
9 Learning Algorithm and
Application

While in the previous chapters we focused on single steps of induction process of
extraction rules, this chapter connects them drawing a complete picture of the
learning algorithm. Starting from the pool of correct rules during one learning
cycle extraction rules pass the generalization step and come in the pool of in-
duced rules. At this stage the issue, what rules should be generalized, especially
what pairs of rules should be merged, is crucial for the quality of induced rules.
This chapter introduces a concept of the abstraction degree of a rule that allows
to perform controlled generalization avoiding too fast induction and resulting
overgeneralization.

The second part of the chapter treats the reverse branch of the learning cycle
leading from the induced to the correct rules. Validating the induced rules there
is a tradeoff between approving only the best rules at the expense of the overall
recall and rejecting only the most unreliable rules taking lower precision into ac-
count. To resolve this tradeoff we propose the evaluation of the rule performance
based on the precision values achieved by a single rule for every extracted at-
tribute and in total. Optimization of precision thresholds on the training corpus
enables an adequate selection of a set of correct rules.

We conclude the chapter with the discussion of appropriate termination crite-
ria for the learning algorithm and the differences between the evaluation and
application mode of GROPUS.

9.1 Selection of Extraction Rules for Generalization

Beginning with the initial rules the set of correct rules is extended by the vali-
dated induced rules after every iteration of the learning cycle. Although the rules
validated in the previous learning cycles are less general, they are not removed
from the set of correct rules for two reasons. The fact that these rules have been
validated indicates their reliability. Thus even though they may not find as many
relevant facts in the test corpus as more general rules added later, their extrac-
tions will not reduce the overall performance and most probably contribute to
better results (in case that they produce unique correct extractions not also cov-
ered by more general rules). Furthermore less general rules can in turn function

102 9 Learning Algorithm and Application

as building blocks for rule generalization in any following iteration step.

The set of correct rules contains a mixture of rules with different degrees of
generality. Therefore numerous combinations of different rules are possible for
rule merging. However, it is not reasonable to generate a general rule from any
combination of correct rules. Given that n ∗ (n − 1) pairs of n rules can be
built, the number of induced rules will grow quadratically per iteration. Besides
that a tremendous effort will be required to validate these rules, many of them
will not be capable of identification and extraction of information. As we have
already argued in sec. 7.2, the best generalization can be achieved merging similar
rules since the evidence of characteristic features is enforced. Assessment of rule
similarity is therefore used to reduce the range of candidates for rule merging.

Rule similarity is not the only aspect that matters in context of rule merging.
The speed of generalization process (i.e. in how many iterations the maximum
generalization is achieved) depends on the generality of merged rules. If for
example, rules with low generality are merged, the generalization advances very
slow while in case of high generality the maximum generalization is achieved
in a few steps. While a slow generalization process implies long runtime and
many redundant extraction rules, during the fast generalization many reliable
intermediary levels of generality may be skipped resulting in overgeneralization
and lower precision and recall values. Therefore in the optimal case the generality
of rules will be constantly moderately growing so that any rule generated in the
iteration i is slightly more general than any rule created during the iteration i−1.
To guarantee a steady increase of the generality of the set of correct rules and
provide its quantitative measure we introduce the concept of abstraction degree
of a rule, which formalizes the notion of rule generality.

9.1.1 Rule Inclusion and Abstraction Degree

A general rule is supposed to be able to extract relevant information from different
texts covering various expression possibilities. Hence the rule generality manifests
itself in the number of extracted fragments from a given text corpus, that is, how
often a rule can be applied in the training corpus. The quantitative measure
of the rule generality can therefore be based on the training examples correctly
identified by a rule in the training corpus.

