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Abstract

This work deals with quantum chemistry and quantum dynamics of cis-trans
isomerization via conical intersections for three model systems of reduced dimen-
sionality. The focus is on obtaining clear pictures of the quantum dynamics in the
excited electronic state using fulvene and 4-(methyl-cyclohexylidene)-fluoromethane
as model systems. The effect of solvent polarity on the conical intersection is also
investigated using 4-cyclopentadienylidene-1,4-dihydropyridine as model system.

Ab initio potential energy surfaces are built for the ground and first excited
electronic states of the molecules 4-(methyl-cyclohexylidene)-fluoromethane and 4-
cyclopentadienyl idene-1,4-dihydropyridine. For fulvene , model potential energy
surfaces are generated based on analysis of the corresponding ab initio potential en-
ergy surfaces. To investigate the dynamics of the isomerization process, the nuclear
wave packets evolving on one- or two-dimensional coupled potential energy surfaces
are simulated for fulvene and the 4-(methyl-cyclohexylidene)-fluoromethane. For
this purpose, the original adiabatic potential energy surfaces with kinetic couplings
are transformed to the diabatic ones with potential couplings. To investigate the
effect of laser pulses on the dynamics of the isomerization process, preliminary sim-
ulations based on one-dimensional ab inito potentials and dipole functions of the
4-(methyl-cyclohexylidene)-fluoromethane model system are carried out.

It is found that for fulvene, radiationless decay due to vibrations along the sym-
metric allylic stretch is faster than the radiationless decay along the torsional coor-
dinate. For 4-(methyl-cyclohexylidene)-fluoromethane, torsional/rotational motions
can be conserved in the excited as well as in the ground state. Furthermore, for the
model 4-cyclopentadienylidene-1,4-dihydropyridine, the conical intersection between
the ground and first excited electronic state shifts in non-polar solvents, whereas in
polar solvents the degeneracy is lifted.



Kurzfassung

Die vorliegende Dissertation beschäftigt sich mit der Quantenchemie dreier Mod-
ellmoleküle und deren Quantendynamik bei Cis-trans-Isomerisierungen, die über
eine konische Durchschneidung verlaufen. Als Modellsysteme für die Untersuchung
der Quantendynamik im angeregten elektronischen Zustand dienen die Verbindun-
gen Fulven sowie das 4-(Methyl-cyclohexyliden)-fluoromethan und deren Bewegun-
gen entlang ausgewählter Koordinaten. Anhand des Moleküls 4-Cyclopentadienylidene-
1,4-dihydropyridin wird der Einfluss der Polarität des Lösungsmittels auf die konis-
che Durchschneidung aufgezeigt.

Ab initio Potenzialenergieflächen werden für den Grundzustand und den ersten
angeregten elektronischen Zustand für die Modellverbindungen 4-(Methyl-cyclohexyliden)-
fluoromethan and 4-Cyclopentadienylidene-1,4-dihydropyridine berechnet, während
für das Fulvenmolekül Modellpotenziale genutzt werden, die auf ab initio Daten
beruhen. Um die Dynamik der Isomerisierung zu erforschen, werden die Bewegungen
der Kernwellenpakete des Fulvens sowie des 4-(Methyl-cyclohexyliden)-fluoromethans
auf ein- oder zweidimensionalen Potenzialflächen simuliert. Hierfür werden die er-
haltenen adiabatischen Potenziale und deren kinetische Kopplungen untereinan-
der in diabatische Potenziale mit Potenzialkopplungen umgewandelt. Der Ein-
fluss der Laseranregung auf die Dynamik der Molekülisomerisierung entlang eines
eindimensionalen Reaktionspfades wird am Beispiel des 4-(Methyl-cyclohexyliden)-
fluoromethans berechnet.

Beim Fulven erfolgt der strahlungslose Zerfall aus dem angeregten elektronis-
chen Zustand durch die symmetrische allylische Streckschwingung des Cyclopenta-
diengerüsts schneller als über die Torsion entlang der C=C Doppelbindung. Beim
4-(Methyl-cyclohexyl iden)-fluoromethan wird gezeigt, wie eine Rotations-Torsions-
Bewegung sowohl im Grundzustand als auch im angeregten Zustand erhalten bleiben
kann. Die konische Durchschneidung zwischen dem Grundzustand und dem ersten
angeregten elektronischen Zustand des 4-Cyclopentadienyliden-1,4-dihydropyridins
wird lokalisiert und deren Verschiebung bzw. Aufhebung unter dem Einfluss unpo-
larer und polarer Lösungsmittel herausgestellt.
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Chapter 1

Introduction

The development of civilization has always been severely related to the design and
construction of devices, from the wheel to the jet engine, able to facilitate human
movement and travel. Nowadays scientists investigate the possibility of designing
and constructing motors and machines at the nanometer scale, i.e. at the molecular
level. Chemists are able to manipulate atoms and molecules and are therefore in the
ideal position to develop bottom-up approaches for the construction of nanoscale
devices [1]. Synthetic molecular motors are molecular machines capable of rota-
tion under energy input. Although the term ”molecular motor” has traditionally
referred to a naturally occurring protein that induces motion, some groups also
use the term when referring to non-biological, non-peptide synthetic motors. The
prospect of synthetic molecular motors was first raised by the nanotechnology pi-
oneer Richard Feynman in 1959 in his classic talk There’s Plenty of Room at the

