
Chapter 2

Testing the congruence of point sets
in R

d

The simplest point pattern matching problem is to decide whether two patterns are actually
the same, up to congruence.

Problem 2.1 (Congruence testing problem for d-dimensional point sets).
Given two point sets P, Q ⊆ R

d of n points each.
Decide, whether there exists a rigid motion µ such that µ(P) = Q.

This problem is well-understood in dimensions at most three, where there are good
algorithms which reach the asymptotic lower bound of Ω(n log n) [18, 21, 22, 37, 39, 48]. For
higher dimensions, however, the situation is different: only dimension reduction methods
are known, which lead to an O(nd−2 log n) algorithm by Alt et al. [18], a Monte-Carlo
O(nbd/2c log n) algorithm by Akutsu [7], an unpublished deterministic algorithm of the same
complexity by Matoušek (mentioned in [7]), and the O(ndd/3e log n) algorithm described
below (c.f., Theorem 2.2 on page 13).

2.1 The dimension reduction technique

A congruence that maps P to Q consists of two parts: a translation and a rotation. The
translational part is easy to determine, since the image of the centroid c(P) of P under
that congruence has to be the centroid c(Q) of Q, and the centroid can be determined fast,
i.e., in O(n) time. So each algorithm preprocesses the sets by translating P to P − c(P)
and Q to Q − c(Q), and searches for a rotation around 0 that maps one set on the other.
Also the distances of the points to the centroid have to be preserved, so we can replace
each point by a point on the unit sphere which carries the distance (or an ordered list of
distances) of the point (or points) in that direction as a label. So in the following we have
two sets P ′, Q′, each consisting of n labeled points (counting multiplicities) on the unit
sphere with center 0, and we are looking for a label-preserving rotation that maps P ′ on
Q′.

10 Testing the congruence of point sets in R
d

In the two-dimensional case it is easy to reduce this problem to the classical substring
matching problem: The points of P ′ are cyclically ordered on the circle, and described by
the pair of their label and the angle to the next point on the circle (which together is just
some symbol in an alphabet). So starting at an arbitrary point and going around the circle
once, we can encode P ′ as a string in that alphabet; and going around the circle twice for
Q′, we encode that set in another string. Then P and Q are congruent if and only if the
string of P ′ is a substring of the string for Q′, which can be tested in O(n log n) time.

The algorithm of Alt et al. [18] for the three-dimensional case (similar also Sugihara
[48]) involves again the creation of a combinatorial model and solution of the problem on
that: Each of the sets consists of n labeled points on the unit sphere, so their convex hull
is some polyhedron, which we can describe by its edge graph augmented by edge labels
carrying the length of the edge and the angular distance to the next edge around that vertex
(i.e., the interior angle of the face at that vertex). This information completely specifies
the polyhedron, since, according to Cauchy’s rigidity theorem, once the edge lengths and
interior angles of each face are prescribed, there is at most one convex realization of a
polyhedron. But the isomorphism of (labeled) polyhedral graphs (threeconnected and
planar) can be tested in O(n log n) time.

For higher dimensions no such direct method is known, but it is possible to reduce
one higher-dimensional problem to a number of alternative lower-dimensional ones. The
underlying idea is that if we know the correct image point y ∈ Q′ for some point x ∈ P ′,
then the subspace through x is mapped on the subspace through y and the same holds for
their orthogonal complements. Thus we can orthogonally decompose each point of P ′ and
each point of Q′ into a pair of points (one on a line, one on the orthogonal hyperplane),
and these have to be mapped on each other by the congruence. But the point on the line
is uniquely identified by its signed distance to 0 (x, y positive), so we can just append
this number to the label of the point on the hyperplane (additionally to all previous labels
of the original point), and have reduced the original problem to a problem of points with
longer labels which lie in a hyperplane. Thus if we know the correct images of k linearly
independent points, we can reduce the dimension of the space by k, appending k additional
labels (coordinates) to each point.