Let τ = {s1, . . . , sn} be the training corpus. Here we can abstract from sin-
gle texts and regard the training corpus as a set of sentences comprised by
its texts. Let R = {r1, . . . , rn} be the set of extraction rules. The function
match :: R × τ → {true | false} determines whether a rule extracts at-
tribute values from a sentence, i.e. whether the rule pattern of the first argument
matches the sentences passed as the second argument.

match(ri, sj) = true ⇔ ri extracts fragments from sj

match(ri, sj) = false otherwise

Given a rule and a text corpus the function global match :: R × {τ} → τ
calculates the set of sentences of the text corpus from that fragments are extracted
by the rule.

global match(ri, τ) = {sk | match(ri, sk) = true}

A rule derived by merging from two less general rules is supposed to inherit and
extend their properties so that at least any fact extracted by the two original
rules is also extracted by the new rule.In context of generalization the notion of

9.1 Selection of Extraction Rules for Generalization 103

rule inclusion is very useful describing the relation between more and less general
rules. A rule ri includes the rule rj if it matches at least the sentences matched
by rj :

ri ⊇ rj ⇔ global match(rj , τ) ⊆ global match(ri, τ) (9.1)

Using the rule inclusion we can formally characterize the inheritance of the prop-
erties of the merged rules by the resulting rule. Any rule that is a result of the
application of the merge function ought to fulfil the following relation:

global match(merge(ri, rj), τ) ⊇ global match(ri, τ) ∪ global match(rj , τ)

and as a consequence

merge(ri, rj) ⊇ ri ∧merge(ri, rj) ⊇ rj (9.2)

After having introduced the concept of rule inclusion we can derive the quan-
titative measure for rule generality – abstraction degree – as a function
A degree :: Rules → N . Initial rules usually can only match and extract
information from the training example they were generated from and are there-
fore the least general rules. Hence initial rules have the minimum abstraction
degree that is set to 1. Considering that the generality of a rule depends on the
number of the correctly extracted training examples (see above), the abstraction
degree of a rule can be defined as the number of initial rules included by this
rule:

A degree(r) = |{rk | r ⊇ rk ∧A degree(rk) = 1}| (9.3)

A rule with an abstraction degree n is therefore supposed to extract at least n
training examples in the training corpus. Since every extraction in the training
corpus is covered by an initial rule, abstraction degree gives a pretty precise
information about the ability of a rule to match different fragments.

To avoid redundancy in the extraction rules we can formulate another constraint
for the merge function:

A degree(merge(ri, rj) ≥ A degree(ri) + A degree(rj) (9.4)
:{rk | ri ⊇ rk} ∩ {rl | rj ⊇ rl} = �

Requiring that the abstraction degree of the rule resulting from the rule merging
is greater or equal to the sum of abstraction degrees of the merged rules we
impose two important conditions on rule merging. One of them states that only
rules that include disjoint sets of initial rules can be merged. Merging rules that
include identical initial rules would lead to many redundant rules that are very
similar to each other or even identical and slow down the generalization process.
Another implication is that no extraction should be lost during the rule merging,
i.e. the new rule extracts at least. If the rule resulting from merging did not
extract all examples extracted by the merged rules, its abstraction degree would
be smaller than the sum of abstraction degrees of both merged rules.

9.1.2 Controlling the Rule Generalization

Selecting candidates from the set of correct rules for generalization we are inter-
ested in a steady and smooth generality increase of induced rules. Relying on
abstraction degree as a reliable and precise measure of rule generality we can
control the level of generality of induced rules. To achieve a smooth increase

104 9 Learning Algorithm and Application

of rule generality the abstraction degree of induced rules is incremented by 1 in
every iteration of the learning cycle. And to induce a rule with a given abstrac-
tion degree we can utilize the inequation (9.4) selecting rules with appropriate
abstraction degrees for merging from the set of correct rules.