Bottom. The basic requirements for a synthetic motor are repetitive 360 degrees
motion, the consumption of energy and unidirectional rotation. The first two ef-
forts in this direction, the chemically driven motor by Kelly and co-workers and
the light-driven motor by Feringa and co-workers, were published in 1999 in the
same issue of Nature [2, 3]. The words ”motor” and ”machine” are often used in-
terchangeably when referred to molecular systems. The operation of a molecular
machine is accompanied by partial conversion of free energy into heat, regardless
of the chemical, photochemical, and electrochemical nature of the energy input. In
the situation of artificial nanomotors, stimulation by light has several advantages
compared to stimulation by chemical or electrochemical means. First, the amount
of energy given to a chemical system by using photons can be carefully controlled
by the wavelength and intensity of the exciting light. Other properties of light,
such as polarization, can also be used. Lasers provide the opportunity of working
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in very small spaces and extremely short time domains. On the other hand, the
irradiation of large areas and volumes can be easily carried out, in that way al-
lowing the parallel (or even synchronous) concentration on a very high number of
individual nano-devices. Furthermore, photochemical methods are useful for moni-
toring the operation of the motor. The construction of artificial molecular machines
is one of the major contemporary challenges in nanoscience [4, 5, 6]. The func-
tioning of these machines will critically depend on the ability to power and control
rotary movement like in the macroscopic motors used in daily life and the rotary
motors present in biological machines, most elegantly seen in ATP synthase [7, 8, 9].
The synthesis of molecular motors and the demonstration of unidirectional rotary
motion driven by light or chemical conversions has laid the foundation for future
nanomotors [7, 8, 9, 10, 11]. While the realization of building useful nanomachines
remains far off, a general consensus abounded that investigating biological systems
and understanding the implications of the laws of thermodynamics and quantum
mechanics for the behavior of nanostructures will help drive important advances
in the seek for molecular machinery. Molecular rotors were demonstrated to have
practical applications and many experimental studies indicated that highly directed
translation and rotation of individual molecules are just approaching. Recently, the
first quantum simulations have been carried out, representing the ignition of unidi-
rectional intramolecular rotations in chiral molecules by means of linearly polarized
laser pulses in the infrared (IR) frequency domain [12, 13, 14]. This approach can
be an alternative to chemical, electrochemical or photochemical stimuli of molecular
rotors [3, 15, 16, 17, 18, 19], which is an important challenge in molecular engineering
[20, 21, 22, 23]. It was found in Ref [24] that quantum ignition of intramolecular ro-
tation can be accomplished by first, a few-cycle infrared (IR) laser pulse excites the
torsional vibration in an oriented molecule. Consequently, a Franck-Condon type
transition is induced from the electronic ground to the excited state by a well-timed
ultrashort ultraviolet (UV) laser pulse. As a result, the torsional motion is con-
verted into a unidirectional intramolecular rotation, with high angular momentum
(≈ 100 ~). The mechanism is confirmed using representative laser driven wave pack-
ets which are propagated on ab initio potential energy curves of the model system
(4-methyl-cyclohexylidene)fluoromethane.
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1.1 Phase Localization of Conical Intersections:

Quantum Chemistry–QuantumDynamics (PLCI–

QC–QD) Approach

This thesis is part of a trilateral project that aims to predict, analyze and propose
laser pulses for the control of photochemical reactions which proceed via conical
intersections, by means of a combination of three quantum methods. These include
(1) phase localization of conical intersections (PLCI), (2) state–of–the–art quantum
chemical (QC) calculations of relevant potential energy surfaces and couplings, and
(3) quantum dynamics (QD) propagation of nuclear wavepackets and the design
of laser pulses for the control of reaction dynamics via conical intersections. The
ultimate general purpose of these studies is to analyze molecular motions, e.g. in
order to drive a molecular motor or switch by laser pulses. Such analysis is performed
using models with reduced dimensionality. The effect of the environment on conical
intersections is also considered. The three fields that are applied in this thesis will
be discussed shortly in this section.

1.1.1 Phase Localization of Conical Intersections (PLCI)

Molecular rotary motors are systems capable of undergoing unidirectional and repet-
itive rotations under the action of external energy inputs. The construction of molec-
ular rotary motors causes several challenges, mainly because it is difficult to satisfy
the unidirectional rotation requirement. Now, artificial rotary motors driven by light
have only been obtained by exploiting a C=C photoisomerization reaction in alkenes.
Photochemical reactions often give different products than thermal ones. A full un-
derstanding of such reactions is needed for some of the most important processes
in nature such as photosynthesis, vision and the preparation of novel compounds.
Unlike thermal reactions, which proceed on a single potential surface, photochemical
reactions involve at least two potential surfaces. Quantum methods have been very
successful in analyzing the path of thermal reactions and the techniques methods
developed for this purpose can also be extended to photochemical ones. The most
competent transition from one surface to another is at degenerate points (conical
intersections, CI). The computational location of CIs involves high level quantum
chemical calculations which are now feasible using modern computer technology.
Several methods were developed for this purpose and have been applied to explain
many different reactions. A model developed by Haas and Zilberg [25, 26, 27] leads
to locate the conical intersection relevant to a given reaction. The model is based
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on the pioneering work of Teller [28] and the phase change theorem of Herzberg and
Longuet-Higgins [29, 30] who noted the singular behavior of the electronic wavefunc-
tion around a degeneracy. This observation is the basis of the approach used in this
study to localize the conical intersection. The model used in this approach allows
the efficient calculation of the properties of CIs in many systems [25, 26, 27, 31].
The basic assumption is the total wavefunction of a molecular system that can be
written approximately as the product of an electronic wave function and a nuclear
one (the Born-Oppenheimer approximation). The phase change theorem considers
possible changes in the phase of the total electronic wave function, when the system
goes along a closed trajectory around a point in phase space. It was shown that a
CI necessarily is found in a system, if the total electronic wave function changes its
phase upon traversing a complete loop. In the phase localizing of conical intersection
(PLCI) model, reaction coordinates are used to construct the loop. A reaction is
phase preserving (p) or phase inverting (i) depending on whether the total electronic
wave function preserves its sign or inverts it during the reaction. Three reactions
are typically required to form a complete loop, converting a reactant A to B, B to
C and C back to A (see Figure 1.1). The A, B and C species are isomers, differing
in their electron spin-pairing arrangements (i.e., chemical bonding). The loop is
formed around these isomers, termed as anchors. If one or all three reactions are
phase inverting, a CI arises within the loop [25, 26, 27]. If a photochemical reac-
tion is initiated by exciting molecule A, for example, and the system passes from
the electronically excited state to the ground state via the conical intersection, two
products B and C may be formed. Depending on the properties of the system, a
different number of anchors may be required. Sometimes, a reactant and a product
may be connected by two distinct elementary reactions, one is phase preserving and
the other is phase inverting. If so, a loop enclosing a CI is formed from only two
species, and a single product is expected from photo-excitation.

