
Chapter 4

Computational
neuroscience software

Neural software can be arranged in two groups:

• packages designed for modelling and simulation of neurons and neural
networks

• packages supporting modelling, e.g. databases, software for data analysis
and visualization, differential equation solvers

As mentioned in the previous chapter, neural modelling can be arranged
according to the levels of modelling. The modelling levels range from abstract
to detailed, incorporating anatomical and biophysical parameters. Since my
work is focused on the construction of software for simulation of structurally
realistic models of biological neural systems, I will in this chapter describe the
most important packages for detailed neural modelling [53]. These packages
are typically based on compartmental modelling, the standard modelling ap-
proach for learning about the detailed anatomical structure and physiological
characteristics of neural systems.

The second group of software, packages supporting modelling, makes easier
exchange of data developed with different simulation packages and allows its
well-ordered storage. This is becoming more and more important because of
the growing number of available simulation systems, many of which have dif-
ferent characteristics and simulation abilities. This group of neural software
also contains packages for data analysis, e.g. for 3-dimensional presentations,
or to convert the morphology of complex dendritic trees into input files for the
simulators. These programs allow one to use the effective programs for solving
of differential equations that do not provide graphical user interfaces.

35



36 CHAPTER 4. COMPUTATIONAL NEUROSCIENCE SOFTWARE

4.1 General versus special-purpose simulators

The most important aspect of the choice of appropriate simulation system is
what particular physiological data can be simulated using the system. The va-
riety of modelling elements that are possible to study is in the focus of attention
both for the developers of a program and the modellers using it.

When studying the available simulation packages and their particular char-
acteristics, one soon recognizes that some of them have a quite general domain
of application while others are rather specialized. Some Well-known packages,
such as Genesis [35] and Neuron [32], were developed as an attempt to create
a “general” simulation system. They were designed to be capable of solving
problems at many different levels of modelling. The development of general
simulation systems is important in computational neuroscience, since the range
of applications arising in the modelling of real neurobiological systems can vary
from sub-cellular components to complex network models.

The application of general simulation systems in neurobiological research
have a number of advantages compared to programs developed and dedicated
to performing of certain tasks.

First of all, these systems are powerful neural simulators which can provide
good performance for simulations. Users with good programming skills and
knowledge in computational neuroscience can argue that simulation code written
for a particular purpose can be better optimized for that particular task. In
certain cases the optimal use of computation resources is of high importance.
However, development of dedicated application requires a lot of time to write
and test the computer code. The time required for simulation preparation is
practically always much bigger than for performing the simulation itself.

When using the general simulation packages one might also have to spend
time for learning the user interface and maybe the scripting language. But in
return they provide a large set of dedicated routines and available computational
methods. This allows the user to construct the model from standard elements;
this can substantially reduce the time for simulation preparation.

The important advantage of the general simulation packages is the extensibil-
ity of available models and elements. Modification of specially written dedicated
programs for new simulation tasks often requires the user to rewrite the program
code, on which the complete sequence of testing procedures follows. In contrast,
if one uses a general simulation system, much less efforts are usually required
to modify and test the simulation model. One can use and extend previously
defined elements and structures as building blocks for the new model.

The general simulation systems are often capable of using specially developed
techniques and methods. They provide a number of integration methods and
their effective realizations, as for example the integration method for branching
structures developed by Hines, the author of Neuron [29]. Genesis, another
general simulator, provides the opportunity to perform the simulation on parallel
computers [35].

The possibility to construct new simulations using elements and structures
developed in previous simulations stimulates the organization of their collection



4.2. IMPORTANT ASPECTS OF THE PROGRAM CHOICE 37

in databases. Such developed databases can be considered as the tools for
collecting and exchanging knowledge in the field of modelling of neural systems.
The collections of simulated elements are usually functionally ordered, so that
their physiological properties are easy to inspect and use in the new applications.
For example, the Neuron User’s Group was established to provide information
about the latest updates of the program features and for communication about
useful tips concerning the use of the program [46]. The Genesis users group,
BABEL, maintains a database of published simulations [14]. The development of
general simulations in the form of databases of neural elements can be explained
by their large number of users. The communication between users results in the
necessity to establish users groups.

The wide spectrum of possible modelling tasks appearing in the field of
computational neuroscience has so far not allowed the realization of a simulation
program or package which can be optimally applied to every problem. Usually
even the general simulation systems do not optimally deal with certain spectra
of problems. Before starting to learn a particular simulation system, one needs
to check in detail which elements the system is capable to simulate.

Sometimes specialized programs are more effective and preferable to use for
solving the problems to which they were dedicated. Because of the narrow
specialization, these programs usually provide a well-developed user interface.

4.2 Important aspects of the program choice

In this paragraph the most important aspects that should be taken into account
when choosing program will be discussed. As was mentioned previously, a sim-
ulation system could primarily be characterized by the physiological elements
it is able to simulate. Therefore, at the first step of choosing a program every
researcher should clearly define the problem and check whether the simulation
system is capable of simulating it.

