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Discussion 

 
The Origin recognition complex (ORC) is the first protein to be loaded on the 

DNA during the ordered protein assembly known as pre-RC (Pre replicative 

complex). ORC binding to DNA initiates the binding of other pre-RC proteins like 

Cdc6 and Cdt1 to the origin. With the recruitment of MCM complexes to the 

origins, pre-RC formation is completed (Fig. 3) and bidirectional, semi-

conservative DNA replication is initiated in the S phase, in a CDK dependent 

manner.The discovery of ORC in budding yeast (Bell and Stillman, 1992) leads 

to the identification of homologs of ORC in higher eukaryotes including humans.  

Much of what is known about the initiation of DNA replication in eukaryotes has 

been discovered through the work carried out in S. cerevisiae (see introduction). 

The presence of genetically defined origins of replication (ACS) and the ease of 

genetic manipulation provides extremely useful in vivo and in vitro assays for 

studying the initiation of DNA replication in budding yeast. However, no such 

advantages are present in mammalian system and absence of any genetically 

characterized origin has further eluded the dissection of replication initiation 

mechanism. While the ScORC binds the DNA in a sequence specific manner, 

which as a matter of fact was the basis of its discovery, HsORC has not even a 

single genetically characterized specific DNA sequence, to date. 

 

In this study, we have conferred sequence specificity to human ORC by fusing it 

with TetR DNA binding moiety. Various empirically designed Orc fusions were 

expressed in HeLa cells. Based on the protein expression profile, best possible 

Orc fusions were chosen for further studies. The functionality of DNA binding 

domain and fused Orc subunit was analyzed. HeLa cells stably expressing Orc 

fusions were made to analyze interaction with endogenous Orc subunits. The 

characterized fusion proteins were then tested for their ability to replicate 

plasmids carrying target DNA sequences in HEK 293 cells. We have thus 
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generated an extremely useful system where an engineered human ORC has 

been shown to initiate plasmid replication from defined DNA sites. Recently, an 

independent study has shown similar results by fusing Gal4 DNA binding domain 

with different Orc subunits (Takeda et al., 2005). In an attempt to further 

investigate ORC DNA binding in our system, engineered human ORC was 

overexpressed in insect cells. Finally, the affinity purified ORC is used to 

investigate DNA binding in the presence of specific and unspecific competitors. 

 
Part I – Engineering a sequence specific DNA binding human ORC 
 
The main objective of this study was to construct a system where in an artificial 

ORC is recruited to specific DNA sequences. The recruitment ORC to DNA is 

known to initiate PreRC formation and then DNA replication (Bell and Dutta, 

2002). So, we hypothesized that recruitment of human ORC to specific DNA 

sequences through a heterologous DNA binding protein could potentially lead to 

pre-RC formation, which in turn triggers a preferential origin activity at these 

sites. A monomerized version of tet trans regulator named as scTet (Krueger et 

al., 2003) was fused at the N terminus of various Orc subunits. scTet with only 

one regulatory domain will minimize the steric hindrances and potential influence 

on the activity of trans regulator as well as the fused Orc domain. Moreover, with 

wtTetR one would get two copies of ORC per pre-RC, in contrast to widely held 

opinion of one ORC per pre-RC. Out of six Orc subunits, we used Orc2, Orc4 

and Orc1 in this study. Unlike ORCs from other species, human ORC is known to 

form sub-complexes, with Orc2 or Orc4 being the part of core-complexes 

(Ranjan and Gossen, 2006). So using these subunits would ensure the detection 

of ORC activity at sub-complex levels. Moreover, S.pombe Orc4 has an N 

terminal AT hook that has been shown to recruit ORC to AT-rich DNA sites that 

specify origins in S.pombe (Chuang and Kelly, 1999; Lee, J. K. et al., 2001). Orc 

4 from other species lacks this AT hook domain. So fusing a sequence specific 

DNA binding domain at N terminal of human Orc4 seem analogous to naturally 

occurring AT hook domain at N terminal of S.pombe Orc4. If additional AT-hook 
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domain does not interfere in the complex formation ability of S.pombe ORC then 

tetR fused human Orc4 was expected to integrate into a stable ORC complex as 

well.  

 

In order to further avoid steric hindrance, arising during a bulky ORC formation, a 

flexible linker was inserted between Orc subunit and TetR moiety. However, such 

fusion constructs can be susceptible to proteolysis, hence we begin with two 

empirically designed linkers (Fig. 6). The F-linker is identical to the linker used to 

monomerize TetR protein (Krueger et al., 2003) and hydrophilic G-linker, which 

was used originally to fuse PCNA and GFP (Leonhardt et al., 2000) has been 

also shown to construct a functional Orc4 and GFP fusion (McNairn et al., 2005). 