If we do not know the correct image of any point, the simplest way is to take a fixed
x ∈ P ′ and try each of the potential image points y ∈ Q′ in turn: if we are successful in one
of the lower-dimensional problems, we can extend the solution to a solution of the original
problem by removing that additional label and adding x (or y) times that label to each
point; if we are not successful for any choice of y, then the sets P and Q are not congruent.
This is the algorithm of Alt et al. [18] which runs in time O(nd−2 log n), reducing one
d-dimensional problem of n points to n alternative (d − 1)-dimensional problems in each
step.

If we use the fact that any closest pair in P ′ has to be mapped on a closest pair in
Q′, and that the number of closest pairs is only linear in n (for fixed dimension d: since
the degree of the graph of closest pairs is bounded by a constant, the ‘kissing number’ or
‘Newton number’ which grows exponentially in d [46, 51]), we can reduce the problem in
each step by two dimensions to O(n) alternative (d−2)-dimensional problems. This is the

2.2 A refined approach 11

algorithm of Matoušek [7] which runs in O(nbd/2c log n) time.

If we try to extend this approach to triples a difficulty arises which is caused by the
inner symmetries of the point set: since the point-k-tuples which define the alternative
reductions are themselves defined by metric properties, the set of all these alternative
reductions will be closed under inner isometries of the point set. But for dimension d ≥ 4
this set can be quite big, since rotation subgroups in orthogonal planes are possible. So,
e.g., in dimension four the set consisting of two regular (n/2)-gons with common center 0,
but in orthogonal planes, allows (n2/4) rotations, and any full-dimensional triple of points
(that could be used to reduce the dimension by three) will generate an orbit of Ω(n2)
other possible reductions. Similar constructions work also in higher dimensions. This big
number of alternative reductions is not really needed, since they all give the same result,
but they have to be recognized.

2.2 A refined approach

The solution to this problem is to recognize whenever the point set lies in orthogonal
subspaces (which can be matched independently), and use an extended version of the
smallest distance graph in the other cases, in such a way that we get a dimension reduction
of three with a linear number of alternatives in each step.

For this purpose we add to each point x ∈ P ′ the antipodal point −x labeled as ‘new’,
if it is not already in the set P ′ (in the following always perform the same operations for
Q′). Then the smallest distance occurring between two antipodal pairs p,−p and q,−q on
the unit sphere is at most

√
2, and

√
2 is reached if and only if p is orthogonal to q. We

can extend this from two antipodal pairs to larger point sets by constructing a graph with
the extended set as vertices, which has in the beginning the antipodal pairs as connected
components. Any graph containing this graph as a subgraph has the property that the
smallest distance occuring between points of distinct connected components is at most

√
2,

and reaches this value if and only if the connected components lie in orthogonal subspaces.
So we start from the antipodal pairs graph, and extend in each step the graph by all those
edges between points of distinct components that are of minimum length among all such
point pairs. Then we either find after some steps a connected component which spans a
subspace of dimension at least three, which allows a dimension reduction, or we find that
all the connected components lie in orthogonal two-dimensional subspaces, which can be
treated independently. Algorithm Congruence Test is shown on page 12. In the following,
edges between two antipodal points will be called antipodal edges, whereas the other edges
will be called strong edges; two points sharing such an edge will be called strongly adjacent
or strong neighbours. Note that — for the sake of simplicity — we omitted several checks
that are performed in the course of the algorithm, e.g., testing whether the two graphs
have the same number of connected components all the time, etc. If any of these checks
fail, the algorithm gives a negative answer.

In the following two sections we will prove, that the algorithm is correct and that it
runs within the claimed time bounds.

