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PREFACE Y

Preface

In this thesis we study different kinds of combinatorial games between two players, which are
played on a board that consists of the edges of some given graph G. We distinguish unbiased
games, in which both players claim (or orient) one edge in each round, and b-biased games in

which the second player claims (or orients) b edges in each round.

The first game in this regard is the strict oriented-cycle game, which was introduced by
Bollobas and Szabd, and later studied by Ben-Eliezer, Krivelevich and Sudakov. This game
is played by two players, OMaker and OBreaker, who assign orientations to the edges of the
complete graph K, on n vertices alternately. OMaker has the goal to create a directed cycle,
while OBreaker wants to prevent such. It has been asked by Bollobas and Szabé to find the
largest value b for which OMaker has a winning strategy in the b-biased strict oriented-cycle
game, i.e. when OBreaker orients b edges in each round. They conjectured this value to be
n — 3, which turned out to be false, when, in an earlier work with Liebenau, we were able to
show an upper bound of size n — ©(y/n). In this thesis we improve further on this bound,

and we show that even for a bias b > %n, OBreaker has a strategy to prevent cycles.

The second game that we discuss is the tournament game, which was introduced by Beck.
Here, the two players, TMaker and TBreaker, alternately claim edges of a given graph G,
where TMaker additionally assigns orientations to her edges. She wins, if her directed graph
contains at least one copy of a pre-defined tournament 7', while TBreaker wins otherwise. We
consider this game when G is the complete graph K, or a random graph sampled according
to the random graph model G, ,, denoted by G' ~ G, ,, whereas T" is a tournament on a
constant number k of vertices. For both variants we study thresholds (for the bias b and
the probability p) around which a TMaker’s win suddenly turns into a TBreaker’s win. We
discuss relations between these thresholds and compare these with results for the k-clique
game, which has almost the same rules as the tournament game besides that the first player

does not need to care about orientations.

As third, we study the tree embedding game, which belongs to the family of Maker-Breaker
games. The latter became very popular throughout the last decades, as many researchers,
including Beck, Bednarska, Erddés, Hefetz, Krivelevich, Luczak, Stojakovié¢ and Szabd, con-
tributed to this particular field. The tree embedding game is played as follows. Maker and
Breaker alternately claim edges of the complete graph on n vertices, where each player claims
exactly one edge per round. Maker wins if, by the end of the game, her edges contain a
copy of some pre-defined spanning tree 1'; Breaker wins otherwise. For large n, we show that
Maker has a strategy to win this game within n + 1 rounds, in case the maximum degree of

T is bounded by a constant. By studying random trees, we also show that for almost every
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choice of T', Maker can win the tree embedding game within n — 1 rounds.

Finally, we consider Walker-Breaker games, as they were introduced recently by Espig, Frieze,
Krivelevich and Pegden. Walker and Breaker alternately choose edges of the complete graph
K, but with the constraint that Walker has to choose her edges according to a walk. We
discuss some questions of Espig et. al. In particular, we determine how large cycles Walker

can create.

Organization. In Chapter 1, we introduce positional games in general. After summarizing
all necessary concepts including some known results, we present all the theorems that are
proven in this thesis. In Chapter 2 we study the strict oriented-cycle game, where we prove
that OBreaker wins the b-biased variant of this game, when b > %n. The tournament
game will be discussed in Chapter 3. Afterwards, in Chapter 4, we describe fast winning
strategies for Maker in the tree embedding game. Here, we start with the description of
general strategies when Maker’s goal is to occupy a copy of some tree with bounded maximum
degree, and afterwards we study trees which Maker can claim in optimal time. Finally, we

discuss Walker-Breaker games in Section 5.
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General notation and terminology

Many graph-theoretic notation in this thesis is rather standard and follows that of [43], but

we also may use different notation and terminology as introduced in [11, 14, 15, 16].

For short notation, we write [n] := {1,2,...,n}. A set [k] with &k < n is called a down set of
[n], while every subset [n]\ [k] with k < n is called an upset of [n]. For a set M and a positive
integer k we let (J‘k/f) ={ACM: |Al =k}

A graph G = (V, E) is a pair consisting of a vertez set V and an edge set E C (‘2/) For an
edge e = {u,v} € F, we also write e = uv for short notation. We say that u € V and v € V
are adjacent, if uv € E. A vertex v € V and an edge e € FE are called incident if v € e.

Moreover, two edges e, e € E are adjacent if e N ey # (), otherwise they are independent.

Let a graph G be given. Then we let V(G) denote its set of vertices, and by E(G) we denote
its set of edges. Their sizes are denoted by v(G) = |V(G)| and e(G) = |E(G)|. For every
vertex v € V(G) and every set A C V(G), we let Ng(v,A) == {w € A: vw € E(GQ)}
denote the neighborhood of v in A, and we set Ng(v) := Ng(v, V) to be the neighborhood of
v in G. The degree dg(v) of a vertex is the size of its neighborhood, i.e. dg(v) := |Ng(v)|.
More generally, dg(v, A) := |Ng(v, A)| for every v € V(G) and A C V(G). The minimum
degree and the mazimum degrees of G are denoted by 6(G) := min{dg(v) : v € V(G)} and
A(G) := max{dg(v) : v € V(Q)}, respectively. For two (not necessarily disjoint) sets
A,B C V(G), we let Eqg(A,B) == {e = vw € E(G) : v € A, w € B}, and we set
ec(A, B) := |Eg(A, B)|. We abbreviate Eg(v, A) :== Eg({v}, A) and eq(v, A) := |Eg(v, A)|.

Often, when there is no risk of confusion, we omit the subscript G from the notation above.

Let G and H be two graphs. Then H is a subgraph of G, denoted by H C G, if V(H) C V(G)
and E(H) C E(G). H is isomorphic to G, denoted by H = G, if there is a bijection
¢ : V(G) — V(H) such that uv € E(G) if and only if ¢(u)p(v) € E(H). The map ¢ is
called an isomorphism between G and H. We also say that H is a copy of G, if H = G.
Furthermore, assume that V = V(H) = V(G), then we set G\ H := (V,E(G) \ E(H)).
For a set A C V(G), we let G[A] denote the subgraph of G which is induced by A; for-
mally, G[A] := (A,{e € E(G) : e C A}). Moreover, for a vertex z € V(G), we write
G —z = G[V(G) \ {z}]; and for A C V(G), we let G — A := G[V(G) \ A]. Similarly, for
B C E(G), we write G — B := (V(G), E(G) \ B).

Let G = (V, E) be a graph. Then a subset E' C FE is a matching, if no two edges in E’ are
adjacent. A vertex v € V is saturated by E’ if there is an edge e € E’ with v € e. In case E’

is a matching in G that saturates all vertices of V', E’ is called a perfect matching in G.

A graph G = (V, E) is called bipartite if there is a partition V' = AU B of the vertex set such
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that £ C {vw: v € A, w € B}. We may indicate this property by writing G = (AU B, E)
instead of G = (V, E). The graph K,, = ([n], ([Z])) is called the complete graph on n vertices.
and the graph K, , = ([m] x {1} U [n] x {2}, {{(a, 1), (b,2)} : a € [m], b € [n]}) is called the
complete bipartite graph with vertex classes of size m and n. Let G = (V| E) be some graph
and A C V. Then A is a clique of order k in G, or k-clique, if G[A] & K}. Moreover, A is
called an independent set in G, if G[A] has no edges.

A graph P is called a path if there exist distinct vertices v; with V(P) = {v; : 1 <i < k}
and E(P) = {vjviy1 : 1 < i < k —1}. For short notation, we write P = (v, v2,...,vk).
The length of P is its number of edges. Moreover, with P, we denote a representative from
the isomorphism class of all paths with k vertices. Now, let P = (v1,v9,...,v;) be a path in
some graph G. Then the vertices v1 and v are called the endpoints of P, and the vertices of
V(P) \ {v1, v} are called the interior vertices of P. With End(P) = {v1, v} we denote the
set of endpoints of P. Furthermore, P C G is called a bare path of G if dg(v) = 2 for every
interior vertex v € V(P); and P C G is called a Hamilton path of G if V(P) = V(G).

A walk W in a graph G = (V, E) is an alternating sequence of (not necessarily distinct)
vertices and edges v1,e1,v2,€2,v3,...,Vk_1, €k_1, Vg, starting and ending with a vertex, such

that e; = v;v;41 € E for every 1 <i <k — 1.

A cycle C of length k is a graph with vertex set V(C) = {v; : 1 < i < k}, and edge set
E(C) = {vviy1 = 1 <i < k—1} U {vgv1} for distinct vertices v;. With Cy we denote a
representative from the isomorphism class of all cycles of length k. If G is a graph and C C G
is a cycle, then C is called a Hamilton cycle in G if V(C) = V(G).

A graph G is called connected, if between each pair of vertices there is a path in G . If
a subgraph H C G is a maximal connected subgraph of G (with respect to the number of
edges), then H is a component of G. G is called a forest if it does not contain a cycle; and
if G is a connected forest, then G is called a tree. If T is a forest, then a vertex v € V(T') is
called a leaf if dp(v) = 1. If a tree T is a subgraph of a graph G, then T is called a spanning
tree of G if V(T') = V(G). We may also consider rooted trees, where one vertex is designated
as the root of T

For two vertices v and w in a graph G, we define their distance dg(u,v) to be length of the
shortest path between u and v. In case such a path does not exist, we set dg(u,v) = oco. The

diameter D(G) of a graph G is defined as D(G) := max, ,cv(q) da(u, v).

Let a rooted tree T' be given, with root v € V(T'). Then the depth of T is the shortest
distance between v and the leaves of T'. Furthermore, let u,w € V(T') be distinct vertices. If

uw € E(T) and disty(v,w) = disty(v,u) 4+ 1, then u is called a parent of w. If there exists a
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path between the root v and the vertex w which contains u, then w is a descendant of u.

A pair D = (V, E) is called a digraph if E CV x V. Again, V is called the vertex set of D.
An ordered pair (v, w) € D is called an arc or a directed edge. Sometimes, we will identify D
with its edge set E. If v = w, then (v,w) = (v,v) is called a loop. We say that (v, w) is the
: — . :
reverse arc of (w,v), and for an arbitrary arc e we use e to denote its reverse arc. We will
only focus on simple digraphs, i.e. those digraphs that do not contain loops and reverse arcs.
— —
Given such a digraph D, we let D denote the set of all reverse arcs of D, i.e. D:= {?: e e D}.
Moreover, to delete or to add some edge e, we write D 4+ e := DU {e} and D —e := D\ {e}.

The definitions of adjacency, incidence, subgraphs, isomorphy etc. transfer to digraphs in the
natural way. We also use the following. For two sets A,B C V, we let
D(A,B) := DN (A x B) be the set of those edges in D that start in A and end in B.
Moreover, we let D(A) := D(A, A) denote the subgraph of D induced by A. We write
D(v, B) := D({v},B) and D(A,v) := D(A,{v}) for every v € V. To describe the sizes of
certain arc sets, we let ep(A) := |D(A)|, ep(A,B) := |D(A, B)|, ep(v,B) := |D(v, B)| and
ep(A,v) :=|D(A,v)|. Again, when there is no risk of confusion, we may omit the subscript

D from the notation above.

Moreover, a digraph D is called a tournament if between each pair of its vertices there exists
exactly one directed edge in D. A digraph P = (V| FE) is a directed path if there exist vertices
v; with V(P) ={v; : 1 <i<k}and E(P) = {(vi,vit+1): 1 <i<k—1}. For short, we again
write P = (vy,...,vk). Similarly, a digraph C' = (V, E) is called a directed cycle if there exist
vertices v; with V(C) ={v; : 1 <i<k}and E(C) = {(vj,viy1): 1 <i<k—1}U{(vg,v1)}.

Following [2], we denote with G, , the Binomial random graph model, which is the probability
space of all labeled graphs on the vertex set [n], where the probability for such a graph G to be
chosen is pe(G)(l — p)(g)_e(G). Similarly, G(n, M) denotes the probability space of all labeled
graphs with vertex set [n| and exactly M edges, together with the uniform distribution. If a
graph G is sampled according to one of these models, we write G ~ G, , and G ~ G(n, M),
respectively. Let A = A,, be an event depending on some integer n € N. Then we say that A

happens asymptotically almost surely (a.a.s.) if Pr[A] — 1, when n — oo.
We abbreviate ”without loss of generality” with "w.l.o.g.”

Let f,g : N — R\ {0} be two functions. We write f = o(g) or f < g, if % — 0,asn
tends to infinity. Similarly, we write f = w(g) or f > ¢, if g = o(f). In case % —1,asn

tends to infinity, we say that f and g are asymptotically equal, and write f ~ g. Moreover, if
there exists a constant C' > 0 such that for every large enough n, |%| < C holds, we write
f = O(g). Moreover, we write f = Q(g) if g = O(f); and f = O(g) if f = O(g) and f = Q(g).
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Throughout this thesis, log denotes the natural logarithm, with bases e = 2,71828.... If
another basis b is used, we write log, instead.

Finally, in each of the following chapters we may introduce further notation, which is used

only in the particular chapter.



Chapter 1

Introduction

The main focus of this thesis lies on the study of positional games and variations of these
games. As games like these were studied a lot throughout the last decades [3, 30], and as
such, a general language for such games was developed, the terminology in this thesis is rather

standard.

A positional game is a perfect information game, played by two players, which can be repre-
sented by the use of some hypergraph (X, F). (For simplicity, we let the first and the second
player be female and male, respectively.) The (finite) set X is called the board of the po-
sitional game, where we usually choose X to be the edge set of some pre-defined graph G.
Moreover, F C 2% is a family of subsets of X, whose elements are called the winning sets
of the positional game (X, F). Both players alternately claim elements from X which were
not claimed before by either of the players, and finally, the winner of the game is determined
with the help of the family F. Of course, the last sentence appears to be rather vague, since
it does not tell us precisely the way the outcome of the positional game is determined. The
reason is that there exist many different types of positional games, which are distinguished

by the goal that the two players have.

Strong games. The most natural type of positional games is probably given by what we
call a strong game (X, F). In these games, the first and the second player alternately claim
elements of X, until one of the players succeeds in occupying all the elements of one of the
winning sets F' € F. We then also say that he or she occupies/claims this winning set. The
player who claims a winning set first, is declared to be the winner of the strong game. However,
in case both players manage to prevent the opponent from occupying a complete winning set
until the end of the game, the game ends in a draw. A typical example of such a game

is Tic-Tac-Toe, which probably every child learns to play in kindergarten or in elementary
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school. Here, X is given by the (3 x 3)-board [3]2, while F consists of all horizontal, vertical

and diagonal lines of length 3, i.e.

F= {{d): jeBy:ien)
U{{(i,5): i€ B} :j €3]]
U{{(1,1),(2,2),3,3)}, {(1,3),(2,2), 3, 1)} }-

By playing Tic-Tac-Toe for some number of times, one shall verify easily that in case both
players play according to an optimal strategy, the game always ends in a draw. Indeed, by
means of a basic logic argument, it turns out that for every positional game (X, F) which
is played by two optimal players the outcome of the game is determined uniquely. That
is, for every such game exactly one of the following three statements holds (see Strategy
Theorem [3]):

(a) The first player has a winning strategy, i.e. she has a strategy that wins against any

strategy of the second player.

(b) The second player has a winning strategy, i.e. he has a strategy that wins against any

strategy of the first player.

(c) Both players have a strategy to force at least a draw, i.e. they can prevent the opponent

from occupying a winning set.

In fact, in case of strong games one can restrict the number of possible outcomes even further.
Using the so-called Strategy stealing argument [3], one observes that there cannot exist a
winning strategy for the second player in any strong game. The main reason for this fact is
that it cannot be a disadvantage for a player to claim the first element in the game. So, the
first player can force at least a draw in every strong game. Moreover, in case F is chosen
in such a way that a draw is impossible, we immediately know that the first player needs to

have a winning strategy.

Nevertheless, finding such strategies for strong games usually turns out to be tremendously
difficult, since one can hardly avoid doing huge case distinctions. Already for the innocent
looking game Tic-Tac-Toe, which lasts at most five rounds, one needs to come up with a small
case analysis in order to prove that both players have a drawing strategy. Let us consider the
strong 5-cliqgue game [3] as a further example. In this game, X = E(K,,) is the edge set of the
complete graph on n vertices, while the winning sets are precisely all the edge sets of cliques
of order 5 in K,,. By the well-known Ramsey Theorem [43], it is clear that for large enough

n, the game cannot end in a draw, as every coloring of the edges of K, with two colors will



produce a monochromatic clique of order 5. Thus, provided n is large enough, we know that
the first player needs to possess a winning strategy. However, so far nobody could describe
such a strategy explicitly. In particular, we do not know whether there exists an absolute
constant C' > 0 such that the first player can always win the 5-clique game on K,, within at

most C rounds, for every large enough n (see the list of open problems in [3]).

Maker-Breaker games. Partially due to the difficulties described above, but also because
of the fact that the second player in a strong game can only hope for a draw, one may come
up with positional games where the second player is already declared to be the winner in case
he blocks every winning set. These games are referred to as weak games or Maker-Breaker
games, which are defined as follows. Let the hypergraph (X, F) be given. The players, Maker
and Breaker, alternately claim elements of X. In case Maker manages to occupy a winning
set F' € F (not necessarily first), she wins the game (X, F). Otherwise, i.e. when Breaker
manages to claim at least one element in each of the winning sets, Breaker is said to be the

winner.

Maker-Breaker games were studied a lot throughout the previous decades and many beautiful
results were proven; see e.g. [3, 4, 5, 9, 18, 23, 24, 30, 35]. One reason for this, of course, is
the simplification with respect to strong games. However, another and even more important
reason is the fact that throughout the last decades, many beautiful tools were developed and
applied in order to solve problems about Maker-Breaker games. One of the first remarkable
publications in this regard comes from Erdés and Selfridge [18], who proved a general winning
criterion for Breaker, which was motivated by probabilistic tools. Their argument is said to be
the first proof using the idea of derandomization. Today, the latter is an essential method in
the theory of algorithms. Moreover, their argument motivated further the study of potential

functions in the field of positional games, as it found its climax in the monograph of Beck [3].

In fact, many natural Maker-Breaker games played on the edge set of the complete graph
K, turned out to be really easy wins for Maker when both players claim exactly one edge
from X = F(K,) in each round. For instance, let PM,,, HAM,, and CF denote the family
of edge sets of perfect matchings, Hamiltonian cycles and k-connected spanning subgraphs
of K,, respectively, where we assume n to be even when we study perfect matchings. By
Lehman’s Theorem [3] it holds that Maker wins the connectivity game (E(Ky),C}) within
n — 1 rounds, even if she restricts herself to a sub-board of F(K,) consisting only of two
edge-disjoint spanning trees of K,. Hefetz, Krivelevich, Stojakovi¢ and Szabé [28] showed
that Maker wins the perfect matching game (E(K,), PM,) within § + 1 rounds for every
large enough even integer n. Moreover, as shown by Hefetz and Stich [31], there exists a

strategy for Maker to win the Hamilton cycle game (E(K,), HAM,,) within n + 1 rounds,
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and, following Ferber and Hefetz [20], she also wins (F(K,),Ck), for k > 2, within L%”J +1
rounds, provided n is large enough. So, in all of these games we observe that the number of
rounds, which Maker needs to play until she wins, is just one larger than the minimal size of
a winning set; at the moment Maker finishes the game, almost every edge of K, is still not

claimed by either of the players.

Biased games. Considering this stupendous power which Maker seems to have in such (and
many further) natural Maker-Breaker games on K, it seems reasonable to increase Breaker’s
power. There are several typical options to do so. The first option leads us to biased Maker-
Breaker games, initiated by Chvéatal and Erdés [9]. Here we allow the players to claim more
than one element from the board X in each round. So, let a,b € N be positive integers, which
we call the biases of Maker and Breaker, respectively. Then in the (a : b) biased Maker-
Breaker game (X, F), the players alternately claim previously unclaimed elements from the
board X, where in each round Maker claims a elements and then Breaker claims b elements
(but maybe for the very last round, where some player may claim all the remaining elements
of X if their number is smaller than the given bias). We will restrict ourselves to the case
when a = 1. We refer to the (1: 1) game (X, F) as the unbiased game (X, F), while for b > 1
the (1 :b) game (X, F) will be called the b-biased game (X, F).

As increasing b should increase Breaker’s chances to win, one natural question now becomes
to find the smallest value b for which Breaker has a strategy to win a b-biased game (X, F).
Indeed, it is not difficult to show that Maker-Breaker games are bias monotone in the following
sense. If Maker possesses a strategy for winning the b-biased game (X, F), then she also wins
the (b — 1)-biased game (X, F), and if Breaker knows to win the b-biased game (X, F), then
he also does so for the (b+ 1)-biased game (X, F); see e.g. [3, 30]. Thus, provided that F # ()
and |F| > 2 for every F' € F, we know that there needs to exist a unique integer bx such that
Breaker wins the b-biased game (E(K,),F) if b > by, and Maker wins otherwise. We refer
to br as the threshold bias for the game (E(K,),F).

For many natural types of Maker-Breaker games played on K,,, the threshold biases
br = br(n) have been determined throughout the last years; see e.g. [4, 5, 24, 35]. In
particular, for the games introduced above we have

n
log(n)’
as proven by Gebauer and Szabé [24], and Krivelevich [35]. A very interesting fact about

beis bpm,s bram, = (1 —o(1))

these results is that they underline an impressive connection to random graphs. Let us
assume that the two players would play completely at random instead of playing according to
optimal strategies. That is, whenever some player wants to claim an edge, he or she chooses

an edge uniformly at random from the set of all unclaimed edges. Then, in the b-biased



Maker-Breaker game on X = E(K,,), Maker would create a random graph G ~ G(n, M) with
_

M =[50

a.a.s. contains a Hamilton cycle if M > (1 + 0(1))”10%"5(”), while for M < (1 — o(l))”lOTg(n)

such a graph a.a.s. contains an isolated vertex. Thus, in case both players play randomly, we

observe the following. For b > (1+0(1)) ==, it happens that Maker wins a.a.s. the b-biased

log(n)
Hamilton cycle game on K,, (and thus the connectivity and the perfect matching game), and

)] edges. From the theory of random graphs [2, 33], we know that such a graph

for b < (1 — 0(1))%7 Breaker wins a.a.s. the games above by isolating a vertex. In other
words, the breaking point b, where a Maker’s win suddenly turns into a Breaker’s win, is
asymptotically the same for the deterministic game and the random game. For almost every
value of the bias b the outcome of a game played by two intelligent players is the same as the

typical outcome of the game played by two random players.

This connection described above usually is referred to as the probabilistic intuition, random
graph intuition or Erdds paradigm; see e.g. [3, 24, 30]. One of the most important problems
in the field of positional games is to find out for which examples of games a similar relation

between optimal plays and random plays holds.

Later we will discuss different biased games, which can be regarded as variations of Maker-
Breaker games; see Chapters 2, 3 and 5. We will also return to the random graph intuition

in Chapter 3.

Random graphs. Motivated by the connection between positional games and random graphs
it seems natural to study Maker-Breaker games on random graphs rather than on complete
graphs. This is our second approach to increase Breaker’s power, which was initiated first by
Stojakovié¢ and Szabé [42]. The main idea is as follows. Before the game starts, we toss a
biased coin for every edge of K,, in order to decide whether it shall belong to the board X,
where each edge is put into X independently at random with probability p. This way we
reduce the family of winning sets, and thus intensify Breaker’s chances to win. The resulting
board X then is described by the well-known Binomial random graph model G, , [2, 32].
A natural questions then is for which edge probability p, it is more likely that Breaker (or

Maker) wins a particular game on X.

In the following let us be more precise. The Binomial random graph model G, ,, with n € N
and p = p(n) € [0, 1], is the probability space over all labeled graphs on the vertex set [n],
where for any labeled graph G' = ([n], E) the probability of being chosen is pZl(1 — p) ()15,
For short notation, we write G' ~ G, ,,, when G is chosen randomly according to this random
graph model. Then, a well-known fact [8] is that for every graph property P (i.e. a family of
graphs which is closed under isomorphisms), which is monotone increasing (i.e. the property

is preserved under addition of edges), there exists a threshold probability for a random graph
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G ~ Gy p to satisfy G € P. That is, there is a probability pp = pp(n) such that for G ~ G, ,,

we have

1 ifp>
PrG e P) — b=rr

0 ifp<<pp

as n tends to infinity. In particular, as the property ”Maker has a strategy to occupy a graph
with property F in the unbiased Maker-Breaker game on G” is a monotone increasing graph
property, we can study threshold probabilities for Maker-Breaker games as follows. Let F be
a monotone increasing graph property, and let G be some graph, then we define the game
(E(G), Fa), where the board is the edge set E(G) of G, and the winning sets are given with
Fo ={E(F): F € Fand E(F) C E(G)}. By the discussion above, it then follows that
there exists a threshold probability pr = pz(n) such that for G ~ G, ,, the following holds as

n tends to infinity:

1 ifp>
Pr(Maker wins the unbiased game (E(G), Fg)) — b=rr

0 ifp<Kpr.

In the recent years quite a lot of research was done regarding games on random graphs; see
e.g. [12, 27, 40, 41, 42]. For instance, considering the same games as before, it follows from
[27, 42] that

log(n)

pC,}Lv PPMyy PHAM, =

Surprisingly, for these examples we observe that the threshold probability for Maker to win
the unbiased game on G ~ G, is related to the inverse of the threshold bias of the biased
game on K, — another evidence for the connection between deterministic games and random

graphs, which is also referred to as the probabilistic intuition.

Later, we will study such relations for the so-called tournament game, which can be regarded

as a variant of the Maker-Breaker clique game; see Chapter 3.

Variations of Maker-Breaker games. Finally, a third way for increasing Breaker’s power
obviously is to change the rules of a game. For instance, instead of allowing Maker to claim
edges in a game (E(K,), F) arbitrarily, one may restrict her choices in every round according
to some pre-defined rule. In this regard, we will later discuss Walker-Breaker games, which

were introduced recently by Espig, Frieze, Pegden and Krivelevich [17].

Differently, one may also think of variants where the players have to assign orientations to
those edges which they claim, thus having the goal to occupy a pre-defined digraph structure.

Variants like this will also be discussed later.
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In the following, let us give a short overview on the main chapters of this thesis. We will
introduce all the games that will be discussed later, and we will state all the results that we

are going to prove.

1.1 Oriented-cycle game

In Chapter 2 we study an example from the class of orientation games, which were discussed
recently by Ben-Eliezer, Krivelevich and Sudakov [6], and which can be seen as a modification
of biased Maker-Breaker games. The most general framework of these games is as follows.
Given a graph G, in the orientation game O(G,P,a,b), two players called OMaker and
OBreaker, alternately direct previously undirected edges of the given graph G. OMaker, who
starts the game, directs at least one edge and at most a edges in every round. OBreaker then
answers her move by directing at least one edge and at most b edges of the graph G. The
values a and b are called the biases of OMaker and OBreaker, respectively, analogously to
Maker-Breaker games. Finally, after all edges of G received an orientation, the game results
in a digraph consisting of all directed edges that were chosen by either of the two players. (In
case G = K,,, we obtain a tournament on n vertices.) OMaker wins if this digraph fulfills the

given property P, and otherwise OBreaker is declared to be the winner.

Similar to Maker-Breaker games, these games are bias monotone in the following sense. When-
ever OBreaker has a strategy to win the game O(G, P, a,b), he also has such a strategy for
O(G,P,a,b+ 1). Indeed, for the game where he plays with bias b + 1 he just needs to copy
his strategy from O(G,P,a,b). Analogously, if OMaker has a strategy to win the game
O(G,P,a,b), then she also does for the game O(G,P,a + 1,b). For that reason, the games

defined above are also called monotone orientation games.

In contrast, one can also consider the strict orientation game Os(G,P,a,b), where both
players have the constraint to orient exactly a and b edges in every round (besides maybe
the very last round, where one player may have to orient the remaining edges whose amount
is less than the given bias). These games in general are not bias monotone. For instance,
consider the strict orientation game O(G,,, P, 1,b) where G, is a disjoint union of n paths of
length 2, and P is the property of containing at least one directed path of length 2. Then, one
easily verifies that OMaker has a winning strategy for this game if and only if b < 2(n — 2)

and b is even, and so we do not have the monotonicity as described earlier.

In the following, we will concentrate only on orientation games with ¢ = 1 and G = K,,.
Similar to Maker-Breaker games, we refer to the game O(K,,, P, 1,b) as the b-biased monotone

orientation game (with respect to property P), and Og(K,,P,1,b) as the b-biased strict



8 CHAPTER 1. INTRODUCTION

orientation game (with respect to property P). By the previous discussion we know that
for the monotone game, there exists a threshold bias tp = tp(n) such that OMaker wins the
game O(K,,P,1,b) when b < tp and OBreaker wins otherwise. As for the strict games such
a threshold does not necessarily exist, we define the upper threshold bias t; = t;g(n) to be the
largest bias b for which OMaker wins Oy (K, P, 1,b), and the lower threshold bias t, = t5(n)
to be the largest integer such Os(K,,P,1,b) is won by OMaker for every bias b < t5. (The
definitions of ¢p, t$ and t, are motivated by the study of threshold functions for strict and

monotone Avoider-Enforcer games; see e.g. [10, 26, 29].)

Ben-Eliezer, Krivelevich and Sudakov [6] studied the threshold bias ¢p(n) for several proper-
ties P. They showed that tyyanm(n) = (1— o(l))@, when HAM is the property to contain
a directed Hamilton cycle. Interestingly, this threshold is asymptotically of the same size
as the threshold bias for the corresponding Maker-Breaker Hamilton cycle game, mentioned
earlier. Moreover, they gave some partial results for the case when P = Py is the property

of containing a pre-defined directed graph H with a constant number of vertices.

In Chapter 2 we study the (strict) oriented-cycle game, which was introduced by Bollobas
and Szab6 [7] already before Ben-Eliezer, Krivelevich and Sudakov [6] introduced orientation
games in a more general setting. In this game, played on K,, we choose P = C to be the
family of all directed graphs containing a directed cycle (of any length). Thus, OMaker wins
if she can force a directed cycle throughout the game, while OBreaker wins if the game ends

in a transitive tournament on n vertices.

For the strict oriented-cycle game Os(K,,C,1,b), Bollobds and Szab6 [7] showed that
ti(n) > [(2 — V3)n]. Moreover, they observed that tJ(n) < n — 3, and conjectured this
bound to be tight. Later, Ben-Eliezer, Krivelevich and Sudakov [6] gave an easy argument
for OMaker to win O(K,,C,1,b), and Os(K,,C,1,b), when b < 5 — 2. Thus, we have
te(n),tf(n) > 2 —2.

In our earlier work with Liebenau, we were able to disprove the above mentioned conjecture
by showing that ¢} (n) < n — cy/n for every constant 0 < ¢ < 1, provided n is large enough.
The proof can be found in [37]. Moreover, in case of the monotone game we showed [14]
that te(n) < %n. The latter finally led to the question whether the upper bound of Bollobés
and Szabd could still be tight asymptotically, or whether we can hope for a constant factor
improvement as for the monotone oriented-cycle game. In this thesis, we settle the aforemen-
tioned question and prove that OBreaker has a winning strategy in the strict oriented-cycle

37
game even when b > 45n.

Theorem 1.1.1 ([14]) For large enough n, t™(n,C) < 3In.
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Reference: We present the proof of Theorem 1.1.1 in Chapter 2. The proof, which is a
generalization of the proof of t} (n) < n—cy/n from [37], is joint work with Anita Liebenau [14]
and submitted for publication. In this thesis, we prove an improved upper bound of i—gn over

the upper bound of %—gn from [14] using the refined calculations found in Sections 2.1 — 2.3.

1.2 Tournament games

In Chapter 3 we continue with the study of games in which the players give orientations
to those edges that they claim. We will take a look at the tournament game, which was
introduced by Beck [3], and which can be seen as a variant of the so-called Maker-Breaker

clique game.

In the k-cligue game (or sometimes abbreviated just as cligue game when the value of k is
not crucial), Maker’s goal is to create a graph that contains a clique of order at least k. We
denote this game by (E(G),Ky), i.e. X = E(G) is the edge set of a given graph G, and
F = K is the family of all edge sets of k-cliques in G.

Similarly, given some tournament T of order k (i.e. a complete graph on k vertices whose
edges are oriented), we define the T-tournament game, denoted by (E(G),Kr), as follows.
TMaker and TBreaker in turns claim edges of G and also for each claimed edge, they choose
one of the two possible orientations. TMaker wins if her digraph contains a copy of the given

tournament 7" by the end of the game; otherwise TBreaker wins.

Notice that the tournament game does not belong to the family of orientation games, as they
are discussed in Chapter 2. Indeed, in the tournament game it is irrelevant for TMaker which
orientations TBreaker chooses. In fact, for TBreaker we could assume that he just claims
edges and does not orient them. Moreover, notice that it follows analogously to the usual

Maker-Breaker games, that the tournament game is bias monotone.

However, let us first consider the unbiased games when played on G = K,,. Erd6s and
Selfridge [18] initiated the study of the largest value of k, k. = k.(n), such that Maker can
win the unbiased k.-clique game on K,,. They proved that k. < (2 —o(1))logy n. Later, with
an impressive application of the method of potential functions, Beck [3] was able to show that
this upper bound is tight asymptotically, i.e. k. = (2 — 0(1)) logy n. In particular, this game
also supports some random graph intuition. Indeed, if both players would play randomly in
an unbiased game on K, then Maker’s graph would be a random graph G ~ G(n, M) with
M = [5(5)] edges. The order of a largest clique in such a random graph is known to be
(2 —0(1))logy n a.a.s.; see e.g. [2]. Thus, for most values of k, the outcome of the unbiased

k-clique game on K, played by two intelligent players is the same as the typical outcome of
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this game played by two random players.

Motivated by the study of k., Beck [3] also asked for the largest value k, k; = k¢(n), for which
TMaker wins the unbiased T-tournament game on K, for every choice of a tournament T’
on k; vertices. By analyzing the random analogue of this game, he conjectured its value to
be around (1 — o(1)) logy n, for which at first Gebauer [23] could verify a corresponding lower
bound. However, recently it was shown [13] that k; = (2 — o(1))logyn. So, the unbiased
tournament game turned out not to support the random graph intuition. Moreover, as the
two values, k. and k;, are very close to each other, we could observe that it does not make
a big difference for the first player whether she is building a large clique or whether she also

has to care about orientations.

Looking at this observation it seems natural to ask what happens if we consider biased games
or games on random graphs instead, where TMaker’s goal is not to create a large tournament,
but a tournament of given constant order. Bednarska and Luczak [4] showed that, for fixed
kE > 3, the threshold bias in the b-biased k-clique game on K, is bx, = @(nk%l) We
will observe first that for the corresponding tournament game, the additional constraint of
orienting edges does not make TMaker’s life much harder. That is, similar to the argument
of [4], we show that for every given tournament 7' of order k, the threshold bias bx, for
the biased game (E(K,),Kr) is of the order = So, the order of the threshold bias is

independent of the orientations in 7.

Proposition 1.2.1 ([15]) Let T be an arbitrary tournament on k > 3 wvertices, then the
threshold bias for the T-tournament game on K, is b, = G(nk%l), and thus of the same

order as the threshold bias for the corresponding clique game.

2
Hereby, bx, = ©(n*+1) means that there exist constants ¢; = ¢1(k) and ¢z = cp(k) with
2 2
cin™1 < bi, < con®+1, where we note that ¢y is given by a result from [4] and far away from

the constant cy.

Now, let px, be the threshold probability for the property that Maker has a winning strategy

in the unbiased k-clique game on a random graph G ~ G, ,,. Stojakovi¢ and Szabé [42] showed
that for £ = 3, we have pi, = n=5. For k > 4, it was proven by Stojakovi¢ and Szabd [42],

2

and Miiller and Stojakovié [40], that px, = n~ #+1. In particular, for £ > 4, they obtained that

DK, = @(ﬁ). So, in this case we see that the threshold probability px, and the inverse of
k
the threshold bias b, are related to each other, similar to the connectivity, perfect matching

and Hamilton cycle game, as discussed earlier.

However, the triangle game is an exception in this regard, as in this case Maker can win also

for probabilities below the so-called critical probability %, since n™% < n"2.
3
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We show that the tournament game behaves similarly to the clique game when played on
a random graph G ~ G, ,. Denote with px, the threshold probability that for G ~ G, ,,
TMaker has a winning strategy in the unbiased T-tournament game on G. Then, with an
argument similar to [42], we show at first that for & > 4 the probabilistic intuition is supported,

2
i.e. the threshold probability is n~ #+T.

Proposition 1.2.2 ([15]) Let T be an arbitrary tournament on k > 4 wvertices, then the

threshold probability for winning the unbiased T-tournament game on G ~ G,, 1S

2
Py =n F1. Thus, we obtain pi, = ®(b1c1 ).
Ty

However, we then show that the tournament on three vertices behaves differently from the
larger tournaments, and that it represents an even bigger exception with respect to the prob-
abilistic intuition compared to the corresponding Maker-Breaker triangle game. In case of the
acyclic tournament T4 on 3 vertices we easily verify that we have the same threshold proba-
bility as in the triangle game on G' ~ G, p; but in case of the cyclic triangle T on 3 vertices,
the threshold probability for a TMaker’s win suddenly is closer to the critical probability, but

still not equal.

Theorem 1.2.3 ([15]) The threshold probability for winning the unbiased Ta-tournament
game on G ~ G, 1s PKr, = n‘g, while for the unbiased To-tournament game this threshold

probability is PKr, = n-is.

Reference: All results in this section are joint work in progress with Mirjana Mikalacki [15].

The proofs can be found in Chapter 3, and they are based on ideas from [4, 42].

1.3 Tree embedding game

As mentioned already, most strong games appear to be very difficult to analyze, as huge case
distinctions can hardly be avoided. However, very recently Ferber and Hefetz [19, 20] were
able to describe explicit and fast winning strategies for the first player in different strong
games, by using modifications of already known fast winning strategies for the corresponding
Maker-Breaker games. For that reason, the study of fast winning strategies for (unbiased)

Maker-Breaker games became of particular interest, see e.g. [12, 21, 38].

In this regard, in Chapter 4 we will study the following Maker-Breaker game, which was
introduced by Ferber, Hefetz and Krivelevich [21]. Given n € N, let T be a fixed labeled tree
on n vertices. Then the tree embedding game (E(K,), Fr) is defined such that X = E(K,)
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is the board of the game, while all the edge sets of copies of T in K,, form the winning sets

in Fr.

Ferber, Hefetz and Krivelevich [21] studied the biased version of the tree embedding game.
They were able to prove that for sufficiently small real numbers «, ¢ > 0 and every sufficiently
large integer n, Maker has a strategy to win the b-biased game (E(K,,), Fr) within n + o(n)
moves, when b < n® and when the maximum degree A(T") of T satisfies A(T') < n®. Moreover
they pointed out that it would be interesting to improve further on the number of moves,

even under restriction of the bias and the maximum degree.

In the following we will provide Maker with fast winning results, in case the maximum degree

of the goal tree T is bounded by a constant and Breaker’s bias is b = 1.

Obviously, no matter how T is chosen before the game starts, Maker needs at least n — 1
rounds to win the game (E(K,), Fr). In fact, as proven by Hefetz, Krivelevich, Stojakovi¢
and Szabé [28], there exist trees (here: Hamilton paths), for which this trivial lower bound
is sharp. However, it also not hard to come up with examples for the goal tree T for which
Maker needs to play a larger number of rounds, against an optimally playing Breaker. Indeed,
if we first ignore the constraint of having a bounded maximum degree, then we easily find
trees that Maker cannot build at all, like stars with n — 1 leaves. But, even if we focus on
bounded degree trees, there exist several examples that Maker cannot hope to create within
n — 1 rounds, like complete binary trees. In the first result of Chapter 4, we nevertheless show

that Maker does not need to waste more than two edges.