The induction of new extraction rules in the i-th iteration step is performed as
follows:

1. Pairs of correct rules (rk, rl) with A degree(rk) + A degree(rl) = i + 1 are
determined and added to the set I.

2. All pairs (ri, rj) with {rk | ri ⊇ rk} ∩ {rl | rj ⊇ rl} 6= � are removed from
I.

3. The remaining rule pairs in I are sorted according to the similarity value
of the rules RuleSim(ri, rj) (s. (7.2))

4. The set M is supposed to contain the rule pairs that will be merged. Iterat-
ing over the sorted rules pairs the respective pair with the most similar rules
is removed (ri, rj). If both members of the pair are not represented in M at
least two times – |{(ri, rk)|(ri, rk) ∈ M}| < 2∨|{(rj , rl)|(rj , rl) ∈ M}| < 2 –
the pair (ri, rj) is added to M . Rule pairs are added to M until the similar-
ity value of the current top pair RuleSim(ri, rj) < similarity threshold.

5. Every rule pair from M is merged and resulting rules are added to the set
of induced rules.

6. Every induced rule is applied to the training corpus. If any subset of initial
rules is included by more than one induced rule, the best rule is chosen
based on the extraction results, while other rules are discarded.

The first step of the algorithm ensures that the induced rules will be more general
than the current correct rules having the next higher abstraction degree. In the
second step the rule pairs that do not satisfy the condition (9.4) are filtered
to avoid validation of redundant rules. Since the similarity of rules increases
the evidence of the relevance of common rule features, most similar rules are
merged at first. However, merging only very similar rules the typical information
expression forms in the training corpus will be overemphasized. Assuring that
every rule in the set I is merged at least two times we prevent data sparseness,
since merging less similar rules can result in a rule that covers not as many but
less common, unusually expressed instances of relevant information than a merger
of two similar rules. Sometimes though a reasonable generalization is not possible
because rules have too few common properties. Such rule pairs are filtered by the
similarity threshold. To avoid redundancy in the set of correct rules, rules that
include the same initial rules, that is, produce the same extractions, are removed
in the last step of the algorithm except for the rule making the least number of
incorrect extractions.

The sample generalization of four initial rules is displayed in fig. 9.1. Rij indicates
that the rule includes the initial rules Ri and Rj . Although in this example the
abstraction degree of new rules added to the set of correct rules in the iteration i
is always i + 1, the abstraction degree of induced rules may have a higher value.
For instance, the merger of rule R14 and R2 may also cover the extractions of R3

having an abstraction degree 4. In fact, if the merger includes more rules than
the merged rules, it is the evidence of successful generalization, since it extracts
new attribute values that the merged rules could not identify.

9.1 Selection of Extraction Rules for Generalization 105

Figure 9.1: Control of
generalization of correct

rules by abstraction degree
In the iterations 2 and 3 respectively two rules are generated that include the
same initial rules: R124 and R1234. Even though the pairs of merged rules are
restricted by rule similarity, disjoint sets of included rules and constraints con-
cerning abstraction degree, induction of rules that include the same initial rules
is quite probable. Theoretically there are 2(n−1) possibilities to induce a rule
R1...n since merging any dual partition of the set {R1 . . . Rn} leads to R1...n and
there are |℘({R1...Rn})|

2 dual partitions. Certainly, most of rule pairs corresponding
to the dual partitions will fail to pass the constraints mentioned above and the
learning algorithm will terminate for relatively small values of n. But in case of
several rules including identical initial rules only one rule has to be selected.

9.1.3 Runtime of the Rule Induction

The runtime of the algorithm essentially depends on the number of correct and
induced rules. Suppose there are n initial rules. Since only rule pairs are nomi-
nated for merging in that at least one member has been nominated less than two
times, there can be 2 ∗ n nominated pairs and hence induced rules in the worst
case in the first iteration. Suppose that in the worst case all induced rules are
validated, contain no redundancy and are all added to the set of correct rules.
Thus, at the beginning of the second iteration the set of correct rules contains
n + 2n = 3n rules. Since we can use all rules for inducing rules with abstraction
degree 3, there are analogously 2∗3n pairs nominated for merging resulting in 6n
induced rules and in the worst case in 3n+6n = 9n correct rules at the beginning
of the third iteration.

