
7 Induction of Extraction Rules

In the previous chapter we presented a different view on our approach to infor-
mation extraction regarding patterns of extraction rules as XML queries and the
pattern unification as the evaluation of XML queries. This view does not change
the essence of our approach, which is learning the extraction rules from a number
of training examples by collecting relevant context and lexical, structural and lin-
guistic features of extracted information in extraction patterns. The learning is
accomplished by the formal induction of extraction rules specified in the pattern
language presented in the previous chapter. The rule induction has the goal to
derive general and at the same time reliable rules that are capable of extracting
information from any text in the regarded domain. This chapter illustrates the
beginning of the induction cycle (cf. fig. 4.2) dealing with the generation of initial
rules as the induction basis and assessment of rule similarity while generalization,
correction and validation steps are presented in the next chapters.

7.1 Generation of Initial Rules

The rule induction begins with the set of initial rules that are derived from the
training examples provided by human annotator. Basically, initial rules are able
to extract only the training example they are derived from. They specify the
exact context and comprise all linguistic and structural features of the extracted
example. Certainly, these rules do not have any abstracting potential, but cap-
turing a multiplicity of features they provide a very good source for generalization
of rules.

7.1.1 Localization of Extracted Fragments in the Training Documents

After the linguistic preprocessing extraction annotations are inserted in the pre-
processed XML document. The lowest level of linguistic processing consists of
pos elements that represent single tokens. If the textual content of a pos element
is extracted, the extraction is annotated by inserting the element extracted as
the child element of the pos element. Inserting annotations as children of the
lowest linguistic nodes in the XML hierarchy allows to maintain the original XML
structure of the preprocessed document at this stage. Figure 7.1 demonstrates a
fragment of the preprocessed document from the figure 5.1.

75

. . .
<const type=”NC”>

<pos type=”CD” normal=”seven”>SEVEN
<extracted table=”T-ACT” attribute=”ANIMATE VICTIMS”/>

</pos>
<pos type=”NNS” normal=”soldier”>SOLDIERS

<extracted continued=”true” table=”T-ACT”
attribute=”ANIMATE VICTIMS”/>

</pos>
</const>

. . .

Figure 7.1: A fragment of
the preprocessed text in
fig. 5.1 with annotated

extractions
The extracted elements specify the relation and the attribute the extracted
token is assigned to by their attributes table and attribute. To distinguish
the beginning and continuation of extracted fragment the attribute continued
is used indicating that the token is a continuation of an extraction if its value
is true. Sometimes the tokenization performed by TreeTagger is not fine enough
(e.g. fragments containing punctuation signs are regarded as one token like 3:00-
5:00). If only a fragment of the token is extracted (e.g. 3:00), start and end
attributes will mark the beginning and ending character.

The preprocessed documents enriched with the annotations of extracted content
include the complete information that is available to the system for training and
are therefore used for the generation of initial rules. To locate all extracted
items in the documents a simple XML query selecting all extracted elements
is issued. After an extracted fragment has been localized in the document, an
initial extraction rule for this fragment is constructed.

7.1.2 Choosing the Appropriate Context

An extraction rule is not only supposed to reflect the features of the extracted
item but to capture its relevant context. A fix context window model used by
the most IE approaches does not adequately reflect the relevant context often
disrupting connected syntactic and semantic structures. As we have already dis-
cussed, we regard the sentence as the fundamental semantic unit of the natural
language. The sentence is the smallest linguistic structure that can express com-
plete thoughts, descriptions, events. That is why we consider the sentence as
the best general context model for information extraction. The fact that the
sentences in the most cases comprise extractions of several attributes of a rela-
tion provides additional evidence for its goodness. Furthermore, this fact is one
of the major factors making the extraction rules more reliable. If an extraction
rule finds evidence of several extracted attribute values, the likelihood that their
extractions will be correct is generally higher than in case that the evidence of a
single relevant fragment is found.

An initial rule for extraction of a certain fragment is built by encoding the sen-
tence, in which the fragment occurs, in the pattern language. Sentences are
recognized at the preprocessing stage and designated by the sent element. The
corresponding sentence can therefore be found looking upward in the ancestor
branch of the extracted element.