Theorem 1.3.1 ([11]) Let A € N. Then for every large enough integer n (depending only
on A) the following holds. If T is a tree on n vertices and with mazimum degree at most A,
then, in an unbiased game on E(K,), Maker has a strategy to occupy a copy of T within n+ 1

moves.

Indeed, we prove that the family of bounded degree trees can be split into two large families
for which Maker can create copies of the trees of the first family with a waste of at most one
edge, and she can create copies of the trees of the other family with a delay of at most two
rounds. The splitting hereby depends on the existence of long bare paths, where we call a
path P inside a tree T a bare path if all of its inner vertices v satisfy dp(v) = 2. The idea
of this splitting is motivated by a publication of Krivelevich [34], where the embedding of
spanning trees into a random graph G ~ G, is studied. The proof of Theorem 1.3.1 now

reduces to proving the following two statements.
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Theorem 1.3.2 ([11]) Let A € N. Then there exists an integer m; = my(A) such that for
every large enough integer n (depending only on A) the following holds. If T is a tree on n
vertices and with maximum degree at most A, such that T additionally contains a bare path
of length at least my, then, in an unbiased game on E(K,), Maker has a strategy to occupy a

copy of T within n moves.

Theorem 1.3.3 ([11]) Let A, my € N. Then for every large enough integer n (depending
only on A and my ) the following holds. If T is a tree on n vertices and with mazximum degree
at most A, such that T additionally does not contain a bare path of length at least m1, then,
in an unbiased game on E(K,), Maker has a strategy to occupy a copy of T within n + 1

moves.

Although we cannot hope to prove that Maker can occupy every pre-defined tree of bounded
maximum degree within an optimal number of rounds, the following two theorems show us
that besides the Hamilton path, studied in [28], there exist many further examples that can
be occupied within n — 1 rounds. At first we give an explicit construction for a family of such
trees, by this giving a strengthening of Theorem 1.4 in [28]. Secondly, applying our methods
to random trees, we conclude that indeed most choices for the pre-defined tree T on n vertices
have the property that Maker can occupy a copy of T" within n — 1 rounds. Notice that for
these trees T' it then also follows that, if we look at the corresponding strong games, where
both players aim to occupy a copy of T first, we have a strategy for the first player to win

within n — 1 rounds. We prove the following theorems.

Theorem 1.3.4 ([11]) Let A € N. Then there exists an integer mg = ma(A) such that for
every large enough integer n (depending only on A) the following holds. If T is a tree on n
vertices and with maximum degree at most A, such that T additionally contains a bare path
of length at least mo which ends in a leaf of T, then, in an unbiased game on E(K,), Maker

has a strategy to occupy a copy of T within n — 1 mowves.

Theorem 1.3.5 ([11]) Let T' be a random tree, chosen uniformly at random among the
family of all labeled trees on n wvertices, then the following holds a.a.s. In an unbiased game

on E(K,,), Maker has a strategy to occupy a copy of T within n — 1 rounds.

Reference: All the theorems above are joint work with Asaf Ferber, Roman Glebov, Dan
Hefetz and Anita Liebenau [11], and they are submitted for publication. In Chapter 4, we
present a version of the proofs from [11] and add two further proofs which were omitted
in [11].
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1.4 Walker-Breaker games

Finally, in Chapter 5 we study Walker-Breaker games (E(G), Fg), which were introduced
recently by Espig, Frieze, Krivelevich and Pegden [17]. Their significant difference to the
usual Maker-Breaker games is that Walker (in the role of Maker) has the constraint to choose
edges of a walk. To be precise, the rules of these games are as follows: Playing on some graph
G, Walker and Breaker alternately choose edges of G. At any possible moment throughout
the game, Walker has a position at exactly one vertex v € V(G), and for her next move she
has to choose an edge from G which is incident with v and was not chosen by Breaker before.
Hereby, we allow Walker to choose an edge which she already chose in an earlier round. If
this is not the case, i.e. she chooses this edge for the first time, then she additionally claims
this edge. Moreover, by choosing vw € E(G), Walker makes w to become her new position,
where she needs to choose an incident edge in the following round. In contrast, Breaker has
no such restrictions. He plays as it is usual for Maker-Breaker games. That is, in every move
he chooses and claims any edge that was not chosen by Walker so far. Walker finally wins, if

she occupies a winning set F' € Fg completely; and Breaker is the winner otherwise.

As for Maker-Breaker games, we will consider unbiased games, where both players choose one
edge per round, and b-biased games, where Breaker chooses and claims b edges in each round.

Moreover, we will restrict to the case G = K,,.

Notice first that in these games, Breaker can easily isolate one vertex from Maker’s graph.
Indeed, after Maker’s first move, Breaker just needs to fix a vertex v which is not incident with
Maker’s first edge, and then he always claims the edge between v and the current position of
Walker. In particular, Walker has no chance to occupy a spanning structure like a spanning

tree or a Hamilton cycle, in contrast to Maker-Breaker games.

Thus, it becomes natural to ask questions about how much Walker can achieve, i.e. how large
structures Walker is able to create. In this regard, Espig, Frieze, Krivelevich and Pegden [17]
studied the question how many vertices Walker is able to visit, for different variants of Walker-
Breaker games. For instance, if b is a constant, they proved that Walker has a strategy to
visit n — 2b + 1 vertices, while Breaker can prevent Walker from achieving any better result.
The main idea of Maker’s strategy hereby is to create a tree in depth first manner, and thus it
highly uses the fact that Maker is allowed to repeat edges. The authors of [17] also considered
the variant in which Walker is not allowed to return to previously visited vertices, that is,
when Walker has the constraint to choose her edges according to a path. For the unbiased
game in this variant they showed [17] that the largest number of vertices that Walker can
visit is n — 2. Moreover, in case Walker proceeds randomly, they proved that she a.a.s. visits

n — O(logn) vertices, against an optimally playing opponent.
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Besides the question of how many vertices Walker can visit, there are many other natural
structures one may ask for. For instance, Espig, Frieze, Krivelevich and Pegden [17] suggested
to study the problem of claiming as many edges as possible. They also asked for the largest
cycle that Walker can occupy, and they asked which subgraphs Walker can create. In the
following we want to give some answers to these questions, where our main focus lies on the

discussion of creating long cycles. We prove the following statement.

Theorem 1.4.1 ([16]) Let n € N, and let b < % be a positive integer. Then, in the b-
biased Walker-Breaker game on K,,, Walker has a strategy to occupy a cycle of length n—0(b),

while Breaker can prevent any longer cycles.
Moreover, in case b = 1, we determine the size of the largest cycle precisely.

Theorem 1.4.2 ([16]) Let n be a large enough integer. Then, in the unbiased Walker-
Breaker game on K, where Breaker starts, Walker has a strategy to create a cycle of length

n — 2, while Breaker can prevent any longer cycles.

The proof of Theorem 1.4.2 will be done by giving Walker a strategy which provides a precise
description and properties for the graph that Walker maintains throughout the game, until
she finishes a cycle of length n — 2. In contrast, for Theorem 1.4.1, we will make use of
Walker’s ability to create a large graph of constant diameter, and then we will show that on
the vertex set of this graph she can create a larger graph which looks almost random and

thus contains a long cycle as claimed.

We use these methods further to conclude the following two theorems.

Theorem 1.4.3 ([16]) Let b € N be a constant. Then, in the b-biased Walker-Breaker game

on K, Walker has a strategy to claim b—%l(g) — O(n) edges, while Breaker can prevent her

from doing better.

Theorem 1.4.4 ([16]) Let G be a graph containing a cycle. Then there exists a constant
1
cw such that the following holds for every large enough n. For b < cyyn™2@) | Walker has a

strategy to occupy a copy of G in the b-biased Walker-Breaker game on K,.

The last theorem in particular tells us that for Walker it is not much harder to occupy a copy
of some pre-defined graph G (containing a cycle) than it is for Maker in the b-biased game

on K,. Indeed, as it was proven by Bednarska and Luczak [4], we know that the threshold
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bias for the b-biased Maker-Breaker game on K,,, where Maker aims to occupy a copy of the
1

graph G, is of size ©(nm2(@ ).

Reference: In Chapter 5 we present proofs for Theorem 1.4.1 — Theorem 1.4.4, which are

joint work in progress with Tuan Tran [16]. For the creation of an almost random graph,

as explained above, we will also prove a version of a recent result of Ferber, Krivelevich and

Naves [22].



Chapter 2
Strict oriented-cycle game

In this chapter, we study the strict oriented-cycle game Og(K,,,C,1,b). Recall that this game
is played by two players, OMaker and OBreaker, who alternately direct previously undirected
edges of the complete graph K,. OMaker, starting the game, directs exactly one edge in each
round, while OBreaker directs exactly b edges in every round (besides maybe the last round).
OMaker’s goal is to force a cycle for the final tournament which will be created by the directed
edges of both players; and OBreaker aims to prevent her from doing so. We will show that
for b > %n, OBreaker has a strategy to guarantee a transitive tournament for the end of the
game, thus proving Theorem 1.1.1. In Section 2.1 we will describe that strategy and include
all the lemmas that imply that OBreaker can really follow the strategy. In Section 2.2 and

Section 2.3 we then give the proofs of all these lemmas.

Notation and terminology. Additionally to the notation and terminology introduced at
the beginning of this thesis, we will make use of the following, which was used in [37] as well.
Let D = (V, E) be some digraph. We say that a k-tuple (vy, ..., vy) of distinct vertices v; € V
is fully transitive in D, if all arcs are oriented from left to right, meaning that (v;,v;) € D
whenever i < j. For two disjoint sets A, B C V we call the pair (A, B) a uniformly directed
bicligue (UDB) in D, if we have D(A, B) = A x B. Moreover, a player is said to direct an edge
(v, w) or to choose the arc (v, w) in the oriented-cycle game if he or she chooses the orientation
of the edge vw from v to w. Assume a game is in progress, we usually let D = (V, E) denote
the digraph consisting of all the arcs that are chosen so far by either of the players. We set
A(D) to be the set of available arcs, i.e. those arcs which can still be chosen by either of the
players. That is, (v, w) € A(D) holds if the edge vw has no orientation, which is equivalent
to (w,v) € A(D). Moreover, we say that a player closes a directed path P = (vy,...,vx) in

D to a directed cycle, if he or she chooses the arc (v, v1) to belong to D.

17
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2.1 The main strategy

Whenever necessary we will assume that n is a large enough integer. Bollobds and Szabé [7]
observed that for b > n — 3 OBreaker easily wins the oriented-cycle game. So, we can assume
that i—gn < b < n. In this section, we describe a strategy for OBreaker for the strict oriented-
cycle game when playing with bias b, and in the subsequent sections we verify that this

strategy indeed is a winning strategy when %n <b<n.

The main idea of OBreaker’s strategy is to maintain a certain structure for the digraph D,
which consists of all directed edges that have been chosen by either of the players. Globally,
the goal is to maintain a UDB (A, B) for which at some point during the game we have
V = AU B and |A|,|B] < b, so that from that point on we can focus on each of the two
parts A and B separately. OBreaker creates this structure in a few number of rounds to
avoid ”dangerous” situations. Locally, OBreaker maintains structures that are acyclic even
after one further arc is added by OMaker. We will distinguish two types of local structures.
Hereby, in a first stage, we ensure that OBreaker increases certain buffer sets inside the parts
A and B of the UDB. In the second stage, these buffer sets then have the property that in
each round at least one of these sets does not need to be touched by OBreaker’s new arcs. In

fact, this is what helps us to keep OBreaker’s bias as small as %n.

The idea of maintaining a UDB (A, B) plus certain local structures was already introduced
in [14, 37, where the bounds t¢(n) < 2n and tf(n) < n — ©(y/n) have been proven. The
improvement towards tg(n) < i—gn is obtained by a change of the local structures and by
splitting the game into two stages. In the first stage our local structure is rather simple,
but it allows us to generate the buffer sets which are mentioned above. Here lies the main
difference with respect to the proof in [37]. Indeed, in the strategy for that proof, buffer sets
are generated only for one round, while in the new proof we increase these sets for a number
of rounds which is linear in n. Then, in the second stage, OBreaker maintains a structure
which is a refinement of the local structure that was used in [37]. As OMaker could have
chosen some arcs in Stage I, which OBreaker in Stage II needs to keep control on, this new

structure is slightly more involved, which makes the argument more technical as in [37]. Still,

we partially make use of the same notation as introduced in [37].
OBreaker’s strategy is as follows.
Stage I lasts exactly | 2% | rounds.

We call the structure of D that OBreaker maintains during Stage I riskless.
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Definition 2.1.1 A digraph D is called riskless of rank r if there is a UDB (A, B) in D with
partitions A = Ag U Ag and B = Bg U Bqy such that the following properties hold:
(R1) Sizes: ||A| —|B|| <1 and |As| = |Bg| =r.

(R2) Structure of Ag and Bg: The vertices of Ag and Bg can be enumerated in such a way
that Asg = {v1,...v.} and Bg = {wy,...w,}, and such that the following properties
hold.

(R2.1) (v1,...,vy) and (w1, ..., w,) are fully transitive in D.
(R2.2) Forallze€ AUV \ (AUB): {i: (vi,2) € D} is a down set of [r].
(R2.3) Forallz€ BpUV \ (AUB): {i: (z,w;) € D} is an upset of [r].

(R3) Stars attached to AU B: For every 1 <i <r:

(R3.1) ep(vi, Ao) <r+1—1iandep(v;,V \ (AU B)) < max(|4],|B]).
(R3.2) ep(Bo,w;) <i and ep(V \ (AU B),w;) < max(|A],|B|).

(R4) Edge set: D = D(A,B)UD(As,V\ B)UD(V \ A, Bg).

Figure 2.1: The structure of a riskless digraph. The big grey arrow represents the edges of the
UDB (A, B).
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Sometimes, we call the UDB (A, B), from the definition above, the underlying UDB of D.

An illustration of the properties can be found in Figure 2.1.

One important ingredient throughout the proof is that the definition of riskless digraphs is

robust under switching of the orientations of all edges. That is, the following statement holds.

Observation 2.1.2 If a digraph D is riskless of rank r with UDB (A, B), then B 1s riskless
of rank r with UDB (B, A).

Proof Let D be a digraph satisfying the properties of a riskless digraph, with A = Ag U Ay
and B = BgU By, as given in Definition 2.1.1, and rank r = |Ag| = |Bg|. Then B satisfies the
same properties with UDB (A’, B') = (B, A) and By = {w,...,w.} and Ay = {v],..., v}
with w} = v,_;41 and v, = w,_;41 for every i € [r]. O

Note that the empty graph, which is present before the first round of the game (for technical

3n
125

assume D is riskless of rank r with UDB (A, B). We additionally have |D| = r(b+ 1), as in

each round exactly b+ 1 edges receive an orientation.

reasons we say ”after round 07”), is riskless of rank 0. For some 0 < r < —1, after round r,

Let e = (v, w) be the arc that OMaker directs in round r + 1. First we consider the case that
e € A(D(V\B)). In a first step, OBreaker now chooses at most b arcs given by Lemma 2.1.3,
with the goal to restore the properties of a riskless digraph, while increasing the rank only
by one. In a second step, right after all properties are restored, OBreaker then adds further

edges to D without destroying its structural properties until exactly b arcs are chosen.

Lemma 2.1.3 Let n be a large enough positive integer and let %n < b <n. For a non-
negative integer r < %71, let D be a digraph which is riskless of rank r with underlying U DB

(A, B) as given in Definition 2.1.1. Assume that |D| =r(b+1). Let e € A(D(V \ B)) be an
available arc in V\B. Then there exist at most b available arcs f1,..., fi € A(D + e) such that
D' := DU{e, f1,..., [t} is a riskless digraph of rank r+1. Moreover, epy(V\(A'UB’),w}) = 0,
where (A', B') is the underlying UDB of D', with B’ = B4 U B, and B = {w!,...,w,,,} as
in Definition 2.1.1.

The property ep/ (V' \ (A"U B’),w}) = 0 is useful to accommodate OBreaker’s remaining arcs
that he still needs to direct in round r+1. Let ¢ be the number of edges that OBreaker directs
in round r + 1, when he chooses his arcs according to Lemma 2.1.3. In order to complete his
move for the current round, OBreaker then adds b —t further arcs using the following lemma,

which ensures that the properties of a riskless digraph are maintained.
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Lemma 2.1.4 Let n be a large enough positive integer and let %n < b <n. For a non-
negative integer r < 137"5 —1, let D be a digraph which is riskless of rank r + 1 with underlying
UDB (A, B) as given in Definition 2.1.1. Assume that r(b+1) < |D| < (r+1)(b+1) < (5).
Let wy be the top vertex in the tournament inside B, as given in Property (R2), and assume
that ep(V \ (AU B),w1) = 0 holds. Then OBreaker can direct a set of (r+1)(b+1)—|D| <b
available arcs F C A(D) such that D' := D U F is a riskless digraph of rank r + 1.

Secondly, consider the case that e = (v,w) ¢ A(D(V\B)). Thene € A(D(V\A)), since (A, B)
forms a UDB in D. Assume the previous two lemmas to be correct. By Observation 2.1.2,
B is also riskless of rank r with UDB (B, A). So, applying Lemma 2.1.3 and Lemma 2.1.4
we thus can find a set F of exactly b available arcs such that B U{g} U F is riskless of
rank r + 1. But then, again by Observation 2.1.2, the digraph D U {e}U ]f“ is riskless of

-
rank r 4+ 1. OBreaker’s strategy thus is to choose the b arcs from F in this case.
Stage II starts in round L%J + 1.

The structure that OBreaker now aims to maintain is similar to the one given for Stage I.
The most important difference is that from now on we partition the sets of the UDB fur-
ther to distinguish the vertices according to their chance to become part of a directed cy-
cle. Motivated by the proof in [37], we maintain partitions A = Ap U Aap U Ag U Ap and
B = BpUBspUBgU By. Its subsets AgU Ap and By U Bp form the aforementioned buffer
sets, for which we ensure that in each or the remaining rounds, OBreaker needs to touch at

most one of these two sets.

Figure 2.2: The structure of a protected digraph. Big arrows indicate UDB’s between two sets.



22 CHAPTER 2. STRICT ORIENTED-CYCLE GAME

Definition 2.1.5 A digraph D on n vertices is called protected if there is a UDB (A, B)
with partitions A = ApUA apUAgUAg and B = BpUBapUBgU By such that the following
properties hold:

(P1) Sizes: |A|,|B| > 3541, and |Ap U Ag|, |Bp U By| > 5.

(P2) Structure of Ap and Bp: (Ap,V \ Ap) and (V \ Bp,Bp) are UDB's in D; D(Ap)
and D(Bp) are transitive tournaments.

P3) Structure of Aap and Bap: (Aap,V\ A) and (V\ B,Bap) are UDB's in D.
(P3) : :

(P4) Structure of AspUAg and BopUBg: There exist integers k1,41 > 0 and 0 < ko, ly < 137’%
such that |Aap| = ki1, |Ag| = k2, |Bap| = {1, and |Bg| = ¢y. Moreover, the vertices

can be enumerated in such a way that

Aap ={v1,.. ., 0k, }, As = {Vky 41, - - s Uky+ky } and

Bs ={wi,...,we,}, Bap = {wey+1,--.,We,10,} and such that
the following properties hold.

(P4.1) (vi,..., V% +ky) and (w1,. .., Wy 44,) are fully transitive in D.
(P4.2) Forall z€ AgUV \ (AUB): {i: (vi,2z) € D} is a down set of [k1 + ko]
(P4.3) For all z€ ByUV \ (AUB): {i: (z,w;) € D} is an upset of [{1 + £2].

(P5) Stars attached to AU B:
(P5.1) For all1 <i < ky: e(vg4i, Ao) < 0 + 1 —14.
(P5.2) For all1 <i < {y: e(By,w;) < 2 — 0y + 1.
(P6) Edge set: D = D(A,B)UD(A\ Ap,V\B)UD(V\ A,B\ By).
As before, the UDB (A, B) from the definition above is called the underlying UDB of D. An
illustration of the properties of a protected digraph can be found in Figure 2.2.

We also have the following observation, similar to the discussion of riskless digraphs.

Observation 2.1.6 If a digraph D is protected with UDB (A, B), then B is protected with
UDB (B, A).

As OBreaker wants to maintain the structural properties of protected digraphs after each of
his moves in the second stage, we first need to show that immediately after OBreaker’s last
move in Stage I, the digraph D is protected. Note that, on the assumption of Lemma 2.1.3

and Lemma 2.1.4, D is riskless of rank L%J
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Lemma 2.1.7 Let n be large enough, and let %n <b<n. Let D be a digraph on n vertices
which is riskless of rank r = | 5% |, and assume that |D| = r(b+1). Then D is protected.

Now, we proceed similarly to Stage I. For some r > L%J, after round r, assume that D
is protected with underlying UDB (A, B). Let e = (v,w) be the arc OMaker directs in
round r + 1. Again, we first consider the case that e € A(D(V \ B)). Then, as a first step,
OBreaker chooses at most b arcs given by the following lemma to restore the properties of a

protected digraph.

Lemma 2.1.8 Let D be a digraph which is protected, with underlying UDB (A, B) according
to Definition 2.1.5, and let e = (v,w) € A(D(V \ B)) be an available arc in V \ B. Then
there exist at most b available arcs f1,..., ft € A(D + e) such that D' := D U {e, f1,..., [t}

is protected.

Let ¢t be the number of edges that OBreaker directs in round r 4+ 1, when he chooses his
arcs according to Lemma 2.1.8. He then adds b — ¢ further arcs using the following lemma
iteratively, or in case fewer than b — ¢ arcs can be chosen (which may happen in the very last

round of the game), he applies the following lemma to direct all remaining edges.

Lemma 2.1.9 Let D be a protected digraph on n vertices with |D| < (72‘) Then, there exists
an available arc f € A(D) such that D + f is protected.

Secondly, assume that e = (v,w) € A(D(V '\ B)). We can argue as in Stage I. It follows then
that e € A(D(V '\ A)), since (A, B) forms a UDB. By Observation 2.1.6, 1<_) is also protected
with UDB (B, A). So, applying Lemma 2.1.8 and Lemma 2.1.9 we thus can find a set F of
exactly b available arcs (or at most b in the last round of the game) such that B U{%} UF
is protected. Then, by Observation 2.1.6, D U {e}U _<7j“ is protected, and so OBreaker chooses

-
all the arcs of F in this case.

The strategy for OBreaker is given implicitly in Lemma 2.1.3, 2.1.4, 2.1.8 and 2.1.9, where
Lemma 2.1.9 is proven analogously to Proposition 3.3.1 in [37]. These lemmas, together with
Lemma 2.1.7, also contain the proof that OBreaker can follow his strategy until every edge
has an orientation. We prove Lemma 2.1.3 and Lemma 2.1.4 in the next section; Lemma 2.1.7,

Lemma 2.1.8 and Lemma 2.1.9 are proved in Section 2.3.

For now, let us finish this section with the proof that, under the assumption that all above
mentioned lemmas are true and that OBreaker follows the proposed strategy, OBreaker

maintains a transitive tournament at the end of the game. In Stage I, Lemma 2.1.3 and
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Lemma 2.1.4 guarantee that the digraph D is riskless of rank r after OBreaker’s move in
every round r < L%J Furthermore, after round r = L%J, D is protected by Lemma 2.1.7.
Then, in Stage II, Lemma 2.1.8 and Lemma 2.1.9 guarantee that the digraph D is protected
after each move of OBreaker, and, in particular, at the end of the game. Therefore, to show

that OMaker can never close a cycle, it is enough to prove the following.
Lemma 2.1.10 If D is a protected digraph, then D is acyclic.

Proof Let D be a protected digraph with UDB (A, B), and assume that there is a directed
cycle C in D. By property (P6), for each (v,w) € D, we have v € A or w € B. Therefore,
the edges of C either only contain vertices from A or only contain vertices from B. By
Observation 2.1.6, we may assume w.l.o.g. that C' C D(A). Again by Property (P6), C' must
use only vertices from A\ Ag. However, by Property (P2) and Property (P4.1), A\ Ay induces

a transitive tournament in D, and thus does not contain a directed cycle, a contradiction. O

Thus, in order to prove Theorem 1.1.1 it remains to prove all the previously mentioned

lemmas.

2.2 OBreaker’s strategy — Stage 1

In the following we prove Lemma 2.1.3 and Lemma 2.1.4. Before doing so, we prove the

following proposition which we later refer to several times.

Proposition 2.2.1 Let n be large enough, and let b < n and r < 137”5 Let D be a riskless

digraph of rank r, with underlying UDB (A, B), such that |D| <r(b+1). Then
(i) |A[,|B| < % and |V \ (AUB)| > 2.

(1) For X4 :={2€ V\(AUB) :ep(A,z) =0} andYp :={2 € V\(AUB) : ep(z, B) = 0},
we have | X |, [YB| > 5.

Proof Note first that since (A4, B) is a UDB, it holds that |A| - |B| < |D| < r(b+ 1).
By assumption on r and b and since ||A| —|B|| < 1, by Property (R1), it follows that
max(|A|, |B|) < v/r(b+1)+1 < %, and that |[A| +|B| < %. Therefore, [V \ (AUB)| > 2.
Let X4:={2 €V \(AUB):ep(A4,z) > 0}. Then, by Property (R4) and (R2.2),
Xa={z€eV\(AUB): (z,2) € D for some z € A}
={2e€V\(AUB): (x,2) € D for some z € Ag}
={ze€V\(AUB): (v1,2) € D}.
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So, by Property (R3.1) and (i), |Xa| < max(|A],|B|) < & and hence,

~ n
[Xal = VA (AU B)[ = [Xal > 5.

Analogously, |[Yp| > §. O

With this proposition in hand, we now prove Lemma 2.1.3. It ensures that OBreaker has a

strategy to reestablish the properties of a riskless digraph throughout Stage I.

Proof of Lemma 2.1.3 Let e = (v,w) € A(D(V \ B)) be given by the lemma. At first, let

us fix distinct vertices x4,y € V' \ (AU B U {v,w}) with ep(A4,z4) =0 and ep(yp, B) = 0.

Note that Proposition 2.2.1 guarantees their existence since r < 137’% and b < n. Define

ug € ApUV \ (AUB) and ugy € V\ (AU B) by

xy ifveAg ry fveAd
us = and Up =
v ifvé¢Ag v ifvég A

Our goal is to add ug to the set Ag of star centers, us to A and yp to B. Note that the two

vertices ug and u 4 are equal unless v € Ag. Moreover, let

) min(i : (v;,v) ¢ D) if minimum exists
r+1 otherwise

and observe that vy = v if v € Ag, by Property (R2.1). Set

v; if1<i</—1
YB ifi=1
v; 1= 4 ug ifi=1/¢ and w; =
wi—p f2<i<r+1.
vi—p A +1<i<r+1

These vertices are used to form the new centers of the stars in Property (R3). Now, choose
{fi,-- ., fiy tobe {f1,..., fi} = (FLU...UF7)NA(D), where

Fr={(
Fa = {(
Fz = {(
Fy = {(v]
Fs = {(
Fo = {(
Fr={(

i~
~~
SN—
—_
AN
~.
AN
~
|
—
——
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where we use the convention that 77 = ) if £ =7 + 1 (and thus vj, ; does not exist).

To show that this choice of arcs is suitable for the lemma, we first show that f; 7&(5 for all
1<i<t, that ;U...UF; C DUA(D), and that t < b. Note that F; C D U A(D) implies
that F; C D', where D' = D U {e, f1,..., ft}. We use this information to show that D’ is
riskless of rank r+1 with some UDB (A’, B'). Finally, we show that ep/(V\(A'UB’),w}) = 0,

where w] is the top vertex in the tournament in B’, given by Property (R2.1).

For the first part, €= (w,v) ¢ Fi since by assumption v ¢ B, <E¢ F2UFs3 by choice of w] = yp,
and %gé Fa since v # w. Assume now that (w,v) = (v},v;) € Fs for some 1 < i < ¢ — 1.
Then, (w,v) = (v;,v) € D by definition of ¢, a contradiction to e = (v,w) € A(D(V'\ B)). So,
ggé Fs. For Fg, assume that (w,v) = (v),v]) € Fe for some £ +1 < i < r+ 1. Then v # v,
S0 V) = ug = w4 # w by definition of x4, a contradiction. So, ?gé Fe. Finally, if (w,v) € F7
then v € V'\ (AU B) U Ay, so w = v, = ug = v by definition of ug, a contradiction since
(v,w) € A(D) and thus, it is not a loop. Hence, ggé Fr7, as well.

To see that F1 C D U A(D) note that (y,us) ¢ D for all y € B, since uy € V\ (AU B)
and by Property (R4). Similarly, F» U F3 C D U A(D) since w} = yp € V' \ (AU B) and
by Property (R4). Assume now that (w,v}) € D for some 1 < ¢ < ¢. Then w = v; € Ag
for some 1 < j < r, by Property (R4). Moreover, v} # v, since e = (v,w) € A(D(V \ B)),
and v, # x4 by choice of x4 and Property (R4). This yields v} # ug and therefore i # /.
But then v, = v;, and j < @ < ¢ — 1, by Property (R2.1). By definition of ¢ we conclude
(w,v) = (vj,v) € D, in contradiction to e € A(D(V '\ B)). Thus, F4 € DU A(D). For Fs, we
note that (vy,v)) = (ug,v;) ¢ D for all 1 <14 < ¢, by Property (R4) and since ug ¢ Ags and
v; ¢ B. Now, assume that (v}, v)) = (vi—1,us) € D for some £+1 < i <r+1. Then ug # x4
by the choice of x4. It follows (v;—1,v) = (vi—1,us) € D. But then, by definition of ¢ and
(R2.2), we obtain ¢ — 1 < ¢, a contradiction. Thus Fg C D U A(D). Finally, 7 C D U A(D)
since for all z € V'\ (AU B) U Ay we have that (z,v;) ¢ D, by Property (R4) and since
v, =ug ¢ B.

To bound ¢ by the bias b we note that

tﬁi’fﬂ < B+ (JA|+ 1) 47+ (20— 1)+ (r—£+1)
i=1 +ep(vp 1,V \ (AU B) U 4y)
= |A|+|B|+2r+{+1+ep(v,, V\ (AU B)) + ep(vs, Ao)
< |A| +|B| +2r + £+ 14 max(|A|,|B]) + (r+1—0)
< 3max(|A[, |B]) + 3r + 2

where the third inequality follows from Property (R3.1).
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Now, by Proposition 2.2.1 (i) and since r < 2% — 1, it follows that

3n 3n
t< — .—— < b.
_6+3 125 —

We now show that D' = DU {e, f1,..., fi} is a riskless digraph of rank r + 1.

For this, consider the sets

s ={v1,..., v} = As U{us},
Ap = (Ao U {ua}) \ {us},
A =AU {UA}

and By := {w},...,w, .} = BsU{yp}, B} := By and B’ = BU{yp}. We claim that (4’, B')
is a UDB in D" with partitions A’ = Aj U Ay and B’ = B{j U By such that (R1)-(R4) are
satisfied for r 4+ 1 and such that ep/ (V' \ (4" U B’),w}) = 0.

Since (A,B) is a UDB in D and DU F, UFy, C D', (A, B’) forms a UDB in D’. For
Property (R1), note that |A'| = |[A| + 1, |B’| = |B| + 1 and |A%| = |By| =7+ 1.

For Property (R2.1), note first that Ag = A \ {v;} induces a transitive tournament in
D C D'. Furthermore, for all i < ¢ we have that (v],v)) € F5 C D’, and for all i > ¢ we
have that (vj,v;) € F¢ € D'. Hence, (vq,...,v, ) is fully transitive in D’. Furthermore,
Bg = By \ {w}} induces a transitive tournament in D C D', and for all 2 < i < r 41, we

have that (w},w!) € F3 C D’. Hence, (w},...,w. ) is fully transitive in in D’.
1 W; 1 1

For (R2.2), let z € AUV \(A'UB’). Then note that only arcs from DU{e}UF4UF7 contribute
to the set {i : (v},2) € D'}. Moreover, D(vy, Ay UV \ (A"U B’)) = () by Property (R4) and
since v; € Ag UV \ (AU B). Note also that {i : (v;,2) € D} is a down set of [r] and the
relative order of the v} for ¢ # ¢ does not change. If z # w, then the arcs from F7 reestablish
the down-set property for D'. If z = w, then the arcs from F4 U {e} reestablish the down-set
property for D’.

For (R2.3), let z € ByUV \ (A’UB’). Then note that only arcs from D contribute to the set
{i: (2,w)) € D'}. Moreover, {i: (z,w;) € D} is an upset of [r] by assumption. Further, note
that w;,; = w; for every 1 <4 < r, and that (z,w}) = (2,y5) € D, by Property (R4) and
since yp € V' \ (AU B). Thus, {i: (z,w)) € D'} is an upset of [r + 1].

For (R3.1), let first 1 <4 < ¢/—1. Then only the arcs in D(v;, Ag) UFy contribute to D'(v}, Af);
and only the arcs in D(v;, V' \ (AU B)) U Fy4 contribute to D' (v}, V' \ (A" U B’)). Therefore,
we obtain that ep/(v),A)) < ep(vi,40) + 1 < (r+ 1) + 1 — ¢ holds as well as
ep' (v, V\ (A UB")) <ep(v;,V\ (AUB))+1 <max(|4|,|B|) + 1 =max(|4'|,|B'|).

Now, let ¢ = £. Observe that ep(vy, AgUV'\(AUB)) = 0 by (R4) and since v, € AjUV'\ (AUB).
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So, only the arcs in F7 U {e} contribute to D’(vy, Aj) and D'(vy, V' \ (A’ U B’)). Therefore,
we obtain that ep/(vy, Ay) < ep(vy,Ag) +1 < (r+ 1) + 1 — £ holds as well as
ep (v, V\ (A'UB')) <ep(v,V\ (AUB)) +1 < max(|A],|B]) + 1 = max(|A'|, | B|).
Finally, let £ +1 < i < r 4+ 1. Then we know that D’'(v}, Aj) = D(vi—1, Ap) holds and
D'(v;,V \ (A UB)) C D(wi-1,V \ (AU B)). Hence, ep (v}, A)) < (r+1)+1—1i and
ep (41, V' \ (AU B)) < max(|4'], |B).

For (R3.2), first let 2 <4 < r+1. Then only the arcs in D(By, w;_1) contribute to D'(By, w});
and only the arcs in D(V'\ (AU B),w}) contribute to D'(V'\ (A’UB’),w}). Therefore we have
ep/(By,w;) <i—1and ep/(V\ (A'UB’),w}) <max(|A],|B|) < max(|A'|,|B']).

Now, for i = 1 we have w} = yp € V\(AUB). Similarly, only the arcs in D(By, yp) contribute
to D'(B(,w}); and only the arcs in D(V \ (AU B),yg) contribute to D'(V '\ (4’ U B’), w}).
Then by Property (R4) for the digraph D and by the choice of wj = yp, we conclude
ep/ (B, w)) = ep(Bo, yp) = 0 and analogously ep/(V'\ (A"U B’),w]) = 0.

For (R4), note that it is enough to prove that D" C D'(A’, B")U D'(A, V) U D'(V, By). This
indeed holds, since
D(A,BYUF UF, C D'(A, B,
D(As,V\ B)UF,UFsUFsUF; C D'(Ag, V), and
D(V\ A, Bs) UF3 C D'(V, By).
This finishes the proof of Lemma 2.1.3. |

Next, we prove Lemma 2.1.4 which ensures that OBreaker can add arcs to a riskless digraph

without destroying its structural properties.

Proof of Lemma 2.1.4 We first provide OBreaker with a strategy to direct (r+1)(b+1)—|D|
available arcs, then we show that OBreaker can follow that strategy, and that the resulting

digraph D’ is riskless of rank r + 1.

Initially, set t = (r +1)(b+ 1) — |D| and let F := () be the set of arcs that OBreaker will
add to the digraph D. Both t and F are dynamic in the following proof. That is, whenever
OBreaker chooses a new arc, he adds this arc to F, and he decreases the number ¢ of edges
which he still needs to orient. We proceed iteratively: As long as t > max(|A|, |B|), OBreaker
enlarges Ag and By (and thus A and B) alternately. As soon as t < max(|Al,|B|), he fills up

the stars with centers w;, 1 <1 < r, starting with wy41.

Step 1: ¢ > max(|A|,|B|). If |B| = |A| — 1, then let yp € V' \ (AU B) be an arbitrary vertex
such that epyr(yp, B) = 0. For all z € A, if (z,yp) ¢ D UF, OBreaker directs (z,yp),
decreases ¢ by one and updates F := F U {(z,yp)}. Afterwards, he sets B := B U {yg},
By := By U {yp} and repeats Step 1.
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If |B| > |A|, then let z4 € V' \ (AU B) be an arbitrary vertex such that epyr(A,z4) = 0.
For all y € B, if (xa,y) ¢ D UF, OBreaker directs (z4,y), updates F := F U {(z4,y)} and
decreases t by one. Afterwards, he sets A := AU{za}, Ao := Ao U {z} and repeats Step 1.

Step 2: ¢ < max(|4|,|B]). If t = 0, there is nothing to do. Otherwise, OBreaker proceeds

as follows.

If epur(V\(AUB),wy+1) < max(|A|,|B]), then let z € V'\ (AUB) such that epyz(z, B) = 0.
Then OBreaker directs (z, wy41), updates F := FU{(z, wy4+1)}, decreases t by one and repeats
Step 2.

Otherwise, epur(V '\ (AU B),w,+1) = max(|A|,|B|). Then let £ be the maximal index i € [r]
such that epyr(V \ (AU B),w;) < max(|A|,|B|). Let z € V' \ (AU B) be an arbitrary
vertex with (z,wy) € DU F and (z,wy1) € DU F. OBreaker then directs (z,wy), updates
F = FU{(z,we)}, decreases t by one and repeats Step 2.

We first show that OBreaker can follow the strategy. First note, by Property (R4) of a riskless
digraph, that for all z € V'\ (AUB), for all z € A we have that (z,z) ¢ D, and for ally € B we
have that (y, z) € D. Hence, under the assumption that x4 and yp in Step 1 exist, OBreaker
can follow the proposed strategy in Step 1.

Now, since D is a riskless digraph of rank r +1 < 137"5 with |D| < (r+1)(b+ 1), we have that

X4l = |{z € V\(AUB) : ep(A,z) =0} > g and
n
Y| ={z€ V\(AUB):ep(z,B) =0} > 5
before the first update in Step 1. Moreover, D(X4) = () and D(Yp) = () by Property (R4).
Now, in each iteration of Step 1, A or B increases by one vertex from V'\ (AUB) (alternately).
Since by (R4) there are no arcs inside V'\ (AU B), and since in Step 1, OBreaker directs all
edges between the new vertices in A and those in B, the size of each of these two sets can
increase by at most v/b < Vn < 155, for large enough n. Since X4 and Yp consist of at least
5 elements each before entering Step 1, the existence of x4 and yp in each iteration of Step 1

follows.