Since the number of induced rules is in the worst case twice as large as the number
of correct rules, the number of correct rules is tripled at the end of an iteration
if all induced rules pass the validation step in the worst case. Therefore we can
assess the number of correct rules at the end of iteration i in the worst case as
3in. Assuming that the rule learning algorithm terminates after several constant
number of iterations k the number of extraction rules lies in O(3kn), which is
linear to the number of initial rules.

However, the worst case assumptions will hardly hold in all iterations. The
number of nominated pairs can, for example, fluctuate between n and 2n. Some
of pairs may not surpass the similarity threshold. There are only

(n
i

)
subsets of

initial rules corresponding to the abstraction degree i so that many redundant
rules including the same subset are rejected. And during the validation many
induced rules will be discarded because of insufficient precision. Therefore the
function derived for the worst case is mainly interesting because it confirms the

106 9 Learning Algorithm and Application

linear dependence of the number of extraction rules on the number of initial rules,
while the real runtime is significantly lower.

Figure 9.2: Growth of the
number of correct rules at
the training stage on the

MUC corpus

Fig. 9.2 depicts the behavior of the set of correct rules under real conditions
during training on the MUC corpus (s. 10.1.3). The initial linear growth contin-
uously slows down for higher abstraction degrees. The number of correct rules
is controlled by both the induction algorithm described on p. 105 and validation
of induced rules (s. sec. 9.2). Therefore the worst case scenario is hardly relevant
for real training as the convergent function of the size of the correct rule set
demonstrates.

9.1.4 Utilization of Rule Abstraction and Substitution

Among the presented generalizing heuristics rule merging is supposed to provide
the best generalization since it relies on evidence shared by several linguistic pat-
terns that are derived from different texts or text parts. Therefore the merging
heuristic plays a major role in the rule learning algorithm being the main instru-
ment for rule induction. However, there are situations when the rule merging
cannot be effectively applied.

If the training corpus contains only few training examples for certain attributes, a
corresponding small number of initial rules for these attributes will be generated.
Among few rules it is difficult to find rule pairs that are similar enough to perform
an effective rule merging. At least some of initial rules can not be generalized by
rule merging and are basically ignored. Since these rules may contain valuable
extraction patterns and contribute to the more comprehensive extraction of such
underrepresented attributes. To exploit the capabilities of such ignored initial
rules, abstraction heuristic is applied for their generalization.

If a correct rule is not represented at least two times in the set M that contains
rule pairs to be merged (refer to p. 105), it will be abstracted. Analogously to
the merged rules the abstracted rule is added to the set of induced rules and
passes the rest of the learning cycle. Abstraction degree of rules generalized by
the abstraction heuristic corresponds as in case of merged rules to the number
of included initial rules. An abstracted rule can therefore participate in rule
merging in the next iteration.

9.1 Selection of Extraction Rules for Generalization 107

After several iterations any attempt to generate a more general rule merging any
two correct rules fails because the resulting rule produces too many incorrect ex-
tractions and cannot be validated. At this point rules have achieved their maxi-
mum abstraction degree and rule merging cannot contribute to the improvement
of extraction results any more. Because of heterogeneous texts, small number
of training examples the set of correct rules may still have a low coverage of
relevant information failing to extract many attribute values. At this stage of
the induction process the substitution heuristic can be leveraged to increase the
recall of extraction rules.

The correct rules with high abstraction degrees induced in the last iterations of
the learning cycle contain both general encoding of the extracted parts and gen-
eralized context representation. Thus substitution of the encodings of attribute
values in such a rule by the corresponding encodings of another rules results in a
new general extraction rule. This new rule features unprecedented combinations
of extracted information and its context and may therefore identify new facts that
the rules derived by rule merging failed to identify and increase the overall recall.
Since the rules induced by the substitution heuristic comprise general parts, no
further generalization is pursued and they are added to the set of correct rules
after the validation step.