All packages which I will describe in this chapter can perform simulations for
detailed study of the membrane properties and are based on the compartmental
modelling approach. As was described in the previous chapter, the compart-
mental modelling approach is derived from the cable theory by replacing the
continuous equations with a set of ordinary differential equations. Thus, it is
possible to accurately simulate the morphology of a cell, since each differential
equation describes the voltage dynamics of the small membrane section. At
the same time, the differential equations describing the dynamics of ionic and
synaptic channels are also included. Usually, simulators are able to simulate
passive membrane models. However, not every simulation system is flexible
enough to be able to model different kinds of ionic channels and other specific
point processes.

The second important property of the simulation system is its portability.
Most of the available simulation packages are Unix-based, since they require ex-
tensive computational power for solving the system of differential equations aris-
ing from compartmental modelling. For users with insufficient IT-experience,



38 CHAPTER 4. COMPUTATIONAL NEUROSCIENCE SOFTWARE

problems can arise already in the installation phase, and then again later during
the usage of the programs.

The next important characteristic of a particular software is how the user
interface is organized. That determines the time that will be spent on the mod-
elling process including constructing and adjusting the particular simulation.
Very often, packages have their own interpreted scripting language, in which
users define the components and running parameters for their simulations. This
provides a flexible interface, since the scripting programs can be specifically
written for each modelling situation. The simulation can be started both from
the command prompt and by reading the model description from the scripting
files. The script interpreters allow control over the modelling parameters during
the simulation. But these packages require programming skills and time for
learning the scripting language.

“General” simulation systems often do not provide a Graphical User Inter-
face (GUI) or otherwise have a very simple one, and as a result they cannot
visually represent the simulation process. Having a wide spectrum of applica-
tions makes it difficult to construct a GUI for each model. The complexity of
the model (sometimes thousands of compartments and channels in each cell)
requires flexible editing and display modes for both single compartments and
groups of compartments. Genesis provides the possibility to construct the user
interface using a set of graphical modules. But this means that one needs time
and patience to build the appropriate interface in addition to the model con-
struction. Neuron provides a GUI only for primal research with functions for
parameter setting, control of voltage and current stimuli, and graphical presen-
tation of the results as a function of time and position.

The user extensibility can be essential for creating new modelling elements
and developing new modelling tests. The extensibility depends on the follow-
ing characteristics: modelling language, modular design, and open-ended code.
Most systems use an object-oriented approach, which enables the user to eas-
ily add new modules to extend the system for a particular application. The
modular design means that there are libraries or databases of standard sim-
ulation components, which can be chosen and used to quickly construct new
simulations.

Of course, the number of available integration techniques is an important
property of simulation systems. The methods for solving neural equations de-
scribing circuit spread in the cells can range from explicit methods to highly
implicit methods. The explicit forward Euler method is easy to implement and
takes fewer computational resources, but it can be unstable in some conditions.
In contrast, implicit methods take a lot of extra work but are more accurate and
more stable [49]. Most “general” simulation systems use an implicit integration
method based on the one developed by Hines [29], which is the most effective
for detailed cell models which contain many compartments. But this method
can be applied only to problems of a special kind because of its instability. If an
implicit method becomes unstable one can apply one of the explicit methods.

In the case of a model with a huge number of neurons or a complicated
structure of activated channels, the available computer resources can restrict



4.3. COMPARTMENTAL MODELLING PACKAGES 39

the choice of simulation program. Recently developed architectural techniques
like a client-server architecture of the program or parallel computing can be
a solution in such a case. The client-server architecture assumes a separation
of the program into two parts: the server performing numerical integration
and the client providing the user interface for preparation and control of the
simulation process. The server performs the function of the equation solver
and should be located on a powerful computer. The client, installed on the
user’s computer, provides access for controlling the simulation and displays the
results. This separation gives an effective solution in the usage of computer
resources, especially for detailed modelling of the morphological properties of
the membrane. The client-server architecture has not been realized in any of
the neural simulation packages.

The opportunity to start the system on a parallel computer (a computer
with many processors running simultaneously) is provided by some simulation
systems, e.g. by Genesis. The parallel computing can increase the computa-
tional speed compared with the standard single processors. Therefore, complex
models can be implemented, since the computation is performed on distributed
processors.

To conclude, a simulation system can be characterized by the elements possi-
ble to simulate. As important features the program extensibility, its portability,
user interface and special developed techniques for effective use should be con-
sidered.

4.3 Compartmental modelling packages

In this section I will go through those simulation packages that are extensively
used by wide groups of users and compare their characteristics based on the
most important features discussed above.

4.3.1 Neuron

Neuron is developed with the idea to realize a general simulation system. It is
designed on the basis of a script interpreter for model definition and running
a simulation. In common experiments, it provides the graphical user interface
with tools for specifying neural elements and analyzing simulation results. In
more general cases, it is convenient to write the procedural code using the
interpreter [32, 43].

Spatial discretization: sections versus compartments Although Neuron
is based on the compartmental modelling approach, it does not use a compart-
ment as the main building element [30]. The models are described as a number
of continuous cables, which are defined in terms of “sections”. The sections are
the main components of the Neuron. They are connected together to form the
branched cable tree. Each section is ultimately discretized in segments (com-



40 CHAPTER 4. COMPUTATIONAL NEUROSCIENCE SOFTWARE

partments) of equal length, the number of which is determined by parameter
nseg [31].

