubly-exponential in d and polynomial in the number of
polynomials forming the expression Γ(x).

The expression HDΓ,p defines a semialgebraic set in R, i.e., a finite set of intervals of
constant size, which we can compute in O(1) time with the algorithm of Theorem 3.2.
From that set we can read off the smallest δ ≥ 0 for which HDΓ,p holds and return it as
d(p, Γ).

Since the description complexity of Γ (and therefore of all other semialgebraic sets
derived from it) is independent of the input size (i.e., m and n), we can compute d(p, Γ) in
O(1) time (where the hidden constant depends doubly-exponential on d), and the claimed
time bound follows.

As we already mentioned, we will first consider the decision version of Problem 3.1:

Problem 3.4 (δ̃H-decision problem: point set vs. semialgebraic set in R
d).

Given a point set P ⊆ R
d of m points, and a set Q ⊆ R

d of n semialgebraic
sets, each of constant description complexity, and some δ ≥ 0.

Decide, whether δ̃H(P, Q) ≤ δ.

We have that δ̃H(P, Q) ≤ δ iff for each point in P there is a point of Q that is δ-close.
Therefore it is reasonable to look at the set of all points that are δ-close to Q:

[a]A Tarski sentence consists of a polynomial expression that is prefixed by a finite number of existential
(∃) and universal (∀) quantifiers.

3.1 The one-sided Hausdorff distance of a point set to a semialgebraic set 19

Definition 3.5 (δ-neighborhood). Let Q be a compact set in R
d . Then nhδ(Q) denotes

the δ-neighborhood of Q, defined as

nhδ(Q) := {x ∈ R
d | d(x, Q) ≤ δ}.

Our result is based on the following simple observation:

Observation 3.6. Let and P , Q be compact sets in R
d , and δ > 0. Then the one-sided

Hausdorff distance from P to Q is at most δ iff all points of P are contained in the δ-
neighborhood of Q, i.e.,

δ̃H(P, Q) ≤ δ ⇐⇒ P ⊆ nhδ(Q).

The algorithm for the decision problem computes from Q a data structure that rep-
resents nhδ(Q) and allows efficient point-containment queries. Then it queries this data
structure with all points of P and determines all points that are not contained in the δ-
neighborhood – this will be needed to perform the randomized reduction that solves the
optimization problem.

Lemma 3.7 (Computing δ̃H(P, Q) – decision problem). We can compute the set
X = {x ∈ P | d(x, Q) > δ} in Oε(mnε + m1+ε−1/(2d−2)n) randomized expected time.

Proof. We first describe a randomized algorithm that computes X in Oε(n
2d−2+ε +m log n)

expected time, which we speed up with a simple batching technique afterwards.
Let us first argue that for Γ ∈ Q the set nhδ(Γ) is semialgebraic and that it (i.e., a

polynomial expression defining it) can be computed in O(1) time. To this end, let Q(x)
be a polynomial expression that defines Γ and consider the following Tarski sentence:

NHΓ,δ(x) := ∃y
(
Q(y) ∧ ||x− y||2 ≤ δ2

)
.

Obviously nhδ(Γ) = {x ∈ R
d | NHΓ,δ(x) holds}. We can eliminate the quantifier to obtain

a polynomial expression which we will also denote by NHΓ,δ; it will be identified with

the sequence (n
(i)
Γ,δ(x))1≤i≤b of d-variate polynomials that form it. Since the description

complexity of Γ is independent of the input size, the set NHΓ,δ (i.e., the polynomials n
(i)
Γ,δ)

can be computed in O(1) time.

Let F = ∪Γ∈Q{n(i)
Γ,δ} denote the set of polynomials that appear in the atomic polynomial

expressions forming the expressions NHΓ,δ. By the above reasoning this set can be computed
in O(n) time. With the algorithm of Theorem 3.2 we can compute a point-location data

structure of size Oε(n
2d−2+ε) in Oε(n

2d−2+ε) time for the arrangement of the varieties n
(i)
Γ,δ =

0 defined by F . The signs of all polynomials in F and therefore the validity of each
polynomial expression NHΓ,δ is constant for each cell of the decomposition of Rd induced
by these varieties. Thus a point-location query to this data structure determines whether
the query point lies in nhδ(Q) and the set X can be computed by querying the data
structure with all points in P . The overall runtime of this method is Oε(n

2d−2+ε +m log n).
We gain a significant speedup with a simple batching technique. To this end distinguish

the following cases:

20 Measuring the Hausdorff distance of point sets in R
d

m ≤ n2d−2: We partition Q into g = dn/m1/(2d−2)e groups of at most k = m1/(2d−2) ≤
n points each. For each group, we run the algorithm described above. The total time
spent is

Oε(g(k2d−2+ε + m log k)) = Oε(m
1+ε−1/(2d−2)n).

n2d−2 ≤ m: In that case the runtime is O(mnε).

Theorem 3.8 (Computing δ̃H(P, Q)). We can compute δ̃H(P, Q) in Oε(mnε log m +

m1+ε− 1
2d−2 n) randomized expected time.

Proof. We follow a strategy similar to that proposed in [2]. Initially we set δ = 0 and
X = P . Then we repeat the following steps until X becomes empty:

Choose a random point x ∈ X and compute δ′ = δ̃H(x, Q) in O(n) time with the
algorithm from Lemma 3.3. Set δ to max(δ, δ′). Now compute the set X ′ = {x ∈ X |
δ̃H(x, Q) > δ} in Oε(mnε + m1+ε−1/(2d−2)n) time with the algorithm from Lemma 3.7.
Finally set X to X ′.

Obviously the last value of δ will be δ̃H(P, Q). As is shown in [28], the expected number
of iterations is O(log m) and therefore the expected time to compute δ̃H(P, Q) with this
algorithm is Oε(mnε log m + m1+ε−1/(2d−2)n).