9.2 Validation of Induced Rules

9.2.1 The Purpose of Validation

Extraction rules induced by the three generalizing heuristics are not perfect.
In the early stages of the learning algorithm they do not sufficiently abstract
from the training examples they are derived from and suffer from low covering
potential. While in the later iterations rules achieve sufficient abstraction, the
growing rule imprecision becomes a serious problem. At some point the encodings
of context and extracted parts become so general that the borders of extractions
cannot be identified correctly or even irrelevant sentences are matched by the
extraction pattern. The resulting incorrect extractions from the training corpus
discredit an extraction rule increasing the uncertainty about its performance on
the test corpus. The task of the validation step is to resolve the tradeoff between
the rule generality and precision and to decide what induced rules can improve
the extraction performance and should be added to the set of correct rules.

The decision whether an induced rule contributes to the extraction quality de-
pends to a large degree on the set of correct rules. If, for instance, there are few
general correct rules and a new rule extracts several fragments not covered by
the correct rules, it can be validated taking in account some incorrect extrac-
tions of this rule. On the other hand, all extractions of an induced rule may be
already covered by the correct rules so that its addition will not contribute to
the improvement of extraction results.

Let Ni designate the total number and Ci – the number of correctly extracted
fragments by the rule ri. The rule precision RP can be defined as

RP (ri) =
Ci

Ni

A simple and effective method to validate rules involves the usage of a fix pre-
cision threshold. Setting it, for example to 0.5 all rules will be validated that

108 9 Learning Algorithm and Application

produce at least as many correct as incorrect extractions. However, such inflexi-
ble criterion does not account for the complexity of the training corpus, progress
of the generalization etc. so that it will often lead to a non-optimal set of correct
rules. The validation should therefore be coupled with some objective criteria
reflecting the extraction quality.

RP of a rule can be regarded as a confidence measure for the validity of its
extractions. Since the value of RP represents the relative frequency of correct
extractions on the training corpus, it can serve as the probability measure for the
correctness of extractions made by a rule on the test corpus. While the RP of a
rule denotes the probability that a general extraction made by this rule is correct,
it is possible to refine this statement for extractions of single attributes (refer to
the sec. 9.2.3). Such a confidence measure of the correctness of an extraction
can be used, for example, for a human quality assurance closely inspecting the
extractions with lower correctness probability.

The overall extraction quality can be measured by recall and precision and the
so called F-measure (s. next chapter), which combines both other metrics. The
purpose of the validation is to improve the extraction quality, which is equiva-
lent to maximizing precision and recall or F-measure. Any validation strategy
can therefore be optimized to achieve the maximum values of these evaluation
parameters. In the following we present several validation strategies that use
F-measure value to optimally evaluate the induced rules.

9.2.2 Rule and Attribute Precision Thresholds

Criteria applied in the evaluation of a whole IE system cannot be transferred in
the same manner to the evaluation of a single extraction rule. While the notion of
rule precision defined above corresponds with the overall precision measure, the
notion of recall cannot be applied to single rules. Since we cannot expect that
a single extraction rule covers all extracted fragments in the training corpus,
measuring the absolute recall value (the part of fragments correctly extracted
by the rule in the total number of expected fragments) is not reasonable. The
absolute number of correctly extracted facts and hence indirectly the recall value
are controlled by the abstraction degree. Since the increase of abstraction degree
and the rule generality is ensured by the induction process, the main criterion
for the evaluation of the performance of extraction rules is precision. This can
be exemplified considering a set of induced rules with the abstraction degree i:
since each of these rules extracts i training examples, the better rules are those
that produce less incorrect extractions.

Considering the overall rule precision we neglect the fact that a single rule can
extract different attribute values. An overall rule precision value allows only in-
direct conclusion about the extraction quality of single attributes. It is possible
that some rules are especially confident in extraction of certain attributes, e.g.
because of good context specification or because of frequently occurring combi-
nation and order of other attribute values. Thus it is reasonable to determine
and store the precision values for single attributes extracted by a rule. In the
application phase when the rule is used to extract information from new texts
attribute precisions can serve as the criterion whether the extractions of certain
attribute values should be accepted.