The biophysical and anatomical parameters of each section are continuous
variables depending on the position along the cable and vary between segments.
The cell properties, depending on the position along a cable branch (section),
are defined using so-called “range” variables. They are expressions in the form
rangevar(xmin : xmax) = e1 : e2 specified as functions of x varying from
xmin >= 0 to xmax <= 1. A function defined with a “range” variable can
take values between e1 and e2.

Model structures and parameters defined in such a way are effectively used
to find the numerical solution with the Crank-Nicholson integration method
optimized for branched structures [29].

Another advantage of representing neurons in terms of cable branches rather
than compartments, mentioned by Neuron’s authors, is that this way of descrip-
tion is more natural for neuroscientists [43].

The user interface Neuron uses the interpreter HOC with a syntax based
on the C language. The main method for model definition, specification of the
sections and parameter determination is based on the use of HOC. HOC is also
used for simulation control and the HOC code is saved as ASCII files. Because
of the object-oriented structure of Neuron’s interpreter, implementation of new
data types is possible.

By default, the graphical user interface is developed for definition of the
basic neural elements, parameters setting, control of voltage, current stimuli
and for presenting graphs as a function of time and position. These functions
can be extended for particular tasks by preparing scripting procedures to the
interpreter.

A practical example Here I will consider an example of the construction
of a simple neuron consisting of a soma connected with two dendrite cables.
It demonstrates how Neuron deals with the cable “sections” mentioned above.
The soma contains ionic channels with Hodgkin-Huxley dynamics, whereas each
dendrite has a passive leakage channel. The following HOC code defines the
model structure and specifies the morphological properties:

create soma, dendrite[2]
for i=0,1 {connect dendrite[I](0),soma(1)}

forall Ra=35.4
soma {nseg=1

L=30 //length , micron
diam=30 //diam , micron
insert hh //hh channel
gnabar_hh=0.5*0.120 }

for i=0,1 dendrite[i] {nseg=5
L=100
diam(0:1)=10:3



4.3. COMPARTMENTAL MODELLING PACKAGES 41

Figure 4.1: Neuron’s Run Control window for executing and controlling the
simulation and the PointManager window for setting up the Voltage Clamp.

insert pas //passive channel

e_pas=-65 //equilibrium potential

g_pas=0.001

}

One can see that each dendrite is composed of five “segments” (parameter
nseg), whereas the soma is represented as one segment. The diameter of the
dendrite’s segments is described with a “range” variable as a function decreasing
along the dendrite cable. The position is specified by the normalized parameter
0 <= x <= 1. In our example the diameter of the dendrite’s segments is
changed from 10 to 3 along the dendrite.

Graphical User Interface The above given code can be saved in a *.hoc file
and can be loaded via the graphical user interface, which can be started as the
nrngui library. Neuron Main Menu provides functions to load data defined with
the HOC interpreter, edit the model parameters, and for the graphical control of
simulation results. The Run Control Window shown in Fig.4.1 contains menus
for controlling the simulation. It provides functions for starting simulations with
a defined number of steps or calling the built-in single-step integration function.
It is possible to change the values of the membrane parameters during a run.
An electrode inserted into the soma can be constructed from the PointManager
window, which is activated from the Point Processes menu. One can also set
the parameters of a stimulus, as illustrated in Fig. 4.1.

Another group of neural elements, which can be included in the model,
are the so-called “standard density mechanisms”, the sources of electrical and
chemical signals that are distributed over the membrane of the cell, e.g. voltage-
gated ionic channels.



42 CHAPTER 4. COMPUTATIONAL NEUROSCIENCE SOFTWARE

Additionally, users can define new density mechanisms and point processes
using the model description language NMODL. With NMODL, one specifies
the equations for a channel or ionic process that will be translated into the
appropriate C code and the compiled version can be used later in Neuron. Model
description files written in NMODL are checked for the consistency of the units
using a unit checker program [44].

Cell Builder and Network Builder Using Cell Builder and Network Builder,
neural models can be constructed without the need to write any HOC code one-
self. Cell Builder, shown in Fig. 4.2, provides a GUI to specify the branched
structure of the single-cell model and assign biophysical and anatomical param-
eters for a section or a group of sections [46].

Figure 4.2: Constructing and managing models of single neurons with Cell
Builder.

Network Builder was developed to construct models of real either artificial
neural networks (see Fig. 4.3) incorporating some classes of artificial and pulsed
neurons [46, 45].

Integration methods The user has a choice between two integration meth-
ods realized in Neuron: the backward Euler method and the Crank-Nicholson
method. Neuron’s default integration method is the first order implicit back-
ward Euler method, which is stable. In terms of computational speed, a variant
of the Crank Nicholson method, implemented by Hines, is the most effective
method for models with branched cable structures with Hogkin-Huxley kinet-
ics. The improvement is based on the staggered time step by using the backward
Euler method in the first half step and then the forward Euler method in the
second half step. It was shown that this method requires no extra computations
cost compared to the backward Euler method step.



4.3. COMPARTMENTAL MODELLING PACKAGES 43

Figure 4.3: Modelling networks with Network Builder.

The reason for using the backward Euler method by default is that it provides
a good compromise between accuracy and stability even with large time steps,
whereas the Crank-Nicholson method can produce oscillations if the time step
is too large.