The main focus of GROPUS is fully grammatical free texts in that the infor-
mation is contained in sentences. However, GROPUS is intended to handle any

76 7 Induction of Extraction Rules

kinds of text including ungrammatical, informal, telegraphic in style documents.
In such texts there is usually no sentential structure and information can be ex-
pressed in headlines or table- or form-like passages. Therefore if the extracted
information is not included in a sentence, alternative context has to be identified.
For this purpose the structural information identified by txt2html (see sec. 5.1)
can be leveraged. In the absence of obvious semantic connection the structural
connection between the extracted item and its context can be utilized. If struc-
tures like lists, tables, preformatted text are recognized, it is possible that the
structure itself and the content within the structure help to identify the extracted
fragment and occur in other documents. Therefore if no sent ancestor of ex-
tracted item can be found, common structural HTML elements (dl, tr, pre,
hi etc.) are looked for.

The sentence or structural element comprising an extraction fulfil a dual role
defining the context and at the same time the sphere of action of extraction
rules. If an extracted item is nor comprised by a sentence neither subsumed by
a structural element, a parent element of the extracted token (which is normally
the syntactic constituent) is chosen as the context node.

7.1.3 Translation of Extractions and their Context in Pattern Language

After the appropriate context has been identified, the rule pattern can be gener-
ated. The initial rules follow the syntactic and lexical structure of the sentences1

they are derived from. No information should be lost at this stage that might be
important for the refinement of the rules. Therefore the rules are very specific
since they capture the contexts on a rather concise level and will usually be able
to extract only facts from the encoded sentence. The initial rule patterns reflect
every feature identified on the preprocessing stage, in particular:

. Exact syntactic structure of the sentence. The order and nestings of all
syntactic constituents and part of speech tags are encoded using syntactic
category pattern and pos pattern (cf. appendix A).

. Lexical specification. The words occurring in the sentence and their prin-
cipal forms are captured as the inner patterns of the POS pattern

. Specification of extractions. All extracted fragments are distinguished by
assignment patterns that mark their borders and specify the attribute of
the target structure represented by the fragments.

. Text layout and structure. Since the layout and structure are expressed
by XML elements, the initial rule patterns reproduce the same hierarchical
structure using XML patterns.

. HTML/XML structure. Analogously to layout any XML or HTML ele-
ments contained in the sentence are incorporated in the rule pattern. Their
interleaving with the syntactic and layout elements is reflected by the nest-
ing structure of the rule pattern.

Our sample sentence from the sec. 4.1 depicted in fig. 7.2 will be encoded as

1 In the following we will refer to the context nodes as sentences without loss of generality

7.1 Generation of Initial Rules 77

<sent>
<const type=”NC”>

<pos type=”NE” normal=”General”>General
<extracted table=”T-ACT” attribute=”VICTIM TARGET”/>

</pos>
<pos type=”NE” normal=”Bustillo”>Bustillo

<extracted continued=”true” table=”T-ACT”
attribute=”VICTIM TARGET”/>

</pos>
</const>
<const type=”VC”>

<pos type=”VBD” normal=”be”>was</pos>
<pos type=”VVN” normal=”kill”>killed

<extracted table=”T-ACT” attribute=”ACTION”/>
</pos>

</const>
<const type=”PC”>

<pos type=”PP” normal=”by”>by</pos>
<const type=”NC”>

<pos type=”DT” normal=”a”>a</pos>
<pos type=”NN” normal=”bomb”>bomb

<extracted table=”T-ACT” attribute=”WEAPON”/>
</pos>
<pos type=”NN” normal=”explosion”>explosion</pos>

</const>
</const>
<pos type=”SENT” normal=”.”>.</pos>

</sent>

Figure 7.2: Preprocessed
sentence used for

generation of an initial rule [NC: NP:“General” NP:“Bustillo”]:=VICTIM [VC:
VBD:“be” (VVN:“kill”):=ACTION] [PC: PP:“by” [NC: DT
(NN:“bomb”):=WEAPON NN:“explosion”]] →
INSERT INTO TERRORISTACT VALUES (VICTIM TARGET

”
,

ACTION
”

INSTRUMENT
”
)

The extracting action (the right hand side of the rule) specifies what attributes
the extraction rule is supposed to extract. This information is used in a later
generalization step for assessing the rule similarity.

7.1.4 Encoding of Extractions

In our example in the figure 7.2 the extracted fragments correspond with the syn-
tactic structure of the sentence, that is, all extractions lie within certain syntactic
constituents. However, sometimes extracted fragments may cross the borders of
syntactic elements and overlap, e.g. with two different syntactic chunks. This
can happen due to a wrong syntactic analysis when, for example, the TreeTag-
ger splits a syntactic constituent in two different units. Moreover, extracted
fragments may also be in conflict with other XML structures or HTML layout
elements beginning inside and ending outside their borders. Since the pattern
structure resembles the XML structure and is strictly hierarchical, a pattern can
only be subsumed by at most one pattern (acyclic property). If the tokens (POS
elements) of extracted fragment belong to different parents and there is at least
one sibling token that is not extracted, they cannot be subsumed by a single
assignment pattern because the latter cannot be subsumed by different parent

78 7 Induction of Extraction Rules

patterns (see fig. 7.3). In this case the XML structure has to be adjusted to
comply with extractions by removing the elements that disrupt the sequence of
extracted tokens and attaching their children to their parents.