As a standard nomenclature Orc4 subunits fused through F and G linkers were 

named 4F and 4G respectively. Similarly, Orc2 fused through F and G linkers 

were named as 2F and 2G. Orc1 fusion, which we selected later in this study, 

was made without any flexible linker, in order to test the effect of a flexible 

interface on replication activity. Although no external linker was used, the 

flexibility at junction between Orc subunits and Gal4 DNA binding domain is 

regarded as the main feature for catalytic domains to come in direct contact with 

adjoining target DNA sites without any interference (Takeda et al., 2005). 

 

Expression of Orc fusions in mammalian cells 
 
Plasmids expressing various Orc fusions were individually transfected in HeLa 

cells. A non-functional ORC due to the overexpression of Orc fusions would have 

been detrimental to cells, as studies in various species have shown that ORC is 

absolutely required for DNA replication (Bell et al., 1993; Bell et al., 1995; Dhar et 

al., 2001; Pflumm and Botchan, 2001). Overexpressed subunit could destroy the 

stoichiometry by incomplete subcomplex formation. Even though overexpressed 

protein fails to integrate in the complex, it could titrate out essential pre-RC 

proteins proving toxic to the cells. No apparent cellular toxicity was observed 

during the transient expression of Orc fusions in HeLa cells. Nevertheless the 
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interference in the endogenous ORC’s stoichiometry can’t be ruled out due to 

overexpression of Orc fusions. This effect would have been more prominent in a 

long run, however we harvested the cells 3 days after the transfection to test the 

expression levels.  

 

Expression profiles from various Orc fusions showed that F constructs (both 4F 

and 2F) gave a lower molecular weight band when probed with αTetR or αFlag 

antibodies (Fig. 8). However, no such bands were visible with antibodies against 

Orc subunits for the same protein extracts. Most probably, these bands 

represented the proteolytic fragment containing scTet and Flag tag part of the 

fusion protein. As no proteolytic bands were observed for G constructs (both 4G 

and 2G), we selected these constructs for further studies. We observed a 

substantial decrease in the endogenous Orc2 expression level when 2G fusions 

were transiently expressed (Fig. 8B). This interplay between endogenous and 

exogenous Orc2 subunit points toward a cellular mechanism that maintains a 

constant Orc2 protein levels. Most likely, the participation of exogenous Orc2 

protein in complex formation would have lead to the rapid degradation of excess 

of endogenous Orc2 subunit. Expression dynamics between endogenous and 

recombinant Orc2 has been reported in two independent studies as well. In first, 

RNAi mediated knockdown of endogenous Orc2 lead to the increase in the 

expression level of recombinant Orc2, which was stably expressed in mammalian 

cells (Anand Ranjan, unpublished data). In second, recombinant Orc2 was 

shown to suppress the expression of endogenous Orc2 (Radichev et al., 2006) 

However recombinant Orc2 with mutations in nuclear localization domain and 

ORC assembly domain showed no suppression of endogenous Orc2 protein. 

Hence, mammalian cells limit intracellular levels of Orc2, thus limiting the amount 

of functional ORC in the cell. 

 

Sequence specific DNA binding by Orc fusions 
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Fusing two proteins together often result in the loss of functionality of either one 

or both components involved. The failure of Gal4-Orc5 and Gal4-Orc6 to 

stimulate the replication activity was mainly attributed to the negative effects of 

fusion on the individual proteins (Takeda et al., 2005). Hence, it was critical to 

analyze the functionality of TetR DNA binding moiety in the fusion proteins. In 

vivo Dox dependent DNA binding by Orc fusions confirmed that no negative 

effect has been caused to the tetO binding due to the fusion. The DNA binding 

activity as observed by ß- galactosidase intensity was similar for Orc fusions and 

wild type scTet (Fig. 12). Different studies suggest that recruitment of 

transcription activators to chromatin alters ORC binding due to the modification of 

chromatin structure (Aggarwal and Calvi, 2004; Danis et al., 2004). The TetR 

moiety itself is transcriptionally inactive; therefore in our activator assay only 

TetR moiety fused with transcriptionally active, VP16 domain was able to activate 

the expression of LacZ (Fig. 13). Orc subunits fused to TetR were not able to 

activate the transcription of LacZ, indicating that Orc fusions are transcriptionally 

inert as well. Even with the Gal4 DNA binding domain, Orc subunits showed no 

transcriptional activation (Takeda et al., 2005). Hence, this property of the Orc 

subunits seems to be valid irrespective of the DNA binding moiety. 