12 Testing the congruence of point sets in R
d

Algorithm Congruence Test(P,Q, d)
Input: Two sets P , Q, of n labeled points each, in R

d .
Output: Decides whether there is a labelpreserving congruence that maps P to Q.
1. BIf the dimension is at most three, use one of the known O(n log n)-algorithms to decide the

problem.
2. BPreprocess P and Q to P ′ and Q′ by moving the centroid to 0 and projecting each point

on the unit sphere around 0, with the projection distance appended as an additional label.
3. BConstruct the extended sets P ′′ and Q′′ by adding for each point x ∈ P ′ and each point

y ∈ Q′ the antipodal points −x, −y, labeled as ‘new’, if they were not already contained
in the set. Construct the initial graphs for both sets by joining each point to its antipodal
point.

4. repeat
5. if there is only one component left
6. then (∗ c.f., Lemma 2.4 ∗)
7. BCompute for P ′′ and Q′′ the coordinates of the points in the two-dimensional

linear subspaces spanned by the sets, and apply one of the known O(n log n)-
algorithms to decide the two-dimensional problem.

8. else
9. BDetermine the smallest distance δmin between two points of distinct connected

components.
10. if δmin =

√
2

11. then (∗ c.f., Lemma 2.4 ∗)
12. BDecompose P ′′ and Q′′ in their connected components, computing

the coordinates of the points in the two-dimensional linear subspaces
spanned by the components.

13. for each matching of the P ′′-components to the Q′′-components
14. do
15. for each component pair (α, β) in the matching
16. do
17. BApply one of the known O(n log n)-algorithms for the

two-dimensional case to decide whether α and β are
congruent.

18. if there is a matching such that each matched pair is congruent
19. then (∗ c.f., Observation 2.3 ∗)
20. P and Q are congruent
21. else
22. they are not congruent.
23. else (∗ δmin <

√
2 ∗)

24. BAdd all edges of length δmin that join points in distinct connected
components to the graph.

25. if there is a triple TP = (point,neighbour1,neighbour2) of P ′′ that
spans a linear subspace of dimension three

26. then
27. for all triples TQ = (point,neighbour1,neighbour2) of Q′′ that

span a linear subspace of dimension three
28. do
29. B If TP and TQ are congruent, perform the dimen-

sion reduction determined by TP and TQ, and call re-
cursively Congruence Test for the (d− 3)-dimensional
problem.

30. if one of the potential image triples from Q′′ gives congruent
sets

31. then
32. P and Q are congruent
33. else
34. they are not congruent.
35. until a reduction is found, or the set is decomposed in orthogonal subsets.

2.2 A refined approach 13

Theorem 2.2 (Correctness and complexity of algorithm Congruence Test). The
algorithm Congruence Test is correct and runs in O(ndd/3e log n) time.

2.2.1 Correctness

The correctness of the algorithm is obvious if d ≤ 3; also the claimed time bound follows
immediately in that case.

It was already observed that once we end up with a set of connected components of pair-
wise distance

√
2 we have decomposed the original problem into orthogonal subproblems

that can be solved independently:

Observation 2.3. Let P, Q ⊂ R
d be two finite d–dimensional point sets, and let U, V ⊆ R

d

be two linear subspaces. Let Uortho denote the orthogonal complement of U , and assume
that

1. P = P1 ∪ P2, P1 ⊆ U , P2 ⊆ Uortho,

2. Q = Q1 ∪ Q2, Q1 ⊆ V , Q2 ⊆ V ortho,

3. P1 = κ1(Q1) for a congruence κ1 with κ1|V ortho = identity, and

4. P2 = κ2(Q2) for a congruence κ2 with κ2|V = identity.

Then P = κ(Q) for the congruence κ = κ1 ◦ κ2.

Next we will show that the following invariant holds throughout the algorithm, just
before δmin is recomputed and edges are added (and components are merged) as long as no
dimension reduction is found and δmin is smaller than

√
2:

Lemma 2.4 (Invariant of algorithm Congruence Test). During the execution of algo-
rithm Congruence Test the following invariant holds at the start of the repeat-loop: Each
connected component consists of points distributed on a great circle of the unit sphere,
and therefore is planar.

