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A first and natural approach to model geometric patterns is to represent them by point
sets in d-dimensional Euclidean space. Needless to say that the cases d = 2, 3 are the most
prominent ones; in fact geometric pattern matching problems for planar and spatial point
sets have received considerable attention in the literature, see, e.g., the survey by Alt and
Guibas [14] and the references therein. However, although probably less interesting from
a practical point of view, in this part we will investigate two matching problems for point
sets in higher dimensions.

First, in chapter 2, we consider the question, whether two point sets P and Q, with m
and n points (m ≤ n), respectively, in d-dimensional Euclidean space are congruent, i.e.,
if there exists a rigid motion µ with µ(P ) = Q. Recall that a rigid motion is obtained
by combining a translation with a rotation and (possibly) a reflection. The congruence
testing problem can be seen as a special case of the general pattern matching problem
described in the introduction, where the distance measure is the disrcete metric ddiscr,
with ddiscr(P, Q) = 0 if P = Q and ddiscr(P, Q) = 1 otherwise, and the set of admissible
transformations is the set of rigid motions of Rd .

We present an algorithm for the d-dimensional congruence test problem that runs in
O(ndd/3e log n) time (c.f., Theorem 2.2 on page 13). The exponential dependence on d is
somewhat unsatisfactory, since the best known lower bound (which already holds in dimen-
sion one) is Ω(n log n), but some dimension-dependence is unavoidable, for the congruence
testing problem without restriction on the dimension is NP -hard as is show in [7].

Obviously the discrete metric is extremely sensitive to noise and omissions, and there-
fore congruity is usually a too strong notion to assess the similarity of point patterns,
especially in practical applications where the patterns arise from appropriately sampled
real world data. The Hausdorff distance is a commonly used similarity measure for geo-
metric patterns that circumvents these problems (at least to some extent); for two sets P
and Q it is the smallest δ, such that P is completely contained in the δ-neighborhood of
Q, and vice versa:

Definition 1.4 (Hausdorff distance, one-sided Hausdorff distance). Let P and Q
be compact sets in R

d , and ||z|| denote the Euclidean norm of z ∈ R
d . Then δH(P, Q)

denotes the Hausdorff distance between P and Q, defined as

δH(P, Q) := max
(
δ̃H(P, Q), δ̃H(Q, P )

)
, with

δ̃H(P, Q) := max min
x∈P y∈Q

||x − y||, the one-sided Hausdorff distance from P to Q.

Intuitively speaking the ’pattern’ P has a small one-sided Hausdorff distance to Q if it
is ’similar’ to a ’subpattern’ of Q.

In chapter 3 we will present an efficient algorithm to measure the one-sided Hausdorff
distance of a d-dimensional m-point set P to a set Q of n geometric objects of constant
’size’ each. As we already noted in the introduction this also can be seen as a special
case of the general pattern matching problem, where the set of admissible transformations
consists of the identity only.
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To be more precise we look at the case where Q is a set of n semialgebraic sets in R
d ,

each of constant description complexity. We develop an algorithm to compute δ̃H(P, Q) in

Oε(mnε log m + m1+ε− 1
2d−2 n) randomized time (c.f., Theorem 3.8 on page 20).

Recall that a set S ⊆ R
d is called semialgebraic if it satisfies a polynomial expression,

which is any finite boolean combination of atomic polynomial expressions, which in turn
are of the form P (x) ≤ 0, where P ∈ R[x1 , . . . , xd] is a d-variate polynomial.

The description complexity of a polynomial expression B involving the polynomials
P1, . . . , PN is the length of an encoding of that expression over a fixed finite alphabet dis-
regarding the length of the encoding of the coefficients of the Pi (which we can afford, since
we work in the unit-cost model anyway). The description complexity of a semialgebraic set
is the minimum description complexity of an expression defining that set. When we talk
about algorithms that work on a set of n semialgebraic sets each of constant description
complexity in time O(T (n)), we actually mean that for each constant C > 0 the runtime
of these algorithms on a set of n semialgebraic sets each of description complexity at most
C is O(T (n)); the constant hidden in the O-notation may depend on C.

The results in this part have partially been obtained in collaboration with Peter Braß.
Some of the material has already been published in [24].