 

Electrophoretic mobility shift assays (EMSA) with end labeled target DNA 

sequence (34bp tetO) was used to assess the ability of Tet moiety in Orc fusions 

to interact with tetO sequences in vitro. As there are no data available on the gel 

shifts by scTet proteins, I first established the conditions for the EMSAs with 

scTet. Protein extracts containing tetracycline transactivator (tTA) and scTet 

were incubated with P-32 labeled tetO. The result showed a clear Dox dependent 

DNA binding by scTet (Fig.11A). For EMSAs with Orc fusions, it was expected 

that the part of transiently expressed Orc fusions would interact with the 

endogenous Orc proteins to form subcomplexes. Hence, the shifts obtained in 

these experiments (Fig.11A) gave a qualitative measure of where to expect the 

shifts from individual Orc fusions. However the shifts obtained from the HEK 293 

protein extracts overexpressing Orc fusions indicated only the individual Orc 
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fusion interaction with tetO (Fig. 11B), we confirmed it by preparing protein 

extracts from Sf9 cells infected with only one baculovirus expressing individual 

Orc fusions (Fig. 11C). With HEK293 protein extracts, we expected to see at 

least a weak signal representing shifts from the holocomplex or sub complexes. 

However, we could not see any such signal, except some Dox dependent smear 

(data not shown), which could possibly due to the binding of recombinant ORC. 

Another important aspect is the stability of the complex during the protein extract 

preparation and in the gel matrix. We found that increasing the final 

concentration of protease inhibitor to 2 folds more prevents any proteolysis 

occurring during the experimental procedure. However, running EMSA gels at 

room temperature as compared to 4ºC did not affect the results. In any case, 

under our experimental conditions, this binding does not seem to be stable as we 

were never able to obtain clear shifts from the complex in vitro. To date, not a 

single study has shown a clear human ORC DNA binding through EMSAs. It 

could possibly due to the intrinsic DNA binding by human ORC and no 

preference for a particular DNA sequence (Baltin et al., 2006; Vashee et al., 

2003). With our system we are in a position to address this problem. 

Nevertheless it would require optimization of variables like non-specific 

competitors, choice of gel matrix, length of probe DNA etc.  

 

Stable expression of Orc fusions by Sorting-subcloning 
 
The initial attempts to generate stable cells for Orc fusions through traditional 

antibiotic selection method proved to be futile. Stable transgene expression is 

known to occur at very low frequency under the antibiotic selection pressure 

(Felgner et al., 1987; Gubin et al., 1999). Moreover, antibiotic selection induces 

some deleterious effects such as growth inhibition (Gu et al., 1992; Kim et al., 

1998). The concentration of the antibiotic in the culture medium even had 

demonstrable effects on transgene expression within those antibiotic resistant 

cell lines (Schott et al., 1996). Moreover, Orc itself is a cell cycle regulated 

protein and the formation of a functional ORC complex is an absolute necessity 
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for DNA replication. As we didn’t observe any apparent cellular toxicity during the 

antibiotic selection, we adopted ‘ sorting-subcloning’ (see materials and methods) 

to generate stable cells lines for 4G. ‘Sorting -subcloning’ has already been 

shown (Liu W, Unpublished data) to be a successful strategy to obtain clones 

with sustained transgene expression over a long period of time. In contrast to 

antibiotic selection, this approach provides cells a consisitent culture condition. 

FACS sorting allows efficient separation of EGFP positive cells after the 

transfection. After the first round of sorting, EGFP expression in the majority of 

cells is most likely transient due to non-integration of the plasmid construct. A 

large portion of cells will revert to a EGFP negative state due to loss of the 

transfected DNA. Thus, a second round of FACS sorting is necessary. After two 

consecutive rounds of sorting EGFP positive cells have most likely a stably 

integrated transgene construct. As screened by western blot (Fig. 15) high 

efficiency of positive clones were obtained through ‘sorting subcloning’. EGFP is 

an inert protein and has never been reported to have interfered with the normal 

cellular mechanisms. Never the less, flanking loxP sites in our system provide us 

with the possibility to excise EGFP by Cre expression (Fig. 14). The stable 4G 

clones thus obtained show a normal cell cycle progression (Fig 16.C) as 

observed by propidium iodide staining. Before, randomly integrating into the host 

choromosome the transfected DNA forms concatomer. Hence we expected the 

reduction of transgene’s copy number to one. Consequently, after the Cre 

recombinase expression, we observed a decrease in the intensity of 4G band on 

the western blot (Fig. 16B). As expected, the expression of Cre recombinase 

would most probably have excised the 4G-transgene positioned internally to the 

loxP sites along with the EGFP.  