Figure 7.3: Determination
of extracted and

inconsistent elements and
establishing consistent

state

The extracted fragments are represented by a sequence of POS elements, which
are at the lowest level of XML hierarchy. Their parents, the syntactic constituents
may be consistent with the extractions, while the overlap may occur at any level
of hierarchy (cf. in the fig. 7.3 the syntactic constituent NP9

2 comprises two
extracted tokens and is therefore itself extracted, while its parent p8 subsumes
extracted and not extracted fragments and is therefore inconsistent). Thus the
complete XML sentence structure has to be examined whether it complies with
the extractions.

Let S = ea . . . en be the sequence of tokens (leaf nodes of the XML tree) extracted
as the value of attribute A:

∀ei ∈ S extraction(ei) = A
∀ei /∈ S extraction(ei) = �

We can mark the borders of each element by the attribute name of the leftmost
and rightmost tokens subsumed by this element:

if ni is a token, LeftBorder(ni) = extraction(ni)
i.e. 6 ∃m pred(ni,m) RightBorder(ni) = extraction(ni)
otherwise, i.e.∃m pred(ni,m) LeftBorder(ni) = LeftBorder(ni+1)

RightBorder(ni) = RightBorder(nRightBound(ni))

Since the adjacent sibling nodes play an important role when deciding whether
a node is conform with extractions, we define the siblings as the surrounding
children of the parent node:

LeftSibling(ni) = nf ⇔ i = RightBound(nf) + 1 ∧ ¬pred(i, i− 1)
RightSibling(ni) = nk ⇔ k = RightBound(ni) + 1∧

∧ 6 ∃np (pred(p, i) ∧RightBound(ni) = RightBound(np))

In the definition of siblings we can exploit the fact that the difference between
the OID of the right sibling of a node and its maximum descendant OID is 1
according to preorder numbering. Besides, the leftmost child has no left and
the rightmost - no right sibling so that we have to exclude these cases imposing
additional constraints (in case of the leftmost child the difference between its OID
2 In the following we will use the abbreviated index form for noting the OID of the node
introduced in the previous chapter: ni ⇔ OID(n) = i

7.1 Generation of Initial Rules 79

and the OID of its parent is 1; the rightmost child has at least one predecessor
with the same right bound - its parent).

To algorithmically determine whether a node is extracted and should be included
in the assignment pattern or whether it does not comply with extracted sequence
and should be removed, we can use a top-down recursive procedure that decides
about the status of single nodes based on the following criteria3:

ni is extracted ⇔ LeftBorder(ni) = RightBorder(ni)
ni is inconsistent ⇔ LeftBorder(ni) 6= RightBorder(ni) ∧
∧ (LeftBorder(ni) = RightBorder(LeftSibling(ni)) 6= � ∨
∨ RightBorder(n− i) = LeftBorder(RightSibling(ni)) 6= �

According to the definition p2 in the fig. 7.3 is extracted because its borders are
identical (i.e. the leftmost ADJ4 and the rightmost V7 subsumed tokens belong
to the extraction of the same attribute). On the contrary, the element p8 is
inconsistent because its left border is identical to the right border of its left
sibling (p2) and is therefore a continuation of an extraction while its right border
is equal to � (i.e. the rightmost token is not extracted). Comprising a part of an
extraction and a not extracted fragment the element p8 contradicts the structure
of the extraction and has to be removed. The consistent state after the removal
of p8 is represented at the right side of the fig. 7.3.

Before encoding the initial pattern the borders of every XML element are de-
termined and inconsistent elements are removed. Inconsistency can always be
resolved at least at the token level because the extraction can always be repre-
sented as a sequence of extracted tokens abandoning any linguistic or other XML
structure. However, the definition of extracted elements implies that during en-
coding of extractions the XML elements should be captured at the most general
level. If, for instance, all tokens of a syntactic constituent are extracted, the as-
signment pattern will include this element and not only the sequence of extracted
tokens as a part of the extraction structure. In our example the extraction of the
attribute A will be encoded as (\p[[NP: ADJ NN][VP:V]][NP: ART NN])=:A.