Taking both considerations into account, to validate induced rules two thresholds
– rule precision threshold (RPT) and attribute precision threshold (APT) can be
used:

∀ri ∈ InducedRules RP (ri) ≥ RPT ⇔ ri ∈ CorrectRules

9.2 Validation of Induced Rules 109

rpt=0.5; apt=0.5; step=0.4;
max_f=f_measure(rpt, apt);
while (step>0.01)

{prev_rpt=rpt; prev_apt=apt;
cur_f=explore_direction(step, max_f, rpt);
if (cur_f==max_f)

{rpt=prev_rpt;
cur_f=explore_direction(-step, max_f, rpt);
}

max_f=cur_f;
cur_f=explore_direction(step, max_f, apt);
if (cur_f==max_f)

{apt=prev_apt;
cur_f=explore_direction(-step, max_f, apt);
}

max_f=cur_f;
step/=2;
}

return (rpt, apt);

explore_direction(step, max_f, threshold)
{f=max_f;
while(f==max_f &((threshold+=step))<=1 & threshold>=0)

{f=f_measure(rpt,apt);
if (f>max_f) max_f=f;
}

if (f<max_f || threshold>1 || threshold<0) threshold-=step;
return max_f;
}

Figure 9.3: Optimization
of RPT and APT for
achieving maximum

F-measure

The thresholds fulfil different purposes. The RPT assesses how reliable the rule
generally is. It establishes a general base for comparison of single rules. If a
rule does not surpass the RPT, it will not be validated and will be rejected. The
APT qualifies a rule to extract certain attributes allowing for different extracting
capabilities of rules with respect to different attributes:

AP (ri, aj) ≥ APT ⇔ ri may extract values of aj

where AP (ri, aj) is the attribute precison of ri for the attribute aj .
A rule is qualified for extraction of a certain attribute if the attribute precision
of the rule for this attribute is higher than APT. While RPT establishes the
actual selection process filtering the rules with low reliability, APT improves the
extraction quality examining the extractions of validated rules and confirming
only those that are produced by rules that showed the best performance for the
respective attribute.

The purpose of the validation is the identification of a subset of induced rules
that maximizes the F-measure value (refer to the previous section). RPT and
APT are therefore optimized with respect to the F-measure that is achieved by
the rules validated with these thresholds. In other words, we are looking for
the global maximum of the unknown function F − measure(RPT,APT). The
F − measure function selects all induced rules with rule precision bigger than
RPT and applies them to the training set. The extractions of a value of an

110 9 Learning Algorithm and Application

attribute a are rejected if the attribute precision of the rule for this attribute is
less than APT . Remaining extractions are used to calculate precision and recall
and, finally, F-measure. The maximum search is complicated by the fact that
there are two variable parameters so that the combination of threshold values
maximizing the F-measure has to be determined.

We propose an approximating algorithm (s. fig. 9.3) that generalizes the concept
of logarithmic search for two parameters. The algorithm can be regarded as a
bootstrapping process that consists in finding the local optimum for one param-
eter (while the value of another is kept constant) and continuing to look for the
local optimum for another parameter with the new value of the first one. An
important condition is that in every step the value of the F-measure increases.
Initializing (RPT, APT) as (0.5, 0.5) the procedure explore direction examines
how the F-measure value behaves depending on increase or decrease of the RPT.
As long as F-measure value grows, the RPT is modified adding or subtracting
a constant difference (which is called step in the fig. 9.3). After the local opti-
mum for RPT has been determined, explore direction is used to find the local
optimum for APT. In the next iteration of the algorithm the step is halved to
continue the search in the narrower environment of the found local optima. The
algorithm terminates when the step value falls below 0.01. This means that the
approximation of the maximum value is regarded as satisfactory when the devi-
ation of RPT and APT values from the optimal values RPTmax and APTmax is
less than 1, 25%.