 

Co-immunoprecipitaiton experiments in the stable 4G cell lines with the antibody 

against Orc1 show that 4G interact with endogenous Orc subunits (Fig. 17). This 

means that 4G participate in cellular ORC, indicating that inside the cell there exit 

two sets of complex. One, where Orc1 forms complex with endogenous Orc 

subunits and the other where 4G integrates into the complex instead of Orc4. As 
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we know that ORC has single copy of each subunit, it’s not possible that both 4G 

and Orc4 can interact together with Orc1 in the same complex. 

 

Target DNA dependent replication of the plasmid 
 

Having well-characterized origins in S. cerevisiae has immensely facilitated the 

study of replication initiation mechanism. The initial discovery and 

characterization of ORC were possible due to the knowledge of ARS sequences 

(Bell and Stillman). Plasmid transformation experiments that were successful in 

budding yeast have failed to identify autonomously replicating sequences (ARS) 

in higher eukaryotes. Under these conditions, it is difficult to observe changes 

occurring during replication initiation mechanisms due to the lack of sequence 

specificity of origins. One way to circumvent this difficulty is to use SV40 

replication system (Waga and Stillman). Replication of SV40 genome begins at 

specific 64-bp region and requires only large T antigen (the viral initiator protein) 

in addition to cellular replication machinery. Large T antigen binds to the SV40 

origin and facilitates DNA unwinding and recruitment of the host replication 

factors. Although the SV40 system mediates DNA replication initiation in 

mammalian cells, it does not require pre-RC proteins. Hence it is not suitable for 

studying the formation of pre-RC. As a result, we aimed at creating a system 

where ORC is recruited to specified DNA sequences and triggers replication 

preferentially at these DNA sites. During the investigation we found that high 

levels of ORC expression is a necessity to be able to get a positive read out with 

short term replication assay using our system. As plasmid carrying multimerized 

tetO (target DNA sequences) didn’t show any DpnI resistant band in HeLa cells 

stably expressing 4G. HeLa cells are known to express relatively low levels of 

endogenous proteins as compared to HEK293 cells. At these levels only a small 

fraction of transfected plasmid could possibility undergo replication. Given, the 

low efficiency of these short-term plasmid replication assays, it is likely that no 

signal was detected with the Hirt supernatants. Nevertheless our Hirt supernatant 

preparations showed an efficient extraction of the transfected plasmid as 
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observed by the southern blots with only linearized DNA (data not shown). 

However, we don’t know what fraction of the transfected plasmid was able to 

make its way in the replication competent compartment of the cell. It is 

reasonable to assume that most of the DpnI digested plasmid never got a chance 

to reach the right cellular compartment. 

 

We made use of SV40 origins to establish the short-term replication system in 

transient environment. T antigen is a sole viral initiator required to initiate 

replication from SV40 origin of replication. Plasmid carrying SV40 origin 

replicates efficiently in HEK 293 cells expressing large T antigen as observed by 

the presence of DpnI resistant band in the southern blots (Fig. 18). However, the 

intensity of the same band remains at the background level when tested with 293 

cells without any large T antigen. 

 

We observed plasmid replication in tetO7-4G (4G plasmid inserted with 

heptamerized tetO) and tetO7-2G (2G plasmid inserted with heptamerized tetO) 

in constrast to 4G and 2G plasmids, without having target DNA sequences (Fig. 

19A). The inability of 4G and 2G plasmids to replicate was not due to the failure 

of protein expression, as immunoblots made with extracts from the transfected 

cells show efficient expression by all the plasmid constructs (Fig. 19B). Thus, the 

replication of a plasmid in our system is dependent on the presence of target 

DNA sequences on it. In case of tetO7-4G or tetO7-2G, engineered ORC binding 

to specific DNA sites would have triggered the replication initiation by recruiting 

other pre-RC proteins, as shown for Gal4-Orc fusions by the CHIP 

experiments(Takeda et al., 2005). However, due to the absence of tetO in 4G or 

2G, no specific DNA – protein interaction would take place. Hence replication is 

not observed with these plasmids, although proteins were expressed efficiently. 