For Step 2, the existence of z € V' \ (A U B) such that epyr(z, B) = 0 is guaranteed by
the following: Consider a vertex z in Yp before Step 1. Then ep(z, B) = 0 by definition,
and ep(z,V \ (AU B)) = 0 by (R4). Now, if z is not added to A or B during Step 1,
then ep(z, B) = 0 holds still after the update of B. Since in Step 1, F contains only arcs
between A and B, it follows, under the assumption that z € V' \ (AU B) after the update,
that epur(z, B) = 0 before entering Step 2. Since |Yp| > § before entering Step 1, and since
in Step 1 at most 2/n vertices are moved from Yp to AU B, if follows that at the beginning
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of Step 2, there are more than % vertices z in V' \ (AU B) such that epur(z, B) = 0, for
large n. Note that in Step 2 at most max(|A[,[B]) —1 < § ++/n < 7 of those vertices
z €V \ (AU B) with epur(z, B) = 0 are used. The existence of ¢ is always guaranteed since
ep(V\ (AUB),w;) = 0 by assumption, and since Step 2 is executed at most max(|A|, |B|) —1
times. Note that by choice of z € V'\ (AU B), OBreaker can always direct (z,w,4+1) or (z,wy)

as required.

Finally, we prove that D’ := D U F is a riskless digraph of rank r + 1, where F is the set of
all arcs that OBreaker directs in Step 1 and Step 2. In Step 1, the sets A and B are enlarged
(alternately) by one in each iteration. Since for each new element x4 (or yp respectively) all
arcs (xa,y) for y € B (or (z,yp) for © € A respectively) are directed by OBreaker (unless
they are in DU F already), the pair (A, B) isa UDB in DU F. Since A and B are increased
alternately (except for the first executions of Step 1 in case |B| = |A| + 1), it follows that
||A| — |B|| < 1. Since Ag and Bg are unchanged, Property (R1) follows.

Since Ag and Bg are untouched, there is nothing to prove for (R2.1). For (R2.2), note that,
after the last update of Step 2, for all z € AgUV \ (AU B), the set {i: (v;,2z) € DU F} is
the same as {i : (v;,2) € D}. Now, for all z € By UV \ (AU B), the arc (z,w;) is directed
by OBreaker for some 1 < i < r + 1 only if (z,w;j+1) € DUF. So (R2.3) follows as well.
For (R3.1), note that in Step 1, all vertices z that are added to Ag fulfill ep(A4,z) = 0.
Hence for all 1 < ¢ < r 41, e(v;, Ag) does not increase when proceeding from D to D U F.
Also, e(v;, V'\ (AU B)) does not increase, since all arcs of the form (v;, z), that are directed
by OBreaker, fulfill z € B after the update. In Step 2, only edges of the form (z,w;) for
z € V'\ (AU B) are directed, hence (R3.1) follows. For (R3.2), similar to (R3.1), the quantity
e(Bo,w;) does not increase in Step 1, for all 1 < i < r + 1, since all vertices z € V' \ (AU B)
added to By fulfill ep(z, B) = 0. In Step 2, no vertices are added to By, so the quantity
e(Boy,w;) stays unchanged for all 1 < i < r 4+ 1. Now for 1 < i < r + 1, the quantity
e(V \ (AU B),w;) only increases in Step 2, and only if e(V \ (AU B),w;) < max(|4|,|B]|)
by the strategy description. Therefore, (R3.2) follows. Finally, Property (R4) follows since
OBreaker updates A and B accordingly in Step 1, and since in Step 2, he only directs arcs of
the form (x,w;) for z € V'\ (AU B) and w; € Bg. O

2.3 OBreaker’s strategy — Stage 11

Proof of Lemma 2.1.7 By assumption, D is riskless of rank r = L%J Let A= Ag U Ay

and B = Bg U By be given according to Definition 2.1.1. We claim that D is protected with
UDB (A, B) with partitions A = ApUA pUAgUAg and B = Bp U Byp U Bg U By, where
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Ap=Aap=Bp=DBap=0,and k1 =01 =0, ko = {5 = .

For Property (P1), let ap := |Ao| and note that by Property (R1), |ap — |Bo|| < 1. By
assumption on |D| and by Property (R4),

r(b+1)=|D|=ep(A,B)+ep(As,V \ B)+ep(V \ A, Bg). (2.1)
Now, ep(A, B) = (r + ag)(r + | Bo|) < (r + ag + 1)?, whereas
ep(As, V' \ B) = ep(As, As) + ep(As, Ao) + ep(As, V' \ (AU B))

< (;) + T(T;D +r(r+ao+1)

=r’+r(r+a+1)

where the inequality follows from Property (R1) and (R3.1). Similarly, by Property (R1) and
(R3.2), ep(V \ A, Bg) <r?+r(r+ag+1). Thus, (2.1) yields

r(b4+1) < (r+ag+1)2 +4r% + 2r(ag + 1).
Standard calculations give

af +ap(4r +2) +3r +1+5r° —rb >0
=a9>-2r—14+vV-124+r+7d

N S 99n, n
an > 2
%= 1000

where in the last step we use that r = L%J, b> % and n is large enough. By this we then

. 99
obtain |Bo| > ag — 1 > 3555 + 1.

There is nothing to prove for Property (P2) and (P3) since Ap = Aap = Bp = Bap = 0.
For Property (P4), note that Ayp = Bap = 0 and the enumerations Ag = {v1,...,v.}
and Bg = {wi,...,w,} given by Property (R2) fulfill (P4.1)-(P4.3), with k; = ¢; = 0 and
ko = 3 = r. Property (P5.1) and (P5.2) follow from (R3.1) and (R3.2) respectively. Finally,
(P6) follows from (R4). O

Proof of Lemma 2.1.8 Let A = Ap U Aap UAgU Ay and B = Bp U Byp U Bg U By
be given by Definition 2.1.5, and let Aap = {vi,..., v}, As = {Vky4+1,- -+, Vky+ky ) and
Bs = {wi,...,wg}, Bap = {weyt1,...,We 10, } as given by Property (P4). Moreover, let
e = (v,w) € A(D(V \ B)) be given by the lemma. For notation reasons we divide into two

cases.

Case 1: v € Agp U Ag. Then v = vy for some 1 < ¢ < ky + ko, and w ¢ Ap. Note that
the only properties that may not be fulfilled anymore in D + e are (P4.2) and (P5.1). Let
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{fla . . ~aft} = (]:1 U Fo U]::),) ﬂA(D), where

Fy = {(vl,z) 1z € Ao},
Fz:={(vk,4+1,2) : 2 € V\ (AUB)},

where we use the convention that 73 = (0 if Ag = (. To show that this choice of arcs is
suitable for the lemma, we now follow the structure of the proof of Lemma 2.1.3. That is, we
prove that f; # e for all 1 < i <t, that /1 UFaUF3 € DUA(D), that t < b, and finally we
deduce that D' = D U {e, f1,..., f} is protected.

For the first part, = (w,v) & F; since v # w, and = (w,v) & Fo U F3 since v € Aap U Ag
by assumption. To see that F; C D U A(D), assume that (w,v;) € D for some 1 <7 </ — 1.
Then w = v; € AypUAg for some j < i < ¢, by Property (P6), (P4.1) and since w ¢ Ap. By
Property (P4.1) again, we conclude (w,v) = (v;,v¢) € D, a contradiction to e € A(D(V'\ B)).
Thus, 71 € DU A(D). Now, Fo UF3 C D U A(D) since every arc of the form (z,v;) in D
satisfies z € A\ Ay, by Property (P6). To see that ¢t < b note that

t <A+ [Fol + |3 < €4 [Ao[ + VN (AUB)[ < [V\ B| <b,

since by Property (P1), |B| > 193&) +1>n-—0b.

To check that D’ is protected, consider the partition A = A}, U A’ U Ay U Ay where we set

/D = AD U {U1}7
Alp i={va, .. v a1} (or Alyp = {va, ... g, }if ko = 0),

AiS’ = {UlirQﬂ cee 7Uk1+k2}'

Clearly, (A, B) is still a UDB in D’ with |A|,|B| > 9% + 1, and Property (P1) holds since
| Al U Aol = |Ap U Ag| + 1.

For Property (P2), Bp did not change; and D’(A4),) is a transitive tournament, since
D(Ap) C D'(A) is such, and since (z,v1) € D C D’ for every z € Ap by the UDB-
property for Ap. To see that (A}, V' \ A},) forms a UDB we need to observe that (vq,2) € D’
for every z € V'\ A,. If v1 € Aap, then this follows by Property (P3) and (P4.1) for D,
and since Fo C D'. If v; € Ag (and thus k; = |[Aap| = 0), then this follows since (A, B) is a
UDB in D, by Property (P4.1) for D, and since F, U F3 C D'.

To see that Property (P3) holds in D', observe first that A’y \ {vg, 41} € Aap. Moreover,
(Vg,+1,2) € D' for every z € V \ A since (A,B) is a UDB in D and since F3 C D’. For
Property (P4), it obviously holds that |A%| < ko < £ and that |Bg| < 2. Property (P4.1)
and (P4.3) follow trivially, Property (P4.2) follows from Property (P4.2) for D and since
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FiCD.

For (P5.1), observe that, since we made an index shift (from Ag to A%), we have to prove
that eD/(v(k1+1)+i,Ao) < 137’% + 11— for every 1 <1 < ko. First, let 1 < i < kg be such that
(k1+1)+44 < £. Then only arcs from D(vg, 4144, Ao) UF1U{e} contribute to D' (v, +144, Ao)-
Therefore, €/ (Vg +1+44 Ao) < € (V11445 Ao)+1 < (S +1—(144))+1. Now let ky+1+i > £.

Then D' (v, 4144, Ao) = D (v, +144, Ao), and therefore, epr(vg, 4144, Ao) < 137”5 +1—i.

There is nothing to prove for Property (£5.2). Finally, Property (P6) follows as we have that
FiUF,UF3 C D'(A\ Ao,V \ B) and therefore,
D/:DU]:lU.FQUfg
=D(A,B)UD(A\ Ayp,V\B)UD(V\ A, B\ By) UF1 UFa2UF3
=D'(A,B)UD'(A\ Ay,V\ B)UD'(V \ A4, B\ By).

Case 2: v ¢ Axp U Ag. By Property (P2) and since e = (v,w) € A(D(V \ B)), we may
assume that v € AgUV \ (AU B). Moreover, w ¢ Ap. We now want to incorporate v into

the tournament A p U Ag. Set
min(i : (v;,v) ¢ D) if minimum exists
ki +ko+1 otherwise,
and
V; 1<i<i—-1
Ui 2= v 1=/
viep +1<i<k +ky+1
Consider the following families of arcs.
F1 = {(Ug,w) 1<i <l — 1},
Fo = {(vp,v)) : 6+1<i<k +ks+1},
Fz:={(vj,2): 2€ V\ (AUB) U Ag and (v, 2) € D},
(v],2) : z € Ap and (v ,,2) ¢ D} ifve A
(vj,y) : y € B} ifveV\(AUB),

where we use the convention that if £ = k1 + k2 + 1 (and thus vj, ; does not exist) then we
take F3 =0, F5 := {(v},,41,2) : 2 € V\ (AUB), z # v}, and Fy := {(v],2) : z € Ag} when
v € Ap.
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We choose {f1,...,ft} tobe{f1,..., fi} = (F1UFU...UF5)NA(D). We proceed as before
and show that f; # e for all 1 <4 < ¢, that F1 U...UFs C DUA(D), that t < b, and finally
we deduce that D' = D U {e, f1,..., f:} is protected.

For the first part, = (w,v) € Fi since v # w. Similarly, = (w,v) € Fao U F3 since
vy, = v # w. For the same reason, e¢ Fy in the case when v € V \ (AU B). In the case
when v € Ay, assume that (w,v) = (v}, z) for some z € Ay. Then (v},v) = (w,v) € A(D),
by assumption on e, and vj = v1. That is, (v],v) € D, which implies £ = 1 by definition of /.
But then w = v} = v; = v, by definition of v}, a contradiction. Also, ?g F5 by definition of
Fs. S0, fi# e forall 1 <i<t.

To see that 71 € DU A(D), assume that (w,v]) = (w,v;) € D for some 1 <i < /¢ — 1. Then
w = wv; € Aap U Ag for some j < i < ¢, by Property (P6), (P4.1) and since w ¢ Ap. By
definition of ¢ we conclude (w,v) = (vj,v) € D, a contradiction to e € A(D(V \ B)). Thus,
Fi1 € DUA(D). To see that Fo € D U A(D), assume that (v}, v)) = (vi—1,v) € D for some
i > (. Then (vg,v) € D, by Property (P4.2), in contradiction to the definition of ¢. Thus,
F2 € DU A(D). Also, F3UF4UFs C DU A(D) since every arc of the form (w’,v}) in D
satisfies w’ € A\ Ay, by Property (P6) and since v, € AUV \ (AU B).

To bound the number ¢ by the bias b note that in case v € Agp,

t < |f1U]:2|+‘f3Uf4Uf5|
<ki+ka+ AUV \ (AU B)|
=|AapUAg|+ AUV \(AUB)| <|V\B|<b,

since by Property (P1) we have |[B| > 2% 4+ 1 > n—b. When v € V \ (AU B), then we

estimate

t <|F1LUFa| + | F3U Fs| + | Fu
<|Aap U As|+ ([V \ (AU B)| + ep(vp, 1, Ao)) + | Bl
= |V \ (Ao U Ap)|+ ep(vp,y, Ao).

Since v € V' \ (AU B), we have that £ > k; + 1, by Property (P3) and definition of ¢. Since

vy, = vy, it follows that

901n  3n
t< AgU A Ao) <S55 o S0
<[V (AoUAp)|+ep(ve, Ao) < 7560+ 195 =0

by Property (P1), (P5.1) and choice of b.
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Finally, we show that D' = DU {e, f1,..., ft} is a protected digraph. Set

ADU{Ull} if v e A,

Alp =
Ap ifveV\(AUB),
“Ap = {v,... 7U;gl+1} if v € Ay,

{v, v ifveV\ (AU B),

A{S = {0;614—2’ Tt U;Cl—‘rk:g—}—l}’
Ap = Ao\ {v},
A= AU {v}.

Moreover, let B’ = B with the same partition as for B. Then (A’, B’) is a UDB in D', since
(A,B)isa UDB in D C D’ and since in case v = v, € V '\ (AU B) we have F, C D'. For
Property (P1), |[Bp U By| > S5 and |A'[,|B’| > $9% + 1 obviously hold. Now, observe that
|A')] = |Ap| + 1 and |Af| = |Ag| — 1 in case v € Ay, while Ap = A, and Ay = Aj, in case

v €V \ (AUB). Thus |[A}, UAj| = [Ap U Ag| > 5.

For Property (P2), there is nothing to prove when v € V'\ (AU B), since then A}, = Ap.
So, let v € Ag. Again Bp does not change. D'(A’,) is a transitive tournament, since
D(Ap) C D'(A’,) is such, and since (z,v]) € D C D' for every z € Ap by the UDB-property
for Ap. To see that (A}, V' \ A’,) forms a UDB we need to observe that (v}, z) € D’ for every

z € V' \ A)). By definition of v] we have vj = v or v; = v, and so we distinguish two cases.

Assume first that vj = v; € Agp U Ag. Then (v}, z) € D C D’ for every z € B since (A, B)
is a UDB in D; and for every z € (Aap U Ag) \ {v]} by Property (P4.1). For every z € Ay,
if (vpy1,2) € D (or £ = ki + kg + 1 where vy, does not exist), then (v}, 2) € F4 € D’; and if
(vp11,2) € D then (vy,2) € D C D' by Property (P4.2). For 2 € V'\ (AU B), if v| € Aap
then (v}, z) € D C D' by Property (P3) for D; if v] € Ag (and thus k1 = |[Aap| = 0) and if
(vyy1,2) ¢ D (or £ = ki + k2 + 1 where v, does not exist), then (v},2) € F5 C D’; and if
v) € Ag and (vy, ,2) € D, then (v],2) € D C D" by Property (P4.2).

Now, assume that v] = v € Ay and thus £ = 1. Then again (v{,z) € D C D’ for every
z € B since (A,B) is a UDB in D. If vy = v, € Aap, then (vy,2) € D for every
z € V\(AUB) by Property (P3). Therefore, for every z € (AgUV'\(AUB))\{v} we have that
(v],2) € FsUF, C D'. For every z € Aap U Ag, we have that (v],z) € Fo C D'. If v}, € Ag
(or v} does not exist) and therefore k; = 0, then similarly (v}, z) € FoUF3UF4UFsUD C D’
for all z € V'\ A,.

For Property (P3), observe that the statement for B4p does not change. To see that the pair
(Ayp,V \ A') forms a UDB we need to observe that (vj, _,2) € D' for every z € V' \ A".
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If z € B, then this is clear, since (A4’, B") forms a UDB as we showed already above. Let
now z € V\ (A UB)=V\(AUBU{v}). If £ < ki, then v}, | = vy, € Aap. Therefore,
(Vg 41,2) € D C D' by Property (P3) for D. If £ > ki +1, then (v}, ,,2) € F3UFUD C D'
(where we use Property (P4.2) which says that if (v),,2) = (vs,2) € D then (vg,11,2) € D).

For Property (P4), note that [A%| = [Ag| = ko < . For (P4.1) observe that the statement
for {w1,...,we, 14,} does not change. To see that (vh,..., vy 4 1) OF (V],. sV g 1q) 08
fully transitive in D’, note first that the vertex set without vy is fully transitive in D C D'. We
have (v}, v)) = (vi,v) € D C D' for every i < ¢ — 1, by definition of £. Moreover, (v},v}) € D’

for every i > £ + 1, since Fo C D’.

For (P4.2), let z € Ay UV \ (AU B’). We show that {i : (v},z) € D} is a down set
of [k1 + k2 + 1]. Note that this then implies (P4.2) for D', even when v € Ay where we
have that A'yp U Ay = {v),..., v, g, 1} Since z € Ay UV \ (AU B’), only arcs from
DuU{e} UF, UF3UF,4UF;5 contribute to the set {i : (v}, z) € D'}. Note that {i : (v;,z) € D}
is a down set of [k1 + k2] and the relative order of the v] for i # ¢ does not change. So, if
2z # w, then the arcs from F3 reestablish the down-set property for D’. If z = w, then the
arcs from Fj U {e} reestablish the down-set property for D’. Now, F; contributes at most
the element {1} to {i: (v}, z) € D’} which is of no harm. The family F5 may contribute the
element {k; + 1} to {i: (v},z) € D'} for some z € V' \ (AU B). So, in case this happens, we
need to show that [ki] C {i: (v],2) € D'}. If ky < £, we then know that v, = v; € Asp for
every i < kp and thus (v}, z) € D C D', by Property (P3) for D. Otherwise, we have k; > /.
Then, for every i € [k1]\{¢}, we have v} € {v;,v;_1} C Aap and analogously (v},z) € D C D'.
Moreover, as vy, ; = vy € Aap and thus (vj_,z) € D by (P3), we obtain (v, z) € F3 C D".

There is nothing to prove for Property (P4.3), since B and {w,...,ws, +4,} are unchanged.

For (P5.1), observe that, since we make an index shift (from Ag to A%), we have to prove
that eD’(UEk1+1)+i’A6) < %5 +1—1 for every 1 < ¢ < ko. First, let 1 < ¢ < ko be such
that (k1 4+ 1) 44 < £. Then only arcs from D(vk, 4144, Ao) UF1 contribute to D'( Ap).
Therefore, epr (v, 144, Ap) < €D (Vky+14i, Ao) +1 < (S +1—(1+1)+1.

Now, let (ki + 1) +i = ¢. Then ep(vy, Ag) = ep(v, Ag) = 0 since v € AUV \ (AU B) and
by Property (P6) for D. So, only F3 U {e} contributes to D'(vy, Aj). Therefore, we obtain
epr (v}, Ap) < ep(vpyy, Ao) + 1 = ep(vg, Ag) + 1 = ep(vk, 4144, Ao) + 1 < 55 + 1 — i. Finally,
let (k1 +1) +i > £. Then v, | ,; = Vg 4; and only arcs from D(vg, 14, Ag) contribute to

/
Uky 414>

D'(vy, 1,4, Ap)- This again proves ep/(vy, |4, Ap) < 2+ 1—i

There is nothing to prove for Property (P5.2).
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For (P6) note that it is enough to prove that
D' C D/(A',B'yUD'(A'\ A, V)UD'(V,B'\ B).
This indeed holds, since

D(A,B) C D'(A', B,
D(A\ Ay, V\B)UF U...UF; CD'(A"\ 4, V),
D(V\ A,B\ By) C D'(V,B"\ By).

This finishes the proof of Lemma 2.1.8. O

Proof of Lemma 2.1.9 Let D be given according to the assumption of the lemma, and
let (A, B) be the underlying UDB, with the partitions A = Ap U Aap U Ag U Ay and
B = BpUBap U BgU By. Consider first the case that A = Ap and B = Bp. Then A and
B induce transitive tournaments in D, such that (4,V \ A) and (V' \ B, B) are UDB’s in
D. But then, since |D| < (}), there needs to exist an available arc (a,z) € A(D), such that
a,z € V\ (AU B). We then can choose f = (a,z), and update Ag := {a} and A := AU {a}.
It is easily checked that after this update D + f satisfies the properties (P1)-(P6) with UDB
(A, B).

So, let us assume that A # Ap or B # Bp. Then the idea of the proof is as follows. We
show that we can find an available edge f such that D + f is protected, or that we can move
one vertex from A to the "left” (from Asp to Ap, or from Ag to Aap, or from Ay to Ag) or
that we can similarly move one vertex from B (from Byp to Bp, or from Bg to Bap, or from
By to Bg) such that, after an update of the partitions of A and B, the digraph D remains
protected with underlying UDB (A, B).

Thus, applying this argument iteratively, we eventually find an edge f as required, in which
case we are done; or this process ends, when all vertices of A are moved to Ap, and all vertices

from B are moved to Bp, in which case we are done, as discussed above.

By Observation 2.1.6 we may assume that A # Ap. Let v1 be the first vertex of the tourna-
ment (vi,..., V% +k,) in A. If v1 € Agp, then proceed as follows. In case there is an available
arc (vi,z) € A(D) with z € Ay, then choose f = (v1,z) and observe that all properties of a
protected digraph are maintained for D + f. Otherwise, we have (vi,z) € D for all z € Ay,
in which case we can move vy from Asp to Ap without destroying the properties (P1)-(P6).
If v; € Ag, then proceed similarly. If there is a vertex z € V'\ (AUB) such that (vi,z) € A(D),
then choose f = (v1,z). Otherwise, move vy from Ag to Ap.

Finally, if v; does not exist, then we have Axp U Ag = (), and by assumption, Ag # 0. If
V\ (AU B) # 0, then choose f = (a,z) with a € Ag and =z € V' \ (AU B), and observe
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that D + f remains protected with underlying UDB (A, B) after moving a from Ay to Ag.
The properties (P2)-(P6) are easily checked; for (P1), note that, by assumption, we have
|[Ap U Ag| +1 = |A| > 2% + 1, immediately after a is moved to the set Ag. If V'\ (AU B)
is empty, but |Ag| > 2, then choose f = (a,x) with a,z € Ay and proceed analogously to the
previous case. Similarly, if V'\ (AU B) is empty, but |Ag| = 1, then move the unique vertex
a € Ag to Ag. O

2.4 Concluding remarks and open problems

We finish this chapter with some remarks and open problems.

Threshold biases. It would be interesting to know the sizes of threshold biases for the
oriented-cycle games O(K,,C,1,b) and O4(K,,C,1,b) exactly. However, as a first step it
seems to be challenging to find out whether there is an ¢ > 0 such that, for every large
enough n, OMaker has a winning strategy for O(K,,C,1,(1+¢)%5) and O4(K,,C,1,(1+¢)%).
If this were true, then we would know that the threshold bias for the oriented-cycle game is
not asymptotically equal to the threshold bias of the corresponding Maker-Breaker game on
K,,, where Maker aims to occupy a cycle in K,,. The latter was studied by Bednarska and

Pikhurko [5], where the threshold bias was proven to be roughly 7.

Playing on random graphs. Instead of playing on the complete graph K,,, one could also
study the oriented-cycle game when played on a sparse random graph G' ~ G, ,. That is, we
consider the games O(G,C, 1,b) and O4(G,C, 1,b). The following was asked by Luczak during

the Berlin-Poznan Seminar in 2013.

Problem 2.4.1 Let p = p(n) € [0,1]. What is the largest bias b = b(n,p) such that for
G ~ Gnp, a.a.s. OMaker wins the game O(G,C,1,b) and Os(G,C,1,b), respectively?

Creating a Hamilton cycle fast. For the usual unbiased Maker-Breaker Hamilton cycle
game on K, it is known that Maker has a strategy which gives a Hamilton cycle within
n + 1 rounds [31]. We wonder how fast OMaker can ensure a directed Hamilton cycle in the

unbiased orientation game on K.



Chapter 3
Tournament games

In this chapter, we study the T-tournament game (E(G), Kr). Recall that this games is played
by two players, TMaker and TBreaker, who alternately direct previously undirected edges of
the given graph G. TMaker starts the game, and she aims to create a copy of T only with
her edges. If she succeeds, she wins the game; otherwise TBreaker does. In Section 3.2 we
first prove Proposition 1.2.1, i.e. we show that the threshold bias for the biased T-tournament
game on K, is b, = @(nk%l), if T has k > 3 vertices. Moreover, we prove Proposition 1.2.2,
which says that the threshold probability for winning the unbiased T-tournament game on a
random graph G ~ G, ,, is pxc, = n_k%l, if T has k > 4 vertices. Afterwards, in Section 3.3,
we prove Theorem 1.2.3. That is, for the cyclic triangle T we show that PR, = n_l%, while
for the acyclic triangle T4 we have PKr, = n=s.

Notation and terminology. For a graph G, with v(G) > 1, we set d(G) = 5223 as the

density of G, while its mazimum density is m(G) = maxgce; o(a)>1d(H). Similarly, the

2-density of a graph G, with at least 3 vertices, is defined as do(G) = i((g%:; and its maximum

2-density is defined as ma(G) = maxyceq, o(m)>3 d2(H).

Let n,k € N be positive integers. Then with T, we denote the Turdn graph [43] with n
vertices and k vertex classes. That is, its vertex set V(T ;) = [n] comes with a partition
V(Tpx) = ViU ... UV such that ‘|V,»\ - yvj\‘ <1lforall 1 <i<j <k and such that
its edge set is E(T, ) = {vw | v € V;, w e V;, 1 < i < j < k}. Moreover, let G be a
graph on at most k vertices, then we say that a subgraph H C T, is a good copy of G
in T, p, if G = H and |V(H)NV;| < 1 for every i € [k]. Let p € [0,1] and moreover let
M € [e(Ty,)]. Then with G(T), x, p) we denote the random graph model obtained from T;, j,
by deleting each edge of T}, , independently with probability 1 — p. That is, G(T}, ,p) is the
probability space of all subgraphs G' of T}, ., where the probability for a subgraph to be chosen

39
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is p¢(@) (1 — p)e(Tnk)=¢(G) " Similarly, with G (T 1, M) we denote the probability space of all
subgraphs G of T}, ;, with M edges, together with the uniform distribution.

Finally, W = (V, E) is called a k-wheel, if it is obtained from the cycle Cy by adding one
further vertex z which is made adjacent to every vertex of C. The special vertex z is called

the center of Cj.

3.1 Preliminaries

Let Bin(n,p) denote the binomial distribution, i.e. the distribution of the number of successes
among 7 independent experiments, where in each experiment we have success with proba-
bility p. Moreover, let us write X ~ Bin(n,p) if X is a random variable with distribution

Bin(n,p). The following estimate is usually referred to as a Chernoff inequality [32].

Lemma 3.1.1 (Theorem 2.1 in [32]) Let X ~ Bin(n,p) and A\ = E(X) = np. Then for
t >0, it holds that Pr(X > E(X) +t) < exp ( By %)

As indicated above, we will consider the random graph models G(T}, i, p) and G(T}, 1, M ). For

this, we will make use of some general results about random sets.

Following [32], let I" be a set of size N € N. For p € [0, 1], we let I';, denote the probability
space of all subsets A C T, where the probability of choosing A is pl4(1 — p)T\Al. So, Gn.p
is a special case of this model, with I' = E(K,). Moreover, for M € [N], we let I'y; denote
the probability space of all subsets A C I' of size M, together with the uniform distribution.
So, every set of size M is chosen with probability (Aj\g)il. The random graph model G(n, M)
is a special case of this model, again with I' = E(K,). In case we choose a random set A
according to the model Iy, we shortly write A ~ I'y. Similarly, we write A ~ I'j7, when A is

chosen according to the uniform model I'y,.

One important fact about the two models above is that in many cases they are closely related

2L see Section 1.4 in [32]. In particular, we will make use of the

following two statements, which help us to transfer results from one model to the other.

to each other when p ~

Lemma 3.1.2 (Pittel’s Inequality, Equation (1.6) in [32]) Let I be a set of size N, let
M € [N], and p =4 € [0,1]. Let P be a family of subsets of I'. Moreover, let H, ~ T}, and
Hyr ~ Ty, then

Pr(Hy ¢ P) <3VM - Pr(H, ¢ P).



3.2. MOST TOURNAMENTS BEHAVE LIKE CLIQUES 41

Lemma 3.1.3 (Corollary 1.16 (iii) in [32]) Let I' be a set of size N and let M € [N].
Let § >0 be such that 0 < (1+6)3 <1, and let p= (1 +6)%. Let P be a family of subsets
of I'. Moreover, let H, ~T'y, and Hyr ~ 'y, then

Pr(Hyr € P) — 1 implies Pr(H, € P) — 1.

Later we want to know whether a certain random graph contains a copy of a fixed graph with

high probability. In this regard, we make use of the following two theorems.

Theorem 3.1.4 (Theorem 2.18 (ii) in [32]) Let I' be a set, p € [0,1] and let H ~ T').
Let S be a family of subsets of I'. Moreover, for every A € S let 14 be the indicator variable
which is 1 if A C H, and 0 otherwise. Finally, let X = Y ,.qIa be the random variable

counting the number of elements of S that are contained in H. Then

E(X)
Pr(X=0 Sexp(— )
H=0 Srcs S ses Blals)
ANB#)
Theorem 3.1.5 (Theorem 3.4 in [32]) Let H be a graph, and let X denote random vari-
able counting the number of copies of H in a random graph G ~ G, ,. Then, as n tends to
infinity, we have

1
0 ifpgn mH
Pr(Xy > 0) — fo

1
1 pr>>n m(H)

3.2 Most tournaments behave like cliques

The main idea for the proof of the propositions is as follows: Let G be the graph on which the
game is to be played. Let T" be the goal tournament with vertices vy, ..., vi. Then, before the
game starts TMaker splits the vertex set of G into k parts Vi, ..., V; with ‘|V1| - |V]|‘ <1 for
all 1 < ¢ < j <k, and she identifies each class V; with the vertex v; according to the following
rule: Whenever TMaker claims an edge between some classes V; and V}, she always chooses
the direction of this edge according to the direction of the edge v;v; in T'. Because of this
identification, it then remains to show that Maker has a strategy for the usual Maker-Breaker

game on G to occupy a copy of K} with exactly one vertex in each V;.

In order to show that Maker has such a strategy for this game, we will make use of results
from [32], and follow the proof ideas from [4, 42]. As most parts are proven analogously to
results in the aforementioned publications, we rather keep our argument short and, whenever

possible, we refer back to the known results. At first, analogously to Theorem 3.9 in [32], we
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bound the probability that a random graph G ~ G(T), x,p) does not contain a good copy of
K.

Claim 3.2.1 Let k > 3 be a positive integer. Then there is a constant ¢ = ci1(k) > 0
such that for every large enough n the following is true: If n” R <p< 40" and if X
denotes the random variable counting the number of good copies of Kj in a random graph
G ~ G(Tnk,p), then Pr(X =0) < exp(—cin’p).

Proof Let G ~ G(T,,p). Let S be the family of good copies of K} in T, ;. For each
such copy C; € S let I¢, be the indicator variable which is 1 if and only if C; € G. By
Theorem 3.1.4,

s (- (E(X))?
Pr(X =0) < exp ( chzczzE(Cl)mE(Cg)aé(ZJE(IClICQ))

The denominator in the above expression can be bounded from above by

k k
T T 200 < 3 -0
t=2C1e§ (CLeS: t=2
C1NC2>2 Ky
k
= OEX)) - n ty=(2)
t=2
i tr1\t—2
= O(E(X)? n 2 )Y (n 1y )
t=2
= O(E(X)*-n"?p7h),
where in the last equality we use that p = G(n_%ﬂ). Thus, the claim follows. O

Corollary 3.2.2 Let k > 3 be a positive integer. Then there is a constant ¢ = ¢} (k) > 0 such
that for every large enough n the following is true: If M = LnQ_k%lJ and if X' denotes the
random variable counting the number of good copies of Ky, in a random graph G ~ G(Ty, 1, M),
then Pr(X' = 0) < exp(—c|M).

Proof Set p = e(TiJV[k) and observe that nfk%l <p< 4n7%+1. The statement now follows by
Claim 3.2.1 and Lemma 3.1.2. O

Corollary 3.2.3 Let k > 3 be a positive integer. Then there is a constant 6 = (k) > 0 such
that for every large enough n and M = 2Ln2_%+1j, a random graph G ~ G(T), ,, M) satisfies
the following property a.a.s.: Every subgraph of G with at least | (1 — )M | edges contains a
good copy of Kj,.
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Proof We proceed analogously to [4]. Let § > 0 such that § — dlog(d) < ¢} /3, with ¢} from
Corollary 3.2.2, and count the number of pairs (H, H') where H is a subgraph of T, j with M
edges and where H' C H is a subgraph with |(1 — §)M | edges that does not contain a good
copy of K. Then using Corollary 3.2.2 (and simplifying the notation slightly by ignoring

floor signs) we obtain that the number of such pairs is at most

et B4 ) (07 o 40204

<exp ( - 032]\4 +o0M(1— log(é))) <6(Tn’r)>

Using this last corollary, we can start proving the existence of Maker strategies. The following

claim is an analogue statement to Theorem 19 in [42], and thus its proof is analogous to [42].

Claim 3.2.4 Let k > 3 and n be positive integers. Then there is a constant ca = ca(k) > 0
such that for every M > cgln%%ﬂ, every 1 < b < @Mnfﬂk%l, for a random graph
G ~ G(Ty i, M) the following a.a.s. holds: Maker has a strategy to occupy a good copy of Ky,
in the b-biased Maker-Breaker game on G.

Proof Choose § = §(G) according to Corollary 3.2.3 and let co = §/10. Maker’s strategy
is as follows: in each of her moves she chooses an edge from G uniformly at random among
all edges from G that have not been claimed so far by herself. If she chooses an edge that is
not claimed by Breaker so far, she claims this edge. Otherwise, Maker declares her move as a
failure and skips it. Similar to [42], we consider the first M’ := 2[112_’@%@ < % . b_%lM rounds
of the game. As only a %—fraction of all edges are claimed in these rounds, the probability for
a failure is at most % in each round. So, the number of failures can be "upper bounded” by a
binomial random variable X ~ Bin(M’, g), which by Chernoff’s inequality (Theorem 3.1.1)
satisfies Pr(X > 2E(X)) < exp(—%) = o(1). That is, the number of failures will be
at most dM’ a.a.s. Thus, Maker a.a.s. creates a graph H \ R with H ~ G(T), 5, M') and
e(R) < dM’', against any strategy of Breaker, which by Corollary 3.2.3 a.a.s. contains a good
copy of Kj. Thus, a.a.s. Breaker cannot have a strategy to prevent good copies of K, and

as either Maker or Breaker needs to have a winning strategy, the claim follows. O

Corollary 3.2.5 Let k > 3 and n be positive integers Then there is a constant cs = cs(k) > 0
2

such that for every p > csn” *1 and G ~ G(T,, k,p) the following a.a.s. holds: Maker has a

strategy to occupy a good copy of Ky, in the unbiased Maker-Breaker game on G.
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Proof The statement follows immediately from Corollary 3.2.4 and Lemma 3.1.3, where we
choose P to be the family of all graphs G' C T;, ;. for which Maker has a strategy to occupy a
good copy of K} in the unbiased Maker-Breaker game on E(G). O

Finally, we can prove the two propositions.

Proof of Proposition 1.2.1. Let T be the tournament, with & > 3 vertices, of which
TMaker aims to create a copy on K,,. By Theorem 1 in [4], we know that there is a constant
¢ > 0 such that for large enough n and for every b > cn%, Breaker has a strategy to prevent
cliques of order k. Using this strategy, TBreaker wins the T-tournament game on K,. Now,
let ¢o = ca(k) be given according to Claim 3.2.4, and let M = e(T}, ), b = 0.250271'%1. Then
Claim 3.2.4 implies that Maker has a strategy to occupy a good copy of K}, in the b-biased
Maker-Breaker game on T}, . But, as we argued earlier, this also gives TMaker a strategy for

the b-biased T-tournament game on K. O

Proof of Proposition 1.2.2. Let T be the tournament, with k& > 4 vertices, of which
TMaker aims to create a copy in an unbiased game on G ~ G, ,. By Theorem 1.1 in [40], we
know that there is a constant ¢ > 0 such that for p < cn_k%l, Breaker a.a.s. has a strategy
to block cliques of order k in the unbiased Maker-Breaker game on G, which again gives a
winning strategy for TBreaker in the T-tournament game on GG. Now, let p > @,nfk%l, with
c3 = c3(k) from Corollary 3.2.5. Before sampling the random graph G ~ G, ,, fix a partition
ViU...UV, = [n] as before. Then, after sampling G ~ G, ,,, we know that the subgraph
induced by those edges which intersect two different parts V; and Vj is sampled like a random
graph F' ~ G(T), 1, p). According to Corollary 3.2.5, Maker a.a.s. has a strategy to occupy a
good copy of K in F' C G, and thus TMaker a.a.s. has a strategy to create a copy 1 in the

unbiased tournament game on G. O

3.3 The triangle case

In the following we prove Theorem 1.2.3.

For the acyclic triangle T}y, the result can be obtained from [42] as follows: For p < n=s
Breaker a.a.s. has a strategy to prevent triangles in the unbiased Maker-Breaker game on
G ~ Gpp. Applying such a strategy in the Ts-tournament game as TBreaker obviously blocks
acyclic triangles. For p > n~5 a.a.s. Maker has a strategy to gain an undirected triangle in
the unbiased Maker-Breaker game on G ~ G, ,. In the T4-game, TMaker now can proceed
as follows. She fixes an arbitrary ordering {vi,...,v,} of V(G) before the game starts. Then
she applies the mentioned strategy of Maker for gaining an undirected triangle, where she

always chooses orientations from vertices of smaller index to vertices of larger index. This
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way, every triangle claimed by her will be an acyclic triangle, and thus she wins.

Thus, from now on, we can restrict the problem to the discussion of the cyclic triangle T¢.
To show that n~15 is the threshold probability for the existence of a winning strategy for
TMaker in the To-tournament game on G ~ G, 5, we will study TMaker’s and TBreaker’s
strategy separately.

AN
Ay

Figure 3.1: Graph H without and with orientation.

We start with TMaker’s strategy. Let p > nTs. Then, by Theorem 3.1.5, a.a.s. G ~ Gy,
contains the graph H, presented in the left half of Figure 3.1, as m(H) = %. As indicated in
the right half of the same figure, its edges can be oriented in such a way that each triangle
has a cyclic orientation, and thus, it is enough to prove that Maker has a strategy to claim
an undirected triangle in the unbiased Maker-Breaker game on H. Her strategy is as follows.
At first she claims the edge ey, as indicated in the figure. By symmetry, we can assume
that afterwards Breaker claims an edge which is on the “left side” of e;. Then in the next
moves, as long as she cannot close a triangle, Maker claims the edges e2, es and ey4, always
forcing Breaker to block an edge which could close a triangle, and Maker will surely be able

to complete a triangle in the next round.