Proof. We proceed by induction: In the beginning the invariant obviously does hold. Now
assume that δmin is computed, δmin <

√
2 and we add all minimum length edges between

vertices in distinct connected components. We show that either a dimension reduction is
found (i.e., the graph now contains three points spanning a three-dimensional subspace)
or the invariant also holds after the merging step. To this end we look at two connected
components c1 and c2 that are merged in the merging step. Note that due to the antipodal
vertices, the process is symmetric, i.e., if vertex u becomes adjacent to vertex v in the
merging process, then also the antipodal vertices u′ and v′ become adjacent in the same
step. By induction there are two great circles C1 and C2 containing these two components.
We distinguish the following two cases:

The two great circles C1 and C2 coincide. In that case the invariant clearly holds af-
ter the merging step.

14 Testing the congruence of point sets in R
d

The two great circles C1 and C2 differ. In that case these two circles share exactly
two points. Let us assume that the merging process establishes a strong adjacency
between p1 ∈ c1 and a vertex p2 ∈ c2.

If #c1 = #c2 = 2 then #(c1 ∪ c2) = 4 and so either the invariant holds after the
merging step or the new graph contains three points spanning a three-dimensional
subspace. Therefore we can assume in the following wlog that #c1 ≥ 4, so p1 has at
least one strong neighbor p′1 ∈ c1.

In case that p2 ∈ c2 − C1 the new graph contains three points spanning a three-
dimensional subspace. In case that or all the points in c2 minimizing the distance to
c1 lie on C1 we see that either

#c2 = 2, i.e., c2 = C1 ∩ C2 and so the invariant holds, or

#c2 > 2, i.e., p2 has at least one strong neighbor p2 ∈ c2 −C1 and therefore the new
graph contains three points spanning a three-dimensional subspace.

The correctness of the algorithm immediately follows from our previous considerations: If
we find a dimension reduction at some point, then the correctness follows by induction over
the dimension, as was argued in the introduction. If we end up with a single connected
component, the problem is actually only two-dimensional by Lemma 2.4, and if we end
up with a set of connected components of pairwise distance

√
2 we have decomposed the

original problem into two-dimensional orthogonal subproblems according to Lemma 2.4
that can be solved independently by Observation 2.3.

2.2.2 Analysis

To facilitate the analysis of the algorithm, we have to specify the implementation in some
more detail. We store the edges of the complete graph on the point set (except the edges
connecting antipodal vertices) in a list L, sorted by their length. The initialization time for
this list is O(n2 log n). Furthermore we use a union-find data structure C to store the points
in each connected component. This structure is initialized with n sets, each containing
two points (namely a point along with its antipodal point, i.e., C = {Cp | p ∈ P} and
Cp = {p,−p}); this initial step takes O(n) time. Finally we keep the n × n adjacency
matrix G of the modified smallest distance graph. It can be set up in O(n2) time as
Gp,q = 1 if q = −p and Gp,q = 0 otherwise.

Throughout the algorithm for each point p ∈ P the structure Cp will contain exactly
those points that are in the same connected component as p, and L will contain all point
pairs of distance at least δmin, i.e., (p, q) ∈ L ⇐⇒ ||p − q|| ≥ δmin.

In order to determine the new minimal intercomponent distance in step 9, we consider
the length δmin of the first element of L. If δmin =

√
2 we have decomposed the original

problem into orthogonal subproblems and the data structures need not be updated any-
more. Otherwise we extract all edges of length δmin from L and store them in a list Lmin.

2.2 A refined approach 15

If l denotes the length of this list, the time for this step is bounded by O(l). For all edges
(p, q) ∈ Lmin we first check whether Cp = Cq, i.e., if they join points in the same connected
component before edges are added. If not, we make them adjacent in G. After that we
update C by merging two different components in case we just added edges between them.
The procedure we just described requires at most 2l find queries to C and at most l union
operations on C, so the overall time required is of order O(l log∗ n).