Operation systems and available documentation Neuron was initially
developed in the Unix operating system and later ported to Windows and Ma-
cOs. The full source code is available with the Unix distributions. The Neuron
distributions, including the source code, comprehensive documentation and tu-
torial material, are available free of charge from the Neuron web page.

The Neuron Users’ Group is organized in the form of a mailing list for sending
information about program updates and exchanging useful tips concerning the
program use [46].

4.3.2 Genesis

Genesis is one of the most powerful and widespread general simulation systems.
It has an object-oriented structure that makes it possible to exchange and reuse
models and their components. The commands for model definition, simulation
control and construction of the graphical interface, for each specific simulated
model, are provided by an interpreter. An extensible library of neural elements
was collected by the sharing of new models between members of the Genesis
Users’ Group [38].



44 CHAPTER 4. COMPUTATIONAL NEUROSCIENCE SOFTWARE

Model components Genesis provides a library of precompiled basic compo-
nents, such as compartments, various types of channels, or synaptic connections,
which may be added into a model. These components can be used to construct
the simulation by writing code composed of scripting language commands. The
parameter values are described with the object’s data fields, as it is usually done
for objects in object-oriented structures.

The communication between objects is organized by calling “messages” which
are predefined for the groups of modelling elements. For example, the following
code constructs a soma-like compartment and sets the parameters:

create neutral /cell
create compartment /cell/soma
setfield /cell/soma Em {Erest}//volts
Rm {RM/area} //Ohms
Cm {CM*area} //Farads
Ra {RA*length/xarea} //Ohms

In the compartmental approach compartments are connected by a system of
longitudinal currents from neighboring compartments. In our case, to set the
connection between the soma and the dendritic compartment located to the left,
one has to add “messages” containing both the axial resistance (Ra) and the
membrane potential (previous state) for the dendrite and only the membrane
potential (previous state) for the soma. Each time when the values of these
fields are updated, they are sent as messages.

addmsg cell/dend cell/soma RAXIAL Ra previous_state
addmsg cell/soma cell/dend AXIAL previous_state

In the same way as compartments are linked with ionic channels, cells, con-
sisting of a number of compartments, are linked together to constitute the net-
work models.

The scripting language interpreter and the graphical user interface
The above given commands may be called either interactively by a command
prompt or by using simulation scripts files. Genesis’ scripting language plays
the role of the connection between the building, controlling and visualization of
the simulation process.

The interpreter is based on the Scripting Language Interpreter (SLI), a “com-
mand interpreter similar to a Unix system shell” [38].

The graphical objects available with the standard Genesis distribution are
linked with the model components by calling messages, for example by passing
information about simulation results, which should be plotted in a graphical
window, into the graphical objects.

Graphical objects constitute XODUS (the X-Windows Output and Display
Utility for Simulations). The components of XODUS perform graphical func-
tions and can be used by users to create their own GUI to control simulations
and display results. For example, graphical “windows” for simulation of a two-
cell network in a feedback configuration can be created as in Fig. 4.4. The
simulation contains two neurons, each of which is composed of two compart-



4.3. COMPARTMENTAL MODELLING PACKAGES 45

ments corresponding to a soma and a dendrite. The dendrite has synaptically
activated channels while the soma contains ionic channels with Hodgkin-Huxley
dynamics.

Figure 4.4: The GUI constructed with Genesis showing a simulation of a two-cell
network in a feedback configuration.

This approach to the organizing of graphical user interfaces gives the ad-
vantage that one can build the GUI special for each simulation model and then
interactively change simulation parameters, but it takes additional time to mas-
ter the visualization process.

Genesis’ object libraries The standard distribution of Genesis includes a
number of common neural elements, which can be used to build a simulation.



46 CHAPTER 4. COMPUTATIONAL NEUROSCIENCE SOFTWARE

Regardless the source code of these objects, only knowledge of the scripting
language is necessary for developing a simulation.

The main “building element” of the Genesis simulation, based on the com-
partmental approach, is the object “compartment” which can have spherical or
cylindrical shape. The Genesis object library also contains voltage- and con-
centration activated channels and dendro-dendritic and synaptically activated
channels used for cell connections. Input to the simulation can be implemented
in Genesis with so-called “device objects”, among which there are different types
of pulse and spike generators, voltage clamp circuitry, etc.

In addition to the standard object library, there are a number of objects
that were extended by Genesis users from existing elements and also included
in the Genesis distribution. The channel library contains different types of
calcium, potassium and sodium channels. Single cell models are available as
script files and include cerebral cortical pyramidal cells, hippocampal pyramidal
cells, mitral and granule cells, etc.

Using scripting language, it is possible to create new objects from existing
Genesis elements. Elements can be extended by adding new data fields or
functions or by creating new messages.

However, for specialists with programming knowledge, trying to integrate
self-developed elements with Genesis objects, there are several drawbacks. It is
difficult to understand the logical structure of the object library. The implemen-
tation of objects and numerical integration are tied together. The interpreter
commands and message callings as the important part of the Genesis system
are often not separated from the objects’ implementation code. Therefore, it is
quite difficult to change the source code.