We have also observed plasmid replication in 293 cells co-transfected with Orc 

fusions (either 4G or 2G) expressing plasmid and a response plasmid carrying 

tetO sequences. However, having target DNA sequences on the same plasmid 

provides higher replication efficiency as compared to co-transfection. It would be 
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interesting to analyze the plasmid replication in 293 cells stably expressing Orc 

fusions.  

 

On the analysis of the protein lysates obtained from HEK293 cells transfected 

with various Orc fusion plasmids, we observed that after a period of one week 

the replication positive plasmids, tetO7-4G or tetO7-2G, showed higher protein 

levels when compared with protein lysates from the cells transfected with 

replication negative plasmids, 4G or 2G (Fig. 20). Higher protein levels indicate 

higher protein expression most probably due to more copies of the plasmids as a 

result of replication inside the mammalian cells. Over a period of 7 days, 

transient expression would have decreased; as a result, the increase in plasmids 

copy number due to replication in mammalian was visible in terms of higher 

protein levels. 
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Fig. 26. Proposed model for tetO dependent plasmid replication by 
engineered human ORC. Based on the results that ORC fused with  scTetR 
domain supported replication of plasmid containing tetO sequences, we 
proposed the above model. First, ORC is recruited to the target DNA sequences 
through TetR. After that, it recruits other proteins like Cdc6, Cdt1 and MCM 
complex in G1 to form a pre-RC at tetO. With the change in cdk activity the origin 
fires and starts the bi-directional, semi-conservative replication in S phase  
 

One of the main advantages of using TetR is its Dox responsiveness. We had 

expected the system to be Dox controlled. Surprisingly no difference in the 

replication activity in presence of Dox was observed (data not shown). There 

could be various reasons for it. One of the most important is the mechanism of 

ORC formation and its recruitment to DNA. In a scenario where ORC is recruited 

to DNA as a holocomplex, adding Dox can control only TetR-tetO binding but not 

the intrinsic ORC-DNA binding. Hence as a result of its intrinsic DNA binding, 

once recruited to DNA ORC would remain bound to DNA even in the presence of 

Dox. To circumvent this problem, we treated cells with Dox before transfections 

so that expressed TetR-Orc fusions cannot bind to tetO. Even under these 

conditions, we observed similar replication activity in presence or absence of Dox 

(data not shown). So we decided to analyze Dox effect in vitro with purified ORC 

complex.  

 

One of the ways to make this system inducible is the use of an inducible 

promoter for the expression of Orc fusions. However, choice of transcriptional 

activator and Orc fusion partner should be carefully made to avoid any 

competition for the target DNA by both of them. Nevertheless, we have created a 

system where recruitment of ORC to the target DNA sequences supports 

plasmid replication. Based on our results, we propose a model (Fig.26), which 

shows how replication would initiate at the target DNA sites through recruitment 

of artificial ORC at these sites. At first, artificial ORC is recruited to tetO as a 

holocomplex. This initiates the formation of pre-RC at these sites. With the 

change in cdk activity DNA replication begins in S phase  
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Part II DNA binding analysis of purified Engineered ORC 
 
In vitro complex formation  

 
Baculovirus based insect cell expression system has been used previously for 

the efficient purification of ORC (Giordano-Coltart et al., 2005; Ranjan and 

Gossen, 2006; Vashee et al., 2003). We utilized the same approach to 

investigate the in vitro complex forming ability by the Orc fusions. We observed 

an inverse co-relation between expression level and solubility for single subunit 

infections in insect cells (Fig.21). With soluble protein giving weaker bands in the 

whole cell lysates and vice versa. Affinity purification of nuclear extracts prepared 

from insect cells co-infected with different Orc subunits show the efficient 

integration of Orc fusions in the ORC complex (Fig. 22). With the increased 

molecular weight as a result of scTetR fusion, both 4G and 2G migrates at much 

higher molecular weight level as compared to their wild type counterparts. Orc6 

does not form the part of stable complex as shown by glycerol gradient 

experiments (Ranjan and Gossen, 2006). So we did not include it in our affinity 

pull down experiments. Stoichiometry of various subunits in the complex is 

comparable to the wild type protein. Hence possibility of Orc fusions coming 

through a subcomplex and not from the holocomplex is quite unlikely. Orc1 

fusions also integrate efficiently in a complex. However, these fusions were found 

replication incompetent during the short-term replication assay (data not shown). 

Hence, the failure to replication plasmid by Orc1 fusions was not due to the 

inability to form ORC. 