Now, let p <« n=15. We are going to show that a.a.s. there exists a TBreaker’s strategy
which blocks copies of T, when playing on G ~ G, ,. We start with some preparations.

Among others, we will consider triangle collections, as studied in [42].

Definition 3.3.1 Let G = (V,E) be some graph without isolated vertices. Further, let
T = (Vp, Er) be the graph where Vip = {H C G : H = K3} is the set of all triangles
in G, and Ep = {H1Hy : E(Hy) N E(Hy) # 0} is the (binary) relation on Vi of having a

common edge. Then:

o (G is called very basic if Tz is a subgraph of a copy of K;' (triangle plus a pending edge),
or a subgraph of a copy of P, with k € N.
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e G is called basic if there are distinct edges eq,eq € E(G) such that G — e; is very basic
for both i € {1,2}.

e (G is a triangle collection if every edge of G is contained in some triangle and Tg is

connected.

If G is a triangle collection we further call it a bunch (of triangles) if we can find triangles
Fy,...F, € Vp covering all edges of G with the property that |V (F;) \ Uj<;V(Fj)| = 1 and
|E(F:) \ Uj<iE(Fj)| =2 2 for every i € [r].

N % g PIANN
=4, Ay ‘v
ANZAN LRA N W\ '
S S D A Y
B By Bs By Bs “  Bg By

Figure 3.2: Basic triangle collections.

Note that every collection on a given number n of vertices, contains a bunch on the same
number of vertices with at least 2n — 3 edges. Figure 3.2 shows some collections that are
easily checked to be basic. For each of the graphs, the edges e; and es indicated in the figure
satisfy the condition from the definition of basic graphs. Moreover, the following observation

is easily verified.

Observation 3.3.2 Let G = (V, E). Maker (TMaker) has a strategy to create a triangle (a
copy of Tc) on G if and only if G contains a collection C' such that she has a strategy to
create a triangle (a copy of Tc) on C.

In the following we show now that Breaker can prevent Maker from occupying a triangle
when playing on basic graphs. This also ensures a winning strategy for TBreaker in the

corresponding To-tournament game. We start with the following proposition.

Proposition 3.3.3 Let G = (V, E) be very basic, then Breaker can block every triangle in
the unbiased Maker-Breaker game on E(G), even if Maker is allowed to claim two edges in

the very first round.
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Proof W.l.o.g. we can assume that Tg = P, for some k, or To & Kg“, with T as given
in Definition 3.3.1. We further can assume that Maker in the first round claims two edges
fi, f2 € E(G) that participate in triangles of G. If Tz = Py then observe that there is an
ordering Fi, ..., Fj of the elements in T¢, such that fi € E(F1), and |V (F;)\U;«;V (F})| =1,
and |E(F;)\Uj<; E(F;)| = 2 for every 2 < i < k. To see this one just has to start the sequence
with a triangle F} containing f;, and to extend the sequence along the path-like structure
of Tz. Finally, let Ay := E(F1) \ {fi} and A; := E(F;) \ Uj<;E(F}) for every ¢ € [k] \ {1}.
These sets are pairwise disjoint, have cardinality 2 and satisfy A; C E(F;) for each i € [k].
That is, Breaker can block triangles by an easy pairing strategy. (In particular, for his first
move, Breaker claims the unique edge f for which there is an i € [k] with A; = {f2, f}.) If
Te = K37, then it can be shown that G contains exactly four triangles and that one can find
an ordering F1,... Fy (with k = 4) with the properties from the previous case. So, Breaker

wins similarly. O

Corollary 3.3.4 Let G = (V, E) be basic, then Breaker can block every triangle in the unbi-
ased Maker-Breaker game on E(G).

Proof Let eq, es be the edges given by the definition of a basic graph. Breaker’s strategy is
to claim e; or eo in the first round. Afterwards, the game reduces to the graph G — ¢; for
some i € [2], where Maker claims 2 edges, before Breaker claims his first edge. Now, since

G — ¢; is very basic for both ¢ € {1, 2}, Breaker then succeeds by the previous proposition. O

We further observe the following two statements which can be checked by easy case distinc-

tions.

Observation 3.3.5 TBreaker has a strategy to prevent cyclic triangles in an unbiased game

on E(Ky), even if TMaker is allowed to claim and orient two edges in her first turn.

Observation 3.3.6 TBreaker has a strategy to prevent cyclic triangles in an unbiased game
on E(Wy), even if TMaker is allowed to claim and orient two edges in her first turn, as long

as not both edges are incident with the center vertex of Wy.

Now, using the previous statements we will show that for p <« n=15 a.a.s. every collection C
in G ~ Gjp is such that TBreaker has a strategy to prevent cyclic triangles in an unbiased
game on C. It follows then by Observation 3.3.2 that a.a.s. Breaker wins on G. To do so,
we start with the following propositions, motivated by [42], which helps to restrict the set of

collections we need to consider.
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Proposition 3.3.7 Let p < nfl%, then a.a.s. every triangle collection C in G ~ G p.
. 15
satisfies m(C) < .

Proof Each collection C on at least 25 vertices contains a bunch B on exactly 25 vertices

with

d(B) = e(B) > 2v(B) -3 - E
v(B) v(B) 8

Since there are only finitely many such bunches and each of them a.a.s. does not appear in

G according to Theorem 3.1.5, together with the union bound we obtain that a.a.s. each

collection in G lives on at most 25 vertices. Since there are only finitely many collections with

at most 25 vertices, we also know by the same reason that a.a.s. each collection in G on at

most 25 vertices needs to have maximum density smaller than %. O

Proposition 3.3.8 Let C be a triangle collection with m(C') < % such that TMaker has a
strategy to create a cyclic triangle in an unbiased game on C, but there is no such strategy

for any collection C' C C. Then the following properties hold:

(a) 5<0(C) <7,
(b) e(C) = 20(C) - 1,
(c) 6(C) = 3,

(d) C is not basic.

Proof Property (d) obviously holds, using Corollary 3.3.4. Moreover, (c) follows immediately.
Indeed, if there were a vertex v with do(v) < 2, then TBreaker could prevent cycles on C'—v by
the minimality condition on C, and cycles containing v by simply pairing the edges incident
with v (if there exist two such edges), a contradiction. Furthermore, v(C) > 5 is needed,
according to Observation 3.3.5. Now, let B be a bunch contained in C' with v(C) vertices,
then e(C) > e(B), since 6(B) = 2 < §(C). As such a bunch contains at least 2v(B) — 3 edges,
it follows that e(C) > e(B) + 1 > 2v(C) — 2. Furthermore e(C) < 2v(C) — 1, since otherwise
m(C) > 2. If e(C) = 2v(C) — 1, then together with m(C) < 32, we deduce that v(C) < 7.
Otherwise, we have e(C) = 2v(C) — 2 and e(C) = e(B) + 1. Analogously to the proof of
Theorem 23 in [42] it then follows that C' can only be a wheel; for completeness let us include
the argument here: Let E(C) \ E(B) = {viva}. By the definition of a bunch, we can find
triangles F, ... F;. in B covering all edges of B with the property that |V (F;)\U;<;V (Fj)| =1
and |E(F;) \ Uj<;E(F;)| > 2 for every i € [r]. As e(B) = e(C) — 1 = 2v(B) — 3 it then
follows that r» = v(C) — 2 and |E(F;) \ Uj«;E(F;)| = 2 for every i € [r] \ {1}, as otherwise
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e(B) >3+42(r—1) =2v(C) — 3, a contradiction. Thus, for every ¢ € [r] \ {1}, F; needs to
share exactly one edge with U;;Fj. From this, we can conclude that B needs to contain at
least two vertices of degree 2. However, as 6(C') > 3 and E(C) \ E(B) = {viva2}, we know
that v1 and vy must be the only vertices in B of degree 2. Now, by the definition of a triangle
collection, v1vo needs to be part of a triangle in C. Thus, there needs to be a vertex vz such
that vivs, v3ve € E(B). But this is only possible if vs belongs to every triangle F;, i € [r],
and thus, C needs to be a wheel. Now, to finish the proof, observe that TBreaker can always
prevent triangles in an unbiased game on a wheel by a simple pairing strategy, a contradiction

to our assumption. O

So, the goal will be to show that there exists no collection C' which satisfies all the conditions

A

01 a1 a2

given in Proposition 3.3.8.

)

a

X

X

S So Ss Sy

Figure 3.3: Special collections.

Lemma 3.3.9 If a collection C satisfies (a) - (d) from Proposition 3.5.8, then either C is
isomorphic to Ky (Ks minus one edge) or C is isomorphic to one of the graphs S;, 1 <i < 4,

given in Figure 3.3.

Proof If v(C) = 5, then e(C) = 9, by Property (b), and the statement follows obviously.
So, let v(C') # 5. We will show now that a collection satisfying (a) - (c) either is isomorphic
to one of the collections S;, or it is isomorphic to one of the basic collections A; or B; from

Figure 3.2, thus contradicting Property (d).

Let us start with v(C) = 6. Assume first that C' contains a subgraph H = K4 and let
{z,y} = V(C)\ V(H). With ¢(C) = 11 and §(C) > 3 we conclude xy € E(C), and by the
definition of a collection it follows that z and y have a common neighbor v; € V(H). Because
of (c), we further have zvy € E(C) for some ve € V(H) \ {v1}. Now, if yve € E(C), then
C = S, otherwise by (c) we have yvz € E(C) for some vs € V(H) \ {vi,v2} and so C = A;.
Assume then that C' does not contain a clique of order 4. We still find a subgraph H' C C
with four vertices V(H') = {v1,v2,v3,v4} and five edges, say vivs ¢ F(H). Since C is a
triangle collection, there needs to be some xz € V(C)\ V(H') that is part of the same triangle
as an edge e from H'. Let y be the unique vertex in V(C) \ (V(H') U {z}).



50 CHAPTER 3. TOURNAMENT GAMES

Assume first that e = vovs. We know then that {x,v1,v3} is an independent set in C, since
otherwise we would have a 4-clique in C. By (b) and (c), it thus follows that
N(y) = {x,v1,v3,v;} for some i € {2,4}, which gives C' = A,.

Assume then that e # wvovg and w.l.o.g. e = wvzvy by symmetry of H'. If vz € E(C), it
then follows that d(y) = 3, since (b) and (c¢) need to hold; moreover, C[V(C) \ {y}] = W,
where vy represents the center of the wheel. In case vyy € E(C), we can only have C' = Ag,
as C does not contain a 4-clique; and in case vqy ¢ E(C), we can assume that N(y) =
{v1,v2,v3} (because of the symmetry of the 4-wheel), which yields C' = As. If otherwise
viz ¢ E(C), then, since there is no 4-clique in C, we immediately obtain d(y) = 4 and
v,z € N(y), as e(C) = 11 and §(C) > 3. Moreover, v4 ¢ N(y), since we otherwise would
obtain a 4-clique, independently of the choice of the fourth neighbor of y. Thus, we conclude
N(y) = {vi,v2,v3, 2} and C' = As.

Now, let v(C) = 7. We distinguish three cases.

Case 1. Assume that C contains a subgraph H & Ky. Let {z,y,z} = V(C)\V(H) = V.
With e(C) = 13 and §(C) > 3 it follows that {z,y, 2} is not an independent set, w.l.o.g.
xy € E(C). By the definition of a collection it further follows that z and y have a common

neighbor — the vertex z or some vertex v € V(H).

Assume first that z € N(z) N N(y). By §(C) > 3 each vertex in V' needs to have at least one
neighbor in V(H). If there were a matching of size 3 between V'’ and V(H), then by (b), one
of the matching edges could not be part of a triangle, a contradiction. If all the three vertices
have a common neighbor in V(H), then one easily deduces C' = S,. Otherwise, by symmetry
we can assume that there is a vertex vy € V/(H) such that vyz,v1y € E(C) and v1z ¢ E(C),
and moreover, voz € E(C) for some vy € V(H) \ {v1}. Now, let {vs,v4} = V(H) \ {v1,v2}.
To ensure that vez belongs to some triangle in C, we finally need to have exactly one of the
edges from {v3z,v4z,vox, v2y} to be an edge in C. The first two edges however do not result

in a triangle collection, while for the other two edges we get C = S3.

Assume then that z ¢ N(x) N N(y), but v € N(x) N N(y) for some v € V(H). Because of
(b) and (c), either xzz € E(C) or yz € E(C), w.lo.g. say zz € E(C) and yz ¢ E(C). As
0(C) > 3, we then immediately get yw € E(C) for some w € V(H) \ {v}. Moreover, we then
need two other edges incident with z besides xz, of which one is zv to ensure that zz belongs

to a triangle. If the second edge is zw, then C 22 Sy; otherwise C' = B;.

Case 2. Assume that C' does not contain a clique of order 4, but there is some H C C with
H =Wy Let {z,y} = V(C)\ V(H) =: V' and let z be the unique vertex with dg(z) = 4.
By (b) and (c), it follows that zy € E(C), and since C is a collection, there is a common
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neighbor of x and y in V(H).

Assume first that z € N(z)NN(y). As 6(C) > 3, both vertices x and y have another neighbor
in V(H)\ {2z}, however there cannot be a second common neighbor, since there is no 4-clique
in C. One easily checks that C' = By or C = Bj follows.

Assume then that z ¢ N(z)NN(y), but v € N(x)NN(y) for some v € V(H)\{z}. If zz € E(C)
(or yz € E(C)), we then need yw € E(C) (or zw € E(C)) for some w € Ng(v) \ {z} to
ensure that e(C') = 13 and 6(C') > 3 holds while C'is a triangle collection. This gives C' = Bjy.
Otherwise, we have z ¢ N(z) U N(y). In this case, let w’ to be the unique vertex of H not
belonging to N(v)U{v}. Then we also have w’ ¢ N(xz)UN(y). Indeed, if we had yw’ € E(C)
say, then as yw' needs to be part of some triangle and as d(z) > 3 and e(C) = 13, we would
need zw’ € E(C), in which case it is easily checked that C' is not a triangle collection. So,
we can assume that zv; € E(C) for some v € V(H) \ {v,w’, z}, and yv; ¢ E(C), because C
does not have a 4-clique. Finally, since §(C) > 3, we need vay € E(C) for the unique vertex
ve € V(H) \ {v,v', z,v1}, i.e. C = Bs.

Case 3. Finally assume that C neither contains a 4-clique nor a 4-wheel. It is easy to check
that Cyp C C' (with notation of vertices as given in Figure 3.4), and by the assumption of this
case we further have vjvs, v1v4,v3v5 ¢ E(C). Since C is a triangle collection, we find a vertex
x e V' :=V(C)\ V(Cp) which belongs to a triangle that also contains an edge e € E(Cp).

Let {y} = V'\ {z}. By symmetry of Cy we may assume that e € {vovs, v4v5, V105, V1V2}.

Vs N

U1 V3 U3

X Vi V.

Figure 3.4: Subgraphs.

Assume first that e = vovs were possible, i.e. C; C C. Then by assumption of Case 3, every
edge in E(C) \ E(C}) would need to be incident with y. Because of (b) and (c) we then
had that d(y) = 4 and vy, v3y, zy € E(C). Since these three edges would need to belong to
triangles, we further would need yve € E(C'), which would create a 4-wheel on V(C)\ {v3,v4}

with center vo, in contradiction to the assumption.

So, as next assume that e = vqvs were possible, i.e. Cy C C. Then analogously every edge in
E(C)\ E(C2) would need to be incident with y, and d(y) = 4 and {v1,v3,z} C N(y), because
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of (b) and (c). But then, independently of what the fourth neighbor of y is, one of the edges

v1Y, v3y, xy could not belong to a triangle, again a contradiction.

As third, assume that e = vyvs, i.e. C3 C C. By the assumption of Case 3, every edge in
E(C)\ (E(C3) U{zvs}) needs to be incident with y. If zvs ¢ E(C), then we have d(y) = 4
and zy,v3y € E(C), because of e(C) = 13 and §(C) > 3. Depending on how the other two
edges incident with y are chosen, we either obtain a contradiction by creating a 4-clique or
a 4-wheel, or we see that C' = Bg. So, let zvs € E(C). Then d(y) = 3, by (b) and (c), and
to have zvs in a triangle, we need yx, yvs € E(C). It follows that C' = B, if yv; € E(C) or
yvs € E(C), or C = By, if yvy € E(C) or yus € E(C).

As last, assume that e = vjvg, i.e. Cy C C. If zus € E(C) were possible, then we had d(y) = 3
because of e(C) = 13 and §(C) > 3. But then, depending on the three edges incident with y,
we would get a 4-clique or a 4-wheel in C, or we would find an edge which is not contained
in a triangle, a contradiction. So, we can assume that zvs ¢ E(C). Then, by (b), (c) and
the assumption of Case 3, we deduce that d(y) = 4 and yz,yvs € E(C). If yvy € E(C) were
also an edge of C, then for any choice of the fourth edge incident with y, we would create
a 4-clique or a 4-wheel in C. That is, we can assume that yvy ¢ E(C). But then we need

v1y,vay € E(C) to ensure that yx and yvs belong to triangles, which yields C' = By. O

Lemma 3.3.10 For any collection given by Lemma 3.3.9, TBreaker has a strategy to prevent

cyclic triangles.

Proof If C' = §; for some i, note that C' is covered by two (not necessarily disjoint) graphs
C(1), C(2), plus at most one additional edge if C' = Sy, where each of the C(i) is isomor-
phic to K4 or Wy. Choose edges a; and as as indicated in Figure 3.3. In his first move,
TBreaker claims the edge a; if TMaker did not orient it before; otherwise he claims the edge
ay. Afterwards, TBreaker plays on C(1) and C(2) separately, meaning: each time TMaker
orients an edge of C(i), TBreaker claims an edge of C(i) if there remains one. Now, using
Proposition 3.3.3 and Observation 3.3.5, TBreaker can do this in a way such that he prevents

cyclic triangles on each C(i), and therefore in C.

Finally, we need to look at the case when C' = K;. By an easy case analysis, it can be
proven that TBreaker has a strategy to prevent cyclic triangles on C'. We give a sketch
in the following. Let V(C) = X UY with X = {v1,v,v3} and Y = {v4,v5}, and let
E(C) = (g)u{xy reX,yeY}.

Case 1. TMaker orients an edge in F(X,Y) in her first turn.

W.lo.g. let e = vivg € E(X,Y) be the edge to which TMaker gives an orientation in her
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first move. Then TBreaker’s strategy is to delete the edge vivy. Note that C' — {vjva} is
isomorphic to the 4-wheel Wy, here with center vz, and TMaker’s first arc is not incident with

vg. Thus, TBreaker can win by Observation 3.3.6.
Case 2. TMaker orients an edge inside E(X) in her first turn.

W.lo.g. let TMaker’s first oriented edge be (v1,v2). Then TBreaker’s first move will be to
delete the edge vovy. Afterwards, TBreaker’s second move will depend on TMakers second

move, as follows:

If TMaker orients (vy,wv3) or (vs,ve) for her second move, then TBreaker claims wvyvs and

afterwards he wins by an easy pairing strategy, with the pairs {vjvy, v3v4} and {vyvs, v3v5}.

If TMaker for her second move chooses one of the arcs (vi,v4), (v4,v1), (v3,v4), (v4,v3),
(v1,v5), (vs,v2), (v2,v3) and (vs,vs), then TBreaker for his second move claims the edge viv3.
As he claims vovy and viv3 then, the only triplets on which TMaker could create a triangle
are {v1,vs,v5} and {ve,vs,vs5}. In either of the cases it is easy to check that from now on

TBreaker can prevent cyclic triangles.

If TMaker for her second move chooses (vg, vs) or (vs,vs), then TBreaker claims vyvs for his
second move. Afterwards there remain three triplets on which TMaker still could create a
triangle, namely {v1,vs,v4}, {v1,v2,v3} and {va,v3,v5}. To block a triangle on {vi,vs,v4},
TBreaker can consider a pairing {vivy,v3v4}. For the other two triplets it is easy to check
then that TBreaker can prevent cyclic triangles, since the orientation which vevs needs, to

create a cyclic triangle, is different for these two remaining triplets.

If TMaker for her second move chooses (vs, v1), then TBreaker needs to claim vovs. Afterwards
there remain three triplets on which TMaker still could create a triangle, namely {v;, vs,v4},
{v1,v2,v5} and {v1, v3,v5}. To block a triangle on {v1, v3, v4}, TBreaker can consider a pairing
{vivg,v3v4}. For the other two triplets it again is easy to check that TBreaker can prevent
cyclic triangles, since the orientation which vjvs needs, to create a cyclic triangle, is different

for these two triplets.

Finally, if TMaker for her second move chooses (vs,v1), then TBreaker needs to claim vyuvs.
Afterwards there remain three triplets on which TMaker still could create a triangle, namely
{v1,v3,v4}, {v1,v2,v3} and {vy,v3,v5}. To block a triangle on {v1,vs,v4}, TBreaker can
consider a pairing {vjvy,v3v4}. For the other two triplets it again is easy to check that
TBreaker can prevent cyclic triangles, since the orientation which v;v3 needs, to create a

cyclic triangle, is different for these two triplets. O

. _3 .
To summarize, we have shown now that for p < n~ 15, a.a.s. TBreaker can prevent cyclic

triangles in the tournament game on G ~ G, ;. Indeed, by Proposition 3.3.8, Lemma 3.3.9
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and Lemma 3.3.10, we know that there exists no collection C' with m(C) < % on which

TMaker has a strategy to create a copy of T¢. By Proposition 3.3.7 we however know
8 . . .

that for p < n” 15 a random graph G ~ G, , a.a.s. only contains such collections, and using

Observation 3.3.2 we thus conclude that a.a.s. TMaker does not have a winning strategy when

playing on G' ~ G, ,, which at the same time guarantees a winning strategy for TBreaker. O



Chapter 4
Tree embedding game

In this chapter, we study the unbiased tree embedding game (E(K,), Fr). Recall that this
game is played by two players, Maker and Breaker, who alternately claim previously unclaimed
edges of the complete graph K,,. Maker, who starts the game, claims one edge in each round
and aims to occupy a copy of a pre-defined (labeled) spanning tree T' of K,,. Breaker, also
claiming one edge in each round, wants to prevent Maker from claiming a copy of T'. Hereby,
besides for the study of random trees, we will focus on the case that T" has a bounded maximum

degree.

Notation and terminology. Let G be a graph and let T" be a forest. Then for every
S C V(T), a function ¢ : S — V(G) is an embedding of T[S] into G, if ¢ is injective and
if for every edge xy € E(T[S]), we have ¢(z)o(y) € E(G). Let ¢ : S — V(G) be such an
embedding, then the vertices of S are said to be embedded (into G), while those of V/(T') \ S
are not embedded. If v/ € S is an embedded vertex, then we call v' closed with respect to
the forest T and the embedding ¢, if Np(v') C S, i.e. all neighbors of v are embedded. Its
image v = ¢(v') will be called closed as well. Otherwise, when Np(v')\ S # ), then v’ is
called open with respect to the forest 7" and the embedding ¢, and we also say that v = ¢(v')
is open. Moreover, if a vertex v € V(G) does not belong to the (image of the) embedding,
ie. v e V(G)\ ¢(5), then we say that v is available. In all the proofs of this chapter, Maker
always creates only one embedding, where she increases the set S of embedded vertices in
each round. Therefore, we leave away the phrasing ”with respect to the forest 7" and the

embedding ¢”, if it is clear from the context.

Assume now that some Maker-Breaker game, played on the edge set of some graph G, is
in progress. Following standard notation for Maker-Breaker games [30], with M we denote

the graph consisting of all current Maker’s edges, while B denotes Breaker’s graph, and

95
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F := G\ (M U B) is the graph containing all free edges. Assume further that Maker’s
goal is to occupy a copy of a forest T', and that at any given moment during the game,
there is an embedding ¢ : S — V(M) of T[S] into M, with S C V(T). Then with
Or = O7(¢) we denote the set of vertices of V(T') that are open with respect to 7" and ¢, i.e.
Or={se€S:Np(s)\S#0}.

Finally, we say that Maker wastes an edge (or a move), if this edge does not belong to her
winning set at the end of the game, meaning that even without this edge Maker would be the

winner.

4.1 Trees with a long bare path

The goal of this section is to prove Theorem 1.3.2. That is, we show that Maker can create a
copy of a tree, which contains a long bare path, while wasting at most one edge. Let T' be such
a tree and let P be a long bare path in 7. The strategy which we use in order to conclude the
statement can be summarized as follows. In a first stage, Maker embeds 7'\ P more or less
greedily and without wasting any edges, while using a potential function argument to care
about the distribution of Breaker’s edges. Then, in a second stage, we use a modification of
the strategy from Hefetz and Stich [31] for the Hamilton cycle game, to show that Maker can
extend her copy of T\ P to the desired copy of T, with a waste of at most one edge.

, P

1 1o

/ \

Figure 4.1: Splitting of 7" into a long bare path P and T'\ P = T} U T5.

The mentioned stages are given implicitly by the following statements.
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Theorem 4.1.1 Let n,m,A € N with A >3 andn >m > (A +1)%2. Let Ty UT, be a forest
consisting of two vertex disjoint trees T; = (V;, E;) with A(T;) < A and |[V1UVa| =n—m. Let
v) € Vi, with i € [2], be arbitrary vertices. Then, in an unbiased game on E(K,), Maker has a
strategy to occupy a copy of T1UTs within n—m—2 moves, such that immediately after Maker’s
(n —m — 2)™ move, the following holds. There exists an embedding ¢ : V(Ty U Ty) — V(M)
of Ty UTy into M such that, with A =V (K,) \ ¢(V1 UVa), we have

A+ 1>

en(avotii) < (%

Lemma 4.1.2 Let k € N. Then there exists an integer m' = m/(k) such that the following
holds. Given any graph G = (V, E) on m > m’ vertices and with |E| > (ZL) — k, and given
any distinct vertices v1,vy € V', then in an unbiased game on E(G), Maker has a strategy to

occupy a Hamilton path P of G, within m moves, such that End(P) = {vi,v2}.

Before we give the proofs of these two statements in the following subsections, let us see
at first how Theorem 1.3.2 can be concluded. Let A € N as given in the statement of
Theorem 1.3.2. We choose k = (A +1)* and m; = m/(k), where m/(k) satisfies Lemma 4.1.2.
Observe then that m/(k) > (A + 1)? follows immediately. Now, let T be the a tree satisfying
the assumptions from Theorem 1.3.2. In particular, let P C T be a bare path of length
mi, and let End(P) = {v},v5}. We need to describe a strategy for Maker which guarantees
that she claims a copy of T' within n rounds. For this, let 71 and 75 be the two non-trivial
components of 7'\ P that contain the vertices v] and v}, respectively. Maker at first occupies
a copy of Ty U Ty according to Theorem 4.1.1, which is possible as e(P) > (A + 1)? and thus
v(T1UTy) < n—(A+1)2. When she is done with this, her graph is isomorphic to 73 UT5 (plus
isolated/available vertices). Moreover, according to Theorem 4.1.1, Breaker then claims at
most (A; 1) edges among the set U C V(K,,), which consists of all available vertices plus those
vertices v1 and vg in K, that are the images of v} and v}, with respect to Maker’s embedding.
Now, as a second step, Maker claims a copy of P, on the vertex set U and with endpoints vq
and vg, while wasting at most one move. As |[U| = my +1 > m/(k) and k > (A;l), this is
possible by Lemma 4.1.2. This way Maker occupies a copy of the goal tree T" within at most

n rounds, as she wastes at most one move (when she embeds P). O

4.1.1 A careful greedy embedding I

In this subsection we prove Theorem 4.1.1.

Let n,m, A € N and T7 UT5 be given according to the assumptions of Theorem 4.1.1, and let

v] € V1 and v} € V3 be designated vertices. In the following we describe a strategy for Maker
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when playing on K, in order to create a copy of T1 U T5 as desired. Afterwards, we prove

that she can indeed follow that strategy.

In her strategy, Maker will create a copy of Th U T more or less greedily (by maintaining
an embedding ¢ : S — V(M) of (11 UT>)[S] into M, with S C V(T1 UTy)). That is, she
starts from the vertices v} and v} (respectively from the images of v} and v} with respect to
Maker’s embedding ¢), and then she embeds the trees T; step by step, towards the leaves.
For this, at each moment throughout the game, we let S denote the set of vertices of 71 U T5
that are already embedded. Initially, we set S = {v],v5}. Moreover, with ¢ we will denote
Maker’s embedding of (77 UT3)[S] into M, as indicated above. Initially, we set ¢(v]) = v; for
every i € [2], where vy,v2 € V(K,,) are distinct and arbitrarily chosen vertices of K,,. With
A=V(K,)\ ¢(S) we then denote the set of available vertices, i.e. those vertices which were
not chosen for the embedding so far, and moreover, we set U = A U {vy,v2}. All these sets
and the embedding will be updated after each of Maker’s moves. Hereby, one may keep in

mind that, whenever Maker removes a vertex from A, this vertex is also removed from U.

The main idea for Maker’s strategy is to increase the set S of embedded vertices, until all
vertices of T} UTy are embedded, in such a way that eg(U) < (Agl) holds after Maker’s (last)
move. To do so, Maker considers a potential function to keep control on the distribution
of Breaker’s edges. She sets p(v) := max{0,dp(v,U) — dpy(v)} for every v € V(K,,) as the
potential assigned to v. Moreover, recalling that Or, denotes the set of open vertices with
respect to ¢ and T; at any given moment throughout the game, she defines a cumulative

potential 1) after every step of the game as follows:

Y :=ep(U)+ Z p(v).

v€J(Or, )U(Or,)

In the very beginning of the game, Maker then closes the vertices v; and ve. That is, she
proceeds as follows. Let di = dp, (v]) and d2 = dp,(v5) be the degrees of the designated
vertices in T and 75, respectively. Then in the first d; rounds, Maker claims d; free edges
via; with i € [dy] and distinct vertices a; € A. She then makes the following obvious up-
date. She removes the vertices a; from A, she adds all vertices from Nr, (v1) to S and she
updates ¢ in such a way that ¢(Np,(vi)) = {a; : @ € [di]}. (Moreover, she updates Or,
accordingly. In particular, she removes v} from this set.) Afterwards, in the following ds
rounds, she proceeds similarly for va, by claiming da edges vab; with @ € [da] and b; € A, re-
moving the vertices b; from A, adding the vertices of Nz, (v2) to S and updating ¢ such that
G(N1, (v2)) = {bi = i € [da]}.

Once this part is done, for every further round ¢, Maker continues her embedding of T U T,

under consideration of the potential 1. So, let ¢ > di + do. Maker from now on plays her t*®
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move by considering the following cases.

Case 1. Assume first that ¢ < (A; 1). Then, Maker claims a free edge uw such that
u € ¢(Or,) Up(Or,) is an open vertex (with respect to her current embedding ¢), and where
w € A is an available vertex. Accordingly, Maker deletes w from A, she chooses an arbitrary
vertex w’' € Npyur, (971 (u)) \ S, for that she sets ¢(w') = w and adds w’ to S.

Case 2. Assume then that ) > (Agl) and ¢ > eg(U). Then, Maker claims a free edge uw
as in Case 1 with the additional constraint that must dg(u,U) > dps(u) hold. Accordingly,

she finishes her move with an update as described in Case 1.

Case 3. Otherwise, as ¢ > ep(U) always holds, we have ¢ = ep(U) > (A;ﬂ). Then, Maker
again claims a free edge ww as in Case 1, this time with the constraint that dg(w,U) > 0

must hold. Accordingly, she finishes her move with an update as described in Case 1.

Obviously, if Maker can always follow the proposed strategy, then she creates an embedding
¢ V(T1UTy) — V(M) of Ty UT, into M, within e(771 UT,) = n—m —2 rounds. Moreover, in
case ¢ < (A; 1) holds immediately after her (n—m—2)"4 move, the statement of Theorem 4.1.1
follows then, as 1) > eg(U). So, it remains to prove that Maker can indeed follow the proposed
strategy, until 77 U T3 is fully embedded, and that the mentioned inequality is maintained.

This will be done through the following two claims.

Claim 4.1.3 Let t > dy + do. Then, as long as Maker can follow the proposed strategy,

P < (Agl) holds immediately after her t™ move.

Proof Assume that Maker can follow the proposed strategy. Then, one easily verifies that
Maker never increases the value of 1 with her moves, since she neither adds Breaker edges to
the board nor increases the set U. According to her strategy, she closes the vertices v; and vgy
within the first d; + do rounds, and thus, none of Breaker’s edges can contribute more than
1 to the value of ¢ after Maker’s (d; + dg)th move. In particular, Breaker can increase the

cumulative potential ¥ by at most 1 in each move after that move of Maker.

Now, proceeding by induction on the number of rounds ¢, let us prove Claim 4.1.3. At first, let
t = dy + d2. Then, by the observation above, we have ¢ < e(B) < 2A < (Agl) immediately
after Maker’s (d; + d2)™ move.

A+1)

Now, for doing induction, assume that ¢ < ( , ) was true immediately after Maker’s ¢th

move, for some ¢t > di + dy. Then, we aim to show that ¢ < (A; 1) is maintained after

Maker’s (¢ + 1)** move. As Breaker can increase the value of 1) by at most 1, we know that

1 cannot be larger than (A; 1) + 1 immediately before Maker considers to do her (¢ + 1)

move. In case we have ¢ < (A; 1), we are done already, since Maker will not increase this
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potential by the argument above. So, it remains to check the case when ¢ = (A; 1) + 1 holds
immediately before Maker’s move. Then, following the strategy, she plays according to Case 2
or Case 3. If she plays according to Case 2, then the following happens. The potential of the
open vertex u, which by the choice of u is at least 1 before Maker’s move, is decreased by 1 (or
vanishes from the cumulative potential, when u is closed after Maker’s move). Moreover, no
other positive terms are added to v, as we add at most dg(w,U) to the sum of potentials of
open vertices, while this value is subtracted from ep(U). Similarly, if Maker plays according
to Case 3, the following happens. The value of eg(U) decreases by dp(w,U), while the sum of
potentials of open vertices can increase by at most dp(w,U) — 1, as dp/(w) = 1 then. Notice
that the latter may happen if w is an open vertex (with respect to the new embedding ¢)
after Maker’s move. Thus, we obtain that Maker decreases the value of ¢, when she follows
Case 2 or Case 3 of her strategy, and therefore she maintains 1 < (A; 1). O
Claim 4.1.4 Maker can always follow the strategy until Ty U Ts is fully embedded, i.e. until
she finishes an embedding ¢ : V(11 UTs) — V(M) of Ty UTs into M.

Proof We observe first that |A| > (A+41)% > 4A is always true for the first n—m —2 rounds,
as [V U Vol < n — (A +1)? by the assumption on T3 U T». Thus, it is easy to check that
Maker can close the vertices v; and vy as proposed by the strategy. Indeed, to close these
vertices, Maker only needs to claim at most 2A edges between the vertices v; and the set
A, while Breaker in the meantime can only block 2A such edges. Thus, we can concentrate
on the rounds after Maker’s (d; + d2)%* move. For induction assume that Maker could so far
follow the first ¢t rounds, where ¢ > d; + do. We need to show that she can follow the strategy
in round t + 1 as well. By Claim 4.1.3 we then know that immediately after her last move
P < (A; 1) was fulfilled. Moreover, we already saw that in his following move Breaker can
increase the value of ¢ by at most 1, and so ¢ < (A; 1) + 1 holds before Maker considers to
do her (t+1)%* move. If she then plays according to Case 1, then v < (A; 1) is fulfilled before
this move. It follows then that for every open vertex u € ¢(Or,) U@(Or,) the Breaker-degree
into A is bounded from above by dg(u,U) < p(u) + dpr(u) <+ A < (A +1)? < |A|. Thus,
Maker can find an edge uw as suggested. If she plays according to Case 2 or Case 3 instead,
then we have ¢ = (A; 1) + 1 immediately before her move. In Case 2, by its assumption, there
needs to be an open vertex u with ¢(u) = dp(u,U) — dpr(u) > 0. Moreover, analogously to
the previous argument, we have dp(u, A) < |A| and therefore, Maker can find an edge uw as
suggested in Case 2. In Case 3, as ep(U) = (Agl) +1, then we find at least A vertices w € A
with dg(w,U) > 0; and for every open vertex u, we have dp(u,U) < A, as p(u) = 0. Thus,

Maker can find an edge uw as suggested in Case 3. O

From the previous claims, Theorem 4.1.1 now follows. O
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4.1.2 A Hamilton path game

In the following we want to prove Lemma 4.1.2. First of all, let us recall that in [31], the

following theorem was proved.

Theorem 4.1.5 (Theorem 1.1 in [31]) Let n € N be large enough. Then, in the unbiased
Maker-Breaker game on K,, Maker has a strategy to occupy a Hamilton cycle within n + 1

rounds.

Maker’s strategy in [31] can be sketched as follows. Playing on K,,, Maker starts the game
by building at least 2 and at most 15 paths of constant length.

In case she can close one of her paths to a cycle S, she does so. She then connects all the
remaining paths and isolated vertices to a Hamilton path P on V(K,,) \ V(S). Finally, she
occupies a Hamilton cycle of K,,, by attaching the endpoints of P to two consecutive vertices
of S.

Otherwise, if she cannot close one of her paths to a cycle, then this means that Maker always
blocks the corresponding edges. But then Maker can extend her paths (while Breaker always
blocks cycles) in such a way that all Breaker’s edges block cycles or lie between inner points
of Maker’s paths. Maker then proceeds until every vertex belongs to one of her paths, and

then she connects those paths to a Hamilton cycle, wasting at most one edge.

For Lemma 4.1.2, we need to create a Hamilton path between two fixed vertices v; and vs, such
that we waste at most one move. This problem is very similar to the problem discussed above.
Indeed, Maker can imagine that v;vy is an edge which already belongs to her graph, and then,
her goal becomes to create a Hamilton cycle containing this particular edge. However, we
also have to care about the fact that, before Maker starts to create the Hamilton path/cycle,
a certain number of edges over the vertex set [m] may not belong to the board E(G). The
exact details of Maker’s strategy are given in the following proof. As we need to modify the
strategy of [31] slightly, we shorten our argument whenever possible, by referring back to the
proof of Hefetz and Stich [31].

Proof of Lemma 4.1.2 Whenever necessary, let us assume that m is a large enough integer.
Let G C K,, be given according to the lemma. Instead of playing on G we can assume
to play on K, with the constraint that, before the game starts, all the at most k edges of
E(Kp) \ (E(G) U{viva}) already belong to Breaker’s graph and that the edge viv2 belongs
to Maker’s graph. So, in the following we prove that, under these constraints, Maker has a

strategy to occupy a Hamilton cycle on K,,, which contains the edge v1v9, within m rounds.
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We start our proof by describing a strategy for Maker. Afterwards, we prove that she can
follow that strategy, and by doing so, she finishes the desired Hamilton cycle within m rounds.

Maker’s strategy consists of the following stages.

Stage I. Maker claims disjoint paths Py, ..., P15 with vive € E(Py), e(P;) = 20 for i € [15],
and denotes her first path by P = pg...p20. This takes her 299 rounds. Afterwards, she
proceeds to Stage II, where she may extend her paths further.