1.1.2 Potential Energy Surfaces (PES)

On the frame of the Born–Oppenheimer ansatz [32], the quantum dynamics is gov-
erned by the structure of the PES in the ground and excited electronic states, the
couplings between these states, and the nuclear masses. In the classical mechanics
approach to photochemical reactions, studying the reaction dynamics of a poly-
atomic molecule is essentially figured as placing ’billiard balls’ on these PESs, near
the Franck-Condon (FC) point, and following their trajectories towards one or the
other channel. Potential surfaces are key quantities for understanding molecular pro-
cesses. Due to the existence of wells, barriers, avoided crossings, conical intersections
etc., rather complicated topographies, which can hardly be guessed or parameter-
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Figure 1.1: i3 (left) and ip2 (right) Longuet-Higgins loops; i indicates a sign inverting
reaction and p indicates a sign preserving reaction. In i3 loop, the three reactions
are sign inverting while in the ip2 loop, the two reactions are sign preserving, one
sign inverting. Both i3 and ip2 loops are sign inverting loops, therefore, a conical
intersection exists within the loop.

ized in a simple manner, are common. Potential surfaces and the couplings must
be calculated by ab initio methods point by point, scanning at least that part of
the PES that is sampled during the reaction of interest [33]. Typically at least 5-10
grid points are required for each coordinate. Finally, for practical applications, all
the calculated points on the PES have to be fitted to an analytical function which
then is employed in the dynamics calculations. The lack of high-quality complete
PESs and couplings is still a bottleneck for realistic calculations and this situation
will not essentially change in the near future.

1.1.3 Real-Time Dynamics and Effects of Laser Pulses

In addition to the knowledge about the PESs, the couplings and the location of
the conical intersection, understanding the dynamics of the quantum wave packets
evolving on those coupled surfaces is crucial for a full understanding of photochemi-
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cal reactions. Time-dependent wave-packet methods have been employed to explore
the quantum dynamics in the presence of conical intersection with ab initio based
models as well as simplified generic model Hamiltonians. Processes like photodissoci-
ation and photoisomerization have been investigated by means of quantum dynamic
calculations. One can theoretically describe photochemical processes and infer in-
formation about the reaction mechanism and ultimately about the multidimensional
PES when light sources with weak intensities and long durations are used as in all
traditional experiments. Typical time-scales for fragmentation are 10−12 seconds or
even shorter whereas pulse lengths of conventional lasers are in the range of 10−9 sec-
onds. Therefore, it is naturally impossible to analyze directly the time-dependence
of the reaction. A ’revolution’ in molecular dynamics set in at the end of the 1980s,
when new laser systems with pulse lengths in the range of 10−14 (10 femtoseconds)
or so became accessible. With such short light sources it is possible to ’see’ directly
molecular vibrations in the laboratory [34, 35, 36, 37, 38]. Ultrafast laser pulses
have been employed as a ”real-time camera” to observe elementary photochemical
processes ever since femtosecond lasers became available to researchers in chemi-
cal physics [39]. An important class of photoreactions, which has successfully been
investigated by femtosecond spectroscopy, is cis-trans photoisomerization [40, 41].
Femtosecond laser pulse techniques allow the use of pulsed excitations in order to
control molecular dynamics. The control parameters are the laser frequencies, dura-
tions, polarizations and the delay time between the pulses. A typical control experi-
ment uses two lasers with pulse durations in the sub-picosecond regime. First, a laser
pulse excites the system from the ground to an upper electronic state. Since the laser
has a small temporal width ∆t, it excites a wave packet, i.e., a coherent superposi-
tion of several stationary (time-independent) states, in the excited manifold rather
than a single stationary level as in an experiment with an infinitely long light pulse;
the energetic width ∆E of the wave packet is given by ∆E∆t ≈ h. This wave packet
is not an eigenstate of the upper PES and therefore it starts to move. The motion
of this wave packet is then probed with the second laser, which is fired with a well
defined delay time after the first pulse. The absorption spectrum or the ionization
yield as a function of the delay time and pulse frequency then provide information
about the time evolution of the molecule on the upper potential energy surface [42].
The ability to shape laser pulses allows for a generalized concept, in which phase
and shape of a (femtosecond) laser pulse are optimized in order to create specially
customized material wave packets and to manipulate their dynamics [43, 44]. Shi,
Woody, and Rabitz developed ”optimal control theory”. This application relies on
engineering control concepts to maximize a specific product yield by optimizing the
tunable laser field [45, 46]. Judson and Rabitz extended this approach to include
an evolutionary algorithm that directly compares the product yield with the desired
output, iteratively re-optimizes the electric field, and thus solves the Schrödinger
equation [43, 47]. This method was successfully tested experimentally in several
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systems [44]. Mathematically, the problem of finding the right pulse shapes can be
formulated as a problem in the calculus of variations, or as a problem of optimal
control theory, which may be viewed as an application of the calculus of variations
to problems with differential equation constraints. In the case of quantum optimal
control, the relevant differential equation is the time-dependent Schrödinger equa-
tion, with the electric field interacting with the dipole of the molecule. Coherent
control [48, 49] of the motion of a molecular system with continuous wave excitation
and extensions to short and/or intense lasers has become a hot topic in the 1990s.
The general question is very simple: can one find a particular pulse or sequence of
pulses that forces the molecule to do what it refuses to do without the applied light
field? Several control schemes have been suggested and applied to simple systems,
mostly diatomics. The idea of coherent control is very appealing; some day it might
become possible to open chemical reaction pathways, which are either energetically
forbidden or just too inefficient without external field. However, a lot more investi-
gations, both experimental and theoretical, are required before this goal is achieved.
The internal motion of a realistic multimode system is, except for few simple cases,
very complicated and to untie this motion is a terrifying task in itself.