 

Purified ORC binding with tetO  
 

Human ORC does not effectively discriminate between so called origin and 

random DNA sequences (Vashee et al., 2003). However, it has several folds 

more affinity for poly(dA). poly(dT) sequences than naturally occurring DNA 

fragments. Preferential binding of HsORC to AT rich sequences is shared by 
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S.pombe ORC (Chuang and Kelly, 1999). Here ORC DNA binding is mediated by 

a unique N terminal AT hook domain in SpOrc4. Therefore it is interesting to 

speculate that HsORC may be recruited to DNA by its interaction with an AT 

hook protein. However, no evidence of such a protein has been reported to date. 

 
His-tag at the C-terminus of the Orc1 subunit was utilized to purify the ORC in 

our experiments. The quality of purified ORC is analyzed on silver stained gel. 

Pull down experiments with biotinylated tetO showed efficient enrichment of 

purified ORC2G (Fig. 23). Hence, complex formation didn’t mask the TetR tag, 

as it was able to recognize tetO sequence in vitro. Like plasmid replication assay, 

no Dox effect was observed for in vitro DNA binding by ORC2G (Fig.25A). This is 

highly unexpected because it is known that in the presence of Dox, the changed 

conformation of TetR can no longer bind to tetO. Moreover, we added 10 fold 

excess poly(dA). poly(dT) as competitor DNA to titrate out the intrinsic DNA 

binding by ORC. However due to some unknown mechanism ORC2G binds to 

tetO even in the presence of Dox. Now, it is also possible that ORC2G binding to 

tetO is unspecific and not tetO dependent. Our competition assay disproves this 

argument because, ORC2G – tetO binding can be titrated out by adding 

increasing amounts of untagged tetO in the reaction (Fig. 25). Where as 10 folds 

more of non-biotinylated tetO (specific competitor) substantially reduces ORC2G 

binding with biotinylated tetO, no effect on biotinylated DNA binding was 

observed by adding 10 folds more of poly(dA). poly(dT). To date, HsORC has 

been known to have preferential affinity for poly(dA). poly(dT). However, with our 

system we have conferred to HsORC, a more robust and higher affinity towards 

tetO. Although, we have shown that engineered human ORC binds preferentially 

to tetO, it would be interesting to probe further into non-responsiveness for Dox. 

It is widely accepted that DNA binding of ORC is through Orc1. So it is possible 

that intrinsic DNA binding activity of ORC due to Orc1 subunit is preventing to 

show any positive read outs for Dox effect, in our experiments. With the 

baculovirus expression system, one can express ORC (2-5) and test it for Dox 

responsiveness. 
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In conclusion, fusing N terminal of Orc subunits with a sequence –specific DNA 

binding protein doesn’t interfere with the complex formation ability of ORC. In 

vivo such a fusion protein can replicate plasmid carrying the target DNA 

sequences. This could be an extremely useful assay for studying the functions of 

various initiator factors involved in pre-RC formation. Additionally, the utility of 

this system in long-term protein expression could be a very useful tool for gene 

delivery.  
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Future perspectives 

 

Although replication initiator factors have been discovered for more than a 

decade now, their precise role in replication initiation is not known. With the 

extremely useful plasmid replication assay we could be able to dissect the 

functions of various initiator proteins involved in the pre-RC assembly. Orc 

fusions with point or deletion mutants can readily identify amino acids 

indispensable for DNA replication.  

 

Owing to the unspecific DNA binding by HsORC, not even a single origin of 

replication has been genetically characterized to date. We can translate this 

system to the genomic level by using mammalian cell lines with tetO sequences 

stably integrated into their genome. These sites could function as an origin of 

replication where the mechanism of replication initiation can be efficiently 

analyzed. 

 

Efficiency of the plasmid replication can be probed further by using different 

permutation and combination of target DNA sequences on the plasmid. One of 

the interesting possibilities is to insert the tandem arrays of heptamerized tetO 

and observe the increase in the DpnI resistant band intensity in southern blot.  

One of the major challenges would be to probe the cause of Dox ineffectiveness.  

 

Self-replication of plasmid carrying the target DNA sequences shows the long-

term protein expression. Such a system has practical implications in gene 

therapy. To date not even a single non-viral episomal vector for gene delivery 

has been reported. Viral episomal vectors require the introduction of viral based 

proteins, raising questions about their safe and long-term gene delivery. The 

efficiency of plasmid replication has to be optimized in our system before 

replication competent plasmid can be made useful for gene delivery. We have 

tried to improve the plasmid replication efficiency by inserting target DNA 
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sequences on the same plasmid expressing Orc fusions. Additionally, stable 

overproduction of the Orc fusion proteins could improve the plasmid replication 

efficiency. The incorporation of an element in the vector that promotes its 

attachment to chromosomes to ensure proper segregation could also be useful 

for its stable maintenance in the cell over many generations. 