Cell Reader and Neurokit simulation Models of single multicompart-
mental cells can also be constructed by creating “cell parameter files” using
Cell Reader. The library of prototype elements is used by Cell Reader to create
model elements. A cell is constructed by copying the prototype elements into
the model structure and replacing the default parameters with values from the
“cell parameter files”. To build a simulation with Cell Reader, one only needs
to learn the form of the “cell parameter files”.

The NeuroKit simulation, which can be found in the Scripts/neurokit direc-
tory, provides a graphical user interface to work with “cell parameter files”, in
order to build and change single cell models as well as to run simulations.

Operating system and implementation language The computational
and graphical elements of Genesis are implemented in the C language. Gen-
esis can be run on Unix systems having X-Windows graphical utilities.

Genesis was also adopted to perform extensive calculations on parallel com-
puters for large simulation systems. The parallel version of Genesis is called
PGenesis [47].



4.3. COMPARTMENTAL MODELLING PACKAGES 47

Integration methods The integration methods used in Genesis vary from
explicit methods, which require more computational power, to more accurate
implicit integration methods.

The default integration method is the exponential Euler method. The choice
of this explicit method as the default integration method is based on its high
efficiency for common differential equations arising from compartmental mod-
elling (see Section 3.2). Other explicit methods range from forward Euler to
different orders of Adams-Bashforth methods (2nd, 3rd, 4th, 5th order).

There are two implicit methods realized in Genesis: the backward Eu-
ler method and the Crank-Nicholson method. Hines’ variant of the Crank-
Nicholson method is the most effective for neurons having branched structure
[29]. The implicit methods can be used in conjunction with a special developed
object, hsolve, which only can be applied for a few types of elements. The ob-
ject hsolve is responsible for calculating the solution of equations in the matrix
form arising from the implicit integration techniques.

Special techniques used in Genesis Among the special techniques imple-
mented in Genesis to speed up simulations one should first of all mention the
hsolve object for effective numerical integration.

I also found that the specifying of parameters in the form of a table can be
very useful. For example, one can use the tablechannel object which provides
the dynamics of the rate parameters in a table instead of using hhchannel which
only provides standard functions for describing the “rate parameters”. The
tablechannel object looks up the values of the rate parameters predefined in a
table. Thus, one does not need to fit parameters into the standard forms. More
general types of channels can also be implemented.

The possibility to use “multiple clocks” was implemented in Genesis as an-
other technique for speeding up and increasing the accuracy of the simulation.
That means that one can perform a numerical integration and present the results
graphically using different time scales for the variables.

The Genesis distribution, documentation and tutorials The Genesis
distribution is available on the Internet. It contains the full source code includ-
ing the XODUS, supported with documentation describing basic elements and
simulation routines, tutorials and demonstration programs for getting started.
“The Book of Genesis” [41] published by Genesis’ authors can be used as a
program manual. It is organized into two parts: modeling techniques used in
the neurobiology and basic examples of writing Genesis simulations. The first
part describes the basic approaches of computational neuroscience illustrated
with Genesis simulations. The second part is written as a user guide consid-
ering basic features of Genesis and describing the process of creating Genesis
simulations.

Most parts of the tutorials and the documentation were written by members
of the Genesis Users’ Group, BABEL, which consists of advanced users of Gen-
esis. New simulations, and neural elements developed by members of BABEL



48 CHAPTER 4. COMPUTATIONAL NEUROSCIENCE SOFTWARE

emerging from real neural systems are included in the latest version of Genesis.

4.3.3 SNNAP

The SNNAP simulator can be a good choice for modellers with little or no
programming skills, because of its quite well-developed graphical user inter-
face (GUI). SNNAP provides editors embodied into the graphical interface for
specifying the anatomical and biophysical properties of neurons and the struc-
ture of networks, saving the results of simulations into files and controlling the
simulation results [34]. Editors consist of different graphical windows for spec-
ifying the model structure, editing the model and network parameters, setting
the anatomical and biophysical parameters of neurons, plotting the simulation
results and saving the information to files.

The SNAAP user does not need to learn the scripting language and simula-
tion techniques, since all operations are performed graphically.

The graphical interface of SNNAP allows the user to reduce the time required
to get started with the program, compared to interfaces based on scripting
language. At the same time, SNNAP incorporates all the common elements
required for simulation of real neurobiological systems. Therefore, it can be
used for fast modelling of single neurons and small neural networks.

The orientation towards a fully graphical interface in SNAAP has clear ad-
vantages but it also brings some limitations. One is the limited number of
possible modelling elements and possible simulation tests which are predefined
in the graphical user interface. The simulator also does not provide any oppor-
tunity to extend models.

Operating system and implementation language SNNAP was imple-
mented as a Java application and can run on any computer system. The SNNAP
distribution can be obtained from the Internet as Java *.jar archival files con-
sisting of the executing file, tutorial material and examples of the program
demonstration.

To install the SNNAP simulator, one needs a functional version of Java on
the user’s computer. The installation consists only of the unzipping of the *.jar
files and the allocation of them in an appropriate directory.

SNNAP editors When starting up the SNNAP simulator, the main menu of
SNNAP, shown in Fig. 4.5, appears. It contains buttons to open the appropriate
SNNAP editors which are divided into the functional groups to run a simulation
and to have access to simulation parameters, cell’s and connection parameters,
as well as to parameters of ionic channels and inserting mechanisms.