Mapping the training examples to the linguistic patterns the initial rules eventu-
ally move away from the natural language towards formal representation. Cap-
turing all relevant features and context of extraction they provide the basis for
induction of new more general and reliable rules.

7.2 Rule Similarity

The spectrum of initial rules may to a large degree depend on the kind of training
texts and be very heterogeneous. If a text contains a semistructured and a free
text part (as we will see later in the seminar announcement corpus), the rules
extracting information from the form-like parts have a totally different structure
in comparison to rules that are encoded on the sentence basis. Generally, rules
that extract different attribute values are not supposed to have much in common
because different attribute values imply different features and context.

To achieve effective generalization of extraction rules, one has to find common
properties of extractions and their context that distinguish and uniquely char-
3 This definition neglects that non-syntactic, e.g. HTML elements that do not contain textual
data and therefore do not subsume any pos elements may be as well at the borders as between the
pos elements. The borders of non-syntactic elements are adjusted according to the surrounding
elements subsuming textual data.

80 7 Induction of Extraction Rules

acterize relevant information. Therefore the rule similarity is one of the most
important factors for rule generalization. If rules are similar, the confidence is
enhanced that the features and the context captured by the rules are relevant
and reliable because they occur more than once and possibly in different texts.
The characteristic properties of extracted information can be distilled merging
similar rules while the specific properties of concrete training examples that do
not contribute to identification of relevant content in general can be filtered.

In the following the challenges of determination of rule similarity and solutions
applied in our approach including an algorithm for sequence comparison are
described. Based on these solutions a rule similarity measure is defined at the
end of the chapter.

7.2.1 Mapping Hierarchies to Sequences for Comparison

One of the major difficulties comparing the extraction rules is that they simul-
taneously incorporate hierarchical XML structures and sequential properties of
natural language. Similar sequences of elements may therefore occur at the differ-
ent levels of hierarchies. To find these similarities we have to compare extraction
patterns in the same fuzzy manner as in the pattern unification (see previous
chapter) omitting levels of hierarchy. However, the comparison is complicated
by the fact that we have to compute the similarity score for every possible con-
figuration of both patterns to determine their most similar configurations and
the maximum similarity score. For example, the most similar configurations of
patterns displayed in fig. 7.4 are achieved when the level of syntactic categories
(elements NP and VP) in the left and the elements p and b in the right pattern
marked red are removed.

Figure 7.4: Comparison of
two extraction patterns in
hierarchical representation To account for all different configurations any subset of inner patterns can be

removed resulting in
∑n

i=0

(n
i

)
= 2n configurations for a single extraction pattern

and 2n ∗ 2m = 2n+m combinations of different configurations where n and m
are the number of inner patterns in both extraction patterns respectively. The
number of inner patterns can be estimated by O(t) where t is the number of
tokens (leaf elements in the hierarchy), if an inner pattern includes at least two
child patterns in average. Therefore the runtime required for determination of
similarity of two patterns naively considering all possible hierarchical structures
would lie in O(2t1+t2 ∗ (t1 + t2)) (second factor denotes the time needed for
comparison of hierarchies). Such a computation is practically not feasible because
of exponential asymptotic runtime.

Regarding patterns as labels we can reduce the comparison of pattern hierarchies
to the tree edit problem [Bil05]. Using the algorithm proposed by Tai [Tai79] we

7.2 Rule Similarity 81

could reduce the time complexity to O(N ∗ M ∗ t1 ∗ t2) where N = n + t1
and M = m + t2 denote the total number of nodes in both hierarchies. Zhang
and Shasha proposed an algorithm [Zha89] improving the bounds to O(N ∗M ∗
min(t1, D1) ∗ min(t2, D2)) where Di is the respective height of the hierarchy.
The worst case bound has been decreased by Klein [Kle98] to O(N2 ∗M ∗ logN).
Chen presented an algorithm using O(N ∗M + t21 ∗M + t2.5

1 ∗ t2) [Che01], which
in our case corresponds to the polynomial of fourth degree since we refer to the
number of tokens as the problem size. Robinson-Foulds distance [Rob81] provides
a tree distance measure that is linear in the sum of node numbers of both trees
– O(N + M). This metric is, however, applicable only to trees that comprise
the same set of labeled nodes. Thus reducing patterns to labels we can avoid
exponential runtime of comparison requiring though the runtime with the upper
bound equal to fourth-degree-polynomial of the number of tokens, which still
imposes a severe computational burden.