Stage II. Let i > 299. If Maker is able to close one of her paths to a cycle in her i*" move,
by claiming the edge between its endpoints, she does so and proceeds to Stage IV. Otherwise,

immediately before her i*" move, she considers the following vertex sets:

U:={veV(Ky): dr(v)=m— 1},

T:={veV(Ky): dg(v)>0and v ¢ V(P)) for every j € [15]},
15
C = U{v € End(Pj) : dp(v,V(P)) > 0 for some ¢ # j}.
j=1
That is, U is the set of untouched vertices, T is the set of vertices that are touched by Breaker

but not by Maker, and C is the set of endpoints of Maker’s paths which are incident to a

Breaker’s edge that also intersects another path of Maker. Maker now plays as follows.

If CUT = 0, i.e. all Breaker’s edges connect two vertices of the same path P; or two inner
vertices of different paths P; and P;, Maker proceeds to Stage III. Otherwise she enlarges one

path (in most cases this will be P;) by one vertex as follows.
o If i = 300, Maker claims an edge between pg and some vertex v* € U. She then updates
P accordingly.

e If ¢ = 301, she claims an edge between psg and some vertex in U. She then updates Py

accordingly.

e If i > 301 is odd and T # 0, she claims an edge between U and the youngest endpoint
of P;. She then updates P; accordingly.

e If i > 301 is even and T # (), she claims an edge between T and the youngest endpoint
of P;. She then updates P; accordingly.

e If i > 301, 7 = () and C # (), then she claims an edge in E(C,U). She then updates her

paths accordingly.

Maker then repeats Stage II (which ends at the latest after 1202 + 4k rounds, as we will see
later).
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Stage ITI. Maker practically proceeds with the strategy of Hefetz and Stich [31], starting with
Phase 3. If possible in the following rounds, Maker closes one of her paths P, ... Pi5 to a cycle
S. She then completes a Hamilton path on V'\ V(S) without wasting a move, i.e. M[V\V(S)]
is a Hamilton path of K,, — V(S) then; and finally she creates the required Hamilton cycle
within two further rounds. Otherwise, if she cannot close a cycle in the following rounds,
i.e. Breaker always blocks cycles, then she extends P; using isolated vertices, until there are
only 9 isolated vertices left. Then, she creates a Hamilton path on these 9 isolated vertices.
Finally, she connects all her paths to a Hamilton cycle, such that vivs is contained, and such
that she is done after the m'™ round. (The exact details of how Maker can achieve this goal

are given in the discussion of the strategy.)

Stage I'V. Maker’s graph consists of a cycle S, and a collection of disjoint paths. Next,
Maker creates a Hamilton path of K,, — V(S) without wasting any move, i.e. such that her
graph is a union of the cycle S and a Hamilton path P on V' \ V(S). Afterwards, within two

further rounds, she creates a Hamilton cycle that contains vivs.

Obviously, if Maker can follow the strategy, then she occupies a Hamilton cycle/path as
required. Thus, it remains to show that Maker can indeed follow the strategy. To do so, we
make use of the following technical lemma, due to Hefetz and Stich [31], which helps to create
a Hamilton path on a given subset of vertices, in case certain conditions on the distribution
of Breaker’s edges hold.

Lemma 4.1.6 (Lemma 3.3(i) in [31]) Let S C V(K,,) be an arbitrary set. Assume that
before a Maker’s move, Maker’s graph on V(K,)\S is a linear forest F' (i.e. a vertex-disjoint
union of paths) plus isolated vertices. Let f be the number of paths in F, let Endp denote
the set of endpoints of paths in F, let I = V(Ky)\ (SUV(F)) and let e, be the number
of Breaker’s edges contained in I. Moreover, let B’ be the graph of Breaker’s edges among
SUIUEndr, minus those edges that are contained in S or for which both endpoints belong
to the same path in F. Assume that |I| > 9, e, <2, f > 3 and e¢(B’) < % Then, Maker
has a strategy to occupy a Hamilton path P of K, — S within f + |I| — 1 moves, such that
immediately after P is finished, ep (S, End(P)) < 3 holds.

Now, in order to show that Maker can follow the strategy, let us go through the cases sepa-

rately.

Stage I. It is obvious that Maker can follow this part of the strategy, provided that m is
large enough. For her paths she needs to claim 299 edges (vyv2 is already claimed), and since
Breaker in the meantime claims at most 299 + k edges, while m is large, we can always find

vertices v with dp(v) = 0 that Maker can use to construct her 15 paths.
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Stage II. Notice that, since Stage I lasts 299 rounds, |C UT| < 2¢(B) < 600 + 2k at the
beginning of Stage II. If Maker can close a cycle, there is nothing to prove. Otherwise,
during Stage II, Breaker always blocks cycles and thus never increases the size of C' U T.
Indeed, assuming that Maker cannot close a cycle, Maker in the first two rounds of Stage II
enlarges her path P; by attaching untouched vertices to both its endpoints. Each time, after
such an attachment, Breaker needs to block a cycle, as otherwise Maker closes such a cycle
and proceeds immediately to Stage III. Moreover, by the choice of these vertices, the new
endpoints (including v*) are chosen to be independent in Breaker’s graph from all vertices
outside Maker’s paths. Thus, as long as Maker can follow Stage II, but Breaker always blocks
cycles, we know that each time Maker adds a new vertex to P; or claims an edge in E(C,U),

there again appears a cycle that Breaker needs to block.

However, as long as Maker follows Stage IT and C'UT # (), she ensures that the size of CUT
decreases by at least one after every second round (besides for the first two rounds). Thus, if
Maker can follow the strategy, it takes her at most 2+ 2(600 + 2k) moves, until CUT = () and
Stage II ends. As m is assumed to be large, this ensures that U is always large throughout
Stage 11, and thus Maker can play according to the proposed strategy for Stage II. As long as
T # (), Maker can obviously attach vertices from U and T alternately to her path P;. When

T = (), then Maker can obviously claim an edge between C' and U.

Stage III. When Maker enters Stage III the first time, her graph consists of 15 paths
Py, ..., Py5 covering at most a constant (depending on k) number of edges. Moreover, imme-
diately after her last move in Stage II, each Breaker’s edge connects two vertices of the same
path P; or two inner vertices of different Maker’s paths (as C UT = (}). In fact, this equals
the situation at the beginning of Phase 3 in the strategy of [31] (see page 3-4 in [31]). In the
next rounds, Maker extends P; by untouched vertices, unless she can close one of her paths
to a cycle or the number of isolated vertices equals 9. It is evident that Maker can follow this
strategy, since untouched vertices stay untouched when Breaker always blocks a cycle. We
also note that this behaviour of Breaker leaves the edges between endpoints of distinct Maker

paths untouched. In particular, as long as Breaker blocks cycles, we maintain C U T = (.

uy e U2

Figure 4.2: Illustration for Maker’s strategy.
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At first assume that Maker can close one of her paths to a cycle S, while the number of
isolated vertices is at least 9. Then after Breaker’s next move the situation is as follows.
Maker’s graph consists of the cycle S with v(S) > 20, a collection of 14 vertex disjoint paths
on V \ V(S) and at least 9 isolated vertices. Moreover, if we define B’ as in Lemma 4.1.6
(where we replace S with V(S)), then e(B’) < 2 holds, as Breaker could only claim edges
belonging to B’ in the previous two rounds. In particular, Breaker has at most 2 edges that
are contained in the set I of isolated vertices in Maker’s graph. Following Lemma 4.1.6, Maker
can build a Hamilton path P on K,, — S without wasting any move, such that immediately
after P is built, E(M) = E(S)U E(P) and ep(S, End(P)) < 3. Afterwards, let u; and ug be
the endpoints of P. Assume first that vy € E(S). Then, in her next move, Maker claims
an edge between u; and an arbitrary vertex w € V(S) \ {v1,v2} such that both its neighbors
w4, w— on S are neither elements of {vi,v2} nor adjacent to uy in Breaker’s graph. (For
an illustration, see Figure 4.2.) This is easily doable, as ep (S, End(P)) < 4 and v(S) > 20.
Afterwards, Maker finishes the desired Hamilton cycle by claiming one of the edges ugw
and usw_. Note that Maker occupies only one edge, which is not used for the final Hamilton
cycle. Therefore, Maker plays exactly m rounds in this case. Assume then that vivy ¢ E(S).
Then the argument is exactly the same, just that Maker does not need to care about the edge

vivy when she determines the vertex w € V(.5).

In the second case, Breaker always blocks a cycle and Maker extends P; until there are only
9 isolated vertices left. Then, once the number of isolated vertices equals 9, the situation is
as follows: Maker’s graph consists of 15 vertex disjoint paths covering all but 9 vertices, and
all of Breaker’s edges still satisfy the property that each of them connects two vertices of the
same path P; or two inner vertices of different Maker’s paths. So, we have the same conditions
as at the beginning of Phase 4 in the proof of Hefetz and Stich (see page 4 in [31]). If Maker
now follows their strategy starting from Phase 4, then she first connects the 9 isolated vertices
to a path and then she connects all of her paths step by step, decreasing their number by
one in each round, until either Breaker lets her close a cycle or the number of paths equals 3.
(Notice that in Stage 5 of the strategy of [31], Maker stops connecting the paths when their

number is 2 instead of 3. However, we stop one round earlier to simplify our argument.)

In case she can close a cycle, she then plays in such a way that her graph consists of one
cycle S and one Hamilton path P on V' \ V(S) such that ep(S, End(P)) < 3. (This can be
achieved as explained in Phase X of [31]; the argument is very similar to the previous case.)
Analogously to the previous discussion, she then finishes her Hamilton cycle. Otherwise,
Maker stops when her graph consists of three paths covering V' (K,,) such that, immediately
after her move, Breaker has no edge between endpoints of different paths and such that the

edge between the endpoints of one of these paths, denoted by P, is still free. (This can be
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achieved as explained in Phase 5 of [31], see page 4 and page 13.) Note that these paths are
all of length at least 20. Let A = ag...ap,, B = bg...by,; and C' = cg...cs,, be the three paths,
w.l.o.g. vivy € E(A). If Breaker does not block the edge between the endpoints of P, Maker
can close it in her following move, and then she wins as in the previous discussions. That
is, she connects the remaining two paths and then she attaches the new path to the cycle as
before. Otherwise, Maker can claim the edge by, co. If Breaker does not continue with bgcy,,,
Maker can again close a cycle, having one cycle and one path then, so that she can finish
her Hamilton cycle as before. Thus, assume that Breaker claims bgcy,. Maker then claims
bocy. Afterwards, by an easy case analysis, Maker can claim a Hamilton cycle, which contains
v1v2, within 2 further moves, just claiming edges of E({ao, ar, },{bo,bey,ce. }). For example,
if Breaker’s next edge is agbg, then Maker afterwards claims agc,. Then the edges a¢, by and
ag b, both complete a Hamilton cycle as required, and Maker can surely claim one of these

edges next.

Stage IV. When Maker enters Stage IV the situation is as follows. Her cycle S has length
at least 20; on V' \ V(S) her graph consists of a disjoint union of 14 paths, while in her graph
m(1 — o(1)) vertices are still isolated, as Stage I and II together took at most a constant
¢ = c(k) number of rounds. Let I; := {v € V(K,,) : duy(v) = 0 before Maker’s 5% move},
and let B; := {e = vw € E(B) : {v,w} C I, before Maker’s j® move}. In particular, when
Maker enters Stage IV in round ay4, for some integer a4, we have that |I,,| = m(1 —o(1)) and
that |B,,| < ¢+ k. Now, as long as |B;| > 1, Maker for her j®® move claims an edge that is
adjacent to at least two edges of B; and independent of her previously claimed edges. This
way, after a constant number of rounds, |Bj,| < 2 holds before a Maker’s move in some round
Jjo, while Maker’s graph on V \ V(S) is a disjoint union of at least 14 paths. Moreover, as
only a constant number of rounds was played so far, and m is assumed to be large, we further
obtain e(B) < @ before Maker’s ji" move. By Lemma 4.1.6, it again follows that Maker can
claim a Hamilton path P on K,, —S without wasting any move, such that eg(End(P),S) < 3
immediately after Maker finished P. She then can proceed as before and finish her Hamilton

cycle as required. O

4.2 Trees with many leaves

The goal of this section is to prove Theorem 1.3.3. That is, we show that Maker can create
a constant degree tree on n vertices within n + 1 rounds, even if this tree does not contain a
long bare path. Let T be such a tree. Then, we observe that T" needs to have a large number
of leaves and, in particular, we can find a large matching in T" for which each edge saturates

a leaf of T. Now, the main idea is similar to the previous section. In a first stage, Maker
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embeds 7" minus this large matching (or at least most of its edges) more or less greedily, while
caring about the distribution of Breaker’s edges. Again, she does not waste any move in this
phase of the game. Then, in a second stage, Maker finishes her desired copy of T' by playing

a perfect matching game. For this she wastes at most two edges.

We start with a lemma which ensures the existence of the large matching described above.

Lemma 4.2.1 Let A,;m,n € N, then the following holds. If T is a tree on n vertices and with
A(T) < A, such that every bare path in T' has length at most m, then |[Np(L)| > m,
where L is the set of leaves in T.

The statement above can be deduced from Lemma 2.1 in [34], which gives an upper bound
on the number of bare paths in a tree on n vertices with given number of leaves. However, for
completeness, let us give a direct proof of Lemma 4.2.1 here, whose argument is analogous to
the one in [34].

Proof With dy,ds,d>3 denote the number of vertices in 7" with degree 1, 2 or at least 3,
respectively, and note that |L| = d;. By the Handshake-Lemma (Proposition 1.3.3 in [43]) we
have 2(d1+das+d>3—1) = 2(n—1) = ZUGV(T) dr(v) > di+2d2+3d>3 and therefore, d>3 < dj.
The number of edge-disjoint bare paths, which start and end in vertices of degree different
from 2, is dy+d>3—1 < 2dy, and so there are less than 2d; -m vertices of degree 2 in T', as each
bare path in T has less than m inner vertices. It follows that n = dy +da +d>3 < 2d1(m+1),
ie. |L| > ol As |[Np(L)| > %', the lemma follows. O

n
m+1)°
Using the above lemma, Theorem 1.3.3 will be concluded from the following two statements,

which represent the two stages described before.

Theorem 4.2.2 Let € > 0 be a real number, and let A > 3 be an integer. Then there is a
constant K (depending only on ¢ and A) such that for every large enough n the following is
true. LetT be a tree onn vertices with mazimum degree A(T) < A and |[Np(L)| > en, where L
is the set of leaves in T'. Then, in an unbiased game on E(K,,), Maker has a strategy to occupy
a copy of some subtree Ty C T within |V (T1)| — 1 moves, such that immediately after Maker’s
(|V(T1)| — 1)% move, the following holds. There exists an embedding ¢ : V(T1) — V(M) of
T into M such that
A(B[AUG(Or)]) < K

where A = V(Ky) \ ¢(V(T1)), and Or is the set of open vertices of T with respect to ¢.
Moreover T'\ Ty is matching between Or and L\ V(11) of size at least 5.
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Figure 4.3: Splitting of T" into a subtree 17, including the dashed edges, and a large matching.

Lemma 4.2.3 Let r € N. Then for every large enough integer n the following holds. Let
G = (Vi1UVy, E) be a bipartite graph with |Vi| = |[Va| = n and 6(G) > n—r. Then, playing an
unbiased Maker-Breaker game on E(G), Maker has a strategy to occupy a perfect matching
of G within n + 2 rounds.

Before we give the proofs of these two statements in the following subsections, let us see at
first how Theorem 1.3.3 can be concluded: Let A € N, m; € N as given in the statement
of Theorem 1.3.3, and let T be a tree on n vertices as given by the same theorem. Whenever
necessary, we assume that n is large enough. We choose ¢ := (2A(m1 + 1))7!, and we
choose r := K according to Theorem 4.2.2. Observe first that, by Lemma 4.2.1, we have
INr(L)| > en. Now, we aim to describe a strategy for Maker which guarantees that she
claims a copy of T" within n+ 1 rounds. For a first step, she occupies a subtree 77 C T within
|V (T1)| — 1 rounds, as given by Theorem 4.2.2. In particular, we then have an embedding
¢:V(Th) — V(M) as described in Theorem 4.2.2, with A(B[AU ¢(Or)]) < r, and such that
T\ Ty is a matching between Or and L\ V(T1) of size n’ := |Op| = |A| > .

Then, in a second step, Maker completes her embedding of 77 to an embedding of T, by
claiming a perfect matching between ¢(Or) and A, within at most n’ 42 rounds. Notice that,
for large enough n, she can do so by Lemma 4.2.3, as dp(v, Or) > n' —r and dp(w, A) > n/—r
for every v € A and w € Op, immediately after 77 is embedded. This way Maker occupies
a copy of the goal tree T within at most n 4+ 1 rounds, as she wastes at most two moves

throughout the game. O

4.2.1 A careful greedy embedding II

In the following we prove Theorem 4.2.2.

Let ¢ > 0 and A > 3 as given in the theorem. We choose k such that AF-L > %, and
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whenever necessary, assume that n is large enough. Moreover, we set K := AFTl Let T
be a tree as described in the theorem, with A(T) < A and |Np(L)| > en. We then find
a matching of size en in T between N7 (L) and some subset Lo C L of size en. From now
on, set Ty := T — Lg. Maker will occupy a copy of some tree 77 with Ty C 77 C T and
|V(T1)| < n — 5, where T1 will be determined during the game.

In the following we give a strategy for Maker to occupy such a tree, and afterwards we show

that she can follow that strategy, and that all conditions of our theorem will be satisfied.

For the embedding, Maker proceeds as follows. Similar to the proof of Theorem 4.1.1, Maker
starts from some vertex v, in Ty, and then she embeds the tree Ty (plus maybe some further
edges of T) step by step, towards the leaves (by maintaining an embedding ¢ : S — V(M) of
a subtree T'[S] into M, with S C V(T')). From time to time it may happen that she needs
to embed some vertex from V(T') \ V(Ty) to be able to keep control on the distribution of
Breaker’s edges. These vertices belong to V(T1) \ V(Tp) then. Again, we denote with S the
set of vertices that are already embedded. So, initially S = {v(}. Moreover, with ¢ we will
denote Maker’s embedding of T'[S] into M, as indicated above. Initially, we set ¢(v() = vg for
an arbitrary vertex vy € V(K,,). Moreover, A = V(K,) \ ¢(S) will denote the set of available

vertices, i.e. those vertices which were not chosen for the embedding so far.

The main idea for Maker’s strategy is to increase the set S of embedded vertices, until
(at least) all the vertices of Tj are embedded, such that Breaker’s degrees among the open
and available vertices in K, is bounded by K. This time, instead of defining a cumulative
potential, we distinguish between dangerous vertices and non-dangerous vertices, in order to
have some control on the distribution of Breaker’s edges. We say that a vertex v is dangerous
if it is open or available (with respect to the current embedding ¢ and the tree T), and if
additionally its degree satisfies dg(v) > K. With Dang we denote the set of all dangerous
vertices, at any given moment throughout the game. So, initially we have Dang = (), and

Maker updates Dang after each move of either of the players. She proceeds as follows.

In case Maker already embedded Ty completely and there exists no dangerous vertex, she
stops playing. (Notice that in case Maker would embed the whole tree T at some point this

condition would be satisfied automatically.) Otherwise she considers the following cases.

Case 1. If there exists a dangerous vertex, then let v € Dang be an arbitrary such vertex.
According to the definition, v needs to be available or open. So, we have two different

subcases.

Case 1.(i) If v is open, then Maker proceeds as follows. In the next rounds, Maker closes
v. Let v],...,v) be all the neighbors of v' := ¢~ !(v) in T that Maker did not embed so far.
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Then, in her next d moves, Maker claims d edges vv;, 1 < i < d, where v1,...,v4 are distinct
available vertices in A. Accordingly, she removes those vertices from A, she removes v from

D, she sets ¢(v}) = v; and adds v} to S, for every i € [d].

Case 1.(ii) If v is available, then Maker includes this vertex into her embedding as follows.

(a) If there is an open u € ¢(Or) with uv being free, then Maker immediately attaches v to
the current tree and identifies v with a non-embedded neighbor of ¢~!(u). Formally, let
u' = ¢~ (u). Maker claims the edge uv, she chooses an arbitrary vertex v’ € Np(u') \ S

which is not embedded so far, she adds this vertex to S and sets ¢(v') = v.

(b) Otherwise, assume that there exist two open vertices ug,wy € ¢(Or) at which we can
still attach paths of length two, so that the resulting graph is still a copy of some subtree
of T. Formally, let uf = ¢ (up) and w) = ¢ (wp), and assume there exist vertices
ul, uh, wh, wy € V(T)\ S that were not embedded so far, such that wju; ,, wjwi, , € E(T)
for both i € {0,1}. Maker then chooses an available vertex z with zv, zug, zwo ¢ E(B),
and claims one of the paths (ug, z,v) and (wp, z,v) within two rounds, by claiming the
edge zv first and afterwards one of the edges zug and zwg. By symmetry, assume that

she claims zug, then she adds ) and u), to S, she removes z and v from A, and she set
(u)) = z and ¢(uhy) = v.

(c) Otherwise, assume that there exists an open vertex ug € ¢(Or) at which we can still
attach a path of length three, so that the resulting graph is still a copy of some subtree of
T. Formally, let uf, = ¢~ (ug) and let there exist three vertices u}, uh,us € V/(T)\ S which
were not embedded so far, such that wju;, , € E(T) for every i € {0,1,2}. Within three
rounds, Maker then claims a path of length three, containing vy and v, and identifies this
path with (ug, v}, uh, u5). To be precise, she first claims a free edge vw where w € A is
available. Then, similar to the previous case, she chooses an available vertex z such that
zug, 2v, zw ¢ E(B), and claims one of the paths (ug, z,v) and (ug, z,w) in the following
two rounds, by first claiming ugz and afterwards either zv or zw. W.l.o.g. assume that

she claim zv. Then she adds «} to S for every ¢ € [3], she removes v, z, w from A, and
sets ¢(u)) = z, ¢p(uh) = v and P(uf) = w.

Case 2. If there is no dangerous vertex immediately before Maker’s move, but Ty is still not
embedded completely, then Maker continues her embedding of 7y. For this, she claims an
arbitrary edge uv ¢ F(B) with u € ¢(Orp,) and v € A. Let v/ = ¢~ *(u) and let v' € N, (u/)\ S
be an arbitrary vertex that is not embedded so far. Maker then removes v from A, adds v’
to S, and she sets ¢(v') = v.
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Obviously, if Maker can follow the proposed strategy, then she embeds some tree 717, which
contains Tp, within |V(71)| — 1 rounds. We thus need to prove that she can indeed follow
the strategy. Moreover, we need to verify that, once Maker stops playing, all the conditions

which are required by Theorem 4.2.2 are satisfied. We start with some useful claims first.

Claim 4.2.4 Until the moment when Maker stops playing according to her strategy, at most

2?” vertices become dangerous.

Proof This claim is obvious since Maker plays at most n rounds, while a dangerous vertex

needs to have a degree of at least K in Breaker’s graph. O

Claim 4.2.5 Until the moment when Maker stops playing according to the strategy of Stage I,

we have at least 0.9en available vertices.

Proof Notice that it is enough to show that at most 0.1en vertices from Lg will be embedded
until Maker stops playing. This is given by the following reason. Following Maker’s strategy,
a vertex v’ € Ly is embedded, i.e. added to S, only in Case 1. In Case 1(i), it could happen
that we embed v’ if for its parent w’ (with respect to T') we have that its image w = ¢(w’)
becomes dangerous and thus Maker closes w. However, when we close w, then v’ is the only
vertex from Lo that Maker embeds. In Case 1(ii), it could happen that Maker embeds v’ if we
embed a dangerous vertex by attaching a path of length at most three to some open vertex,
as described in (a) — (c), such that the endpoint of this path corresponds to v'. Again, v’

then is the only vertex from Ly which becomes embedded.

Thus, it follows that the number of vertices from Lg, that Maker embeds throughout Stage I,
can be bounded from above by the number of vertices that become dangerous. By Claim 4.2.4

and the choice of K, we therefore have at most 2?” < 0.1en such vertices. O

Claim 4.2.6 Until the moment when Maker stops playing according to the strategy of Stage I,
we have dp(v) < Y52 for every vertex v € AU ¢(Or).

Proof Let v € AU ¢(Or). We can assume that v € Dang at some point during the game,

: 0.5
as otherwise dp(v) < =x"

is immediate, for large enough n. Now, as long as v € Dang,
Maker plays according to Case 1. However, in this case, Maker always cares about dangerous
vertices, by attaching them to her current tree (Case 1(ii)) and closing them (Case 1(i)). As
for each dangerous vertex, we play at most 3 rounds according to Case 1(ii), and at most A

rounds according to Case 1(i), it follows by Claim 4.2.4 that Maker plays at most (A +3)- 2?”
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moves according to Case 1. Thus, by the choice of K and for large enough n, we know that

dp(v) < K + (A+3) 22 < 031 45 Jong as v is open or available. O

The previous two claims will be useful to show that Maker can follow the proposed strategy,
as for every open or available vertex we know that its Breaker-degree is much smaller than
the number of available vertices. However, another important fact which we need to show
first, is that our case distinction in Case 1(ii) covers all possible cases. To do so, we prove the

following claim.

Claim 4.2.7 Assume that Maker plays according to Case 1(ii), then one of the assumptions
from (a), (b) and (c) holds.

Proof For contradiction, assume that the statement is wrong. Let v be the available vertex
that Maker chooses, playing according to Case 1(ii). Since the condition of (a) is assumed

not to hold, we obtain [Ny (L)NOr| < dp(v) < 25, where the last inequalities follows from

Claim 4.2.6. Moreover, each vertex in N7(L) N Or can have at most A descendants that are
not embedded so far, as A(T) < A. Since the condition of (c) is also assumed not to hold,
it follows that if x € Or \ Nr(L), then z has at most A + A? descendants that were not
embedded so far. However, as the condition of (b) is assumed not to hold, there can be at
most one such vertex . But then, |A] < 252 . A +1- (A% 4+ A) < 0.9en for large enough n,

which is in contradiction with Claim 4.2.5. O

Now, with all the above claims in hand, we will conclude that Maker always can follow the
proposed strategy. We go through the cases separately. If Maker plays according to Case 1,
then she focuses on an arbitrary vertex v € Dang. Assume first that Case 1(i) happens, i.e.
v is open. Then Maker can follow the strategy as dp(v) < |A| — 2A, by Claim 4.2.5 and
Claim 4.2.6. So, let us assume then that Case 1(ii) happens, i.e. v is available, and one of
conditions of the subcases (a) — (c) is satisfied, by Claim 4.2.7. In case Maker considers to
play according to (a), then there is nothing to prove, since the existence of the edge that
Maker needs to claim, is given by the condition of (a). In case she considers to play according
to (b), then just observe that dg(v)+dp(uop) +dp(wp) < |A|, by Claim 4.2.5 and Claim 4.2.6.
This guarantees that Maker can find a vertex z as required in (b), and having this vertex fixed
it is obvious that Maker can follow the proposed strategy. Moreover, in case Maker considers
to play according to (c), then first of all we have dp(v) < |A| when Maker wants to claim an
edge vw as described, by Claim 4.2.5 and Claim 4.2.6. By the same claims, we afterwards
know that dp(ug) + dp(v) + dp(w) < |A|, which guarantees that Maker can find a vertex z
as required. Thus, Maker can analogously follow the strategy. Finally, when Maker considers

to play according to Case 2, then dp(u) < K < |A| for every open vertex u € ¢(Or,), by
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Claim 4.2.5, and thus, Maker can claim an edge as described.

Therefore, we know that Maker can always follow her strategy until she stops, i.e. until (at
least) T is embedded and Dang = (). Let 71 C T be the tree that Maker has embedded
when she stops. As Ty is fully embedded, we have Ty C T7. Moreover, by definition of Tp, it
follows then that 7'\ T} C T'\ Tj is a matching between Or and L\ V (11). By Claim 4.2.5, we
further obtain e(T'\T1) > 0.9en > 0.5en; and as Dang = 0, we have A(B[AU¢(Or)]) < K. O

4.2.2 A perfect matching game

In the following we aim to prove Lemma 4.2.3. For this, we observe at first that, with a slight

modification of the proof of Theorem 1.2 in [28], the following can be proven.

Theorem 4.2.8 For every large enough integer n the following holds. In the unbiased Maker-
Breaker game on E(K,,), Maker (as the second player) has a strategy to occupy a perfect

matching of K, ,, within n + 1 moves.

We will use this result in order to prove the following statement which is easily seen to be

equivalent to Lemma 4.2.3.

Lemma 4.2.9 Let r1,79 € NU {0}. Then for every large enough integer n the following
holds. If G = (V1 U Vo, E) is a bipartite graph with |V;| = n and d(v;, V3_;) > n —r; for every
v; € Vi and every i € [2], then, in an unbiased Maker-Breaker game on E(G), Maker has a

strategy to occupy a perfect matching of G within n 4+ 2 moves.

Proof For the proof let us assume that we play on the graph K, , and that the edges of
Ky, \ G already belong to Breaker’s graph B before the game starts. We will prove the
claim by induction on r; 4+ ro. Whenever necessary, we assume that n is large enough. The
main idea for the induction step is to start with a large matching touching those vertices
which have a large degree in Breaker’s graph. We do so until we know that the maximum
degree among the unsaturated vertices of one of the partite sets is smaller than it was at the
beginning, while in the other partite set the maximum degree did not increase. Then we use

the induction hypothesis for r{ + ro — 1.

Throughout the game, we let U = {u € ViUV, : djr(u) = 0} denote the set of those vertices
of K, which are untouched, i.e. not saturated by Maker’s partial matching, and we set

U; =UnNYV, for i € [2]. Moreover, as motivated by the short description above, we consider
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the maximum degrees A; = max{dp[y)(v) : v € U}, for i € [2]. Thus, at the beginning we
have A; < r; by the assumption of the lemma, and the assumption that B = K, ,, \ G at the

beginning of the game.

At first, let us assume that r; + ro < 2. Then there are two subcases to consider. If r; = 0
for some i € [2], then r3_; = 0 also holds, and we are done immediately by Theorem 4.2.8.
Otherwise, if 7; > 0 for both ¢ € [2], then Breaker’s graph B = K, ,\ G needs to be a matching.
It is easy to see then that, immediately after Breaker’s first move, we can cover V; U Vs by two
complete bipartite subgraphs G and G» of K, ,,, with G1 = K[%W%W and Gy = KL%J{%J’
such that Breaker may claim (exactly) one edge in G, but none in Go. Then, playing on these
subgraphs separately according to the strategy given for Theorem 4.2.8, Maker can claim a
perfect matching of G; within [%] rounds, and of G2 within L%J rounds. Hereby, she claims
her first edge in G (as it may happen that Breaker already claims one edge from this graph);
and afterwards she always claims an edge in the same subgraph G; in which Breaker claimed
an edge before (besides the case when she already occupies a perfect matching of G;, in which

case she switches to F(Gs_;)).

So, let us assume now that r; +ro > 3 and A; < r; at the beginning of the game. Moreover,
for doing induction, let us assume that in case A; + Ag < 71 + 1o — 1 the statement of our
lemma is true. By symmetry we may also assume that ro > r;. In the following we give
a strategy for Maker and then we show that she can always follow this particular strategy.
Moreover, applying the induction hypothesis for vy + o — 1, as indicated earlier, we will be
able to conclude that Maker creates a perfect matching of K, , within the required number

of rounds.

The strategy consists of two stages. In case A; < r; before the game starts, and thus

A1+ Ag < 71 4+ 19 — 1, Maker immediately proceeds with Stage II.

Stage I. Maker starts by building a partial matching while caring about the maximum
degrees A1 and As. This stage is split into two phases, depending on whether Maker achieves

to decrease the size of Aj.

Phase 1. In each round in Phase 1, Maker looks for a vertex u; € Uy and a vertex ug € Us,
such that dpjy(u1) = A1 and dp(u2) = max{dpp)(v) : v € Us,u1v ¢ B} > 2. If such
vertices do not exist, she immediately proceeds with Phase 2. But if such vertices exist, she
then claims the edge wjug, and she updates U; and Us by removing u; and us, respectively.
In case Ay < rq holds after the update, Maker proceeds with Stage II. Otherwise, she repeats
Phase 1.
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Phase 2. Within at most two further moves, in which Maker claims independent edges
from K, ,[U], Maker ensures that immediately afterwards, A; < r; for both i € [2], and
A1 4+ Ag < ry 4+ 19. The exact details of how she chooses her edges in order to guarantee the
mentioned inequalities will be given later in the proof.

Stage II. On the remaining vertex set U, Maker occupies a perfect matching within % +2

rounds.

Obviously, if Maker can follow this strategy, then the lemma is proven. So, as usual, it remains

to show that she can follow the strategy. To do so, we prove some useful claims first.

Claim 4.2.10 Assume that Maker can follow the strategy. Then, throughout Phase 1, A; < r;

is maintained to hold after each of Maker’s moves, for both i € [2].

Proof The proof of the above claim follows by induction on the number ¢ of rounds. Indeed,
at the beginning of the game the required inequalities hold by the assumption of the lemma.

So, let us assume now that A; < 7 and Ay < 79 is given immediately after Maker’s ¢t

move,
for some ¢t € NU {0}, where we allow to set t = 0 to represent the moment before the game
starts. We then aim to show that, by following the proposed strategy, Maker ensures that
the same inequalities hold immediately after her (¢ + 1)** move. For this, let z122 denote
the edge which Breaker claims in the meantime, where z1 € V; and x2 € V5. Then, we may
assume that z; € U; for both i € [2], since otherwise Breaker changes neither A; nor Ag,
and we would be done already, as Maker cannot increase these maximum degrees. Now, since
Breaker’s edge only increases the degrees of x1 and xo, we observe at first, that immediately
after he claims his edge, we still have A; < r; + 1 for both i € [2], and dpyy)(v) < r; for every
v € U; \ {z;}. Assume then that Maker follows the strategy of Phase 1 and that she claims
an edge ujug, as explained in the strategy description. In case there is some i € [2] with
u; = x;, we remove x; from the set U;, and we also decrease dpy](73—i, U;) by removing ;.
Therefore, we maintain A; < r; for both i € [2]. Otherwise, we have u; # x; for both i € [2].
As Maker chooses u; with dpyj(u1) being maximal, we conclude dp(7)(z1) < dgjy)(u1) < 71,
i.e. Ay < r before Maker’s (¢ + 1)%* move. If we additionally had dp(z2) < 72, then we
would be done already. So, we can assume further that before Maker’s (¢ + 1) move we have
dp[u) (x2) = ro+ 1 and therefore x5 is the unique vertex in Uy attaining the maximum degree
As. Then, since Maker claimed ujus according to the strategy rather than the edge ujxo,
we must have w1z € B, according to the description of Phase 1. Thus, Maker decreases the
value of dp(i7)(z2) by removing u; from Uy, and thus, Ay < 79 is maintained. O

Now, Maker can obviously follow the strategy of Phase 1. We further observe that the number

rin+1
ri+17

of rounds that this phase lasts can be bounded by which will be necessary to ensure



76 CHAPTER 4. TREE EMBEDDING GAME

that, when Maker enters Stage II, the number of unsaturated vertices is still large enough.

Claim 4.2.11 Phase 1 lasts at most % rounds.

Proof Consider the value of the sum »_ ;. dpj)(v) > 0, which is bounded from above
by rin + 1 immediately after Breaker’s first move. Now, if Maker chooses an edge ujuy as
described in the strategy, then this sum is decreased by dp(u1) + dp)(u2) > r1 + 2, as
dp)(u1) = Ay > 71 (otherwise Maker would have finished with Phase 1) and since removing
uz from Us decreases dpy)(v) for every v € Uy with vug € E(B). Thus, as Breaker can
increase the mentioned sum by at most 1 in one move, we see that it decreases in total by at

least 1 + 1 for each round that is played according to Phase 1. The claim follows. O

Claim 4.2.12 In Phase 2, Maker can ensure that within 2 rounds, A; < r; for both i € [2]
and A1+ Ag < ry + 19 hold.

Proof Maker enters Phase 2 after she played according to Phase 1. Thus, by Claim 4.2.10, we
know that immediately before her first move in Phase 2 we find at most one vertex z; € U; with
dp()(zi) > 14, for both i € [2], and in case such a vertex exists, we have dp()(2i) = r;+1. For
her first move in Phase 2, Maker then claims an edge ujug ¢ F(B) with uy € Uy and ug € Us
such that dppyj(u1) = A1, (In case dgjyj(21) > 71, we have u; = z1.) For large enough n
she can do so, as A; <71 + 1 by Claim 4.2.10, and |Us| > 771—;11 by Claim 4.2.11. Moreover,
as Maker stopped playing according to Phase 1, we know that ujv € E(B) for every v € Us
which has degree dB[U} (v) > ro > 2. After she claimed the edge ujug, we have A; < rq, as
u1 is removed from U;. We also obtain Ay < r9, as u7 is removed from Uy, and thus d B[U] (v)
decreases for every vertex v € Us which satisfied dgjy(v) > 2. Moreover, after she claimed
that edge, there can be at most one vertex x, € Uz which has degree dp(y)(73) = r2 (namely,
xh, = x2), while all the other vertices in Us have smaller degrees. If this vertex does not exist,
then we are already done, and Maker then proceeds with Stage II. Otherwise, Maker plays a
second move in Phase 2 as follows. Let xy be Breaker’s next edge, with x € V; and y € V5.

We then distinguish four cases.

Case 1. If z ¢ U; or y ¢ Us, then Maker claims an edge vz such that v; € Uy, which again
is possible by Claim 4.2.11. Since xo was the unique vertex with degree 9 towards Ui, and
since Breaker did not change the values A; by his choice of zy, we then have A; < r; and

Ay < 1o after Maker’s move.

Case 2. If dpy)(y) > 72, i.e. y = 2, then Maker again claims a free edge viz2 with v; € Uy,

and similarly to Case 1, A1 < r; and As < 79 is guaranteed.
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Case 3. If there is a vertex z € Uy such that dgjy)(2) > r2 and additionally zz ¢ E(B), then
z = T9, as z € {y, x2} is necessary for dgjy)(2) > ra, but xy € E(B). Moreover, as y # xa, we
have dp)(y) < 71 before Maker’s move. Maker now claims zz = xxy. This way x is removed
from Uy, 2z = x5 is removed from Uy, and dpy)(y) decreases below ry since its neighbor z in

B is removed from U. Again Ay < rq and Ay < ro follows.

Case 4. If neither of the three cases above happens, then we know that every vertex v € U,
with dpjy)(v) > r2 needs to satisfy dp(y)(v) = r2 (as Case 2 does not happen) and xv € FE(B)
(as Case 3 does not happen). Maker then takes an arbitrary free edge zz ¢ E(B) with z € Us,
which is possible analogously to previous cases. As x is removed from U, the degree of all
vertices v € Uy, which satisfied dB[U] (v) = rg, decreases. Thus, A; < r; and Ag < 79 follows

again. O

Thus, we see that Maker can follow Stage I, and that she enters Stage II after at most ’;}1”%114—2
rounds. At this point then, we have A; + Ay < r1 + ro — 1 immediately before Breaker’s
previous move, while |Uj| = |Us| is large, provided that n is large enough. Thus, by the
induction hypothesis, Maker has a strategy to occupy a perfect matching of K, ,,[U] within

% + 2 moves. O

4.3 Hamilton paths with a fixed endpoint

In order to prove Theorem 1.3.4 in the following section, we at first want to show that Maker
has a strategy to create a Hamilton path with some designated vertex as an endpoint in
optimal time. Our strategy is motivated by the proof of Theorem 1.4 in [28], and thus it

starts by creating a perfect matching.