The simulation parameters are saved in files in a hierarchical structure con-
nected together with a *.smu simulation file. The graphical editors of SNNAP
generate various functional files, for example files containing equations describ-
ing the dynamics of ionic channels or the parameters of neural connection. The
hierarchical structure of the parameter files allows one to open each of them
directly using an appropriate editor.



4.3. COMPARTMENTAL MODELLING PACKAGES 49

Figure 4.5: The main window of SNNAP.

The formula editors in SNNAP are provided to edit the parameters of the
mechanisms whose dynamics are described with equations. These editors show
the form of equations emphasizing with different colors the parameters which
may be changed (see e.g. Fig. 4.6). Thus, with the SNNAP graphical editors
one can easily edit the model and the simulation parameters using a certain set
of the models and their corresponding equations.

Models simulated with SNNAP SNNAP can simulate models constructed
of neurons with Hodgkin-Huxley type voltage- and time-dependent ionic chan-
nels and integrate-and-fire neurons. The program was developed as “a simulator
of single neurons and small neural networks” [34].

Let us consider an example simulation of a one-cell model with Hodgkin-
Huxley ionic channels, the basic formalism structure of which is most often
chosen by neuroscientists. The simulation can be found among the examples
provided with the SNNAP distribution, in the directory /Examples/hhmodel.
One needs to open an appropriate *.smu file, which offers access to the sim-
ulation editors. The parameters of the Hodgkin-Huxley channels (as voltage-
dependent gated channels) can be viewed in the window of the *.vdg files Editor
(see Fig. 4.6).

The results of the Hodgkin-Huxley neuron simulation are controlled with
the simulation window shown in Fig. 4.7, where one can see an action potential
initiated by the injected current with the duration of 0.1 ms. The graphs created
in SNNAP can be printed and stored as a postscript or ASCII file.

SNNAP can simulate the current flow in multicompartmental neurons con-



50 CHAPTER 4. COMPUTATIONAL NEUROSCIENCE SOFTWARE

Figure 4.6: The editor window provided by SNNAP for voltage-dependent cur-
rents.

nected into neural network models. An example of such a simulation presenting
a neural network constructed from three neurons with Hodgkin-Huxley channels
can be loaded from the directory /Examples/hhNetwork. The network archi-
tecture is presented in Fig. 4.8, while the network behavior is shown with the
voltage graphs in Fig. 4.9.

SNNAP provides a wide range of neural elements and common experimental
tests that can be used for simulations. The connections between neurons can be
made by electrical, chemical and modulatory synapses. Additionally, the chem-
ical synapses can be expressed with different kinds of plasticity, such as homo-
and hetero-synaptic depression and facilitation. The kinetics of the multiple
components contained in chemical synapses can be defined by the user.

Among the common experimental techniques, SNNAP can simulate for ex-
ample current injections into neurons, modulation of membrane currents and
voltage-clamping experiments. Examples from the directory /Example/HH
_type_neuron/Biophysics_01 illustrate the voltage-clamping experiments. Fig. 4.10
displays the results of a simulation of a Hodgkin-Huxley neuron whose voltage
was clamped at V = −60 mV and stepped to V = −10 mV . One can see
the change of the total membrane current Im, the sodium current INa and the
potassium current IK .

Numerical integration method SNNAP uses the forward Euler method
with a fixed time step for numerical integration of the differential equations
arising in the modelling. The forward Euler method, one of the explicit integra-
tion methods, is fast, but can cause problems of instability. The integration time
step must be chosen small enough to avoid the problem of numerical instability
of the method, leading to oscillations of the solution.



4.3. COMPARTMENTAL MODELLING PACKAGES 51

Figure 4.7: The SNNAP simulation window displaying two action potentials.

Figure 4.8: The SNNAP GUI showing the architecture of a three-neuron net-
work.



52 CHAPTER 4. COMPUTATIONAL NEUROSCIENCE SOFTWARE

Figure 4.9: Results of a SNNAP simulation of a three-neuron network.

The SNNAP documentation and tutorials contain examples describing the
problem of instability and warnings of possible errors.

4.3.4 Nodus

Nodus is a program for simulation of single neurons and small neural networks.
All aspects of the model definition and control of the simulation results can be
managed via a user-friendly graphical interface. Therefore, Nodus users do not
need much computer experience.

The Nodus distribution, operating system and programming language
Nodus was implemented in Fortran and runs on Apple Macintosh computers.

The Nodus distribution is available “for a small fee”. It consists of compiled
executable files, examples and a manual description. The source code is not
provided emphasizing that “the average Nodus user is not a programmer” [64].

Integration methods Nodus provides two numerical integration methods:
an accurate Fehlberg method (fifth-order Runge-Kutta) and the forward Euler
method. These are explicit integration methods, which are easier to implement
but in some cases slower than implicit methods implemented in other simulation
systems.



4.3. COMPARTMENTAL MODELLING PACKAGES 53

Figure 4.10: A voltage-clamping experiment with the Hodgkin-Huxley model of
a squid axon implemented with SNNAP.

Figure 4.11: A Nodus window showing the construction of a compartment that
can be passive or have activated channels.