The key idea that enables a proper and efficient comparison of similarity of ex-
traction rules in our approach is to flatten hierarchies of extraction patterns to
sequences and compare the similarity of the latter. The sequential representation
of hierarchies, which maintains the order of sibling sequences and represents the
hierarchical relation between parent and child nodes by positions in the sequence,
is obtained writing down the elements during the pre-order traversal of the hi-
erarchy. Even though the original hierarchy cannot be reconstructed from its
sequential representation (the functional mapping is not injective), a reliable es-
timation of similarity can be achieved by sophisticated comparison of sequences.
The sequences are aligned by shifting and dispersing both sequences so that the
number of identical elements is maximum. Consider the comparison of sequential
representations of the extraction patterns from the fig. 7.4:

sent NP DT NN VP VA VV
sent p DT b NN VA VV

Dispersing and shifting the upper sequence between DT and NN we achieve
the correspondence on the token level implicitly omitting the higher hierarchical
level (element b). Generally, the non-identical elements (marked red) are not
considered because of shifting while identical elements and sibling sequences are
aligned. The more accordances exist, the more similar the extraction patterns
are. Accordances in subsequences may also indicate the same hierarchical struc-
tures. In spite of variety of nesting structures caused by merged HTML and
linguistic markup (refer to 6.1) there are certain fix hierarchical dependencies,
for instance, between linguistic elements (e.g. prepositional phrase usually sub-
sume nominal phrase but is never subsumed by nominal phrase). If both pattern
sequences contain a subsequence PC PP NC, it is very likely that both comprise
a prepositional phrase subsuming a nominal phrase and not likely that PP and
NC are on the same level of hierarchy. Therefore the similarity of sequential
representations provides a strong evidence of hierarchical similarity.

The main advantage of mapping hierarchies to their sequential representations
is that sequences can be efficiently compared. We developed an algorithm that
compares sequences in a minimum time and represents also the core element of
rule merging (described in the next chapter).

82 7 Induction of Extraction Rules

7.2.2 Algorithm for Comparison of Sequence Similarity

Among many possibilities of measuring sequence similarity we are interested in a
measure that reflects all common features of sequences. For this purpose we align
the sequences by shifting and dispersing them to achieve the maximum number of
accordances between the sequence elements. Given the sequences A = A1 . . . Am

and B = B1 . . . Bn an alignment L of A and B is defined as an ordered set of
pairs of aligned sequence elements: L = {. . . (Ai, Bj), (Ak, Bl) . . .} where i <
k and j < l. The similarity measure can then be defined as a function
MaxSimScore(A,B) that identifies the alignment with the maximum number
of common elements and calculates its similarity value.

Similarity of Non-Sequential Elements

However, before analyzing similarity of sequence patterns we have to consider
how the similarity of sequence elements can be assessed. The view suggested in
the previous section that elements may be either identical or not is somewhat
simplistic, though it serves well for explanation of sequence alignment. Indeed,
the degree of similarity of some patterns is not binary, but also has to be calcu-
lated. For instance, two POS patterns may encode the same part of speech, but
different or identical lexical content. Analogously, two XML element patterns
may encode the same element, but the similarity of their children encoded as
sequence patterns varies.

To assess the similarity of non-sequential patterns we define the function Score,
which assigns to two patterns a similarity score (a relative numeric value)4:

Score(String1, String2) = (String1 ≡ String2)?5 : 0
. . . where ≡ denotes lexicographical equivalence
Score(POS : String1[PF : String2], POS : String3[PF : String4]) =
= (String1 ≡ String3)?((String2 ≡ String4)?5 : 2) : 0
Score(\Tag1, \Tag2) = (Tag1 ≡ Tag2)?5 : 0
. . .
Score((A1 . . . Am)?, (B1 . . . Bn)?) = MaxSimScore(A1 . . . Am, B1 . . . Bn)
Score((A1 . . . Am)?, (B1 . . . Bn)∗) = 0

The inner patterns of two backtracking patterns are compared only if their kind
is identical (i.e. two option patterns). Comparing the POS pattern the lexical
content provides a much more precise description than just the part of speech.
That is why the correspondence of lexical content is weighted stronger than
the correspondence of parts of speech (ratio 5:1). Assessing the similarity of
two XML element patterns the correspondence of the tags is rewarded by 5
similarity points. Recall that the XML element patterns cannot contain any
children sequences because the hierarchical structure has been flattened by the
sequential representation.

Determination of Sequence Similarity

After establishing a similarity measure for the elements of sequences the task of
determination of similarity of two sequences can be defined as follows:
Given two sequences A1 . . . Am and B1 . . . Bn, find an alignment
L = {. . . , (Ai, Bj), . . .} so that

∑|L|
i=1 Score(li) is maximum where li ∈ L.