 

The inducible system would provide us an additional level of regulation for 

studying the replication initiation mechanism using at artificial origin sites. One 

indirect way to circumvent Dox ineffectiveness is to control the replication at the 

protein level by using an inducible promoter to derive the expression of Orc 

fusions. Under off state, promoter will not express the fusion protein and no 

replication of plasmid will take place. However as the promoter is switched on, 

expressed Orc fusion forms a complex with endogenous Orc subunits and initiate 

replication by binding the target DNA sites. In order to implement such a strategy, 

one must carefully choose the transcriptional activator and DNA binding moiety 

(for Orc fusions) to avoid competition between both of them for target DNA.  
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Summary 

 
Origins of DNA replication are the cis elements, which are specifically recognized 

by trans factors called initiators. The Origin Recognition Complex (ORC), a six-

subunit protein complex selects the sites of DNA replication in eukaryotes. A 

uniformly distributed origin sequences is a basic necessity for the precise 

duplication of eukaryotic genome. However in humans, no uniform pattern of 

origin selection is reported to date. This is mainly attributed to the unspecific DNA 

binding by human ORC. 

 

The work presented in this thesis focused on the unspecific DNA binding activity 

of human ORC. We reconstituted a recombinant HsORC where sequence 

specific DNA binding is artificially imposed through a heterologous DNA binding 

domain. In vitro DNA binding analysis with purified recombinant protein showed 

the high degree of specificity for the target DNA sequences. The affinity of 

artificial protein for target DNA sequence was several folds more as compared to 

the affinity of the wild type protein for the AT rich sequences. 

 

In a parallel approach using these engineered initiator genes, we tried to 

establish in vivo replication of the plasmid with specific sequences in mammalian 

cells. Recognition of initiator proteins to DNA sequences lead to the assembly of 

protein factors, which initiate DNA replication, preferentially at these sites. 

Plasmids without specific sequences failed to replicate in mammalian cells. This 

system provides an effective way to analyze the function of mammalian initiator 

proteins. Our study has practical implications for the development of episomal 

vectors in gene delivery. 
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Zusammenfassung 

 
Origins für die DNA-Replikation sind cis-Elemente, die spezifisch durch trans-

Faktoren, die man Initiatoren nennt, erkannt werden. Der ’Origin Recognition 

Complex’ (ORC) besteht aus sechs Untereinheiten und bindet die Origins bei der 

Initiation der DNA-Replikation von Eukaryoten. Die gleichmäßig auf der DNA 

verteilter Origin-Sequenzen sind Grundvoraussetzung für genaue Verdopplung 

des Genoms. Jedoch ist beim Menschen bisher keine einheitliche Origin-

Sequenz bekannt. Der Grund dafür liegt in der unspezifischen DNA-Bindung der 

humanen ORC-Proteine. 

 

Diese Arbeit beschäftigt sich mit der unspezifischen DNA-Bindung der humanen 

ORC-Proteine. Dafür wurden rekombinante ORC-Proteine hergestellt, die sich 

durch eine künstlich eingeführte DNA-Bindedomäne spezifisch an bestimmte 

DNA-Sequenzen binden können. Durch in-vitro-DNA-Bindungsanalysen konnte 

die Bindung dieser rekombinanten Proteine an spezifische DNA-Zielsequenzen 

gezeigt werden. Des Weiteren konnte eine deutlich höhere Affinität dieser 

Proteine zur Zielsequenz nachgewiesen werden, als das Wildtyp-Protein zu einer 

AT-reichen DNA-Sequenz.  

 

In weiteren Versuchen wurden die rekombinanten Initiatorgene  in vivo getestet, 

wobei die Replikation von Plasmiden mit den spezifischen Zielsequenzen in 

Säugetierzellen untersucht wurde. Aufgrund der Erkennung der Zielsequenzen 

durch die Initiatorproteine erfolgte die Rekrutierung von anderen 

Replikationsfaktoren, die daraufhin die Replikation der Plasmide verursachten. 