1.1.4 Nonadiabatic Effects

Processes that take place on a single PES without coupling to other electronic states,
i.e., processes for which the Born Oppenheimer approximation, are more the excep-
tion rather than the rule. Most of photochemical processes evolve on several poten-
tial energy surfaces and violate the Born Oppenheimer approximation (see section
2.1.1). This is expected if one recalls that with increasing excitation energy the
density of electronic states generally increases as well, i.e., the separation between
different PESs diminishes and as a consequence transitions between different states
become more and more probable. Such transitions generally occur in the vicinity of
avoided crossings and conical intersections where the mixing between different states
is, by definition, largest. The theoretical description of nonadiabatic transitions is
quite difficult. For a correct description one needs the nonadiabatic coupling terms
(NACTs) which are often neglected in the Born Oppenheimer approximation. These
coupling terms are usually ignored in dynamical treatments with the argument that
the motion of the electrons is much faster than the nuclear motion so that the two
can be adiabatically decoupled, i.e., one first solves the Schrödinger equation for the
electrons with the nuclear coordinates being fixed, which yields the potential energy
surfaces, and subsequently one solves the equations of motion for the nuclei on these
potential energy surfaces. However, when two potential surfaces are close to each
other, this approximation might break down and decoupling electronic and nuclear
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motion becomes baseless. As a consequence one has to take into account simulta-
neous motion on several potential energy surfaces and the coupling terms between
them. Therefore, rather than working in the adiabatic representation one makes a
uniform transformation to a diabatic representation in which the above matrix ele-
ments are as small as possible [50, 51] (see section 2.2.2 and 2.2.2). Simulating the
non-adiabatic nuclear dynamics quantum mechanically remains a challenge which
increases with the number of nuclear degrees of freedom that have to be included
and with the number of coupled electronic states. The price to be paid is that the
electronic Hamilton operator in the new representation is not diagonal. However,
the coupling due to the nondiagonal elements of the electronic Hamilton operator is
easier to take into account than the kinetic energy coupling terms and therefore the
diabatic representation is in practice the method of choice. Accurate approaches to
calculate NACTs have been implemented in the quantum chemical program suites
MOLPRO [52]. Recently, systematic determination and investigation of the NACTs
and related seams of CIs were carried out for C2H

+
2 [53, 54] and methylamine [55],

demonstrating the often oscillatory and sharp peaks of (angular) NACTs which can-
not easily be reproduced by model couplings. An alternative approach to calculate
time-derivative coupling terms instead of the coupling vectors has been presented
in [56]. Simulations of nuclear dynamics are usually carried out using a diabatic
representation of the potential energy surfaces. A method for the diabatization of
more than two coupled electronic states has been developed by M. Baer (see Ref.
[57]), which leads to quantization rules for the NACTs.

1.2 Goals of this Thesis

The principal goal of this thesis is to obtain the clearest picture of the molecular
dynamics in the excited electronic state as the molecule leaves the Franck-Condon
region, passes through the ’transition state’ (i.e., the barrier, if there is any), and
finally reaches the reaction channel(s) of efficient rotation (for molecular motors)
competing against fragmentation. An ultimate question is whether laser radiation
can be used to control the photochemistry of the models used in this study to pro-
duce molecular rotors. Key questions are: What is the lifetime of the molecule in
the upper state and how does this lifetime depend on the excitation energy? What
is the branching ratio for the possible chemical channels? Is the reaction governed
by one and only one electronic state or does it take place on several potential en-
ergy surfaces? All of these questions are ultimately determined by the shape of
the potential energy surface of the particular excited state, the couplings and the
masses of the nucleus. Therefore, the excited state PES and the couplings are the
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cornerstone for understanding the photochemical reaction of polyatomic molecules.
For this purpose, three model systems will be used in this thesis:

Fulvene. Fulvene is known to have CIs between the ground and first excited elec-
tronic states, S0 and S1, respectively [58, 59, 60]. It has been shown that CIs exist
along the seam for all torsion angles, connecting the CI at planar structure with
the CI at twisted configuration [61, 62]. The last CI is associated with cis–trans
isomerization and has been located by means of the Longuet–Higgins method [60].
This study aims to investigate and compare the radiationless decay due to vibration
along symmetric allylic stretching coordinates and the torsion coordinates. These
results have been confirmed in later studies on more accurate three dimensional
ab-initio PES where it has been shown that after vertical excitation, the fast radia-
tionless decay along the symmetric allylic stretching coordinates prevents the slower
torsion of the CH2 group (see Ref [63]). Recently, some dynamical studies has been
carried out on the fulvene molecule [63, 64, 65]. The authors in Ref. [63, 64, 65]
proposed a wavepacket interferometric scheme for the separation of different nuclear
spin isomers. In this study, we investigate the photoinduced nonadiabatic dynamics
of this symmetric model, fulvene, by a combination of quantum chemical ab initio
calculations and quantum dynamical simulations. We will explore the quantum dy-
namics of the corresponding photoexcited nuclear wavepacket on the model ground
and first excited electronic states potential energy surfaces of fulvene. Therefore, a
three-dimensional model Hamiltonian for the cis–trans isomerization of fulvene will
be constructed. The parameters for the adiabatic model PES are obtained from
quantum chemical ab initio data. Finally, we will discuss the propagation of photo-
excited nuclear wavepacket on the coupled surfaces and the corresponding ultrafast
non-radiative decay caused by the CIs. We will use the fulvene molecule as a model
to carry out 2D dynamics simulations for two different models, one using symmetric
and anti-symmetric allylic stretch modes and one using torsion and anti-symmetric
allylic stretch mode, using a model Hamiltonian with linear coupling. This chapter
aims to learn something general on non-adiabatic vibrations and torsional motion.

4-(methyl-cyclohexylidene)-Fluoromethane (4MCF). Chiral 4MCF molecule
is a fluoroethylene derivative with two R/S enantiomers connected by a torsion
around the C=C double bond. Analogous to the degeneracy points found for fluo-
roethylene [66], CIs involving torsion, pyramidalization, and H–atom migration have
been reported for 4MCF [67]. A new CI associated with the elimination of HF has
alsox been located [68]. Based on these optimized CIs, it was proposed that irradi-
ation of 4MCF yields the chiral isomer upon C=C rotation in the presence of polar
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solvents, while in gas phase, dissociation of the HF fragment should be observed [68].
4MCF was proposed as a model system for a light-induced chiral molecular switch
or a molecular rotor [24, 69, 70]. All these devices are originated from the ability of
4MCF to switch between the R/S enantiomers efficiently, generated by specific laser
or sequence of laser pulses especially designed for this purpose. Dynamical studies
on 4MCF have only considered the torsion and pyramidalization coordinates so far
[69, 70, 24]. For this model with broken symmetry, we will investigate the effect
of laser pulses which may turn out useful for future investigations of controlling
efficient rotations of the HF ”propeller” fragment, competing against the HF elim-
ination as a non-desired competing mechanism. That should obviously be avoided,
for the photoisomerization reaction. The competing dynamics are demonstrated
on adiabatical as well as nonadiabatically coupled potential energy surfaces. This
study consider explicitly the torsional dynamics around the C=C bond along with
the competing HF photodissociation dynamics.

4-cyclopentadienylidene-1,4- Dihydropyridine (CPDHP). For this model
system with its experimental twin, 1-butyl-4-(1H-inden-1-ylidene)-1,4-dihydropyridine
(BIDP), we provide a calculation of the potential surface along the two coordi-
nates predicted to lift the degeneracy according to the Longuet-Higgins loop method
[29, 30]. A conical intersection that exists between the S0 and S1 surfaces of the
CPDHP molecule in the gas phase and in non-polar solvents is shown to be elim-
inated in polar solvents. Burghardt and Hynes [71] used an extension of the two-
electron two-orbital model of Bonac̆ić-Kouteckỳ et al. [72] to estimate the sol-
vent effect on the CI of small protonated Schiff base. The solvent was modeled by
’Marcus-like’ parabolas using a parameterized force constant. The authors in [71]
describe two situations: a ”frozen” solvent polarization where the solvent coordinate
is fixed throughout, imposing a pronounced non equilibrium solvation situation, and
the case of equilibrium solvation which implies extremely rapid solvent motion, adi-
abatically adjusting to the solute charge distribution. It was suggested in [71] that
for an ultrafast spectroscopic experiment, the first case is the more realistic picture
of solvation effects [73]. Using this approach, the authors found that a conical inter-
section existing in the gas phase (vacuum) can be eliminated. In this study we are
interested in comparing with the experimental results observed in Ref [74], there-
fore our choice for the solvation model agrees in accordance with the suggestions in
[71, 73]. This study provides a systematic calculation of the effect of solvent polarity
on the energy of conical intersections that analyzes both polar and non-polar sol-
vents. In this chapter we will first introduce the model system used to carry out the
quantum mechanical calculations and then discuss the effect of the different solvents
on the conical intersection.
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1.3 Structure of the Thesis