4 Instead of conventional “if (A) then B else C” notation we use the ternary operator (A)?B:C
known from C and Java programming languages for brevity

7.2 Rule Similarity 83

for (i=0; i<m; ++i)
for (j=0; j<n; ++j)

{cand1=0, cand2=0, cand3=0;
if (i>0) cand1=max_sum[i-1][j][0];
if (j>0) cand2=max_sum[i][j-1][0];
cand3=((i>0 && j>0)?max_sum[i-1][j-1][0]:0)+Score(Ai,Bj);
if (cand3>cand2 && cand3>cand1)

max_sum[i][j][0]=cand3; max_sum[i][j][1]=2;
if (cand2>cand1 && cand2>cand3)

max_sum[i][j][0]=cand2;max_sum[i][j][1]=0;
else

max_sum[i][j][0]=cand1; max_sum[i][j][1]=1;
}

i=m-1; j=n-1;
do {if (max_sum[i][j][1]==2) alignment.addFirst((i--,j--));

else if (max_sum[i][j][1]==1) i--;
else if (max_sum[i][j][1]==0) j--;

}while (i>=0 && j>=0);
return alignment;

Figure 7.5: Algorithm for
determination of maximum

similarity score and
corresponding alignment of

two sequences

This problem can be viewed as an extension of the well-known Longest Common
Subsequence problem (s. [Cor90]). The LCS problem is a special case of the se-
quence alignment problem, where the Score function returns 1 if its arguments
are identical and 0 otherwise. In a general case, no restrictions are imposed on
the Score function, except that its values must be positive. The related algo-
rithms computing the edit distance of two strings proposed by Levenshtein and
Damerau [Lev66], [Dam64] do not solve our problem. They calculate the distance
between two sequences based on the minimum number of correcting operations,
each of which “costs” 1 distance unit. Our problem is to compute the maximum
similarity of two sequences based on the Scores of aligned elements, which are
real numbers. The number of necessary dispersing and shifting operations (cor-
responding to deletion in Levenshtein’s algorithm) is insignificant, because the
alignment depends solely on the aggregate Score function.

However, regarding sequence elements as letters of a fix alphabet and interpreting
the values of the Score function as weights of the scoring matrix the problem
can be mapped to the determination of alphabet-weight edit distance [Gus97].

The algorithm presented in fig. 7.5 determines the maximum similarity score and
the corresponding sequence alignment using dynamic programming. It is based
on the invariant

MaxSimScore(A1...Am,B1...Bn)=

max

(
MaxSimScoreS(A1 . . . Am, B1 . . . Bn−1)
MaxSimScore(A1 . . . Am−1, B1 . . . Bn)
MaxSimScore(A1 . . . Am−1, B1 . . . Bn−1) + Score(Am, Bn)

)
omittingBn

omittingAm

aligningAm and Bn

(7.1)

The algorithm maintains a table max sum[m][n][k] in that max sum[i][j][0] de-
notes the maximum similarity score of subsequences A1, . . . , Ai and B1, . . . , Bj

and max sum[i][j][1] – the numeric encoding of the direction of the predecessor
that participated in building max sum[i][j][0] (i.e. which of the three cases in 7.1
provides the maximum value). The direction of the predecessor is necessary to re-
construct the path from the total maximum similarity score to max sum[0][0][0],
i.e. to recall the pairs of aligned sequence elements that maximize the score.

84 7 Induction of Extraction Rules

For every combination of subsequences the MaxSimScore is calculated using
(7.1) and the predecessor recorded. Once the total maximum similarity score
max sum[m − 1][n − 1][0] is determined, the alignment leading to this score is
added to the result list. Using the direction value the preceding alignments can
be determined. The result list is complete when the first element of one of the
sequences is reached. Since the path to the maximum score is reproduced starting
from its end, alignments are added at the front of the result list to establish their
correct order.

Correctness Proof

The presented algorithm calculates the value of max sum[i][j] for any i and j
according to the invariant (7.1). To prove the correctness of the algorithm we
have to show that max sum[m][n][0] is maximum for all possible alignments
of A and B. The correctness of (7.1) implies that MaxSimScore(A,B) is the
maximum similarity score of A and B (since the function MaxSimScore returns
the maximum score per definition, see 7.2.2, p. 83). To prove the correctness of
the algorithm it is therefore sufficient to prove the correctness of the invariant
(7.1). We provide a proof of (7.1) by an induction I1 over the length of the
second sequence and an implication I2 from the sequence pairs with the lengths
of the length (m− 1, n), (m,n− 1) and (m− 1, n− 1) to the sequence pair with
the length (m,n). Combining the induction and the implication we can show the
validity of the invariant for any sequences.