Lemma 4.3.1 Let r € N be large enough, then for ever large enough integer n (depending
on r) the following holds. Let G be a graph with n vertices and at least (g) —n+ 1 edges,
then, in an unbiased Maker-Breaker game on E(G), Maker has a strategy to occupy a perfect

matching of G within § + 1 moves.

Proof As in the proof of Lemma 4.1.2, we will assume that the game is played on the
graph K, and that the edges of K, \ G already belong to Breaker’s graph B before the
game starts. In the first part of the game, Maker will create a large matching. We then let
U={ueV(K,):dy(u) =0} denote the set of those vertices of K, which are untouched,
i.e. not saturated by Maker’s partial matching. Maker’s goal is to decrease the number of

Breaker’s edges inside U, by choosing edges for her matching that are adjacent with many
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(at least 3) Breaker’s edges inside U. To make it precise, for every free edge e € K, [U], we
define its danger as dang(e) := | {f € E(B[U]) :en f # 0} |.

In the following we give a strategy for Maker. As usual, we then prove that Maker can follow

this strategy, and while doing so, she creates a perfect matching within § + 1 moves.

Stage I. Throughout Stage I Maker occupies the edges of a matching of K, \ B more or less
greedily, while caring about the danger values of the free edges. If there exists a free edge
e € K,|U] with dang(e) > 3, then Maker claims an arbitrary such edge. She then repeats
Stage 1. Otherwise, if such an edge does not exist, Maker proceeds to Stage II.

Stage II. Let U be the set of vertices that are not saturated by Maker’s matching when
Maker enters Stage II. Then in this stage, Maker occupies a perfect matching of K, [U] within

@ + 1 rounds.

Obviously, if Maker can follow the proposed strategy, she occupies a perfect matching as

required. So, it just remains to show that Maker can always follow the proposed strategy.
Stage I. For this stage, there is nothing to prove.

Stage II. Before we show that Maker can follow the strategy for this stage, we again start

with some useful observations first.

Claim 4.3.2 As long as Maker follows the strategy of Stage I, the value of e(B[U]) decreases

by at least two in each round.

Proof If Maker follows the proposed strategy, then she claims an edge e € K,,[U] with danger
value dang(e) > 3, and e(B[U]) decreases by this danger value. As Breaker increases e(B[U])

by at most 1 in each of his moves, the claim is proven. O

From this claim it now follows that Stage I can last at most (n—r)/2 rounds, as e(B[U]) < n—r
before the game starts, by assumption of the lemma. Moreover, one concludes inductively
that e(B[U]) < v(B[U]) — 2 is maintained, as long as Maker can follow Stage I. Indeed,
this inequality holds immediately after Breaker’s first move, as at this moment we have
e(B[U]) < n—r+1<n—2, by the assumption of the lemma, for large enough r. Moreover,
the inequality is maintained afterwards, as v(B[U]) decreases by 2 in each round of Stage I,
while e(B[U]) decreases by at least 2 (where Maker first decreases e(B[U]) by at least 3,
before Breaker may increase e(B[U]) by 1).

So, we see that, when Maker enters Stage II, |U| > r (where r is chosen to be large enough)
and e(B[U]) < v(B[U]) — 2 hold. At this moment then, i.e. immediately before Maker’s
first move in Stage II, we additionally have dang(e) < 2 for every free edge e € K,[U], as
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otherwise Maker would continue with Stage I. As e(B[U]) < v(B[U]) — 2 still holds, every
vertex of u € U needs to be incident with a free edge e, in K,[U], and thus it follows that

dpu)(u) < 2 for every u € U, as otherwise dang(e,) > 3, a contradiction.

From this, we can conclude that we can find a partition U = Uy UUs with |U;| = |Us| such that
ep[u](U1,Uz) < 1. Indeed, if B[U] is a subset of a perfect matching of K, [U], represented by
edges T1y1, . . . T wIYlo), we then just set Uy = {z1,... Tl YL - ’yL%J} and Uy = U\ Uy,
giving a partition as required. Otherwise, there is a vertex u € U with dpy)(u) = 2, where
we may assume that wv,uw € E(B[U]). Then, we choose Uy C U \ {u,v,w} arbitrarily of
size %, and Uz = U \ Uy, and we observe that epgy(U1, U2) = 0. Indeed, otherwise we would
have an edge vy € F(B) with x € Uy and y € Us. But then, as dpyj(u) = 2, we would know

that e = ux is a free edge, and moreover dang(e) > 3, a contradiction.

Finally, for Stage II, Maker just claims a perfect matching between U; and Us, by following
the strategy given for Theorem 4.2.8. This she can do, as r is assumed to be large enough,
and as eg(y)(U1,U2) < 1, immediately before she makes her first move in Stage II. She just
pretends to be the second player, in case ep()(U1, U2) = 1, and occupies a perfect matching

between U; and Uy, within |Uj| 4+ 1 = % + 1 rounds. O

Starting from a perfect matching as described above, our goal now is to create a Hamilton
path rapidly with one designated vertex being one of its endpoints. We show the following

lemma, whose statement should remind of Lemma 4.1.2.

Lemma 4.3.3 Let k be a positive integer. Then there exists an integer m' = m/(k) such that
the following holds. If G = (V,E) is a graph on m > m/ vertices and e(G) > (") — k edges,
and if vy € V, then in an unbiased game on E(G), Maker has a strategy to occupy a Hamilton
path P of G, within m — 1 mowves, such that vy € End(P).

Proof As in previous proofs, we will assume that the game is played on the graph K,
and that the edges of K,, \ G already belong to Breaker’s graph B before the game starts.
Whenever necessary, we will assume m to be large enough. Moreover, we may assume that
m is odd. Otherwise, in case m is even, Maker for her first move just claims an arbitrary
free edge v1v] which is incident with the designated vertex v;. She then reduces the board

by deleting v1, and considers v} to be the new designated endpoint.

The main idea of Maker’s strategy is to start with a matching and then to connect its edges
step by step, until we create a Hamilton path. To shorten the notation we write P o p;qq o Q
for the path (p1...psqi...q:), which is obtained by connecting two vertex-disjoint paths
P = (p1...ps) and @ = (q1...q) through the edge psqi. As we need to care about the

designated vertex v1 especially, we will allow one path to consist only of one vertex. Initially,



80 CHAPTER 4. TREE EMBEDDING GAME

this will be the path consisting only of v1; but as we may connect v; to some path, we may

replace v by the other endpoint v} of the resulting path P’ similar to the argument above.

Throughout the strategy, Maker thus will maintain a collection P = {Py, P1,..., P} of
vertex-disjoint paths, where Py = {po} consists only of one vertex, and where v(FP;) > 2
for every other path. As Maker aims to connect the paths at their endpoints, we set
Endp = Uf:o End(P;), where End(Py) = {po}, for the set of all endpoints of paths in P, and
we let Xp denote the set of those edges that connect two endpoints of different paths in P.
Formally, Xp = {uwv| u € End(P;) and v € End(P;) for some 1 <1i < j < {}. Moreover, we
let Xp denote the set of edges in Xp that belong to Breaker’s graphs. Maker then is mainly
interested in claiming edges from Xp \ Xp; these edges will be called good edges. Moreover,
similar to the previous proof for the perfect matching game, we define a danger for every good
edge e, setting dang(e) := |{f € Xp:en f # 0} ].

In the following we describe a strategy for Maker. Then, we show that Maker can follow this

strategy, and that, by following this strategy, she occupies a Hamilton path as required.

Stage I. Applying the strategy from the perfect matching game, Maker occupies a collection
P = {Po,Pl,...,PmT_g} of vertex-disjoint paths, such that V(Py) = {vi}, e(P1) = 3 and
e(P;) =1forall 2 <i <23 and UE:()_3)/2 V(P;) = V(Ky,). This stage lasts exactly 7
rounds. Afterwards, Maker proceeds to Stage II.

Stage II. Let P = {Py, P1,..., P}, 0 = mT—37 be the collection of paths that Maker occupied
in Stage I, and let Py = {po} be the unique path consisting of one vertex, where we have
po = v1. In each of the following rounds, as long as possible, Maker connects her paths by
claiming good edges which have a large danger value (where large means at least 3). So, in
each round of Stage II, she looks for a good edge e = uwv € Xp \ Xp with dang(e) > 3. In
case such an edge does not exist for the first time, Maker stops playing according to Stage 11
and proceeds to Stage I1I. Otherwise, Maker claims such an edge uv arbitrarily and updates
her family P as follows. Let u € End(P;) and v € End(P;) with ¢ < j. If i # 0, then she
removes P; from P, and updates P; := P; o uv o P;. Otherwise, if i = 0, then she removes P;
from P, and updates Py = {po} = {v'}, where v € End(P;) \ {v}. In every case, she updates
Xp and Xp accordingly.

Stage III. Maker now aims to ensure that Xpg forms a matching. If this is the case immedi-
ately before her move, then she proceeds to Stage IV. Otherwise, there is a vertex v € Endp
which is incident with at least two edges of Xp. Maker then chooses such a vertex v and
claims a good edge vw € Xp \ Xp, where the choice of vw is made more explicit later in the
strategy discussion. Afterwards, Maker updates P and Xp as described in Stage II, and then

she repeats Stage III. Later, when the choice of vw is made more precise, we will see that
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Maker needs at most two rounds in order to ensure that Xp is a matching.

Figure 4.4: The shape of Xp, represented by the dotted lines, during Stage IV.

Stage IV. If |P| = 3, then Maker proceeds to Stage V. Otherwise, if |P| > 3, then Maker
claims a good edge uwv € Xp \ Xp such that, after the same update for P and Xp as in
Stage 11, the following property holds: Xp forms a matching and none of the edges in Xp is
incident with the special vertex pg. (An illustration for this property is given in Figure 4.4.
The precise choice of uv will be explained later in the strategy discussion.) Then, Maker

repeats Stage IV.

Stage V. Maker enters this stage when |P| = 3. Within two more rounds, she connects her

three paths to a Hamilton path P with v; € End(P).

Obviously, if Maker can follow the strategy, then she creates a Hamilton path P such that
vy € End(P). As she never closes a cycle, she does so within m — 1 moves. Therefore, it

remains to prove that Maker can always follow the proposed strategy.

Stage I. To follow this stage of her strategy, Maker just plays according to the strategy which

is given by Lemma 4.3.1 on the graph K,, — v;. This way she occupies paths Pi,..., Pm-3
2

as required, and sets Py = {v1}. (Just notice that, in case Maker creates a perfect matching

of K, —v; without wasting a move, then she just claims an arbitrary further edge.)

Stage II. For this stage there is nothing to prove, because if Maker wants to claim an edge

e in this stage, then its existence is given by the assumption of this stage.

Stage III. Before we can show that Maker also can follow this part of the strategy, we observe

the following useful statements about Stage II, analogously to the proof of Lemma 4.3.1.

Claim 4.3.4 As long as Maker can follow the strategy of Stage II, | Xpg| decreases by at least

two in each round.

Proof The proof is analogous to the proof of Claim 4.3.2. |
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Claim 4.3.5 Let m be large enough. Then, | Xg| < |Endp| — 3 is maintained throughout
Stage 11.

Proof The above claim follows by induction on the number of rounds. At the beginning of
Stage II, the collection P consists of mT_l paths, among which exactly one consists of exactly
one vertex. Thus, we have |Endp| =m—2, |[Xp| < ZH +1+k < 2" and |Xp| < |Endp|—3
before Maker’s first move in Stage II. Finally, the induction step follows be Claim 4.3.4.
Indeed, from now on |Endp| decreases by 2 within a sequence of consecutive moves of Maker
and Breaker, while |Xp| decreases by at least 2 (where Maker starts with decreasing this
value by at least 3). O
m

Claim 4.3.6 Let m be large enough. Stage II lasts less than %5 rounds. In particular, we
have |Endp| > 5 — 2 throughout Stage II.

Proof As seen in the previous proof, we have | Xp| < 2%”, immediately before Maker’s first
move in Stage II. Thus, by Claim 4.3.4, the bound on the number of rounds follows. Moreover,
as |[Endp| = m — 2 holds when Maker enters Stage II, while |Endp| decreases by 2 in each
round, the bound on |Endp| follows. O

As next, let us study the structure of Breaker’s graph at the beginning of Stage III.

Claim 4.3.7 Set Hg = (Endp,Xp) immediately before Maker’s first move in Stage III.
Then A(Hpg) < 2. Moreover, in case A(Hp) = 2 holds, Hp is a subgraph of a copy of K3,
or Hp is a subgraph of a copy of Cy whose vertex set is given by the endpoints of two distinct
paths P;, P; € P.

Proof We first prove that the maximum degree of Hp is at most 2. Indeed, for contradiction,
assume that there is a vertex v € Endp with dy,(v) > 3. By Claim 4.3.5 we know that there
needs to exist a good edge e, which is incident with v. However, this edge then satisfies
dang(e) > dp,(v) > 3, in contradiction to the fact that Maker stopped playing according to
Stage II.

Now, assume that A(Hp) = 2, i.e. there exist vertices u,v1,ve € Endp with uvy,uvy € Xp.
In case u # pp, let v/ be the other endpoint of the path P; with v € End(P;). In case
u = po, set v’ = u. Then, for every other endpoint w € Endp \ {u,v1,v2,u'}, we have
dpr,(w) = 0, since otherwise e = uw would be a good edge with dang(e) > 3, in contradiction
to the fact that Maker stopped playing according to Stage II. In case v = u’ or in case

dr,(uw') = 0 holds, we immediately obtain Xp C {uvi,uve,viva}. Otherwise, u # v’ and
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0 # Np,(u') C {vi,v2}. W.lo.g. let v'v; € Xp. Then vivy ¢ Xp, as du,(v1) < A(Hp) < 2,
and vive ¢ Xp \ Xp, since otherwise e = vjvy would be a good edge with dang(e) > 3, which
would be a contradiction as before. It follows that v; and vo need to be endpoints of the same

path in P, and Xp C {uvy, uve, v'vi,v'va}. O

Using the above claims, we now have everything what we need to describe how Maker should

claim her edges in Stage III, and to prove that Maker can follow the strategy of this stage.

In case Xp forms a matching when Maker enters Stage 111, then there is nothing to prove, as
she proceeds to Stage IV immediately. Otherwise, Claim 4.3.7 tells us that Hp = (Endp, Xp)
is a subgraph of a copy of K3, or a subgraph of a copy of Cy living on the endpoints of two
distinct paths P; and P; in P.

Assume first that Hp is a subgraph of a copy of K3, and thus {uv,uw} C Xp C {uv, vw,vw}
for some endpoints u,v,w € Endp. Then in her first move of Stage III, Maker claims an
arbitrary good edge that is incident to u, which needs to exist as, by Claim 4.3.6, we have
|Endp| > 3 — 2 after Maker’s last move in Stage II, while dp,; (u) = 2. Let xy be Breaker’s
next edge, and observe that Xp C {vw,zy} holds immediately after his move. If Xp now
forms a matching, then Maker immediately proceeds with Stage IV, and thus there is nothing
to prove. Otherwise, let us assume that v = . Then, Maker as next claims an arbitrary good
edge, which is incident with v, which is possible as |Endp| > 5 — 4 still holds. No matter
what Breaker does next, immediately after his move, Xp will be a matching, and Maker thus

proceeds with Stage IV.

Assume then that Hp is a subgraph of a copy of Cy, whose vertices are the endpoints of
two distinct paths P; and P; in P. So, Xp C {uv,w’,v'v,u'v'} and End(P;) = {u,u'},
End(P;) = {v,v'}. Then in a first move of Stage III, Maker claims an arbitrary good edge
that is incident to u, which needs to exist analogously to the previous argument. Again, let zy
be Breaker’s next edge and thus Xp C {u/v,u/v', zy} immediately after he claimed that edge.
If X now forms a matching, then Maker immediately proceeds with Stage IV, and thus there
is nothing to prove. Otherwise, we can assume that Xp = {v/v, vV, zy} and = ¢ {u',v,v'}.
In her second move of Stage III, Maker then claims the edge u/z if v’ # y € Endp, and
otherwise she claims an arbitrary good edge which is incident with u’, and whose existence
is guaranteed analogously to the previous argument. No matter what Breaker does next,
immediately after his move Xp will be a (maybe empty) matching, and Maker thus proceeds

with Stage IV.

So, to summarize, in all cases Maker can follow the strategy of Stage III in such a way that

after at most two rounds, Xp forms a matching.
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Stage IV. Observe first that, when Maker enters Stage IV, |[P| > % — 3 > 4 holds, as

6, by Claim 4.3.6, and since Stage III lasts at most two rounds.

m

m
Moreover, as Maker stopped playing according to Stage III, Xp forms a matching. Again,
let Hp = (Endp, Xp). If dg,(po) = 0, then for her first move in Stage IV, Maker claims

we have |Endp| >

an arbitrary good edge, which is not incident with py, and updates P accordingly (as in
Stage II). Afterwards Xp is still a matching which does not touch the vertex py. Otherwise,
let dp,(po) = 1 with pov € Xp and v € End(P;) for some i # 0. Then, Maker claims an
arbitrary good edges vw, where w € End(P;) for some j ¢ {0,4}. This is possible, as |P| > 3
and dp,(v) = 1. Afterwards, Xp satisfies the required conditions of Stage IV, as v is removed

from End, and therefore pgv is removed from Xp.

Now, doing induction as long as |P| > 3, assume that immediately before a Breaker’s move
in Stage IV, Xp forms a matching which does not saturate pg. Let vv’ be Breaker’s next
edge, where we may assume that v € End(P;) for some i # 0. Then, Maker similarly claims
an arbitrary good edge vw, where w € End(P;) for some j ¢ {0,1}, which again is possible,
as |P| > 3 and dy,(v) < 2. Analogously, we then conclude that Xp satisfies the conditions
which are required for Stage IV. Thus, Maker can follow the strategy of Stage IV, until
|P| = 3.

Stage V. When Maker enters Stage V, her graph is a collection of three paths, one of which
is the path {pg} consisting of one vertex. Let P; and P, be the two paths different from {p},
and let {v,v'} = End(P;) and {w,w'} = End(P,). Immediately after Maker’s last move of
Stage IV, we know that Xp was a matching which did not saturate the vertex pg, and so,
w.lo.g. let Xp = {vw,v'w'} at that moment. Let e be the edge that Breaker claimed next,
i.e. before Maker’s first move in Stage V. If pg € e, we can assume that e = pgv. Then
Maker first claims vw’, and in her second move of Stage IV she takes pgv’ or pow. Doing so,
she finishes her Hamilton path as required. If pg ¢ e, then we can still assume that w.l.o.g.
Breaker claims a good edge, say e = vw’. Then Maker at first claims v'w, and afterwards she

finishes her Hamilton path by claiming pov or pow’. O

4.4 Optimal trees

In the following we prove Theorem 1.3.4.

Let A € N as given in the statement of Theorem 1.3.4. As in the proof of Theorem 1.3.2,
we choose k = (A + 1)* and ma = m/(k) > (A + 1)?, where m/(k) satisfies Lemma 4.3.3.
Now, let T" be a tree on n vertices which satisfies the assumptions from Theorem 1.3.4. We

aim to show that Maker has a strategy for occupying a copy of 7" within n — 1 rounds. By



4.5. RANDOM TREES 85

assumption, there exists a bare path P C T of length mg with End(P) = {v],w}}, such that
w} is a leaf of T. Now, let T :=T — (V(P) \ {v}}). Moreover, let T5 be a tree consisting of

exactly one vertex v}, that is not contained in 7.

In a first stage Maker embeds 77 U Ty (with fixed vertices v} and v} from above) using
the strategy guaranteed by Theorem 4.1.1, which is possible as mo > (A + 1)2. When
she is done with this, her graph is isomorphic to 77 U T (plus isolated/available vertices).
Moreover, according to Theorem 4.1.1, Breaker then claims at most (A; 1) edges among the
set U C V(K,,), which consists of all available vertices plus those vertices v; and ve in K,
that are the images of v} and v}, with respect to Maker’s embedding. Now, as a second step,
Maker claims a copy of P, on the vertex set U such that v; is one of its endpoints, while
wasting no move. (Notice that vy still is isolated in Maker’s graph and we do not require
this vertex to be an endpoint of the copy of P.) As |U| = ma+ 1 > m/(k) and k > (A;l),
Maker succeeds by Lemma 4.3.3. This way she occupies a copy of the goal tree T" within n—1

rounds, as she wastes no moves throughout the game. O

4.5 Random trees

In this chapter we finally aim to prove Theorem 1.3.5. Let T be a tree chosen uniformly at
random from the class of all labeled trees on n vertices, denoted by 1" ~ 7T,, then we show
that Maker a.a.s. can proceed as follows. Similarly to the proof of Theorem 1.3.3, Maker
starts by embedding a tree 77 C T more or less greedily. This time, 7"\ T} consists of pairwise
vertex-disjoint bare paths of certain length, each ending in a leaf of T'. Afterwards, she then

embeds those paths without wasting any edges.

Before we start proving Theorem 1.3.5, let us however collect some useful facts about random

trees, the first being about their maximum degrees.

Theorem 4.5.1 (Theorem 3 in [39]) Let T ~ T,, then a.a.s. the maximum degree satis-

fies A(T) = (1+ o(1)) oz

In [1], the authors study the appearance of certain subtrees in random trees. Let T' be some
tree and assume that uv is an edge in T. They define a rooted (undirected) tree T' () by
fixing v as a root, in order to receive a direction of parenthood in 7', and then removing v and
all its descendants from 7'. (An illustration is given in Figure 4.5.) For any given rooted tree
R they say that T has an R-leaf if R is isomorphic to T(%?), shortly written as R = T(®),
for some uv € E(T). Finally, they prove the following statement.
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Figure 4.5: Illustration for the definition of 7).

Lemma 4.5.2 (Lemma 3 in [1]) Let R be a rooted tree. Then there exists a constant
¢ = c(R) > 0 such that for T ~ T, the following holds:

Pr(3uv e E(T): R=T®)) > 1 — exp(—cn).

Thus, we know that a given rooted tree on a constant number of vertices appears a.a.s. as
an R-leaf in a random tree T' ~ 7,. With a quick look on the proof of Lemma 3 in [1], one
even verifies that any such rooted tree R a.a.s. can be found a linear number of times as an
R-leaf in T'. Indeed, let X be the number of pairs (u,v) with R = T(®v) Then, using the
so-called Joyal mapping in order to study random functions on [n] instead of random trees,
they prove in [1] that X is concentrated around its expectation, which is of size ©(n). Thus,

the following statement holds.

Corollary 4.5.3 Let R be a rooted tree, then there is an € = e(R) > 0 such that a.a.s. there
exist en pairs (u,v) with wv € E(T) and T ~ R,

From this corollary it finally follows that in T' ~ 7,, we a.a.s. can find many vertex-disjoint

bare paths such that each path ends in a leaf of a T

Lemma 4.5.4 Let k be a positive integer, then there exists a real number e = (k) > 0 such
that the following holds. Let T ~ T,, then a.a.s. T contains a family P of en vertex-disjoint
paths of length k such that each of these paths is incident to a leaf of T.

Proof Let T' ~ T, and let R be a path with k+ 1 edges, rooted at one of its endpoints. Then
by Corollary 4.5.3 we a.a.s. find en pairs (u,v) with uv € E(T) and T o R, which means
that a.a.s. T' contains en bare paths of length k + 1, each ending in a leaf of T". Now, these
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Figure 4.6: Splitting of 7" into a subtree Ty and a large family of bare paths.

paths can only intersect in their endpoints, which are non-leaf vertices of T'. Forgetting about

these vertices, we therefore find en bare paths of length k satisfying the required properties. O

In the proof of Theorem 1.3.5 we will condition on the property presented in Lemma 4.5.4.
Similarly to previous proofs, Maker starts by embedding the random tree 1" besides all the en
bare paths (or at least most of them). Once this is done, we aim to embed all the bare paths
without wasting any move. To succeed, we do the following. We first split the set of available
and open vertices into en subsets of size k + 1 which are independent in Breaker’s graph, so
that Maker then can care about the bare paths by playing on different boards separately. The

following lemma will help us to do so.

Lemma 4.5.5 Let H = (V, E) be a graph with a partition of its vertex set V. = Uy U Us,
and let k € N be such that |Us| = k|U1| and A(H) < min{%, |Ui| — 1}. Then there ezists a
partition V(H) = Vi U...UV|y,| such that |Uy NV;| =1, [UsNV;| = k and E(H[V;]) =0 for

every 1 < i < |Uy].

The proof will follow by a standard application of Hall’s Theorem (see Theorem 4.5.6) on the
existence of perfect matchings in bipartite graphs and the theorem of Hajnal and Szemerédi
(see Theorem 4.5.7).

Theorem 4.5.6 (Theorem 3.1.11 in [43]) Let G = (AU B, E) be a bipartite graph with

vertexr parts A and B of equal size. Then G contains a perfect matching if and only if

|INa(S)| > |S| for every S C A.

Theorem 4.5.7 (Theorem 1 in [25]) Let G be a graph on n vertices and let A(G) < r—1
for some positive integer r. Then there exists a partition of V(G) into r independent sets,

each being of size || or [].
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Proof of Lemma 4.5.5 Let H be given according to the lemma. By the theorem of Hajnal
and Szemerédi (Theorem 4.5.7) we find a partition U = Wi U ... U Wy, into independent
sets of H[Us] of size |W;| = % =k, as A(H[Us]) < |U1|—1. To each of the parts W;, we now
want to add one vertex from U; to obtain sets V; as required. To do so, let H' = (W UU;, E’)
be the bipartite graph with partite sets W := {Wy,..., Wy, |} and Ur = {u1,...,u,},
where we put an edge between W; and u; if and only if dy(u;, W;) = 0 (which means that
we could add wj to U;). By assumption on H, we then have §(H') > ‘U—;‘, and thus by Hall’s
Theorem (Theorem 4.5.6) it follows that H’ contains a perfect matching. Indeed, let S C Uy
be an arbitrary subset of Uy. If |S| < @, then we have |Ng:(S)| > §(H') > |S], and if
|S| > @, then every W; € W has a neighbor in S, i.e. |[Ng/(S)| = |W| > |S|. W.Lo.g. let
{u;W; : 1 <4 <|U1|} be a perfect matching in H'. Then the partition V/(H) = V1U...UV|y,|,
with V; = W; U{u;} for every 1 <i < |Uj|, satisfies the required properties. O

Now we have everything that we need to prove Theorem 1.3.5.

Proof of Theorem 1.3.5 Fix t = m/(1), where m/(1) is given according to Lemma 4.3.3
and, whenever necessary, assume that n is large enough. Let T'= (V, E) ~ T,. We condition
on the properties which a.a.s. hold according to Theorem 4.5.1 and Lemma 4.5.4. That is,
we assume from now on that A(T) = (1 + 0(1))1;;1% and that T contains a family P of en
bare paths of length ¢ that are pairwise disjoint, and such that each of them ends in a leaf of

T. For every such path P € P, let End(P) = {vf’ v}, where v¥ is a leaf of T. Moreover,
set Vp :=Upep (V(P)\ {0]}).

As mentioned earlier, Maker at first aims to embed the tree T' besides all the edges that belong
to (most of) the paths from P. That is, she first focuses on the subtree T := T'[V \ Vp] with
|V(T) \ V(Tp)| = ten. For her embedding, Maker proceeds as follows. Similar to the proof
of Theorem 4.2.2, Maker starts from some vertex v, in Tp, and then she embeds the tree
To (plus maybe some further edges of T') step by step, towards the leaves (by maintaining
an embedding ¢ : S — V(M) of a subtree T[S] into M, with S C V(T)). From time to
time it may happen that she needs to embed some vertex from V(T') \ V(Tp) to be able
to keep control on the distribution of Breaker’s edges. These vertices will then belong to
V(T1) \ V(Tp). Again, we denote with S the set of vertices that are already embedded. So,
initially S = {v{}. Moreover, with ¢ we will denote Maker’s embedding of T'[S] into M, as
indicated above. Initially, we set ¢(v(,) = v for an arbitrary vertex vy € V(K,,). Moreover,
A=V(Ky,)\ ¢(S) will denote the set of available vertices, i.e. those vertices which were not

chosen for the embedding so far.

In the following we give a strategy for Maker. We then show that she can follow that strategy

and moreover, while doing so, she creates a copy of T' within n — 1 moves.
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Stage I. Maker creates an embedding ¢ : T'[S] — M of a tree T} = T'[S] with Ty C 11 C T,
within |V(T1)| — 1 rounds, such that 7} contains only a small number of edges from P and
such that all Breaker’s degrees among the remaining open and available vertices are not too

large. To be precise, Maker maintains that dg(v) < y/nlog(n) for every vertex v € AUG(Or),
and [S N Vp| < y/nlog(n).

Stage II. In Stage I, Maker may have embedded some vertices of some paths from P. Denote
the family of these paths by P*. In Stage II, Maker now completes the embedding of every
path P € P*, therefore creating a copy of some tree Tb with Ty C 75 C T. The precise details
of how she can do this, will be given later in the strategy discussion. Once she is done with

this, she proceeds with Stage III.

Stage III. Maker embeds the remaining paths of P in order to complete her embedding of
T. She does so without wasting any move. The precise details of how she can do this, will be

given later in the strategy discussion.

Obviously, if Maker can follow this strategy, then she creates a copy of T as required. Thus,

it remains to show that Maker can indeed follow the strategy.

Stage I. The argument for Stage I is similar to the proof of Theorem 4.2.2. This time, we

have A(T) = (1 + o(1)); Olgoign, and T \ Ty consists of pairwise vertex-disjoint bare paths.

We define a vertex v to be dangerous if dg(v) > y/n and v is either open or available, and

again we let Dang denote the set of dangerous vertices. Now, Maker plays according to the
same strategy as given in the proof of Theorem 4.2.2. We then obtain the following claims,

analogously to Claim 4.2.4 — Claim 4.2.7.

Claim 4.5.8 Until the moment when Maker stops playing according to the strategy of Stage I,

at most 2/n vertices become dangerous.

Claim 4.5.9 Until the moment when Maker stops playing according to the strategy of Stage I,

at most v/nlog(n) vertices of Vp are embedded, provided n is large enough.

Proof A vertex w’ € Vp is only embedded, when Maker plays according to Case 1 of the
strategy (given for Theorem 4.2.2), i.e. when Dang # (). Now, for each vertex v, which is
dangerous at some point during the game, we consider each of the four subcases Case 1(i),
Case 1(ii) (a) — Case 1(ii) (c) at most once, and in each of these four subcases, Maker can
embed at most three vertices of Vp. Thus, using Claim 4.5.8, the number of vertices in Vp
that can be embedded throughout Stage I is of size O(y/n), and so the claim follows, provided

n is large enough. O
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Claim 4.5.10 Until the moment when Maker stops playing according to the strategy of Stage I,

we have at least 0.9en available vertices, provided n is large enough.

Proof By Claim 4.5.9 and since |Vp| = |V(T') \ V(1y)| = ten > en, we know that at any
moment throughout Stage I, |V(T)\ S| > |Vp| — |[Vp N S| > en — y/nlog(n) > 0.9en holds.
Thus, the claim follows. O

Claim 4.5.11 Until the moment when Maker stops playing according to the strategy of Stage I,
we have dg(v) < y/nlog(n) for every vertex v € AU ¢(Or).

Proof Analogously to the proof of Claim 4.2.6, we obtain

dp(v) < vV/n+ (A+3)-2y/n < /nlog(n)

for every v € AU ¢(Or), for large n, by Claim 4.5.8 and A(T) = (1 + 0(1))10§§)gn. 0

Claim 4.5.12 Assume that Maker plays according to Case 1(ii), then one of the assumptions
from (a), (b) and (c) holds.

Proof Assume that the statement is wrong. Then, analogously to the proof of Claim 4.2.7,
we obtain a contradiction to Claim 4.5.10 with |A| < \/nlog(n) - A+ 1- (A% 4+ A) = o(n),

provided n is large enough. O

Using all these claims, it is shown analogously to the proof of Theorem 4.2.2 that Maker
can follow the strategy of Stage I. Moreover, for large enough n, |S N Vp| < y/nlog(n) is
guaranteed by Claim 4.5.9; and dp(v) < y/nlog(n) for every vertex v € AU ¢(Or) holds by
Claim 4.5.11.

Stage II. By Claim 4.5.9, |P*| < y/nlog(n) holds, while every path in P* has length ¢. Now,
Maker completes the embedding of the paths in P* in the obvious way. As long as there is
a path P € P* which is not fully embedded, i.e. V(P)\ S # 0, she fixes such a path and
proceeds as follows. Let P = (pp,...,p;) and assume that ¢ < t is the largest index with
p; € S. Then for her move, she claims an arbitrary free edge ¢(p;)u with u € A, removes u

from A, adds p;1+1 to S and sets ¢(piy1) = u.

As Stage IT will last at most ¢ - |P*| = O(y/nlog(n)) rounds, this, together with Claim 4.5.11,
guarantees that dg(u) = O(y/nlog(n)) for every u € A U ¢(Or) throughout this stage.
Moreover, as |A| > 0.9en holds at the beginning of Stage I, by Claim 4.5.10, we observe that
Maker can always follow the proposed strategy.
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Stage III. Let U; = ¢(Or) = {ui,...,u,} and let Uy = A be the sets of open and available
vertices, respectively, at the moment when Maker enters this stage. Then |Us| = t|U;] and
r = |Ui| = |P\ P*| > en—o(n) > 0.9en. Moreover, by Claim 4.5.11 and since Stage II
lasts at most O(y/nlog(n)) rounds, dg(v) = O(y/nlogn) < % holds, for every vertex
v € Uy U Uy, provided n is large enough. Applying Lemma 4.5.5, we thus find a partition
AU P(Or) =WhU...UW, with |W;| =t + 1 such that |W; N ¢(Or)| =1 and E(B[W;]) =0
for every 1 < ¢ < r. W.l.o.g assume that u; € W; for every 1 < ¢ < r. Then, by playing on the
boards K, [W;] separately, Maker now claims a Hamilton path on each W; with designated
endpoint wu;, for every 1 < i < r. Whenever Breaker claims an edge of K, [W;] for some
1 < i < r with the property that Maker still does not occupy a Hamilton path of K,[W;],
then Maker claims an edge of K,,[W;] following the strategy given by Lemma 4.3.3. This is
possible, as |[W;| =t + 1 > m/(1). Otherwise, if Maker already occupies a Hamilton path on
W;, then she applies this strategy on a different board K,,[W;], j # 4, where she still does not
occupy the required Hamilton path.

This way, Maker claims all Hamilton paths as required and without wasting any move. In

particular, she claims a copy of T" within exactly n — 1 rounds. O

4.6 A short discussion of the perfect matching game

In Theorem 1.3.3, we show that, for large enough n, Maker needs at most n + 1 rounds in
the tree embedding game, in order to occupy a copy of a given tree T' with maximum degree
A which has no long bare path. So, in our strategy, Maker wastes up to two rounds. The
reason for this waste is that, following Lemma 4.2.3, Maker wastes two edges when she aims

to create a perfect matching of an almost complete bipartite graph.

As mentioned earlier there exist such trees, like the complete binary tree, which Maker cannot
hope to create within n— 1 rounds, if Breaker plays optimally. Still, we believe that for A € N
and every large enough n, Maker can occupy every tree T' with A(T) < A within at most n
rounds. So, it becomes natural to ask whether Lemma 4.2.3 could be improved in general.
However, as shown in the following, Lemma 4.2.3 is best possible. Thus, in order to achieve

an improvement from n + 1 towards n, one may need to come up with a different proof idea.

Lemma 4.6.1 Let G = (V1UVa, E) be a bipartite graph with |V1| = |Va| = n and dg(v) = n—1
for every v € Vi UVa. Then, playing an unbiased Maker-Breaker game on E(G), Breaker has

a strategy to ensure that Maker needs at least n + 2 rounds for occupying a perfect matching

of G.
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Proof Consider G as a subgraph of K, ,. As Maker cannot claim the edges of K, , \ G, we
may assume that the game is played on K, , and that B = K,, , \ G before the game starts.
So, before the game starts, Breaker’s graph is a perfect matching of K, ,. Moreover, we may
assume that Maker is the first player, and, by the bias monotonicity of Maker-Breaker games,
we may allow Breaker to claim at most one edge in each round, while Maker claims exactly

one edge in each round.

Now, throughout the prooflet V.=V, UVa, U={uecV: dy(u) =0}, and U; = V;NU for
both i € [2]. In the following we describe a strategy for Breaker. Afterwards, we show that
he can follow that strategy, and, by doing so, he prevents Maker from occupying a perfect

matching of K, , within n + 1 rounds. The strategy consists of three stages.

Stage I. Before his move, Breaker checks whether Maker’s graph is a matching of K, ,. If
this is not the case, then he proceeds with Stage II. Otherwise, if there exist vertices u; € U
and ug € Uz such that dpy)(u;) = 0 for both i € [2], then Breaker claims such an edge ujusz.

If such vertices do not exist, then Breaker claims no edge and skips his move.

Stage II. Before his move, Breaker checks whether Maker’s graph is the disjoint union of a
matching and a copy P of P3 (path with three vertices). If this is not the case, he proceeds
with Stage III. Otherwise, let V(P) = {z,y, 2z} with End(P) = {x,z} C V; for some i € [2],
and y € V3_;. Then, Breaker claims an edge such that immediately after his move the

following holds.

(a) If |[Us—;| > 1, then there exist distinct vertices 2/, 2" € Us_; with xa/, 22" € E(B).

(b) If |Us—;] = 1, then zv', 20" € E(B) for the unique vertex v’ € Us_;.

Stage III. In this stage, Breaker always checks whether |U;| = |Uz| = 1 holds. If this is not
the case, then he claims an arbitrary edge. Otherwise, when |U;| = |Uz| = 1, he makes sure

that he claims the unique edge between U; and Us.

In the following we show that Breaker can always follow the strategy above. Moreover, we
show that, in case Breaker follows this strategy, Maker cannot occupy a perfect matching of

K, within n + 1 rounds.
Stage I. For this stage, there is nothing to prove.

Stage 11. Before we consider Stage II, let us prove some useful claims.

Claim 4.6.2 After each move of Breaker in Stage I, the graph B[U] is a perfect matching in
K, [U].
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Proof The proof follows by induction on the number of Breaker’s moves t. Before the game
starts, the claim is true, by our assumption. So, assume that Breaker follows Stage I in
round ¢, and that before Maker’s " move the claim was true. Let z1z9 be the edge that
Maker claims in round ¢, with x; € V; for ¢ € [2]. As Breaker still follows Stage I, we know
that a; € U; for both i € [2], before Maker’s t™® move. In particular, before this move
of Maker, we find vertices ) € Uy and a5, € U; such that z12), zeah, € E(B[U]), by the

t* move, when

induction hypothesis. Again by this hypothesis, we know that after Maker’s
x1 and z9 are removed from U; and Us, respectively, Breaker’s graph B[U] is a matching
which saturates all vertices of U besides 2} and 2. According to his strategy, he then claims

zyaly. Afterwards, the graphs B[U] is a perfect matching of K, ,[U] again. ]

Claim 4.6.3 If Breaker plays according to the proposed strategy, then Maker cannot avoid to

create a copy of P3, before claiming a perfect matching.