The remainder of this thesis will consist of the following. Chapter 2 introduces the
reader to the theoretical concepts of quantum chemistry and quantum dynamics.
Specifically, the numerical methods used to obtain the results presented in this
work are explained along with an approach to investigate of effects of laser pulses
which may turn out useful for future investigations of control. The results of the
model simulations are presented in chapters 4, 5 and 6, each chapter focusing on a
different molecular model system. Chapter 3 presents the symmetric model system
Fulvene. In this chapter we will explore the quantum dynamics of the corresponding
photoexcited nuclear wavepacket on the model ground and first excited electronic
states potential energy surfaces of fulvene. In chapter 4 the model system with
broken symmetry (4-methyl cyclohexylidene)fluoromethane is presented. In this
chapter, the two-dimensional potential energy surfaces as well as permanent and
transition dipole moments for this system are presented. Furthermore, the results
of quantum dynamical simulations for 4MCF as well as those for optimization of
vibrational infra-red and ultra-violet pulses are presented. Chapter 5 represents the
calculation of the potential surface along the two coordinates lifting the degeneracy
of the 4-cyclopentadienylidene-1,4-dihydropyridine (CPDHP) molecule. This will
allow investigating the effect of solvent polarity on the energy of conical intersections
in both polar and non-polar solvents. Finally, chapter 7 contains the summary and
an outlook.



Chapter 2

Theory

This chapter summarizes the theoretical concepts that are relevant to the quantum
chemical and quantum dynamic investigations presented in this thesis. The time-
independent Schrödinger equation will be introduced in Section 2.1, after which
the electronic and nuclear Schrödinger equations will be treated separately, within
the Born-Oppenheimer approximation. In section 2.3, solutions to the nuclear
Schrödinger equations will be presented. The time-dependent nuclear Schrödinger
equation (TDSE) is reviewed in section 2.4, including a discussion of numerical meth-
ods for solving the TDSE. Adiabatic and diabatic representations are discussed in
section 2.2.2 and 2.2.2 while transforming of adiabatic states to diabatic ones is dis-
cussed in section 2.2.2. The chapter finishes with an approach to molecular control
using laser fields in section 2.4.3.

2.1 The Time-Independent Schrödinger Equation

(TISE)

To describe the state of a system in quantum mechanics, the existence of a function
called the wave function or the state function is postulated. To obtain the desired
information about a state, this wave function must be found. For this purpose, we
need to solve the Schrödinger equation which is an eigenvalue problem, with state
energies as eigenvalues.

Ĥ|Ψ〉 = E|Ψ〉. (2.1)
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Here, |Ψ > is the state or wave function, E is the total energy and Ĥ is the quantum-
mechanical energy operator which corresponds to the classical Hamiltonian total
energy function (H). The Hamiltonian operator in the spin-free approximation (Ĥ)
is given, in atomic units, by the relation [33]:

Ĥ = −
N∑

i=1

1

2
∇2

i −
M∑

A=1

1

2MA
∇2

A −
N∑

i=1

M∑

A=1

ZA

RiA
+

N∑

i=1

N∑

j>i

1

rij
+

M∑

A=1

M∑

B>A

ZAZB

RAB
.(2.2)

The sum here is over all the N electrons andM nuclei of the system. MA is the mass
of nucleus A, ZA is the charge of nucleus A, rij is the distance between electrons i
and j, RiA is the distance between electron i and nucleus A, RAB is the distance
between nuclei A and B and ∇2

i is the Laplacian which is given as

∇2
i =

(
∂2

∂x2i
+

∂2

∂y2i
+

∂2

∂z2i

)

. (2.3)

Eq. 2.2 can be written as

Ĥ = T̂e + T̂N + V̂eN + V̂ee + V̂NN . (2.4)

Here, T̂e is the kinetic energy operator of electrons, T̂N is the kinetic energy operator
of the nuclei, V̂eN is the Coulomb attraction between the nuclei and electrons, V̂ee
is the repulsion between electrons and V̂NN is the repulsion between the nuclei. As
the separation between the electrons and nuclei goes to infinity (RAB → ∞, RiA →
∞, rij → ∞), the three potential energy terms go to zero, corresponding to the zero
level of potential energy. Considering all the coordinates of all N electrons and M
nuclei in the system, the sum of all the terms in eq. 2.4 will give the molecular
Hamiltonian. Solving the Schrödinger eq. 2.1 with the molecular Hamiltonian is a
terrifying problem. Fortunately, there is a useful approximation to circumvent this
problem in which one solves the equation by separating the electronic and nuclear
motion. This approximation is outlined in section 2.1.1.

2.1.1 The Born-Oppenheimer Approximation and the Con-

cept of a Potential Energy Surface (PES)

The Born-Oppenheimer approximation [75] is an essential first step in simplifying
the molecular Schrödinger equation to the point so that computations can take
place. In this approximation, due to the significant difference in mass between an
electron (me ∼ 10−31kg) and nucleus (MA ∼ 10−27kg), the nuclei are regarded as
fixed while the electrons are moving in the field of nuclei. In this approximation the
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wave function Ψ is written as a product of the electronic wave function Ψe and the
nuclear one ΨeN

Ψ(r, R) ≃ Ψe(r;R)ΨeN(R), (2.5)

where the electronic wave function Ψe depends explicitly on the electronic coordi-
nates and parametrically on the nuclear coordinates. The electronic wave function
Ψe is the solution of the electronic Schrödinger equation,