Now, although l can be as large as O(n) (see below), we see that the amortized cost
for determining the minimal intercomponent distances in step 9 and maintaining the data
structures L and C in step 24 is of order O(n2 log∗ n), since each edge is ‘touched’ at most
once in the course of the algorithm.

The task of projecting a set of points to the linear subspace it spans and computing
a basis for that space, along with the appropriate coordinate computation can be done in
linear time.

The parts of the algorithm that handle the case d ≤ 3 (step 1), the case of all points
lying on a plane (step 7) and the case of orthogonal subproblems (steps 12–22), respectively,
are called at most once during the execution of the algorithm. Step 1 as well as step 7
takes O(n log n) time. In steps 12–22 there are at most d components in each set, since the
components are mutually orthogonal, so we have to try at most d! = O(1) possibilities for
the matching, and for each matching we have to solve at most d = O(1) two-dimensional
subproblems; the total time required for these steps is therefore O(n log n), too.

The repeat loop is executed O(n2) times and in each step O(n) edges are added (see
below). But since each edge will be used only once in this process, the overall time spent
for finding minimum length edges and merging components is bounded by O(n2 log∗ n), as
argued above.

The number of recursive calls of the algorithm in step 29 is bounded by the number
of triples TQ found in step 27. To prove the O(ndd/3e log n) time bound, we have to show
that not too many recursive calls are generated. To be more precise, we prove that steps
24–34 generate only O(n) possible reductions. For this we look at the last time that δmin

was recomputed and edges were added. From Lemma 2.4 we know that each connected
component was planar before the edges were added, i.e., the points of the component were
distributed on a great circle of the unit sphere. Now consider a point p from a component
c that is merged with the components c1, . . . , ck (k ≥ 1) in the current step. In each
component ci there is a set of points Pi such that ||p − p′|| = δmin for all p′ ∈ Pi and
||p − p′′|| > δmin for all p′′ ∈ ci − Pi. Furthermore the distances between points from
different components are larger than δmin, i.e., for all i 6= j and for all p′ ∈ Pi, p′′ ∈ Pj

we have that ||p′ − p′′|| > δmin. If we pick a point pi from each Pi and place a sphere
of radius δmin/2 around each pi we get an arrangement of k congruent mutually disjoint
spheres touching the sphere of radius δmin/2 around p. The largest number of spheres in
such a packing is called the ‘kissing number’ or ‘Newton number’ kd of dimension d, and
is less than 3d = O(1). This implies that a vertex from a component can only have new
neighbours in at most kd = O(1) components. Furthermore it has at most two neighbours
in each of these components, since a sphere around that point intersects the great circle
containing the other connected component in at most two points, unless the center of the

16 Testing the congruence of point sets in R
d

sphere is in the subspace orthogonal to the plane spanned by the circle. But this is not
possible, since δmin =

√
2 in that case, which we excluded in steps 12–22. We see that at

most O(n) edges were added in this merging step and that each vertex has degree at most
O(1) and therefore the number of triples in the nearest neighbour graph is bounded by
O(n).

The time T (n, d) that algorithm Congruence Test needs to decide the congruence of a
d-dimensional n-point set, can be estimated as T (n, d) ≤ c · n2 log n + c · nT (n, d − 3) for
a sufficiently large constant c > 0, where the first term accounts for the time spent in the
loop and for the parts of the algorithm that handle the initialization and the base cases.
By iterating this inequality it is easily seen that

T (n, d) ≤ kcknk+1 log n + cknkT (n, d − 3k)

for all k ≥ 1. For k0 = dd−3
3
e we have that d− 3k0 ≤ 3 and thus T (n, d− 3k0) ≤ c · n log n

(if c is sufficiently large), so that

T (n, d) ≤ 2k0c
k0+1nk0+1 log n.

We see that T (n, d) = O(ndd/3e log n), which proves the claim.