Proof For contradiction, assume that Maker could avoid copies of P3. Then, this would
mean that throughout the game her graph is a matching of K, ,, until she finally reaches a
perfect matching in round n. In particular, Breaker would always play according to Stage 1.
But then, after Maker’s (n — 1) move, we must have |U;| = |Us| = 1. According to Breaker’s
strategy, Breaker then ensures that after his (n — 1)' move we have ujus € E(B), where
Ui = {w;} for i € [2]. However, this is in contradiction to the fact that Maker finishes a

perfect matching in round n. O

So, from the last claim we conclude that Breaker will enter Stage II at some point during the
game. In case Maker’s graph is not a disjoint union of a matching and a copy of P; there is
nothing to prove for this stage. Otherwise, Maker’s graph is of this shape with some copy P
of P3 as described in the strategy, i.e. V(P) = {z,y, 2} and End(P) = {z,z} C V; for some
i € [2]. We then have the following.

Claim 4.6.4 As long as Breaker plays according to Stage I, he can always claim an edge to

maintain the Properties (a) and (b).

Proof The claim above follows by induction on the number of rounds.

Assume that Breaker enters Stage IT in round r. Then, after his (r — 1)** move, we know that
Maker’s edges form a perfect matching of K, ,[V \ U], while B[U] is a perfect matching of
K, »[U]. In round r, Maker then creates P, and |Us_;| = |U;| +1 > 1 holds after Maker’s
rth move. W.lo.g. let xy be the edge which she claims in round r. Then yz € E(M) before

round 7. Moreover, x € U; before round r, as otherwise Maker’s graph would contain a copy
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of Py, and thus Breaker would proceed to Stage I1I. In particular, by Claim 4.6.2, there exists
a vertex 2/ € Us_; with za’ € F(B) at the end of round r — 1. Now, if |[Us_;| = 1 immediately
before Breaker’s t' move, then Breaker claims za2'; and if |Us—_;| > 1, then Breaker claims 22’

for some 2z’ € Us_; \ {2'}. This way, the Properties (a) and (b) are maintained.

Assume then that after Breaker’s t'' move, Properties (a) and (b) hold, and assume that he
plays in round ¢ + 1 according to Stage II. Let V(P) = {«,y, z} as before. As Breaker plays
in round ¢ + 1 according to Stage II, we must have |Us_;| > 1 immediately before his (¢ + 1)
move. Thus, we had |Us_;| > 2 immediately after Breaker’s ¢'" move, and by induction
hypothesis, there must have been distinct vertices 2/, 2’ € Us_; such that xzz’, 22’ € E(B). In
her (¢ + 1)** move, Maker did not claim an edge incident with x or z, as otherwise Breaker
would not play according to Stage II in round ¢ + 1. If her edge was neither incident with z’
nor with 2/, then Breaker can claim an arbitrary edge, and still (a) and (b) hold. Otherwise,
assume w.l.o.g. that Maker claimed an edge incident with z’. Then, analogously to the

induction start, Breaker can maintain the required properties. |
Thus, we conclude that Breaker can follow Stage II of her strategy.
Stage III. For this stage, there is nothing to prove.

So, we only need to verify that Maker needs at least n 4 2 rounds until she occupies a perfect

matching.

Assume to the contrary that Maker can create a perfect matching within n + 1 rounds. By
Claim 4.6.3, Maker will create a copy P of Ps in some round ¢t < n, w.l.o.g. let V(P) = {x,y, z}
and End(P) = {z,z} C V; \ U1. We then have |U;| =n —t and |Us| = n —t+ 1. If Maker
wants to win until round n + 1, then, in the following n — ¢ + 1 rounds, she needs to claim
a matching of size n — t between U; and some subset U C Us, and an edge between {z, z}
and the unique vertex of Uy \ US. In case she tries to claim this edge after she fully claimed
the matching of size n — ¢, then she will fail, because of Property (b), and thus we get a
contradiction. Otherwise, by claiming an edge between {z, z} and Uy, Maker creates a copy
of P,, before finishing this matching of size n — ¢t. But then, Breaker plays according to
Stage III, and once Maker claimed all but one edge of the desired matching of size n — t,
Breaker blocks the unique edge which Maker would need to claim to win within n+ 1 rounds,

again a contradiction. O
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4.7 Concluding remarks and open problems

Winning as fast as possible. We showed that, given a constant A > 0, Maker can create a
copy of any pre-defined tree on n vertices of maximum degree at most A within n+ 1 rounds,
provided n is large enough. Moreover, we know that there exist trees T' with A(T") = 2 which
cannot be embedded within n — 1 rounds. There is still a small gap and we wonder whether

our bound of n + 1 can be improved to n in general.

Building trees of large maximum degree. Disregarding the goal of winning in a small
number of rounds, another open question is how large the maximum degree of a tree T is

allowed to be such that Maker still has a strategy to create a copy of T

Question 4.7.1 What is the largest value A = A(n) such that for every tree T on n vertices
of mazximum degree at most A, Maker has a strategy to occupy a copy of T in the unbiased
Maker-Breaker game on E(K,)?

Embedding graph factors. Let n € N and let H be a graph with a constant number k& of
vertices. It also seems to be of interest to study such a Maker-Breaker game in which Maker’s
goal is to occupy a factor of H on the board E(K,), i.e. a vertex disjoint union of copies of
H that cover all but less than k vertices of K,,. It should be clear that, applying our methods
for the unbiased Maker-Breaker game on K,, Maker can occupy such a factor by wasting
at most 2 edges when H = T is a tree. However, it would be interesting to understand the

general problem further, in particular when H contains at least one cycle.
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Chapter 5
Walker-Breaker games

In this chapter, we study Walker-Breaker games. Recall that these games are played by two
players, Walker and Breaker, who alternately choose edges of a graph G that were not chosen
by the opponent, while Walker has the constraint to choose edges of a walk. We will discuss
games in which Walker aims to occupy the edges of a large cycle or a fixed subgraph in K.

We also discuss how many edges Walker can occupy.

In Section 5.1, we collect some auxiliary results, that will be useful for the proofs of the
main theorems, followed by Section 5.2, where we show that Walker has a strategy to create
large graphs of small diameter. Afterwards, in Section 5.3 we prove Theorem 1.4.1 and Theo-
rem 1.4.2. In Section 5.4 we prove Theorem 1.4.4, and in Section 5.5 we prove Theorem 1.4.3.

Finally, we conclude with some remarks and open problems in Section 5.6.

Notation and terminology. Recall that the 2-density of a graph G on at least 3 vertices

is defined as d2(G) = jgg)):; and its mazimum 2-density is ma(G) = maxgc g (>3 d2(H).

Assume a Walker-Breaker game on some graph G is in progress, and let v be Walker’s current
position. According to the rules, Walker then has to choose an edge which is incident with v,
and which was not chosen by Breaker so far. Let vw be this edge. Then we say that Walker
walks from v to w, and w becomes Walker’s new position. Moreover, we say that Walker visits
w. If Walker chose vw already in an earlier round, then we say that she repeats or reuses
this particular edge, and we say that she returns to w. Moreover, a vertex u will be called
untouched if it was not Walker’s position so far. At any given moment throughout the game,
W will denote the graph induced by all edges that Walker chose. Similarly, B denotes the
graph of Breaker’s edges. The remaining edges, which form the graph F = G\ (W U B), are

said to be free.

For simplicity and clarity of presentation, we do not care about optimizing the constants that

97
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appear in the following proofs. Moreover, whenever these are not crucial, we omit floor and

ceiling signs.

5.1 Preliminaries

5.1.1 Resilience results

In some strategies that we present later, Walker creates a graph which looks almost like a
random graph. In order to guarantee that these graphs contain large cycles or copies of fixed

graphs, we make use of the following resilience results.

Theorem 5.1.1 (Theorem 1.1 in [36]) For every € > 0, there exists a constant C(¢)
such that for p > CIOTg(n) and G ~ Gy, the following a.a.s. holds. For every R C G
with A(R) < (3 — e)np, the graph G\ R contains a Hamilton cycle.

Notice that the formulation of the above statement is slightly different from Theorem 1.1 in
[36]. Here it said that a.a.s. the following holds: For every H C G with §(H) > (3 + ¢)np,
the graph H contains a Hamilton cycle. However, by showing that the degrees in G ~ G,

are concentrated around np, the statement in Theorem 5.1.1 easily follows.

Theorem 5.1.2 (Corollary of Theorem 15 in [41]) Let H be any graph. Then there ex-
1

ist constants C,vy > 0 such that for p > Cn ™2 and G ~ Gy, the following a.a.s. holds.

For every R C G with A(R) < ynp, the graph G\ R contains a copy of H.

5.1.2 Creating an almost random graph

As already mentioned, Walker will aim to create graphs which look almost random. To do
so, we will use the following slight modification of Theorem 1.5 in [22]. However, to make the

terminology precise, let us first give the following definition, analogously to [22].

Definition 5.1.3 Let P = P(n) be some graph property that is monotone increasing, and let
0 <e,p<1. Then P is said to be (p,e)-resilient if a random graph G ~ G, , a.a.s. has the
following property: For every R C G with dr(v) < edg(v) for every v € V(G) it holds that
G\ReP.

Theorem 5.1.4 (Modification of Theorem 1.5 in [22]) For everye > 0 and every large
enough n € N the following holds. Let @ <p=pn) <1, let co € N and let P =P(n) be
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a monotone (p,4e)-resilient graph property. Assume a (1 : )p) Walker-Breaker game

30(626+1

on K, is in progress, where the graph F of free edges satisfies 6(F) > (1 — €)n, and where
Walker’s current graph Wy has the property that between every two vertices in V(K,) it
contains a path of length at most ca. Then, Walker has a strategy for continuing the game

that creates a graph W' € P.

We remark at this point that in later applications of this theorem, Wy may live on a vertex set
that contains V(K,). In fact, we may play on a board containing F(K,), on which Walker
first creates a graph Wy as described. Afterwards, she more or less reduces her game to the
board E(K,), where she aims to create her desired structure, as for example a large cycle.
The graph Wy then has the advantage that, in case there appears a dangerous vertex in V(K,,)
having large Breaker degree, Walker is able to reach this vertex within at most co rounds by
reusing the edges of Wy. In fact, this is the only property of Wy that we will use in the proof

of the above mentioned theorem.

Now, let us turn to the proof of the above theorem. It follows very closely the proof of
Theorem 1.5 in [22], with small modifications. For the convenience of the reader, we include
it here. In particular, we will use the so called MinBox game, which was motivated by the
study of the degree game [24]. The game MinBoxz(n, D, a,b) is a Maker-Breaker game on a
family of n disjoint boxes Si,...,S, with |S;| > D for every i € [n], where Maker claims one
element and Breaker claims at most b elements in each round, and where Maker wins if she

manages to occupy at least «|S;| elements in each box S;.

Throughout such a game, by wys(S) and wp(S) we denote the number of elements that
Maker and Breaker claim so far from the box S, respectively. As motivated by [24], we also
set dang(S) := wp(S) —b-wy(S) for every box S. If not every element of a box S is claimed
so far, then S is said to be free. Moreover, S is said to be active if Maker still needs to claim

elements of S, i.e. wys(S) < «|S|. The following statement holds.

Theorem 5.1.5 (Theorem 2.3 in [22]) Let n,b,D € N, let 0 < o« < 1 be a real number,
and consider the game MinBox(n, D, a,b). Assume that Maker plays as follows: In each turn,
she chooses an arbitrary free active box with maximum danger, and then she claims one free

element from this box. Then, proceeding according to this strategy,
dang(S) < b(log(n) + 1)

is maintained for every active box S throughout the game.

We remark at this point that in [22], Breaker claims exactly b elements in each round of

MinBoxz(n, D, «,b). However, the condition that Breaker can claim at most b elements does
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not change the theorem above, as its proof in [22] only uses the fact that in each round

> icfn) WB(S;) can increase by at most b.

Proof of Theorem 5.1.4 Let Fy = F be the set of free edges, which is given by the
assumption of the theorem, and let W be the current graph of Walker.

For contradiction, let us assume that Walker does not have a strategy to occupy a graph
satisfying property P. Then we know, as mentioned in the introduction of this thesis, that
Breaker needs to have a strategy Sp which prevents Walker from creating a graph with

property P, independent of how Walker proceeds.

In the following, we describe a randomized strategy for Walker and afterwards we show that,
playing against Sp, this randomized strategy lets Walker create a graph from P with positive
probability, thus achieving a contradiction. The main idea of the strategy, as motivated
by [22], is as follows: throughout the game Walker generates a random graph H ~ G, )
on the vertex set V(K,). Following her randomized strategy, she then obtains that a.a.s.
dynw, (v) = (1 —4g)dp (v) holds for every vertex v € V(K,). Thus, by the assumption on P,
we then know that W/ = W \ W, a.a.s. satisfies property P.

When generating the random graph H, Walker tosses a coin on each edge of K,, independently
at random (even if this edge belongs to K, \ Fp), which has success with probability p. In
case of success, Walker then declares that it is an edge of H, and in case this edge is still free

in the game on K, she claims it.

To decide which edges to toss a coin on, Walker always identifies an exposure vertexr v (which
will be marked with color red). After identification, Walker proceeds to v by reusing the edges
of Wy. Once, she reached the vertex v, she tosses her coin only on edges that are incident
with v and for which she did not toss a coin before. When she has no success or when she has
success on an edge which cannot be claimed anymore (i.e. this edge belongs to BU (K, \ Fp)),
then she declares her move as a failure. If the first case happens, we denote this failure as
a failure of type I, and following [22] we set f(v) to be the number of failures of type I, for
which v is the exposure vertex. Otherwise, if Walker has success on an edge of BU (K, \ Fp),
then it said to be a failure of type II, and with f;;(v) we denote the number of edges that are

incident with v in K,,, and which were failures of type II.

To reach our goal, it suffices to prove that following Walker’s random strategy we a.a.s. obtain
that fr7(v) < 3.9enp holds for every vertex v € V(K,,) at the end of the game. Indeed, by a
simple Chernoff-type argument one verifies that a.a.s. dg(v) > 0.99np for every v € V', which
then would yield fr;(v) < dedpy(v) and dyr\wy, (v) > (1 —4e)dpy (v).
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As in the proof of Theorem 1.5 in [22], we also say that Walker exposes an edge e € E(K,,)
whenever she tosses a coin for the edge e; and we also consider the set U, C Ng(v) which

contains those vertices u # v for which the edge vu is still not exposed.

Now, to make sure that the failures of type II do not happen very often, we associate a box
S, of size 4n to every vertex v € V(K,), and we use the game MinBox(n,4n, 5, 2b(c2+1)) on
the family of these boxes to determine the exposure vertex. In this game, Walker imagines to
play in the role of Maker. The idea behind this simulated game is to relate Breaker’s degree
dp(v) to the value wp(S,), and to relate the number of Walker’s exposure processes at v to
Maker’s value wys(S,). This way, we ensure that Walker stops doing exposure processes at
v, once dp(v) becomes large, which helps to keep the expected number of failures of type II

small.

We now come to an explicit description of Walker’s (randomized) strategy. Afterwards, we
show that she can follow that strategy and that, by the end of the game, a.a.s. fr7(v) < 3.9enp
holds for every vertex v € V(K,,).

Stage I. Let Walker’s t'' move happen in Stage I, and let ey, . . ., e, be the edges that Breaker

claimed in his previous move. Moreover, let v;—; be Walker’s current position. Then Walker

P
DR

u € V, Breaker claims [{i < b: u € ¢;}| free elements in S,. (So, in total, Breaker receives

at first updates the simulated game MinBox(n,4n, 5, 2b(cy + 1)) as follows: for every vertex

2b free elements over all boxes S,.) In the real game, she then looks for a vertex v that is

colored red. If such a vertex exists, she proceeds immediately with the case distinction below.

Otherwise, if neither vertex has color red, she first does the following: she identifies a vertex v

4
2

danger value. If no such box exists, Walker proceeds with Stage II. Otherwise, she colors the

for which in the simulated game MinBox(n,4n, £, 2b(ca+1)), S, is a free active box of largest
vertex v red (to identify it as her exposure vertex), Maker claims an element of S, in the
simulated game MinBox(n,4n,%,2b(cz 4 1)), and then Walker proceeds with the following
cases:

Case 1. v;_; #v. Let P = (v4—1,21,...,%,v) be a shortest v;_1-v-path in Wy. Then Walker

reuses the edge v;_1x1 (to get closer to v), makes x; her new position and finishes her move.

Case 2. v_; = v, i.e. Walker’s current position is the (red) exposure vertex. Then Walker
starts her exposure process on the edges vw with w € U,. She fixes an arbitrary ordering
o : [|Uy|] = Uy of the vertices of U,, and she tosses her coin on the vertices of U, according

to that ordering, independently at random, with p being the probability of success.

2a. If this coin tossing brings no success, the exposure is a failure of type I. So, Walker

increases the value of fr(v) by 1. In the simulated game MinBox(n,4n,5,2b(c2 4 1)),
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Maker receives 2pn—1 free elements in S, (or all remaining free elements if their number
is less than 2pn — 1). In the real game, as all edges incident with v are exposed, U,
becomes the empty set, while v is removed from every other set U,,. Walker removes

the color from v and she finishes her move by reusing an arbitrary edge of Wj.

2b. Otherwise, let Walker’s first success happen at the k' coin tossing. We distinguish the

following two subcases.

— If the edge vo(k) is free, then Walker claims this edge in the real game, thus
setting vy := o (k) for her new position. For every i < k, she removes v from U, ;)
and o(i) from U,; moreover she removes the color from v. In the simulated game
MinBox(n,4n, §,2b(c2 + 1)), Maker claims a free element from the box S, .

— If the edge vo(k) is not free, the exposure is a failure of type II. Accordingly,
Walker increases the value of fr7(v) and fr7(o(k)) by 1. She updates the sets U,
and U, (;) as in the previous case and removes the color from v. To finish her move,

she reuses an arbitrary edge of Wj.

Stage II. In this stage, Walker tosses her coin on every unexposed edge uv € E(G). In case

of success, she declares a failure of type II for both vertices u and v.

It is easy to see that Walker can follow the proposed strategy. Indeed, the strategy always
asks her to claim an edge which is known to be free or to belong to Wy and which is incident
with Walker’s current position. We only need to check that Theorem 5.1.5 is applicable, i.e.,
we need to check that in the simulated game MinBox(n,4n,%,2b(cz + 1)) Breaker claims at
most 2b(ce + 1) elements between two consecutive moves of Maker in which she claims free
elements from free active boxes of maximum danger. This follows from Claim 5.1.7, and the
observation that Maker claims such an element when Walker colors some vertex red, while in

each round Breaker claims 2b elements in the simulated game.
Claim 5.1.6 At any point in Stage I, at most one vertex is red.

Proof The claim follows from the fact that, in Stage I, Walker only colors a vertex red if

there is no vertex having this color. O

Claim 5.1.7 After a vertex v becomes red in Stage I, it takes at most co + 1 rounds until the

color is removed and, in the following round, a new (maybe the same) vertex is colored red.

Proof Assume v becomes red. Then, according to the strategy description, Walker proceeds

with Stage I as long as v is red. As long as her current position is different from v, Walker
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walks towards the vertex v by reusing the edges of Wy. By the assumption on Wy we know
that this takes at most ¢y rounds. Once v is Walker’s position, the exposure process starts
(which lasts only one round) and independent of its outcome, Walker removes the color from
V. a

Thus, it remains to prove that, by the end of the game, a.a.s. frr(v) < 3.9np holds for every
vertex v € V(K,,). To do so, we verify the following claims, which are proven analogously to
Claims 3.1 — 3.4 in [22].

Claim 5.1.8 During Stage I, wp(S,) < n and wpr(Sy) < (1 + 2p)n for every v € V.

Proof According to the strategy description, Breaker claims an element of .S, in the simulated
game if and only if in the real game he claims an edge incident with v. Thus, wg(S,) < n
follows. Moreover, we observe the following: wy/(.S,) is increased by 1 each time v is colored
red, and it is increased by at most 1 when Walker has success on an edge vw where w is the
red vertex (Case 2b). Both cases together can happen at most n — 1 times, since we can have
at most n — 1 exposure processes in which we toss a coin on an edge that is incident with
v. Additionally, wys(S,) increases by at most 2pn — 1 when v is the exposure vertex and a
failure of type I happens (Case 2a). However, this can happen at most once, since after a
failure of type I (Case 2a), Walker ensures that in the simulated game S, is not free or active
anymore and thus, v will not become the exposure vertex again. Thus, the bound on wy(.S,)
follows. O
en

Claim 5.1.9 For every vertex v € V(G), Sy becomes inactive before dp(v) > .

Proof Assume to the contrary that wg(S,) = dp(v) > &* for some active box S,. Then, by
Theorem 5.1.5, wp(Sy) — 2(ca + 1)b - wpr(Sy) < 2(ca + 1)b(log(n) +1). With b = m we
then conclude wys(S,) > 3pn — (log(n) + 1) > 2pn, where in the second inequality we used
the fact that p > %. However, this contradicts with the assumption that S, is active. O
Claim 5.1.10 A.a.s. for every vertex v € V the following holds: As long as U, # () holds,

we have that S, is active. In particular, a.a.s. every edge of K, will be exposed in Stage I.

Proof Suppose there is a vertex, say v, with U, # § such that S, is not active. Then
fr(v) = 0 and 2np = §|S,| < war(S,). As discussed in the previous proof, wys(S,) could
always increase by 1 when Walker had success on an edge vw where w was the exposure vertex
(Case 2b), or when v was colored red. Notice that in the second case, Walker then exposed

edges at v and (besides maybe the last exposure process at v) she had success on some edge,
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as fr(v) = 0. But this means that Walker had success on at least 2pn — 1 edges incident with
v, i.e., dg(v) > 2np — 1. However, a simple Chernoff argument shows that for H ~ G,, , a.a.s.
for all vertices v the last inequality will not happen. Thus, the first statement follows. Now,
let us condition on the first statement and assume that there is an edge uv of K, which is
not exposed at the end of Stage I. Then U, # 0 and therefore S, is active. Moreover, by
Claim 5.1.8, S, is free, as wps(Sy) + wp(Sy) < |Sy|. But this is in contradiction with the fact
that Walker does not continue with Stage 1. O

Claim 5.1.11 A.a.s. for every vertex v € V(G), we have frr(v) < 3.9enp.

Proof We may condition on the statements that a.a.s. hold according to Claim 5.1.10.
In particular, all failures of type II happen in Stage I. Moreover, by Claim 5.1.9 we then
have dp(v) < % as long as U, # (), for every v € V. Moreover, by assumption we have
dg,\r(v) < en. Now, in Stage I, a failure of type II happens only if Walker has success
on an edge e which already belongs to Breaker’s graph, i.e. e € F(B), or which is already
claimed at the beginning, i.e. e € E(K, \ Fp). In particular, for every v € V there is a non-

negative integer m < 1.2en such that fr7(v) is dominated by Bin(m,p). Applying Chernoff’s

inequality and union bound, while using that p > %, we obtain that a.a.s. fr7(v) < 3.9enp
for every vertex v € V. O
The last claim completes the proof of Theorem 5.1.4. O

5.2 Creating large graphs with small diameter

The proofs for most of our theorems will make use of Walker’s ability to create a graph of small
diameter covering almost every vertex of V' (K,,) = [n], within a small number of rounds. Her

strategy is given by two main steps which are represented by the following two propositions.

Proposition 5.2.1 For every large enough integer n the following holds. Let b < % be

a positive integer, and let r = ; IE’gZZ i Then, in the b-biased Walker-Breaker game on Ky,
2006

Walker has a strategy to create a tree on ﬁ vertices, of depth at most |r] + 1, within at

most n rounds.

Proposition 5.2.2 For every large enough integer n the following holds. Let b < —5— be

log®(n)
a positive integer, and let r = ; glggf 7 Then, in the b-biased Walker-Breaker game on K,,
2006

Walker has a strategy to create a graph on n — 400b vertices, with diameter at most 2|r| + 6,

within at most Tn rounds.
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Proof of Proposition 5.2.1 Whenever necessary, let us assume that n is large enough.

From the assumption it follows that

1
r=0 _o8n )
loglogn
For simplicity of notation we set ¢; = m Notice that ¢; < i.

The main idea is to create the tree in some kind of breadth first manner, by iteratively

attaching stars of size g5 to the leaves of the current tree.

For a given moment throughout the game, assume that 7' is the tree which Walker created
so far and that Walker’s current position v € V(T') is a leaf of T. Assume further that for
some positive integer s, there are at least (20 + 1)s vertices w € V' \ V(T') such that the edge
vw is free. Then, by attaching a star of size s to v we mean a strategy of creating a star S
of size s with center v within 2s rounds in the following way: As long as the star S did not
reach size s or her current position is not v, Walker proceeds to an untouched vertex w if her
current position is v (thus enlarging S by one edge), or she proceeds to the vertex v if her
current position is a leaf of S. Notice that Walker can easily follow this strategy and create
her star under the given assumption, since Walker needs two rounds to care about one edge

of S, while Breaker in the meantime can claim 2b edges.

In the following we describe a strategy for Walker. Afterwards, as usual, we show that she

can follow that strategy, and while doing so, she creates a tree as required.

Initially set Ly = {vo}, where vy is Walker’s start vertex. We consider vy as the root of
Walker’s tree T'. Initially, V/(T') = Lo = {vo}. Now, Walker plays according to several stages,
where in Stage j she proceeds from a tree of depth j — 1 to a tree of depth j.

Stage 1. In Stage 1, Walker attaches a star of size 555 to the vertex vg. Then she proceeds
with Stage 2.

Stage j (j > 1). At the end of Stage j — 1, let Walker’s tree have depth j — 1, and let L;_;
be its set of leaves. In Stage j, Walker enlarges her tree by attaching stars of size 155 to
@ vertices of L;_1, as long as v(T') < cin. (In case v(T') = cin, Walker stops playing. In

case she reaches the size ¢;n by attaching a smaller star, she just attaches this smaller star.)

To do so, Walker proceeds as follows. Assume that Walker just finished her t*" star of Stage
j with ¢t < @ Then afterwards she identifies a vertex v € Lj_1 not being a center of

one of her stars yet, which has smallest possible Breaker-degree at this moment. Within at
most 25 rounds she walks towards this vertex v by using the edges of her current tree T'; and
afterwards she attaches a star of size 1y to this vertex v. (We will see later that there are

enough free edges to do so.)
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Finally, after Walker attached “:JT_” stars in total (and v(T) < c¢yn still holds), Walker
proceeds to Stage j + 1.

Obviously, if Walker can follow this strategy, then she creates a tree with cin vertices. Thus,
it remains to prove that she can follow her strategy, that in total she plays at most n rounds,

and that the depth of T is as small as required.

For this, let us use the following notation. With T; we denote Walker’s tree at the end of
Stage j, and with L; we denote, as already introduced by the strategy, the set of leaves of
T;j. Moreover, with R; we denote the number of rounds until the end of Stage j (including
all previous stages). The following claim provides us with some useful inequalities for the

analysis of Walker’s strategy.

Claim 5.2.3 Let n be large enough. As long as Walker can follow the strategy, the following
holds.

1. |Lo| = 1 and |Lj| < o555 |Lj—1| for every j. Moreover, |Lj| = o5 |Li—1] if v(Tj) < cin.

2. Ry < 2e(Ty) +2j - v(Tj1) < 5- ()’

Proof For the first part, just observe that, if Walker can follow the strategy, then in Stage

1, she creates a star of size 555, ensuring that |Li1| = 555 Moreover, in Stage j Walker

-1l
5

If v(T}) < cin, she attaches exactly

attaches at most 2=t stars of size 1005 to the vertices of Lj 1, giving |L;| < g5651Lj-1]-

|Zj-1l : n ~ ‘s
= stars of size 1005 to the vertices of L; i, giving

|L;| = m|Lj,1|. In particular, |L;| = (m)J.

The second part of the claim is obtained in the following way. If j = 1, then the statement
is obvious. If j > 1, then, by the first part, we conclude that (ﬁ)j_l = |Lj—1| < n,
when v(Tj—1) < ¢in. Thus, j < [r] +1 = o(logn). Walker’s strategy consists of two dif-
ferent actions. On one hand, she creates stars where for each edge she makes two moves,
since she walks along each edge in both possible directions. On the other hand, after fin-
ishing one star and before starting a new one, she moves along the edges of her current
tree to a vertex, which she determined right after the first of the two stars was finished.
In Stage j, such a step takes her at most 2j = o(logn) moves (repeated edges), as the
depth of Walker’s tree is bounded from above by j. Thus, we can bound R; from above by
2e(Tj)+2j-v(Tj—1), since U(TJ 1) is an upper bound on the number of star attachments. Now,
we have v(Tj_1) = 3272 (2661;) <2- (QOOb)jf and e(7T;) < v(Tj) < 2- (200b) . Therefore,

for large n,

R; < 2e(Ty) +2j - 0(Tj-1) < 4- (ﬁ)j 4 (ﬁ)ﬂ <5 (ﬁ)j’



5.2. CREATING LARGE GRAPHS WITH SMALL DIAMETER 107

where in the last inequality we used the fact that 555 = Q(logn) and j = o(logn). O
Claim 5.2.4 Let n be large enough. Immediately before Walker starts building a star with

center verter v, we have dg(v) < %.

Proof When Walker starts her first star at vy, there are no Breaker edges at all. Therefore,
for v = vg the statement is obvious, and we can consider to look at Stage j, for some j > 1.
Let v € Lj_1 be a vertex at which Walker wants to attach a star, according to the proposed
strategy. That is, v(T) < cin still holds, and Claim 5.2.3 can be applied. Then, before
starting the star, v belongs to a set of at least @ vertices of L;_; that still have degree 1
in Walker’s graph. Since we played at most R; rounds so far, Breaker claims at most b - R;
edges, which implies that the average Breaker-degree of all these at least @ vertices, is

bounded from above by

\zf_ﬁ;2 < 200+ (2(;lOb)j / (2(;6b)j_1 =0.1n,

where the first inequality follows from Claim 5.2.3. Since Walker, by following the strategy,

chooses the vertex v such that its Breaker-degree is minimal, we obtain dg(v) < 0.1n at
the moment when Walker considers v for attaching a star. She may walk to v within in the
following 2j rounds, but even then, dg(v) < 0.1n + 2jb < 0.2n holds, at the moment when
Walker starts to attach a star at v. O

With the previous claims in hand, we can finish our proof. As long as Walker can follow
the strategy, all the previous statements hold. At the same time these statements ensure
that Walker can always continue as long as her tree 7" has at most cin vertices. Indeed,
when Walker aims to attach the next star to some vertex v, then the number of vertices

w € V\ V(T) with vw being free is at least

VA V(T)| —dp(v) > (1 —e1)n—0.2n> (2b+1) - ﬁ

where the first inequality holds be Claim 5.2.4 and since v(T") < ¢jn. By our argument at the
beginning of this proof, we know that this is enough to guarantee that Walker can attach a
star of size 155, to the vertex v. Thus, as long as v(T') < c1n, Walker can follow the strategy.
When she finishes her tree of size cin during Stage j, then (ﬁ)j_l = |Lj—1| < n. Hence,
her final tree has depth j < [r]|+1. Moreover, the total number of rounds can be bounded as
follows. For the attachment of the stars, Walker needs at most 2¢in rounds, since she walks
along each edge twice, which she claims during an attachment. Between two consecutive star
attachments, she identifies a new vertex to be the center of her new star. As her stars have

size 1555 (besides the star in Stage 1), she makes less than 2000 star attachments in total; and
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between each two of them she reuses at most 2(|r| + 1) edges. So, in total she plays at most

2cin +200b - 2([r] + 1) < § 4+ o(n) < n rounds. 0

Proof of Proposition 5.2.2 Set co = 2|r] +2 and ¢; = 02_1. We first give a simple strategy
for Walker and then we prove that this strategy helps to reach her desired goal. The main
idea is to create a graph of diameter at most cy + 4 by attaching stars to the tree from the
previous proposition. Whenever necessary, assume n to be large enough. After Walker’s move
in round t, let Uy be the set of vertices not touched. Walker’s strategy is as follows.

Stage I. Within at most n rounds, Walker creates a tree 17 on cin vertices, of depth at most

ca
5 -

Stage II. From now on, T} is fixed as the tree which Walker occupies at the end of Stage I.
Throughout Stage I, Walker maintains a tree 75 of depth at most % + 1, by attaching large
stars to the vertices of T1. Assume Walker already attached i —1 such stars, and now she plays
according to Stage II for the ¢*® time. Let V; be the set of vertices that are not contained in her
tree so far. If |V;| < 50c2b, or if there is no vertex z; € V(1) with dp(z;, Vi) > 0, then Walker
proceeds to Stage III. Otherwise she fixes an arbitrary vertex z; € V(T1) with dp(z;, V;) > 0,
which minimizes dp(z;, V;). Then, in the following at most cz2 + 2 rounds, Walker walks to
z; using the edges of her current tree. Afterwards, as long as possible, Walker creates a star
with center z; and leaves in V;. That is, as long as possible, she claims a free edge between z;
and V; in every second round (by alternately walking between z; and distinct vertices from
V;). When this is no longer possible, she stops focusing on z;, i.e. she does not attach any

further edges to z;, and then she repeats Stage II.

Stage III. From now on, 75 is fixed as the tree which Walker occupies at the end of Stage II.
At the beginning of Stage III, Walker walks to a vertex zy € V(T2) with dp(zp) > 110—1”, within
at most cg +2 rounds. (That she can do so will be proven later.) Then, throughout Stage III,
Walker maintains a tree 73 of depth at most % + 2, by attaching large stars to the vertices
of V(T3). Assume that Walker already attached ¢ — 1 such stars, and her current position is
zi—1, for some ¢ > 1. Let W; be the set of vertices that have not been visited by Walker so
far. If |W;| < 400b, then Walker stops playing. Otherwise, she continues to attach stars to
her current tree. For this, she identifies a vertex z; € V(T3) such that (i) z;_1z; is a free edge,
(ii) dp(z;) > 2 and (iii) dp(z) < 112b. She immediately walks to z; using the edge z;_12z;.
Afterwards, Walker creates a star of size W

W;. She then repeats this process. That is, if more than 400b vertices are still untouched,

— 1 with center z; and with leaves in

Walker attaches another star to a vertex z;y1, as described above.

Obviously, if Walker can follow the strategy above until for some 4, |W;| < 4000 holds, then

she creates a graph of required size and diameter. So, it remains to prove that she can indeed
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follow the strategy until |IW;| < 4000 happens, and that it takes her at most 7n rounds.
Stage I. This part is already given by Proposition 5.2.1.

Stage II. Before we show that Walker can follow this part of her strategy, let us first prove

some useful claims.

Claim 5.2.5 Let n be large enough. Assume that Walker can follow the strategy of Stage II.
Then, as long as i < 5%, we have that dp(z;, V;) < 20c2b at the moment when Walker starts

to attach a star at the identified vertex z;.

Proof As long as i < %%, less than 4n rounds were played. Indeed, Walker’s moves can be
distinguished as before. Stage I lasts at most n rounds. In Stage II, when Walker claims a free
edge (during some star creation), she walks along this edge in both directions. Otherwise, after
she identified a vertex for a new star attachment, she proceeds to this vertex by repeating at
most co+2 edges of her tree T7. Thus, in total we have at most n+2n+i(co+2) < 4n rounds.
It follows, when Walker identifies z;, we have e(B) < 4bn and |V (T1) \ {21,...,zi-1} > F".
Thus, at this moment, the Breaker-degree of z; is at most
2e(B) < 8nb
V() \{z1,...,2i-1} — caan/2

= 1662[),

as Walker chooses z; with minimal degree. After Walker identified z; for her i*" repetition
of Stage II, she needs at most co + 2 rounds to ensure that z; is her new position, as her
tree has diameter at most co + 2. So, when she starts creating the mentioned star, we have
dp(zi, Vi) < 16¢2b + (c2 4+ 2)b < 20c2b. O

Claim 5.2.6 Let n be large enough. Assume that Walker can follow the strategy of Stage II.
Then, as long as i < " and |V;| > 50ceb, we have that |Viy1| < <1 - ﬁ) Vi

Proof When Walker starts creating the star with center z;, there are at least |V;| —dp(z;, V)
vertices in V; that Walker can walk to starting from z;. As, during her star attachment, she
claims one edge within two rounds, while Breaker claims 2b edges, Walker can create a star

with center z; of size at least W — 1. By Claim 5.2.5, this yields

Vil = dp(2i, Vi) ) 2b 20cob ( ) )
—1) < 5—/=1Vi 1< (1- 25 v,
2b+1 _Qb+1|v|+2b+1+ = 1+2 Vil

by the assumption on |Vj]. O

Vil < Vil = (

Claim 5.2.7 Let n be large enough. Assume that Walker can follow the strategy of Stage II.
Then, there is a positive integer t < 5% such that |[V3| < 50cab.
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Proof As long as |V;| > 50c2b, the previous claim tells us that
i1 ,
50cob < |Vi| < <1 - ﬁ) Vicq] <... < (1 - ﬁ) n < e—(i=D/(4+2),,
Since 4" = Q(log(n) loglog(n)), it follows that i < <5*. O

Obviously, Walker can follow the strategy of Stage II. Now, by the previous claims we also
see that she can do so until at most 50c2b vertices do not belong to her tree. Indeed, as long

as the number of untouched vertices is more than 50cyb, their amount decreases by at least a

factor (1 — @) with each star attachment, by Claim 5.2.6, which by the previous claim can
happen less than @ times. Moreover, as Walker is done with Stage II after she attached at

cin
2

at most 4n rounds until she proceeds with Stage III.

most stars to her tree T7, we conclude (as in the proof of Claim 5.2.5) that Walker plays

Stage III. When Walker enters Stage III, we have v(T») > n — 50ceb, while at most 4n
rounds were played so far. Now, similarly to the discussion of Stage II, one verifies the

following claims.

Claim 5.2.8 Let n be large enough. As long as i < % and |[W;| > 400b, Walker can always
identify a vertex z;, as described by her strategy in Stage III.

Proof At the beginning of Stage III, less than 4n rounds were played. The number of vertices

in K, of free-degree less than 110—1” — 1 is at most
2(e(B) +e(W)) _ 2(4bn + 4n)
< = pu— T .
n/11L = n/ll oln) = o(u(T2))

Thus, there exists a vertex zo € V(T») such that dp(z9) > 2%, Walker then spends at most
¢ + 2 rounds to reach zg from the position which she has at the end of Stage II. Hence, at

the time when Walker visits 2o, we must have dp(z0) > 12 — (c2 +2)(b+1) > 2.

n
4

most 4n+ (ca+2)+i+2n < 7n rounds were played. Indeed, until the end of Stage II the game

Let us consider now the remaining vertices z; with i < %. As long as i < 7%, we see that at
lasts at most 4n rounds, we may need c2 + 2 rounds to reach the vertex zp at the beginning
of Stage III, for each new identification of a vertex z; Walker chooses the edge z;_1z;, and
the star attachments last in total at most 2n rounds. Thus, right before Walker’s move from
zi—1 to z;, we must have e(B) < 7bn and e(W) < 7n. Now, let
In
X={veV(T)\{z,...,zi-1}: dr(v) > 1—0}
The number of vertices in K, of free-degree at most %L — 1 is at most
2(e(B) +e(W))
n/10

2(7bn + n)
n/10

<

= o(n).
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Thus, |X| > [V(T2) \ {z1,...,2zi-1}| —o(n) > 3.

Moreover, by the choice of z;_1 and the size of the star attached to z;_1, we obtain

In ‘Wi—l‘ — dB(Zz'—la Wi—l) In 8n
dp(zi 1) > 2 (2 +1) - >0 w22
F(zim1) 2 35 — (2b+1) 2+ 1 =19 ~ Wil >3

as |W;| < 50czb. Hence dp(zi—1,X) > §. Furthermore, since e(B) < 7bn, at most g vertices
in X have Breaker-degree larger than 112b. It follows that there is a vertex z; € X such that
zi—1%; is a free edge and dp(z;) < 112b. O

Claim 5.2.9 Let n be large enough. Assume that Walker can follow the strategy of Stage II1.
Then, as long as i < % and |W;| > 4000, we have that [W;i1| < (1 - ﬁ) |Wil.