ĤeΨe = EeΨe. (2.6)

where Ĥe is the electronic Hamiltonian operator and Ee is the electronic energy.
Within the Born-Oppenheimer approximation, the kinetic energy of the nuclei (TN)
can be neglected and the repulsion between the nuclei (VN) can be considered to
be constant. Any constant added to the Hamiltonian operator only adds to the
operator eigenvalues (energy) and has no effect on the operator eigenfunctions. The
remaining terms in eq. 2.2 form the electronic Hamiltonian. Omitting the nuclear
kinetic and nuclear repulsion energy terms from the molecular Hamiltonian which
is written as [33],

Ĥe = −
N∑

i=1

1

2
∇2

i −
N∑

i=1

M∑

A=1

ZA

riA
+

N∑

i=1

N∑

j>i

1

rij
. (2.7)

Because the nuclei are considered fixed, the electronic wave function depends ex-
plicitly on the electronic coordinates but parametrically on the nuclear coordi-
nates and so does the electronic energy. This approximation holds in general if
(me/MA)

1/4 ≪ 1. The total energy for fixed nuclei (Etot,e) must include the con-
stant repulsion term,

Etot = Etot,e = Ee +
M∑

A=1

M∑

B>A

ZAZB

RAB

. (2.8)

Once the electronic problem is solved, it is possible to solve for the motion of the
nuclei. The total energy of an atomic arrangement (Etot,e(RA)) provides a potential
for nuclear motion and can be represented as a curve or a multidimensional surface,
with atomic positions as variables. This function constitutes a potential energy sur-
face (PES), result of the Born-Oppenheimer adiabatic approximation, which allows
us to model chemical reactions. A potential energy surface is a mathematical rela-
tionship linking molecular structure with its energy. Minima on the potential energy
surface can then be identified with the classical picture of equilibrium structures of
molecules (reactant, product and intermediates); saddle points of second order are
related to transition states.
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In eq. 2.2, since the electrons move faster than the nuclei, it is reasonable
approximation to replace the electronic coordinates by values obtained by averaging
over the electronic wave function [33]. In this effective electronic field, the nuclear
Hamiltonian (ĤN,e) which describes the vibrational, rotational and translational
motion of the molecule depending on the electronic state e can be expressed as [33]

ĤN,e = −
M∑

A=1

1

2MA
∇2

A + Etot,e. (2.9)

Solution to the electronic and nuclear Shrödinger equations will be discussed in
sections 2.1.2 and 2.3, respectively. The nuclei move in an effective potential which
is the electronic energy (including nuclear-nuclear interaction) as a function of the
internuclear distances.

2.1.2 Solution of the Electronic Time Independent Schrödinger

Equation (TISE)

The energy obtained by solving the electronic problem provides a potential energy
for nuclear motion. Thus, solving the electronic problem will naturally provide us
with the framework to solve the nuclear Schrödinger equation. Accordingly, we will
review the electronic problem first, focusing on the methods that are used in this
work.

Hartree Fock Approximation

The Schrödinger eq. 2.1 does not make any account of relativity from which the
spin is an important property of the electron. The spin may be introduced into the
many-electron wave function as an ad hoc by multiplying the wave function with
a spin function (spin up function or spin down function). The wave function for a
single particle is called an orbital (labeled with i index). The wave function that
describes the spatial distribution of an electron k is a spatial orbital (ψi(rk)). Here rk
refers to the position coordinates of electron k. To describe the electron completely,
it is necessary to specify its spin. A wave function that describes both the spatial
distribution of an electron and its spin is called a spin orbital (χi(xk)). Here x refers
to the spatial and spin coordinates of electron k. For a set of K orthonormal spatial
orbitals, a set of 2K orthonormal spin orbitals can be constructed. The electronic
Hamiltonian He in eq. 2.6 can be solved exactly for hydrogen. For atoms containing
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many electrons, obtaining highly accurate wave functions is nontrivial. Calculations
often rely on the Hartree-Fock method in which an approximate antisymmetric wave
function, or Slater determinant, is constructed from one-electron functions and then
optimized [33]. For an N-electron system, this determinant is given as:

〈x1, ..., xN | Ψ0〉 = (N !)
−1

2

∣
∣
∣
∣
∣
∣
∣
∣
∣

χ1(x1) χ2(x1) ... χN (x1)
χ1(x2) χ2(x2) ... χN (x2)

...
...

...
...

χ1(xN ) χ2(xN ) ... χN (xN)

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2.10)

This wave function |Ψ0〉 is called a Slater determinant with N electrons occupying
N spin orbitals, (χ1, χ2, ..., χN). A configuration state function (CSF) is a linear
combination of Slater determinants where the coefficients are determined from sym-
metry. Applying the antisymmetry principle to the wave function introduces the
exchange correlations, which means that the motion of the electrons with parallel
spins is correlated.

To deal with the Schrödinger equation, it is necessary to apply the variational

principle that states, for a given system with time independent Hamiltonian operator
Ĥ and the lowest-energy eigenvalue E0, if |Ψ〉 is any ortho-normalized well-behaved
function of the coordinates of the system that satisfies the boundary conditions of
the problem, then

〈Ψ | Ĥ | Ψ〉 ≥ E0. (2.11)

The variational principle allows us to calculate an upper bound for the system
ground-state energy |Ψ0〉. Equality is achieved if the wave function is exact.