User interface The models defined with Nodus are saved in different files
linked together by the top simulation file. There are three types of files for
storing complete model descriptions: conductance definition files, neuron defi-
nition files and (optionally) network definition files. These files are opened when
loading the model. The loaded information can then be edited in the various
windows.

The conductance definition files contain the parameters of the equations
describing the conductance of the voltage-activated channels. The dynamics of
the conductance and rate variables can be plotted as a function of the membrane
voltage and can be especially useful in cases of non-standard dependencies.

The neuron definition files contain the parameters of the compartmental
structure of a neuron as well as the morphological structure of all compart-
ments. The parameters of a compartment can be edited in the compartment
dialog windows, one of which is shown in Fig. 4.11. A cylindrical dendritic



54 CHAPTER 4. COMPUTATIONAL NEUROSCIENCE SOFTWARE

Figure 4.12: Nodus’ dialog window used to set up voltage clamps.

compartment is presented, together with the neuron morphology shown graphi-
cally. Ionic currents and synaptic connections are defined in the popup windows,
which can be activated from the compartment dialog windows. In Fig. 4.11 one
can see how a compartment has been made active.

The network definition files specify the parameters of the neuron connections
and are always linked with the neuron definition files.

For numerical integration, data from the model definition files are trans-
formed into the simulation database files, whose structure is optimized for math-
ematical calculations. These files are hidden from the user, but the simulation
parameters and the specific settings for graphic and text output, can be shown
in the popup windows from the simulation dialog window (see Fig. 4.11)

The compartments in Nodus can be cylindrical or spherical and are con-
nected symmetrically (end to front) or asymmetrically (center to front).

The results of the simulation can be plotted on the following axes: conduc-
tances, currents, and voltages, as is shown in Fig. 4.13. A cell was synaptically
inhibited and the results of that experiment are presented as graphs of the mem-
brane voltage of 5 compartments (top), synaptic conductances (bottom left) and
synaptic currents (bottom right).

Among standard electrophysiological experiments, Nodus can simulate dif-
ferent current injections (constant, pulsed, ramps, sinus, and noise) and voltage-
clamping experiments. An experiment of ionic current blocking can be tested.

4.3.5 Surf-Hippo

Surf-Hippo is a simulation system based on compartmental modelling which
allows working with model cells with a 3-dimensional geometry. Surf-Hippo is
written in Lisp and runs on the Unix operating system.

Integration method Surf-Hippo performs numerical integration using a vari-
ant of the implicit Crank-Nicholson method developed by Hines, which is most



4.3. COMPARTMENTAL MODELLING PACKAGES 55

Figure 4.13: Graphic output of simulation results: membrane potential, synaptic
conductances and synaptic currents (modelled with the Nodus simulator).

effective for neurons in the branched structure. The improvement made by the
Surf-Hippo authors is the adaptive time step that is adjusted according to an
estimate of the linear truncation error for all state variables (e.g. node voltages,
channel particles). The adaptive time step allows faster numerical integrations,
the results of which can be tested with fixed time step integration [4].

Modelling elements With Surf-Hippo one can form models with complex
dendritic trees in 3-dimensional space, including ionic channels and synaptic
inputs.

It is also possible to simulate ionic channels of Hodgkin-Huxley type and the
synapses can be voltage- and light-dependent. Integration of such concentration
modelling mechanisms as calcium-dependent processes is provided.

Graphical user interface The graphical user interface of Surf-Hippo is based
on the libraries of the Carnegie Mellon University (CMU) Garnet GUI package
and is used for model definition and presentation of the 3-dimensional structure
of dendritic trees. The resulting data can be plotted and the graphical output
can be exported in the postscript format.

Surf-Hippo can construct models of neurons and neural networks by loading
their description from files with such anatomical formats as Neurolucida, NTS.

Knowledge of Lisp is not necessary for working with Surf-Hippo but, as it is
written in the Surf-Hippo documentation, will “help in working with program
considerably” [5].

Programming language The choice of Lisp as the programming language
was motivated by its object-oriented structure and significant numerical per-
formance similar to C and Fortran. Another advantage is the ability of Lisp
to handle both symbolic and numeric representations. Thus, the description of
simulated models can easily be implemented in Lisp. Moreover, Lisp provides



56 CHAPTER 4. COMPUTATIONAL NEUROSCIENCE SOFTWARE

an easily adjustable user interface with opportunities to set commands directly
from the interpreter or by using scripts. It is possible to extend objects, which
needs compiling new code without recompiling the whole source [5].

4.3.6 NeuronC

NeuronC was developed as a simulation system incorporating many character-
istics of general neural simulators. The distinguishable property of NeuronC is
that it was implemented as a simulation language whose syntax is based on the C
programming language. NeuronC contains a subset of standard operators such
as assignment and mathematical operators, conditional and loop statements, as
well as variables of standard types.

The modules of the standard modelling elements are predefined in NeuronC.
New components can be added by writing and compiling an appropriate C-like
code.

The origin of NeuronC NeuronC was initially implemented for simulation of
the neural networks that constitute the visual systems. Since the experimental
models often are complex for such tasks, modelling at various levels of detail
are required for a better understanding of the system functioning.

The origin of NeuronC determines its ability to simulate neural networks
containing special elements such as two-dimensional light stimulus and recep-
tors.