At first we prove that the equation 7.1 is valid for a sequence of one element and
any other sequence by the induction I1 :

Induction Basis:
A = A1, B = B1: MaxSimScore(A,B) = 0 + Score(A1, B1) – equation (7.1) is
trivially fulfilled (only third case is possible).

Induction Hypothesis:
Equation 7.1 is valid for A and B = B1 . . . Bn implying that MaxSimScore(A,B)
is the maximum similarity score for A and B

Induction Step:
Aligning A1 with B1 . . . Bn+1 two cases are possible:
(I) Bn+1 participates in the alignment (is aligned with some element from A):
in this case it can only be aligned with A1 and the maximum similarity score
corresponds to Score(A1, Bn+1).
(II) Bn+1 does not participate in the alignment: the maximum similarity score
is then the maximum similarity score obtained by aligning A1 and B, which is
MaxSimScore(A,B) according to our induction hypothesis.
The maximum similarity score of A1 and B1 . . . Bn+1 is therefore the maximum
of both cases MaxSimScore(A,B1 . . . Bn+1) = max(MaxSimScore(A,B), 0 +
Score(A1, Bn+1)), q.e.d.

The proof for A1 . . . Am and B1 is absolutely analogous and is therefore omitted.

In the next step we prove the implication I2 that if the invariant is
valid for three pairs of sequences A1 . . . Am−1 and B1, . . . , Bn−1; A =
A1 . . . Am and B1, . . . , Bn−1 and for A1 . . . Am−1 and B = B1, . . . , Bn, it is valid
for A = A1 . . . Am and B = B1, . . . , Bn.

Given:
The equation 7.1 is valid for A′ = A1 . . . Am−1 and B′ = B1, . . . , Bn−1;
A = A1 . . . Am and B′ and for A′ and B = B1, . . . , Bn (implying that

7.2 Rule Similarity 85

MaxSimScore(A′, B′), MaxSimScore(A′, B) and MaxSimScore(A,B′) are
maximum similarity scores for these three pairs of sequences).

To be proved:
The equation 7.1 is valid for A = A1 . . . Am and B = B1, . . . , Bn

Proof:
Aligning A and B four cases are possible:
(I)An participates and Bn does not participate in the alignment: Maximum
similarity score is equal to the maximum similarity score obtained aligning A
and B’, which is MaxSimScore(A,B’) according to the induction hypothesis.
(II)An does not participate and Bn participates in the alignment: Analogously
to the first case maximum similarity score is MaxSimScore(A’,B).
(III)An and Bn participate in the alignment: since both are the last elements
in their sequences, they can only be aligned with each other and the maximum
similarity score is the sum of the maximum similarity score obtained by aligning
A’ and B’ (which is MaxSimScore(A’,B’) according to the induction hypothesis
and Score(Am, Bm), i.e. MaxSimScore(A′, B′) + Score(Am, Bm)
(IV)An and Bn do not participate in the alignment: this case corresponds to the
third case with Score(Am, Bn) = 0.

The maximum similarity score of A and B is therefore the maximum of the three
first cases:
MaxSimScore(A,B) = max(MaxSimScore(A′, B),MaxSimScore(A,B′),
MaxSimScore(A′, B′) + Score(Am, Bn)), q.e.d.

Using the proved propositions the validity of the invariant (7.1) can be shown
for sequences A and B of any length. Starting from the induction basis of the
induction I1 we can show the validity of (7.1) incrementally increasing the size
of sequences as shown in fig. 7.6. For example, to show the validity for sequences
with lengths 2 and 2, according to the proposition I2 we have to show the validity
for sequences with lengths 1 and 1 (induction base), 1 and 2, 2 and 1 (both proved
by induction I1). The validity for lengths 3 and 2 results from the validity of 2
and 1, 3 and 1 (both proved by I1) and 2 and 2 (proved above).

Figure 7.6: Proving the
validity of the invariant 7.1

for any sequence lengths Time Complexity of the Algorithm

Statement: To determine the maximum similarity score of two sequences the
Score of all pairs of sequence elements has to be determined.