Proof Analogously to Claim 5.2.7, we obtain

(Wil —dp(2i, Wi) 1) <2

. < |
Wisa| < [Wil ( 20+ 1 =~ 2%+1

1
7 < 1-— il
v ’+60—< 4b+2>‘” |

by the assumption on |W;| and since dp(z;, W;) < 112b before Walker starts to attach the

star at z;. a

Claim 5.2.10 Letn be large enough. Assume that Walker can follow the strategy of Stage II1.
Then, there is a positive integer t <% such that |W;| < 400b.

Proof As long as |IW;| > 4000, the previous claim tells us that
i—1 .
4006 < Wil < (1= g8 ) Wit < . < (1= ghg) - 50eab < 070/ 50cyy,

As % = Q(log? n), it follows that ¢ < 2. O

By the last claims, we now conclude that Walker can follow the strategy of Stage III until her
graph touches all vertices but at most 400b. Moreover, she needs to attach at most 7 stars
during Stage III until she finishes her graph. In total, she needs at most 7n rounds, as already
discussed in the proof of Claim 5.2.8. Moreover, her final graph obviously has diameter at

most ¢ +4 = 2[r| +6. O

5.3 Occupying a long cycle

5.3.1 The unbiased game

In the following we prove Theorem 1.4.2.
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We start with Breaker’s part. Assuming he plays as first player, his strategy is as follows.
At the beginning of the game, he fixes a vertex w; which is not the start vertex vy of Walker.
As long as Walker has a component of size less than n — 2, Breaker’s strategy is to claim
the edge between w; and Walker’s current position. In case this edge is not free, he claims
another arbitrary edge. Note that this in particular means that Breaker’s first edge is vgwn,
and inductively Walker has no chance to make w; to become her next position, as long as her

graph is a component of size smaller than n — 2.

If Walker does not manage to create a component of size n — 2, then there will not be a
cycle of length n — 2, and we are done. So, we can assume that there is a point in the game
where Walker’s component K reaches size n — 2, with v/ being the last vertex added to it.
Let w2 be the other vertex besides w; which does not belong to K, and note that the only
free edges incident with wy are wjws and wyv’. From now on, Breaker always claims the edge
between wy and the current position of Walker, starting with v’ws. If again this edge is not

free, Breaker claims another arbitrary edge.

Now the following is easy to see. Walker will never visit the vertex wy. In particular, she
never claims the edge wywsy, which guarantees dyy (w1) < 1 and dy (wz) = 0 throughout the
game. That is, both vertices w; and wo will not participate in a cycle of Walker, and thus

Breaker prevents cycles of length larger than n — 2.

So, from now on let us focus on Walker’s part, and let us assume that Breaker is the first
player. We start with the following useful lemma, which roughly says that in case Walker
manages to create a large cycle that touches almost every vertex, while certain properties on
the distribution of Breaker’s edges hold, Walker has a strategy to create an even larger cycle

within a small number of rounds.

Lemma 5.3.1 Let n be large enough. Assume a Walker-Breaker game is in progress, where
Walker already claims a cycle C with n — 125 < v(C) < n — 3, and with her current position
being a vertex x € V(C). Assume further that Breaker claims at most 2n edges so far, and
that there is at most one vertex y € V(K,) \ V(C) with dg(y,V(C)) > {5. Then Walker has
a strategy to create a cycle C', with V(C) C V(C") and V(C") # V(C), within at most 25

further rounds.

Proof In the next rounds, Walker goes along the edges of C' in an arbitrary direction, i.e. she
repeats edges that she already claimed in earlier rounds, until she reaches a vertex v € V(C)
with dp(v) < {5. For large n, this will take her at most 21 rounds, as e(B) < 2n + O(1).
Once she reached such a vertex, Walker fixes two vertices vy, v € V(K,) \ V(C) such that
dp(vi,C) < &+ 21. It follows that dg(vi,C) +dp(ve, C) +dp(v,C) < 3% +42 and so, by the
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pigeonhole principle, there exist three consecutive vertices wy, we, w3 on the cycle C such that
neither of the edges between {w1, we, w3} and {v, v, v2} is claimed by Breaker. Walker’s next
move then is to proceed from v to wy. W.l.o.g. we can assume that Breaker in the following
move does not claim any of the edges w;v; with j € [3]. Otherwise, we just interchange the
vertices v1 and ve. Walker as next proceeds from ws to v, and in the following round she

closes a cycle of length v(C') 4+ 1 by proceeding to one of the vertices in {wi,ws}. O

With the above lemma in hand, we now can describe a strategy for Walker to create a cycle
of length n — 2, for which we show later that she can always follow it, provided n is large
enough. Let vy be the start vertex of Walker. After Walker’s move in round ¢, let U; be the
set of vertices not touched by Walker so far, and let vy denote her current position. We split

Walker’s strategy into the following stages.

Stage I. Let Walker’s (¢ + 1)5* move be in Stage I. Assume that Walker’s graph is a path

P, = (vo,v1,...,01).

Ia. If |U:| < 120, then Walker proceeds with Stage III.

Ib. If |Uy| > 120 and vvg is a free edge, then Walker takes this edge, closing a cycle, and
sets vy+1 := vp, and £ :=t. She proceeds with Stage II then.

Ic. If |Uy] > 120 and vvg is not free, Walker claims an arbitrary free edge vyw with w € Uy,

and sets v¢11 := w. She then repeats Stage I.

Stage II. Let Walker’s (¢ + 1) move be in Stage II. Assume that Walker’s graph is a cycle
C = (vg,v1,...,vp) of length £+ 1, attached to a (maybe empty) path P, = (vpy1,ve12,.-.,0¢)
with vy11 = v, and with v; being the current position of Walker. Moreover, with x denote

the number of past rounds in which Walker followed Case II.c.1. We set

E

Vi = {’UEUtZ dB(U,V\Ut) > 1}

—_

Moreover, in order to keep control on the distribution of Breaker’s edges after each move of
Walker in Stage II, we say that Property P[t+1, z, 4] is maintained if the following inequalities
hold.

ep(Upy1) <3z +4+1
Property Plt + 1,4 : { dp(vis1, Ur) + eg(Uir) = ep(Up) < 3z + 5+
eg({vi,ve}, Uptr1) < 2(3z + 5+ 7).

Now, Walker considers the following subcases:
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ITa. If |U;| < 120, then Walker proceeds with Stage IV.

ITb. If |U| > 120, and V; = (), Walker claims an edge v;w with w € Uy, and sets v41 := w and
U+1 := Uy \ {w}, in such a way that immediately after her move Property Pt + 1, z,0]
holds. (The precise details of how to choose this edge are given later.) Walker in the

next round repeats Stage II.
ITc. If |Uy| > 120, and if V; # (), Walker considers two subcases:

IIc.1. If there is a free edge v;w with w € Vi, Walker then claims such an edge. She
sets vipq = w and Upyq = U \ {w} (and thus w ¢ Vi41), and she increases z
by one. Moreover, she chooses w in such a way that immediately after her move,
P[t+1,z,—1] holds with the new value of z. (The precise details are given later.)
Then she repeats Stage II.

IIc.2. Otherwise, Walker proceeds with a free edge vyw with w € U; such that wz is free
for every z € V4. She sets vyy1 := w and Uy := U \ {w}. Moreover, she ensures
that immediately after her move Property P[t+ 1, z,1] holds. (The precise details
are given later.) She then repeats Stage II.

Stage III. Let Walker’s (¢ + 1) move be in Stage III, and let Walker’s graph be a path
(vo,v1,...,v). Since |Uy| < 120, we have t > n — 121. Walker then claims an arbitrary free
edge vyv; with 0 < ¢ < 4, thus creating a cycle of length at least n — 125. Then she proceeds
with Stage V.

Stage IV. Let U be the set of untouched vertices, and |[U| < 120, when Walker enters
Stage IV. Within two rounds Walker creates a cycle of length at least n — 120, which covers
every vertex that was visited by Walker so far. Then she proceeds with Stage V.

Stage V. When Walker enters Stage V her graph contains a cycle of length at least n — 125.
She finally creates a cycle of length n — 2 by repeatedly applying the strategy given by
Lemma 5.3.1.

It is obvious that if Walker can follow the proposed strategy, she will create a cycle of length
n — 2. It thus remains to convince ourselves that, for large enough n, she can indeed do so.

We consider all stages and substages separately.

Stage 1. Before discussing Stage I, let us observe the following.

Observation 5.3.2 Assume that Walker did not leave Stage I before the (t + 1)t round.

tth

Then immediately after her t'™ move her graph is a path P, = (vg,v1,...,v;) such that all but

at most 2 Breaker edges do not belong to E(vo, V(F;)).
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Proof Walker does not leave Stage I, as long as she always plays according to Case Ic. Since in
this stage she always proceeds from her current vertex to an untouched vertex, it is obvious
that her graph is a path. Moreover, after round ¢, Breaker claims ¢ edges in total. Since
Walker never followed Case Ib in an earlier round, Breaker needs to claim vov; € E(vo, V(%))

for every i € {2,...,t —1}. O

It thus follows that, whenever Walker considers to play according to Stage I, her graph
is a path, i.e. the assumption of Stage I is satisfied. There is nothing to prove in case
Walker considers Case la or Case Ib. Moreover, she can follow Case Ic easily, since, by
Observation 5.3.2 and by the assumption of Case Ic, before her (¢t + 1) move, we have
ep(v, Up) <3 <120 < |Uyl.

Stage II. When Walker considers playing to Stage II, her previous move was in Stage I
or Stage II. Since she only enters Stage II after closing a cycle in Stage Ib, and since in
Stage II she always proceeds to a vertex from the set of untouched vertices, starting from
Vg, it is obvious that her graph has the shape as described at the beginning of the strategy
description for Stage II.

Moreover, after a move in Stage II in round ¢t + 1, we have Uy = Upy1U{vi11} and thus

dp(vi41,Uir1) + eg(Uis1) = ep(Uy) is guaranteed immediately.

To show that Walker can follow Stage II always, one may proceed by induction on the number

of rounds in that stage.

Assume first that the (¢ + 1) round is the first round in Stage II. Then, Walker played
according to Case Ib in round ¢ and in all the rounds before, she followed Case Ic. In
particular, z = 0. Immediately before Walker’s (¢ + 1)5* move, by Observation 5.3.2, Breaker
has at most 4 edges that do not belong to E(vg, V(C)), where C is Walker’s cycle at the end
of Stage I. In particular V; = (). We have |U;| > 120, as Walker entered Stage II after Stage
Ib, and therefore, Walker wants to follow Stage IIb. By our observation on the distribution
of Breaker’s edges, Walker can do so, as she can easily find a vertex w € U; such that
viw is free. Moreover P[t + 1,z,0] holds then with v,y; := w and Uy = Uy \ {w}, as
ep(Uitr1) < ep(Uy) <4 and ep({vi,ve}, Upy1) < 4.

Assume then that the (t+1)%* round happens in Stage II, but after the first round of Stage II,
and assume that so far Walker could follow the strategy. To show that Walker can still follow
the strategy, we discuss the different cases separately. In case Walker follows Case Ila, there
is nothing to prove. Before discussing the other parts of Stage II, we observe the following

upper bound on x and the size of V;.
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Observation 5.3.3 Let n be large enough. Assume Walker considers to play according to
Stage II for her (t + 1)t move, after she followed the strateqy for the first t rounds. Then
x, |V¢| < 11.

Proof The value of = increases by one each time when Walker follows Stage Ilc.1, where she
enlarges her graph by a vertex of Breaker-degree at least 77. If we had x > 12, then Breaker
would have more than n edges claimed already, also if |V;| > 12. However, since Walker’s

graph contains only one cycle, we played at most n rounds, a contradiction. O

Case ITb. Now, let us focus on Case IIb first and assume that so far, before this (¢ + 1)t
move, Walker could always follow the proposed strategy. Then in round ¢, Walker played
according to IIb or Ilc.

Assume first that Walker played according to Case IIb in round ¢. So, we know that before
Breaker’s (¢ + 1) move, Property P[t,x,0] was true, where x < 11.

If Breaker in his last move did not make any of the inequalities of Property P[t,z,0] invalid,
then Walker takes w € U arbitrarily with wvsw being free.  This is possible, as
dp(v,Up) < 3x+5 < 38 < |Uy], and it also guarantees Property P[t + 1,x,0] immedi-
ately after Walker’s move. Otherwise, Breaker makes at least one inequality of Property

Plt,z,0] invalid. There are three cases to consider, which we discuss in the following.

Case 1. If Breaker with his (¢ + 1)** move achieved that ep(U;) = 3z + 5, then in this
move he claimed an edge in U;. So, we then obtain that dp(vi,Uy) + ep(Uy) < 3z + 6
and thus dp(vy, Uy) < 1, and that eg({v1,v¢},Uy) < 2(3x + 5). Now, Walker finds a vertex
w € Uy with vaw being free such that dg(w,U;) > 1. Walker claims such an edge, setting
vey1 = w, and then P[t + 1,,0] holds, since ep(Upy1) = ep(U) — dp(w,U;) < 3z + 4,
dp(vi41,Uir1) + ep(Uis1) < 3z + 5, and ep({v1,ve}, Uir1) < ep({v1,ve}, Up) < 2(3z +5).

Case 2. If after Breaker’s (¢t + 1) move eg(U;) < 3x + 4 still holds, but we have
dp(v, Up)+ep(Us) = 3246, then we know that Breaker claimed an edge in U;U{v;}. Moreover,
dp(v,Uy) < 3z +6 < 39 < |Uy] and ep({vi,ve},U) < 2(3z + 5). Walker then takes
w € U arbitrarily with v;w being free. After Walker’s move we then obtain Property
P[t + 1,,0], since then dp(vit1,Uit1) + ep(Uir1) = ep(Uy) < 3z + 4, and we also have
eg({v1,ve}, Upr1) < ep({v1, v}, U) < 2(3x 4 5).

Case 3. If the first two inequalities of Property P[t,z,0] still hold after Breaker’s (¢ + 1)t
move, but eg({vi,ve}, Ur) = 2(3z+5) + 1, then Breaker in his move claimed an edge between
{v1,v¢} and U;. Then there are at least 3z + 6 vertices w € U; with dg(w, {v1,ve}) > 1, and
for at least one such vertex w Walker can claim the edge v,w, as dp (v, Uy) < 3x+5. As before,

Property P[t + 1, z,0] is guaranteed to hold, as then we obtain eg(Uit1) < ep(U) < 3z + 4,
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and eg({vi,ve}, Upr1) = eg({v1,ve}, Uy) — dp(w, {v1,ve}) < 2(3z + 5).

Finally, assume that Walker played according to Case Ilc in the ™

round, and thus, before
her t*" move, we had V;_; # (). Then Walker played according to Ilc.1 in round ¢, since
otherwise we had V; D V;_; # 0, in contradiction to considering Case IIb for round ¢ + 1.
In particular, the value of z was increased in the ¢ round, so that z > 1, and immediately
after Walker’s " move, we had Property P[t,z,—1]. Independent of Breaker’s (¢t + 1)
move, Walker just takes some vertex w € U; with v,w being free, which she can do since
dp(v, Up) < (3x +4) + 1 < |Uy|. After proceeding as proposed, P[t + 1,z,0] then holds, as

ep(Uir1) <ep(Uy) < (3z+3)+1 =3x+4, and eg({v1, v}, Upr1) < 2Bz +4)+1 < 2(3z+5).

Stage IIc. Now, let us focus on Case Ilc, and assume first that in round ¢+ 1 Walker wants to
play according to Case Ilc.1. By the assumption of Case Ilc.1, Walker can claim the edge v,w
easily. Now, let « be given after the update of Stage II.c.1 in round ¢+ 1. Then, after Walker’s
move in round ¢ we had Property P[t,z — 1,1], independent of whether round ¢ was played
in Stage IIb, Ilc.1 or Ilc.2. Thus, no matter how Breaker chooses his (t + 1) edge, and how
Walker chooses w above, Property P[t+ 1, x,—1] is maintained immediately after Walker sets
vir1 = w, Upyr = U \{w}. Indeed, we obtain eg(Uit1) < ep(Us) < 3(x—1)+5)+1 = 3x+3,
and eg({vi,ve}, Upy1) < ep({vi,ve},Up) <2(3(x — 1) +6) +1 < 2(3z + 4).

So, it remains to consider the case when Walker plays according to Stage Ilc.2 for round ¢+ 1.
Then, after Walker’s move in round ¢ we had Property P[t, x,1], with i € {—1,0,1} depending
on whether round ¢ was played in Stage Ilc.1, IIb or Ilc.2, respectively. In any case this gives

Property P[t,x,1]. Using x,|V;| < 11, we know that after Breaker’s (¢ + 1)** move we have

> dp(0,Uy) + dp(vy, Uy) < 2ep(Uy) + dp(vr, Uy)
veVy

< 2(ep(Uy) + dp(v, Up)) < 2((3z + 6) + 1) < 80 < |U; \ VAl.

That is, Walker can choose a vertex w as described in the strategy. In case Walker followed
Case IIb or Ilc.1 in round ¢, in which case we even had Property P[t,z,0] immediately after
Walker’s ¢ move, it can be seen easily that immediately after her (¢ 4 1)' move, we obtain
P[t+1,x,1]. So, assume Walker followed Case IIc.2 in round ¢. Then in round ¢ Walker chose
vy € Uy \ Vi in such a way that v,z was free for every z € V;_1 C V;. However, immediately
before her move in round ¢ + 1 no such edge was free anymore, since Walker again follows
Stage IIc.2. That is, in the current round we need to have |V;| = 1 while Breaker in his last
move claimed the unique edge vz with V; = {z}. It follows that immediately after Walker’s
move in round ¢+ 1 we have eg(Uy1) < ep(U;) < 3z +5 and eg({vi,ve}, Ust1) < 2(3z +6),
which implies Property P[t + 1, x,1].

Stage III. When Walker enters Stage I1I in round ¢+ 1, then because she followed Stage Ia in
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the round before. In particular, all the rounds before she played according to Case Ic, and thus,
when she enters Stage III, her graph is a path P, = (vo,...,v) with n —v(FP;) = |U;| < 120,
while Breaker claims all the edges vgv; with 2 < ¢ <t — 1. In particular, there has to be a
free edge v;v; with 0 < j < 4, and Walker thus can follow the strategy and close a large cycle,

which misses at most 125 vertices.

Stage IV. Say that Walker enters Stage IV in round ¢ + 1. Then her graph is a cycle
C = (vg,v1,...,v) attached to a path P, = (vpi1,vepo,...,v¢) with vy = vg, and with v,
being her current position. As she played according to Stage IT in the ' round, we know that
immediately after her previous move Property P[t, z, 1] was true. In her first move in Stage IV,
Walker proceeds to a vertex w € U; such that wvq, wv, and wuv, are free, which is possible as
after Breaker’s (t + 1) move we have > jefion dB(v;,Ur) <33z +6) +1 < 118 < [Uy]. In

her second move, she then either claims wv; or wvy, thus creating a cycle on V' \ Upy;.

Stage V. When Walker enters Stage V, her graph contains a cycle Cy of length at least
n — 125, while less than n rounds were played so far. We further observe in the following that
outside the cycle there can be at most one vertex which has a large Breaker-degree towards

the cycle.

Observation 5.3.4 When Walker enters Stage V' there is at most one vertex w € V' \ V(Cp)
such that dg(w,V(Co)) > 17 + 50.

Proof There are two possible ways that Walker enters Stage V.

The first way is that she played according to Stage III before, which she entered because
of Stage Ia. That is, Walker created a path until n — 120 vertices were touched, while in
the meantime Breaker always blocked cycles by claiming edges that are incident with vg. It

follows then that vy is the only vertex which can have a Breaker-degree of size at least 17 +50.

The second way to enter Stage V is to play according to Stage Ila, until the number of
untouched vertices drops down to 120, and then to reach Stage V through Stage IV. Assume
in this case that there were two vertices wy, ws € V'\ V(Cp) such that dg(w;, V(Co)) > 17 +50
for both i € [2], when Walker enters Stage V. It follows then that in all the 20 rounds ¢ before
entering Stage IV both vertices were elements of the corresponding set V;, as the degree
dp(w;, V\U) can be increased by at most by 2 in each round. (Breaker may increase this value
by one by claiming an edge incident with w;, and Walker may increase this value by decreasing
the set U; of untouched vertices.) That is, Walker always would have played according to
Stage Ilc in all these rounds. When she played according to Stage Ilc.1, she walked to a
vertex belonging to V4, which then in Stage IV became part of her cycle. Otherwise, when

Walker played according to Ilc.2, then she proceeded to a vertex w such that ww; and wws
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were free. Since not both of these edges could be claimed by Breaker in the following round,
Walker followed Stage Ilc.1 afterwards; but as she did not proceed to wi or ws, there must

have been another vertex in the current set V; considered for enlarging her path. However,

n

as at most 11 vertices may reach a Breaker-degree of at least {7,

it can happen at most 9
times that Walker chooses a vertex from V; different from w; and ws for enlarging the path.
Thus, there must have been a round in Stage Ilc.1 where Walker would have chosen w; to be
her next position, for some i € [2]. In Stage IV this vertex w; would have become a part of

Walker’s cycle, in contradiction to the assumption that w; ¢ V(Cy). O

Now, with this observation in hand, the proof is clear. As long as Walker does not have
a cycle of length n — 2, Walker creates larger cycles C1,Cy, ..., with V(C;) C V(Ciy1), by
applying Lemma 5.3.1 iteratively. As v(Cp) > n — 125 at the beginning of Stage V, and
as by Lemma 5.3.1 it takes at most 25 rounds to maintain a larger cycle, Stage V will last
less than 4000 rounds, until either Walker reaches a cycle of length n — 2, or Walker cannot
follow her strategy anymore. It follows, by Observation 5.3.4 and since n is large, that
throughout Stage V, there is always at most one vertex outside Walker’s current cycle C;j
with Breaker-degree at least {5 towards this cycle. Moreover, as we played at most n rounds
before entering Stage IV, we also have e(B) < 2n throughout Stage V, for large n. Thus,
throughout Stage V the conditions of Lemma 5.3.1 are always fulfilled, and therefore Walker
can follow the proposed strategy until she reaches a cycle C; with v(C;) > n — 2. O

5.3.2 The biased game

In the following we give a proof for Theorem 1.4.1.

First of all, observe that Breaker can prevent any cycle of length larger than n — b. Indeed,
assume that Walker starts the game, then immediately after her first move, Breaker fixes
b untouched vertices uy,...,up. From that point on, he always claims the edges between
uy,...,up and Walker’s current position (in case they are still free). It follows then that
Walker never visits the vertices u1, ..., u; and thus, she cannot create a cycle of length larger

than n — b.

log(n)-logloglog(n) and
n

Now, for Walker’s part, let 0 < ¢ < 0.1. Let b <

n J—
o2 () let p =

¢y = 2|r] + 6 where r = lolo(gjg)l). Moreover, observe that r = O(log)i(g()n))' In the following

we explain how Walker can guarantee to create a cycle of length n — O(b), provided n is large

enough. Walker first builds a graph G’ = (V', E’) on n — 400b vertices of diameter at most

co within at most 7n rounds. This she can do according to Proposition 5.2.2. Immediately

afterwards, look at the induced graph (WU B)[V']. Since the number of edges in this graph is
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at most (b+1)-7n < 14bn, V' contains a subset V* of size N := n— (4004 2)b = n(1—o(1))
such that the induced graph (W U B)[V*] has maximum degree less than . If we write F”
for the complement of (WU B)[V*] over V*, i.e. F' is the graph of free edges on V*, then the
assumptions of Theorem 5.1.4 hold. That is, §(F") > (1—¢)N, as dp(v) > N-5 > (1—¢)N
for every v € V', for large enough n. Moreover, Walker claims a graph W, = G’ such that
between each two vertices of V* there is a path of length at most co. Now p > %

and = w( > b. Moreover, the property P of containing a Hamilton cycle is

30(C2e+1)P logg(n) )
(p, 4¢)-resilient, as follows from Theorem 5.1.1 (applied with N instead of n). Thus, applying
Theorem 5.1.4, we conclude that Walker has a strategy to continue the game in such a way
that she creates a Hamilton cycle on V*, i.e. a cycle of length N = n — O(b), provided n is

large enough. O

5.4 Creating fixed graphs of constant size

With a slight modification of the proof of Theorem 1.4.1, we now can prove Theorem 1.4.4.

2ma(G)
me (G) -1

Let G be given. Let co = 2| |+ 6 and let v > 0 and C' > 1 be given according to

1
Theorem 5.1.2. Finally, set cyy = 2.21/7,12((;) and let b = cpyynm2(9) .

400(co+1)
In a first step, according to Proposition 5.2.2, Walker in the first 7n rounds creates a graph
G' = (V',E") C K,, on n—400b vertices with diameter at most cy. Just notice that, for large
enough n, this proposition tells us that she can ensure a diameter of size at most 2|r| + 6,
log(i) < 2m2(Gj . Immediately after Walker occupied G’, consider the induced
10g(200b) ma(G)—1
graph (W U B)[V’] which has at most 7(b+ 1)n < 14bn edges. Then V' contains a subset V*
of size N := § such that the induced graph (W U B)[V*] has maximum degree less than 30b.

If we write F’ for the complement of (W U B)[V*] on the vertex set V* then F” is a graph

where r =

on N vertices whose minimum degree is at least N — 300 = (1 — o(1))N. Moreover, Walker
claims a graph Wy = G’ such that between each two vertices in V* there is a path of length
at most co. Let p=CN ) and observe that m > b. Moreover, by Theorem 5.1.2
the property P of containing a copy of G is (p,/2)-resilient (applied with N instead of n).
Thus, by Theorem 5.1.4, has a strategy to continue the game in such a way that she creates

a copy of G on V* (applied with e = v/8). O

5.5 Occupying as many edges as possible

Proof of Theorem 1.4.3 Whenever necessary assume n to be large enough. In the following

we first show that Walker can occupy bJ%l (g) —c1n edges for some ¢; > 0, by giving a strategy
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for Walker; then we show that, playing against an optimally playing Breaker, she cannot

occupy b%(g) — con edges for some constant co > 0.

We start with the lower bound. Thus, in the following we give a strategy for Walker and
afterwards we show that, using this strategy, Walker occupies 174%1(3) — c1n edges for some

c1 > 0. We split the strategy into two stages.

Stage I. Within at most 7n rounds, Walker creates a graph G; = (X, E') on n —400b vertices
with diameter 8. Afterwards, Walker proceeds with Stage II.

Stage II. Let Walker’s t* move be in Stage II, and let v; be Walker’s current position. We

consider three cases.

Case 1. If there is a vertex w € X such that v,w is free, then Walker claims such an edge,

setting vey1 := w. Then she repeats Stage II.

Case 2. If there is no such vertex w € X with v;w being free, but there is a vertex w’ € X
with dp(w') > 500b, then Walker sets X := X \ {v;}, and in her next (at most) 8 moves, she

walks to vertex w’, using the edges of G7. Only afterwards, she repeats Stage II.
Case 3. Otherwise, in all other cases, Walker does an arbitrary move.

It is obvious that Walker can follow the above strategy. Indeed, Stage I is given by Proposi-
tion 5.2.2, and for Stage II there is nothing to prove. So, we only need to show that she will

occupy the required number of edges, when following the proposed strategy. Observe that for

1

b1 (3) rounds

this it is enough to show that Walker repeats only O(n) edges during the first

of the game.

There are three possibilities that Walker repeats edges that she already claimed. In Stage I,
she may repeat edges when creating the graph G1. In Case 2 of Stage II, she repeats at most
8 edges, when she returns to some vertex w’ as described by the strategy. However, Case 2
happens at most n times, as the size of X decreases each time that Walker follows that case.
So, the first two possibilities lead only to O(n) rounds, in which Walker repeats edges. Finally,
in Case 3 of Stage II, Walker may ignore free edges by doing an arbitrary move. However,
when this case happens, we have dp(v) < 500b for every v € X, and dp(v,V(G1)) = 0 for
every v € V(G1) \ X, i.e. at most O(n) edges are still free.

Now, let us continue with the upper bound. W.l.o.g. let Breaker be the second player.
As next we describe a strategy for Breaker and afterwards we prove that, by following this
strategy, Breaker ensures that Walker cannot occupy more than 174%1 (g) — con edges, for some
constant ca > 0. In his strategy, Breaker never repeats edges. Thus, it will be enough to

ensure that throughout the first 174%1(721) rounds of the game, Walker repeats 2(n) edges.
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In order to count the number of rounds in which Walker repeats edges, we define color
assignments on the edges of E(K,,), according to the following rules. Initially, all edges have
no color (and most of them will not receive any). Assume that there is a vertex v whose free-
degree drops to 1, i.e. dp(v) = 1. Then, at this moment, if the unique free edge e incident
with v still has no color, we assign the color green to the edge e. Moreover, a green edge will

be recolored with red, in case either of the players claims it.

Breaker now plays as follows. Assume that Walker’s current position is the vertex v € V(K,,).
Breaker then chooses his b edges iteratively, by considering the following cases for each of his

edges.

Case 1. If dp(v) = 1, then Breaker claims the unique free edge incident with v. (If this edge

is green, we recolor it with red.)

Case 2. If dp(v) # 1 and there is a free edge e without color assignment and v ¢ e, then
Breaker claims an arbitrary such edge. (In case the degree of some vertex drops down to 1,

Breaker updates the color assignments accordingly.)

Case 3. If dp(v) # 1 and all free edges are green or touch v, then Breaker claims a free edge,

where he prefers edges without color assignments to those which are green.

Again, it is obvious that Breaker can follow the strategy, and that, each time he considers
to claim an edge, exactly one of the cases needs to happen. So, we just need to prove that

Walker repeats Q(n) edges. We prove the following claim first.

Claim 5.5.1 Assume that Walker walks along a green edge uw, starting in u and ending in
w, and assume further that there will be at least one further round in the game. Then one of

the following two statements is true:

o In the following round, Walker repeats an edge that she already claimed earlier.

o All free edges are green.

Proof Assume that Walker walks along the green edge e = uw in round ¢t. As e was green,
we know that e was free before Walker’s move. Moreover, the edge e = uw became green
either at the moment when dr(u) = 1 for the first time or at the moment when dp(w) = 1 for
the first time. It cannot happen that the free-degrees of both vertices u and w drop to 1 at
the same time, as this would mean that e = uw was claimed when both free-degrees dropped

down to 1, in contradiction to the fact that e was free.

If e became green, when the free-degree of w dropped to 1, then after Walker’s t** move, we

have dp(w) = 0 and thus, in her next move, she needs to reuse an edge incident with w. So,
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let us assume that e became green, when the free-degree of v dropped to 1. In the previous
round ¢t — 1, Walker then walked from some other vertex z # u towards u. We distinguish

two cases.

Case 1. After Walker’s (t —1)% move we have dp(u) > 1. Then, immediately after that move,
e was not green, as it becomes green when dp(u) drops to 1. However, since by assumption

t™ move, we conclude that Breaker claimed edges incident with u

e is green before Walker’s
in his (t — 1) move. As he does so only in Case 3 of his strategy and only if all uncolored
free edges are incident with u, it follows that after Breaker’s (t — 1)** move all free edges are

green.

Case 2. After Walker’s (t — 1)** move we have dp(u) < 1. Then, according to Breaker’s
strategy (Case 1), he claims the remaining edge incident with u, in case there is any, thus
ensuring dp(u) = 0 before Walker’s " move. But then uw cannot be green immediately

before Walker’s ¢t move, a contradiction. O

Now, let N be the number of edges that receive a color during the game. Obviously, we have
N > [ 5], as every vertex is incident to at least one such edge. Let t* be the the first round,

after which there is no free edge without color assignment.

With ¢ denote the number of green edges claimed by player X until round ¢* (including this
round), and let t} denote the number of green edges claimed by player X after round ¢*. By

the pigeonhole principle at least one of the values ¢, t*vi,, Ly, tjg is of size at least %.

Case 1. ty, > %. By Claim 5.5.1, Walker then repeats at least % — 1 edges, as claiming a
green edge ensures that in the following round she repeats an edge, as long as there exist free

edges without color assignment.

Case 2. t5 > %. There are two cases when Breaker claims green edges during the first t*
rounds. In Case 1 of her strategy, this happens if dp(v) = 1 for the current position v of
Walker. In Case 3 of her strategy, this happens if every free edge is green. As the latter
happens the earliest in round t*, Breaker must claim at least % — b edges according to Case 1
during the first t* — 1 rounds. However, in Case 1 Breaker always claims the unique free
edge incident with Walker’s current position. So, each time when Case 1 happens, Walker

afterwards needs to repeat some edge, and thus she repeats at least % —b—1 edges.

Case 3. t} > % for some X € {B,W}. Then, there need to be at least % rounds after
round ¢*, in which the players claim green edges or repeat edges. (Note that Breaker never
repeats edges according to the strategy.) But then Walker repeats at least (% —2)/2 edges,
by the following claim.
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Claim 5.5.2 For every 1 < i < (% — 2)/2 there is an r € {t* + 2i,t* + 2i + 1} such that

Walker repeats an edge in round r.

Proof Fix i and consider r = t* 4 2i. If Walker repeats an edge in round r, then we are done.
Otherwise, she claims a free edge e = uw, by walking from u to w, and by definition of ¢*,
this edge is green. We will observe first that e became green, at the moment when dp(w) =1
for the first time. Indeed, assume the contrary, i.e. that dp(u) = 1 and that dp(w) > 1
when e became green. If after Walker’s (r — 1)5* move we had dp(u) = 0, then uw would
not be green anymore, a contradiction. If after Walker’s (r — 1) move we had dp(u) = 1,
then according to Case 1 of his strategy, Breaker would have claimed uw in round r — 1, a
contradiction. Otherwise, i.e. we had dr(u) > 2; then after round r — 2 > t*, e = uw was a

free edge without color assignment, a contradiction to the definition of ¢*.

Thus, we know that e became green when dp(w) dropped to 1, and as e = vw is still green
before Walker’s 7" move, we obtain that dp(w) = 1 before Walker’s 7" move. But then
dr(w) = 0 after Walker’s r*" move, and so in round 7 4+ 1 = ¢* + 2i 4 1 she needs to repeat

an edge, when proceeding from w to some other vertex. O

So, in either case Walker needs to repeat (n) edges. O

5.6 Concluding remarks

Creating large subgraphs. In Theorem 1.4.4 we studied (biased) Walker-Breaker games
in which Walker aims to create a copy of some fixed graph of constant size. It also seems
to be interesting to study which large subgraphs Walker can create in the unbiased game on
K,,. As Breaker can prevent Walker from visiting every vertex of K,,, Walker cannot hope to
occupy spanning structures. As shown in Theorem 1.4.2, Walker however can occupy a cycle
of length n — 2, and applying a similar method as in the proof of Theorem 1.4.2, we are also
able to show that Walker can create a path of length n — 2 (i.e. with n — 1 vertices) within
n rounds. We wonder which other graphs (e.g. trees) on n — 1 vertices Walker can create.
Moreover, as already asked by Espig et. al. [17], it seems to be challenging to find the size of
the largest clique that Walker can occupy. Notice that it is not hard to see that the answer
is of order O(log(n)).

When no repetitions are allowed. To make Walker’s life harder, it is natural to study
a variant where she is not allowed to choose edges twice. All the problems discussed in this
chapter can obviously be asked in this setting as well. In particular, we wonder how many

edges Walker can occupy in the (unbiased) Walker-Breaker game on K, under this restriction.
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The answer to this question is of order ©(n?), as is given by the following observation; but

we do not know the precise size.

Observation 5.6.1 Let € > 0. Playing an unbiased Walker-Breaker game on K,, assume

that Walker’s current position is a vertex v with dp(v) > § — 1, and assume further that

at most (%6 — e) n? rounds were played so far. Then Walker can proceed to a vertex w with

vw € E(F) and such that dp(W) > 5.

Proof Let G = B UW be the union of Breaker’s and Walker’s graph. Then the average
degree of G[Np (v, V(K,))] is bounded from above by 2¢(G)/|Np(v, V(K,))| < § — 1. Thus,

there exists a vertex w as we claimed. O
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Zusammenfassung

In dieser Dissertation werden kombinatorische Spiele auf Graphen mit zwei Spielern studiert.
Der erste Spieler beansprucht oder orientiert stets genau eine Kante des gegebenen Graphen

pro Runde, wahrend der zweite Spieler b Kanten wéahlt.

Wir betrachten das ”strict oriented-cycle game”, welches von Bollobas und Szabé definiert
wurde. OMaker und OBreaker orientieren hierbei abwechselnd die Kanten des vollstadndigen
Graphen K,,, wobei OMaker genau dann gewinnt, wenn ein gerichteter Kreis entsteht. Ent-
gegen einer Vermutung von Bollobas und Szabd zeigten wir kiirzlich in einem Projekt mit
Liebenau, dass OBreaker eine Gewinnstrategie besitzt, falls b > n — O(y/n). In dieser Arbeit

verbessern wir diese Schranke und zeigen, dass er sogar gewinnt, wenn b > %n.

Als zweites untersuchen wir das ”tournament game”, welches von Beck motiviert wurde.
Wieder orientieren zwei Spieler, TMaker und TBreaker, abwechselnd die Kanten eines gegebe-
nen Graphen G, wobei TMaker genau dann gewinnt, wenn ihre Kanten eine Kopie eines
gegebenen Turniers T' mit k Ecken induzieren. Wir bestimmen Schwellenwerte fiir den
"bias” b, hinsichtlich der Eigenschaft, dass der erste Spieler eine Gewinnstrategie auf
G = K, besitzt. Falls G ein Zufallsgraph mit n Ecken und Kanten-Wahrscheinlichkeit p

ist, bestimmen wir zudem entsprechende Schwellenwerte fiir die Wahrscheinlichkeit p.

Mit dem "tree embedding game” untersuchen wir schliefSlich ein Spiel, das zu den klassischen
”Maker-Breaker”-Spielen gehdrt, welche unter anderem von Beck, Erdds, Hefetz, Krivelevich,
Stojakovi¢ und Szabé studiert wurden. In diesem Spiel nehmen beide Spieler, Maker und
Breaker, abwechselnd jeweils genau eine Kante von K, ein, wobei Maker das Ziel verfolgt,
mit ihren Kanten eine Kopie eines aufspannenden Baums T zu erzeugen. Wir zeigen, dass sie
dieses Ziel fiir grofle n € N stets in n + 1 Runden erreichen kann, falls der Maximalgrad von
T durch eine Konstante beschrankt ist. Falls T' ein zufélliger aufspannender Baum ist, zeigen

wir zudem, dass sie mit hoher Wahrscheinlichkeit innerhalb von n —1 Runden gewinnen kann.

Schlielich betrachten wir ” Walker-Breaker”-Spiele, in denen Walker und Breaker abwechselnd
Kanten des vollstindigen Graphen K, einnehmen, aber mit der Einschrankung, dass die
Kanten von Walker einen Kantenzug bilden. Bezugnehmend auf Fragen von Espig et. al.
zeigen wir unter anderem, dass der grofite Kreis, den Walker erzeugen kann, die Lange n—©(b)
hat, wobei im Fall b = 1 die genaue Lénge n — 2 ist. Dabei verwenden wir einen Ansatz von
Ferber et. al., durch den es Walker gelingt, einen Graphen zu erzeugen, der sich nahezu wie

ein Zufallsgraph verhalt.
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