Dagegen zeigten Plasmide ohne diese Zielsequenzen keine Replikation in den 

Zellen. Diese Methode erlaubt eine effektive Analyse der Funktion der 

Replikationsinitiationsproteine von Säugetieren. Des Weiteren könnte dieses 

System Anwendungen bei der Entwicklung von episomalen Vektoren für die 

Gentherapie  finden.  
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Appendix 

 
I. Abbrebiations 
 
 
°C degree celsius   

aa amino acid   

AAA+ A superfamily also containing 

AAA proteins 

  

ACS ARS consensus sequence   

Amp ampere   

ARS autonomous replication 

sequence 

  

ATP adenosine triphosphate   

bp base pair   

BSA bovine serum albumin   

CDC6 cell division cycle 6   

CMV human cytomegalovirus   

dATP deoxy adenosine triphosphate   

DNA deoxyribonucleic acid   

Dox doxycycline   

ds double stranded   

E.coli Escherichia coli   

EDTA ethylenediaminetetraacetate   

FCS fetal calf serum   

g gram   

HDAC histone deacetlayase   

Hs Homo sapiens   

IP immunoprecipitation   

K kilo   

Kb kilo base pair   
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kDa kilo dalton   

l liter   

m milli    

M molar   

MCM minichromosome maintenance   

min minute(s)   

Orc subunit of ORC   

ORC origin recogniton complex   

ori origin   

PAGE poly acrylamide gel   

PBS phosphate buffer saline   

PCR polymerase chain reaction   

PMSF phenylmethylsulfonylchloride   

pre-RC pre-replicative complex   

PVDF polyvinylidene fluoride   

  RFC   replication factor C 

  RPM   rotations per minute 

  RT   room temperature 

  sc   Single Chain 

  Sc   Saccharomyces cerevisiae 

  SDS   sodium dodecylsulfate 

  Sp   Saccharomyces pombe 

  ss   single stranded 

  SV40   simian virus 40 

  TEMED   tetramethylenediamine 

  TetR   tetracycline repressor 

  tetO   tetracycline operators 

  Xl   Xenopus laevis 
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II. Schematic representation of Orc fusion expression vectors 
 
 

 
Fig. II Important elements present in the vectors expressing Orc fusions. 
Either constitutive CMV/EF promoters or inducible tetrycline controlled 
promoter.drives the expression of Orc fusions. DNA binding domain was fused at 
the N terminus of Orc2 or Orc4 and a flexible linker was inserted between TetR 
and Orc moeties . C terminus of Orc1 was used to generate Orc1 fusions and no 
flexible linker was used. 
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III. Schematic representation of replication positive Orc fusion vectors 
 

 
Fig. III Important elements present in the replication positive Orc fusions. 
A heptamerized tetO (7xtetO) insert cloned upstream of CMV promoter of 
previously described (Appendix Fig. II) 4G and 2G resulted in tetO7-4G and 
tetO7-2G, respectively. 
 
 
IV. Schematic representation of response plasmids used for in vivo DNA 
binding experiments 

 
Fig. IV Important elements present in the repressor (TO4/LacZ) and 
activator (pTRE/LacZ) reponse plasmids. TO4/LacZ contains 2xtetO upstream 
of the TATA box in CMV promoter. Binding of any tet trans regulator to these 
sites will inhibit the expression of downstream lacZ gene. pTRE/LacZ contains a 
minimal CMV promoter. Binding of any transcriptional activator at heptamerized 
tetO (tet responsive element) sites upstream of minimal CMV promoter will 
trigger the expression of downstream lacZ gene. However, tet transregulators 
exhibiting no transcriptional activation would not result in lacZ expression. 
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V. Modified Sorting –subcloning strategy to generate stable cell lines for  
transgene of interest. 
 

 
 

Fig. V Strategy to stably transfect any transgene of interest using a 
modified “Sorting-Subcloning"method. 
HeLa cells were transfected with pFRT-EF-EGFP-mRFP. Stable clones were 
isolated by “Sorting-Subcloning” approach. A) Scheme to switch ON the 
expression of RFP (or any transgene) in stable GFP clones. B) The excision 
efficacy of Flp-recombination of FRT flanked EGFP was analyzed by southern 
blot. +FLP clones show a reduction of the band size (+Flp) whereas -FLP clones 
maintain the original band size, as observed in –Flp and control lanes. C) The 
change of fluorescent signal from green to red is observed under the fluorescent 
microscope after transfecting – FLP cells with recombinase expressing plasmid. 
Isogenic clones were picked by lmited dilution of this population. Instead of 
mRFP one can insert any transgene to obtain stable and homogebous 
expression using the above strategy. 