We prove the statement by reductio ad absurdum. Let us assume that there is
an algorithm that can determine the MaxSimScore without considering align-
ments of all elements. Furthermore let Ai and Bj be the pair of elements that the
algorithm does not consider determining the MaxSimScore of A and B. Since

86 7 Induction of Extraction Rules

the score of two sequence elements is in general randomly distributed, we can ar-
bitrarily assume that Score(Ai, Bj) >

∑m
k=1

∑n
l=1 Score(Ak, Bl)−Score(Ai, Bj)

(i.e. Score(Ai, Bj) is greater than the total sum of scores of all other pairs).
Thus an alignment including (Ai, Bj) yields a greater similarity score than the
one found by the algorithm (since any alignment that does not contain (Ai, Bj)
consists of a subset of other pairs), which contradicts our assumption.

Among all algorithms considering all pairs of sequence elements our algorithm
requires the minimum number of operations because every pair is regarded only
once and a constant number of operations c1 is performed (cf. for loop of the
algorithm). The determination of MaxSimScore requires therefore m ∗ n ∗ c1

calculation steps. The reconstruction of alignment (do loop) takes in worst case
(m + n) ∗ c2 operations resulting in a total time complexity of the algorithm

T (m, n) = m ∗ n ∗ c1 + (m + n) ∗ c2 ∈ O(m ∗ n)

Since any algorithm calculating MaxSimScore has to consider all pairs of se-
quence elements, the presented algorithm solves the task of sequence alignment
with maximum similarity in the minimum possible time.

Approximating the number of tokens by the number of sequence elements
the time required for the complete comparison of two hierarchies would lie in
O(2m+n ∗ (m + n)) (refer to sec. 7.2.1). The huge difference between the asymp-
totic runtimes emphasizes the efficiency and importance of converting hierarchical
structures to sequences for similarity assessment and generalization of extraction
rules.

7.2.3 Rule Similarity Measure

Merging rules is reasonable if they extract at least one common attribute. For
many attributes the structure and properties of their values play a crucial role
for their identification. Besides, in many domains values of certain attributes
tend to co-occur in a sentence due to the strong semantic connection (e.g. in
a sentence describing a terrorist act the actual action performed by terrorists
is usually mentioned with the perpetrator and the victims). Therefore the co-
occurrence and the order of co-occurrence of attribute values is a very important
factor for the identification of information.

Let ExtSim be the similarity measure for extractions and their co-occurrence in
a rule. Suppose the rule r1 extracts the values of the attributes A1 . . . Am and r2 –
B1 . . . Bn in the presented order. The attribute sequences are aligned so that the
maximum number of corresponding attributes are found. Let L be the alignment
of attributes, E11 . . . Em1 and E12 . . . En2 – the patterns in r1 and r2 encoding
the corresponding attribute value. The extraction similarity is determined as:

ExtSim(r1, r2) =
∑

(Ai,Bj)∈L

Score(Ei1 , Ej2) ∗ 2|L|

The similarity scores of aligned patterns that encode corresponding attribute val-
ues are summed and weighted by the power of two corresponding to the number
of aligned patterns |L|. The co-occurrence and the order of attribute values are
both reflected by the alignment L; since they have a significant influence on the
similarity of rules, they are incorporated as a strong weighting factor.

On the other hand, many, especially complex, attributes cannot be identified
without their context. The context similarity ContextSim is calculated adding

7.2 Rule Similarity 87

up the similarity scores of context fragments around the extracted values. Sup-
pose r1 = C11E11C21E21 . . . Em1Cm+11 , r2 = C12E12 . . . En2Cn+12 where Ci1 is
the context fragment between the i− 1thand ith extraction of the rule r1.

ContextSim(r1,r2)=
∑

(Ei1
,Ej2

)∈L
(MaxSimScore(Ci1

,Cj2
)+MaxSimScore(Ci+11

,Cj+12
))−DuplicateSum

where DuplicateSum is the sum of MaxSimScore(Ci1 , Cj2) values added twice.

For the calculation of context similarity all hierarchical patterns are flattened
to their sequential representations and the MaxSimScore algorithm (refer to
fig. 7.5) is applied.

The general rule similarity involves therefore the similarity of extracted fragments
and their co-occurrence and the context similarity. To establish a single similarity
measure these different similarity metrics have to be combined:
Let R = r1, . . . , rn be a set of rules. Both similarity measures ExtSim and
ContextSim can be incorporated in a single metric in the similar manner as we
did it for the FirstCompM metric in sec. 5.2.3 adding the contributions of single
metrics relative to their maximum value:

RuleSim(ri,rj)=
ExtSim(ri,rj)

max(ExtSim(r1,r2),...,ExtSim(rn−1,rn)
+

ContextSim(ri,rj)

max(ContextSim(r1,r2),...,ContextSim(rn−1,rn)

(7.2)

After determining the extraction and context similarity the overall rule similarity
can be calculated according to 7.2.

88 7 Induction of Extraction Rules