Figure 9.4: Approximation
of the maximum
F-measure value

The algorithm is not immune to finding local maxima. In an adverse case the
step may be too small to bridge the gap between a local maximum and a higher
F-measure value, which would mislead the algorithm to look only in the narrow
environment of the local maximum. However, we did not embed any heuristic
treatment of local maxima in the algorithm since the expectation that the ap-
proximated F-measure function has one maximum has been confirmed by the
empirical results on three examined training corpora. Fig. 9.4 demonstrates
typical graphs of the F-measure function. The red arrows illustrate the approxi-
mation process. Usually, the maximum is in the vicinity of RPT and APT values
that ensure equal precision and recall values.

9.2 Validation of Induced Rules 111

9.2.3 Local Attribute Precision Thresholds

Continuing the differentiation made in the previous section between the reliabil-
ity of a rule as a whole and reliability of attribute extraction, one can differentiate
between the single attributes. Independent of a concrete rule some attributes can
be extracted more reliably than others because of their simple structure, charac-
teristic context etc. (s. sec. 10.2). Instead of evaluating the quality of attribute
extraction with one uniform attribute threshold separate precision thresholds for
each attribute can be introduced. Using an optimized threshold for every at-
tribute the different extraction quality of single attributes can be considered. As
a consequence the recall of attributes with low extraction quality will not suffer
from too high and the precision of well extractable attributes – from too low
thresholds. The attribute precisions for single attributes extracted by a rule can
be regarded, similarly as the RP, as the probability of correct extractions of the
values of specific attributes providing even finer confidence measures.

The extraction quality of different attributes within a single rule may signifi-
cantly differ. An otherwise unreliable rule may be successful in the extraction of
a certain attribute. Since local attribute thresholds allow to decide individually
for each attribute whether a rule is qualified to extract an attribute value, gen-
erally unreliable rules can also be allowed to extract attributes if they surpass
the threshold for this attribute. Thus the overall reliability of a rule becomes
a redundant measure and can therefore be omitted. Since RPT is no longer
considered, only one threshold has to be optimized, which makes the algorithm
for maximum approximation simpler. To find an optimal value for a local APT,
its values can be linearly traversed in equidistant intervals memorizing the value
with the maximum F-measure. If we assume the F-measure function to behave as
displayed in fig. 9.4, we can reduce the runtime of the maximum approximation
from linear to logarithmic runtime using a modified logarithmic search from 9.3
for one parameter.

Optimized on the training corpus local APTs are used to control the extraction
quality during the application phase. For every extracted attribute an extraction
rule stores an attribute precision value obtained on the training corpus. If the
attribute precision of a rule is higher than the respective local attribute precision
threshold, the rule is eligible to extract values of this attribute.

The disadvantage of this evaluation method is that the thresholds values obtained
for single attributes may be too customized to the training corpus, producing op-
timal results on the training texts but being not adequate for other domain texts.
Especially attributes with a small number of training instances are prone to a
strong bias towards training texts. Since a general attribute precision threshold
is determined on a large, representative set of examples, it offers a more reliable
validating criterion and ensures a more stable behavior of the extraction system
while using local APTs better differentiation and hence optimization of induced
rules can be achieved in some cases at the expense of divergent extraction per-
formance in general. Different validating strategies will be therefore subject of
evaluation in sec. 12.4.2.

9.2.4 Covering Validation Setup

Techniques relying on optimization of rule and precision thresholds consider only
quantitative criteria ignoring the actual rule extractions. A rule that extracts
the same fragments that have already been extracted by validated rules will also
be regarded as reliable if it achieves satisfactory precision. Covering validation

112 9 Learning Algorithm and Application

regards the extractions of an induced rule in conjunction with extractions of other
induced rules optimizing the set of extractions made by induced rules.