Neural elements NeuronC allows constructing models hierarchically using a
set of ”conceptual modules” in the hierarchical structure. Hierarchical structure
of neural elements defines the easy extensibility of the models using standard or
user predefined modules. The modules can be very simple, such as membrane
channel, synapse, dendrite, or more complicated, such as synaptic interconnec-
tion pattern, neuron arrays [66].

The input files contain the information about model structure and are in-
terpreted when building the components for simulation.

Although the detailed simulation with NeuronC is based on the compart-
mental modelling, the user does not need to define all compartments separately.
When structure and elements of the neuron network are specified the simulator
automatically generate compartmental model. Dendrite cables will be trans-
formed into a set of longitudinally connected isopotential compartments by a
cable segmentation algorithm. The predefined element “sphere” usually used
for definition of the soma [59].

Integration method The functioning of model elements is described by a
set of differential equations derived from equivalent electrical circuits of com-
partments. The default integration method of NeuronC is the variant of the
Crank-Nicholson implicit method, which was developed by Hines. One can also



4.3. COMPARTMENTAL MODELLING PACKAGES 57

Figure 4.14: The morphology and connectivity of a 3-dimensional network con-
structed with NeuronC.

perform integration with the backward Euler implicit method or the forward
Euler explicit method.

Operating system NeuronC runs on Unix. The source code is included in
the distribution package.

Graphical User Interface Using the NeuronC commands, one can visualize
the structure of 3-dimentional network, as illustrated in Fig. 4.14. The graphs
of two variables such as the membrane voltage versus time can be plotted.

4.3.7 HHSim

HHSim is a neural simulator developed for educational purposes. Because of its
user-friendly interface, it can also be used for quick simulation tests in neurobi-
ological research.

Already the name of the program indicates the simulated object: a section
of membrane with Hodgkin-Huxley voltage-gated channels. The section of the
membrane containing ionic channels of Hodgkin-Huxley type is the subject of
the test.

HHSim was written in Matlab but the current version of HHSim does not
require Matlab installed on the computer, since it is available as an executable
file for Windows, Unix and MacOS operating systems.

Working with HHSim The differential equations describing dynamics of
the membrane voltage and channel conductance as well as in the gated vari-
ables are hidden from the user. By default, the user can observe the results of
the simulation as plots of the membrane voltage, stimulus current and gated



58 CHAPTER 4. COMPUTATIONAL NEUROSCIENCE SOFTWARE

Figure 4.15: HHSim’s main window to control simulation results.

parameters (see Fig. 4.15). Additionally other parameters can be plotted, such
as the channel current or channel conductance. There are buttons on the top of
the main window which activate the windows to edit the biophysical parameters
of the membrane, the parameters of Hodgkin-Huxley channels, and the form of
stimuli (see Fig. 4.16).

(a)

(b)

Figure 4.16: (a) HHSim’s Membrane window for adjusting the membrane pa-
rameters; (b) HHSim’s Channels window providing access to the channel pa-
rameters.

The results of the simulation can be saved in postscript or ASCII format
or be printed. Some additional inhibition elements are available in HHSim.
Three drugs can be applied from the Drug Window: TTX, which inhibits the
sodium current; TEA, which inhibits the potassium current; and pronase, which



4.4. SUMMARY 59

prevents sodium channel inactivation (see Fig. 4.17).

Figure 4.17: The HHSim’s Drug window allows application of a few drugs.

4.4 Summary

In this chapter we have examined seven simulation packages for biological neural.
Table 4.2 summarizes the relevant information about the considered packages.
The characteristics given in this table have proven useful. Table 4.1 presents the
distinguishing features of the packages, playing an important role when choosing
program.

GENESIS general simulation system; parameters are specified with “table
lookup”; multiple time scales; extensibility; parallel computing

NEURON general simulation system; numerical method developed by Hines;
properties are dependent on the position in the section

SNNAP graphical interface; modular organization of input files; simulation
of different types of plasticity and common experimental tech-
niques

Nodus graphical interface, no programming skills are necessary; hierar-
chical structure of model definition files

NeuronC extensibilty; simulation of experiments on vision
Surf-Hippo 3-dimensional models

HHSim educational software

Table 4.1: The distinguishing features of the examined packages.



60 CHAPTER 4. COMPUTATIONAL NEUROSCIENCE SOFTWARE

GENESIS NEURON SNNAP Nodus NeuronC Surf-
Hippo

HHSim

Oper. system Unix Unix, Win,
MacOS

any MacOS Unix Unix Unix,
Win,
MacOS

Impl. lan-
guage

C C Java Fortran C Lisp Matlab

User exten-
sions

yes, for pro-
grammers

no no no yes, for pro-
grammers

yes no

Int. method explicit,
implicit

implicit explicit explicit explicit,
implicit

implicit no inf.

Graphs of re-
sults

after pro-
gramming

for primal re-
search

yes yes yes yes yes

Model defini-
tion

interpreter interpreter editors editors interpreter files GUI

Ionic channels yes yes yes yes yes yes HH

Synaptic
channels

yes yes yes yes yes yes no

Networks yes yes yes limited yes yes no

Table 4.2: Important properties of compartmental modelling packages.