The induced rules are sorted according to their rule precision. Iterating over the
sorted set the best rule is removed and its extractions are evaluated. Only such
extractions count as true positive that are correct and have not been made by
any induced rule removed earlier. The same effect can be achieved removing the
extracted instances from the set of correct extractions. It involves that rules,
which extract fragments that are different from other extractions, are stronger
rewarded and rules that extract the same fragments as the best rules are pun-
ished. Rewarding diversity of induced rules and extraction patterns a better
coverage of the test corpus can be expected. Rules with lower precision values
that, however, extract distinct fragments that cannot be identified by other rules
can also be validated and contribute to a better recall on the test corpus.

During the iteration over sorted induced rule new rule and attribute precision
values are calculated based on the number of true positives in the covering setting.
RPT and APT are optimized by the algorithm presented in 9.3 with the new rule
and attribute precision values. While in the conventional RPT-APT validation
the absolute precision values are significant, covering validation optimizes the
overall F-measure considering the precision relative to the extractions of other
rules and obtaining so more diverse rule set.

The tradeoff in using covering validation is that some rules have a much bigger
extracting potential as indicated by the extractions from the training corpus.
Since the training corpus provides only limited supply of possible extractions,
two rules may produce many common extractions even though they are quite
different. The deceptive rule similarity suggested by common extractions may
lead to the rejection of reliable rules with a big covering degree and hence to the
decreasing of recall and precision values.

9.3 Termination of Rule Induction and Application

9.3.1 Termination

In every iteration step of the induction algorithm increasingly general rules are
induced, validated and added to the set of correct rules. When the induced rules
become too general to achieve satisfactory precision, the maximum abstraction
degree of the extraction rules is reached so that no further induction of reliable
extraction rules is possible. This may have two reasons: either the pairs of correct
rules for induction of higher abstraction degrees are not similar enough so that
no new rules can be induced or the induced rules are not validated failing to pass
the precision thresholds.

To ensure that after the ith iteration no rule with a higher extraction degree
can be induced or validated, we have to execute the iterations i + 1 . . . 2i of the
algorithm. Since the abstraction degrees of correct rules after the ith iteration lie
in the range [1, i], all possible combinations of rules for merging will be covered by
the iterations i + 1 . . . 2i. If no new correct rules are induced in these iterations,
further generalization by rule merging will not be possible. In this case one last
iteration with substitution heuristic is performed trying to improve the recall
value.

The induction algorithm terminates when the set of correct rules cannot be al-
tered by any of the generalization heuristics. The set of correct rules and the

9.3 Termination of Rule Induction and Application 113

optimized attribute precision thresholds are the results of the training stage of
GROPUS. The returned extraction rules can be used to extract desired informa-
tion from any text of the domain of the training corpus.

9.3.2 Application of Learned Extraction Rules

The actual extraction of information is accomplished by matching the extraction
patterns with corresponding text passages and executing the extraction action
that transfers the attribute value from a text to the target structure. Prior to the
matching stage any text is linguistically preprocessed in the same manner as the
training texts. After the preprocessing the texts incorporates their content and
linguistic information in an XML document (analogously to fig. 5.1). Extraction
patterns interpreted as XML queries are executed to retrieve XML fragments
containing attribute values. The actual text fragments that are transferred to
the target structure are obtained from the textual content of XML fragments.

All rules are generally applied to a text to generate candidate extractions. A
rule can only extract an attribute value if its attribute precision determined on
the training corpus is greater or equal than the corresponding attribute preci-
sion threshold. This mechanism allows to control the extraction quality in the
application stage. If a text fragment is extracted by several rules the attribute
precision of the best rule is considered. In case that a text contains only one
relation tuple (so called “one answer per document” extraction mode) the rule
with the highest attribute and rule precisions, matching the text, is selected for
extraction of each attribute value respectively. Extractions of all other rules
are discarded. In the “one answer per occurrence” mode all rules are eligible to
contribute extractions provided they surpass the attribute precision thresholds.

114 9 Learning Algorithm and Application