In ab-initio methods, the wave function is used to describe the electronic struc-
ture where the Hartree-Fock (HF) approximation is used as a starting point. HF
theory is an approach to find an approximate solution to the electronic Schrödinger
eq. 2.6. The HF approximation depends on the wave function as an essential quan-
tity. The wave function in the HF method is a single CSF. Another important
attribute of the HF method is that, orbitals are obtained by means of the varia-
tional principle. The variational flexibility in the wave function is invoked in the
choice of spin orbitals. Minimizing the energy with respect to the choice of the spin
orbitals gives an eigenvalue eq. 2.12. This equation is called the HF equation.

f̂ (xi)χ(xi) = ǫiχ(xi), (2.12)

where ǫi is the energy of the ith orbital and f̂ (xi) is an effective one electron operator,
called the Fock operator, of the form

f̂ (xi) = −1

2
∇2

i −
M∑

A=1

ZA

RiA
+ νHF (xi). (2.13)
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Here RiA is the distance between the electron i and the nucleus A. νHF (xi) is the
average potential experienced by each electron i due to presence of other N − 1
electrons. The idea of the HF approximation is to replace the many electron prob-
lem by a one electron problem where the interacting electron-electron potential is
approximated by an average non-interacting electron-electron potential. The aver-
age potential consists of two parts; the classical Coulomb potential, Ĵb(xi), and a
non-classical term called the exchange potential, K̂b(xi), which arise because of the
antisymmetric nature of the wave function. For instance, for electron i, f̂(xi) is
written by [33]

f̂(xi) = ĥ(xi) +
N∑

b

Ĵb(xi)−
N∑

b

K̂b(xi), (2.14)

where

ĥ(xi) =
1

2
∇2

i −
M∑

A=1

ZA

RiA

. (2.15)

The one-electron Coulomb and exchange operators Ĵb(xi) and K̂b(xi) operating on
the orbital χa(xi) are expressed as

Ĵb(xi) | χa(xi)〉 =
[

〈χb(xj) |
1

r̂ij
| χb(xj)〉

]

| χa(xi)〉, (2.16)

K̂b(xi) | χa(xi)〉 =
[

〈χb(xj) |
1

r̂ij
| χa(xj)〉

]

| χb(xi)〉. (2.17)

Here, the indices a and b refer to the occupied spin orbitals of electrons i and j,
respectively. The two-electron potential operator r̂ij describes the interaction of
electron i with electron j. Integration over all space and spin coordinates of elec-
tron j, xj , yields an effective one-electron potential for electron i.

The Coulomb operator, Ĵb(xi) can be inferred classically as the average local re-
pulsion potential, which electron i experiences sitting in the spin orbital χa, arising
from electron j occupying spin orbital χb. The exchange operator, Ĵb(xi), on the
other hand, has no classical interpretation; operating on χa(xi) leads to exchange
electron i to the spin orbital χb. Unlike the Coulomb operator, the exchange opera-
tor is a nonlocal operator because the energy contribution comes from a delocalized
interaction between electron i and electron j. By summing over all electrons b 6= a
in eq. 2.14 , we obtain a total averaged potential acting on the electron in χa, arising
from the N − 1 electrons in the other spin orbitals.
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Roothaan-Hall Equations

As it was shown in section 2.1.2, the many-electron Schrödinger eq. 2.13 can be
approximated by an averaged one-electron problem. The HF equation is an integro-
differential problem which may be solved numerically for atoms but there are no
practical numerical procedures available for molecules. A way to overcome this
problem is to convert the equation into a set of algebraic equations which can be
solved using standard matrix techniques by expanding the set χi into as a linear
combination of N pre-chosen basis functions (ηj):

χi =
N∑

j=1

Cijηj . (2.18)

The resulting Roothaan-HF [76] matrix equation may be written

FC = SCǫ. (2.19)

Here F is the Fock matrix, which has the elements

Fjk = 〈ηj(r) | f̂ (r) | ηk(r)〉, (2.20)

C is the expansion coefficients square matrix. S is the overlap matrix, which has
the element

Sjk = 〈ηj(r) | ηk(r)〉. (2.21)

ǫ is the diagonal matrix of the orbital energies ǫi.

The exact solution for the HF eq. 2.12 conducts with exact HF spin orbitals [33].
In practice, it is possible to solve for the exact integro-differential eq. 2.14 numeri-
cally for atoms. For molecules, one introduces a set of basis functions for expansion
of the spin orbitals and solve a set of matrix equations, see section 2.1.2. As the
basis set approach completeness, the obtained spin orbitals approach the exact HF
spin orbitals. The Fock operator has a functional dependence, through the Coulomb
and exchange operators, on the solution χ of the pseudo-eigenvalue eq. 2.12. Hence,
the HF equations are nonlinear equations which need to be solved iteratively using
the Self-Consistent-Field (SCF) method [33]. One usually employs the variational
principle and solve the electronic problem iteratively, until convergence is reached.
For this purpose, we start with a guess of the molecular orbitals and construct the
Fock matrix. Then solve eq. 2.12 to find the HF orbitals and calculate new molec-
ular orbitals. This process is repeated. And after a certain number of iterations, it
is usually found that the orbitals do not change from one iteration to another. At
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this point, we reach convergence. As a consequence of the variational principle, the
HF energy is higher than the exact energy. The lowest energy can be obtained by
the HF equation is referred to as the Hartree Fock limit. This limit is reached in the
limit of a complete basis, see section 2.1.2.

In the restricted Hartree Fock description (RHF), the spatial orbitals are con-
strained to be identical for the spin up and spin down. A determinant with an even
number of electrons where each spatial orbital is doubly occupied, is referred to as a
close shell. A singly occupied RHF spatial orbital is referred to as an open shell. In
an unrestricted Hartree Fock (UHF) description, the constraint of having identical
spatial orbitals for different spins is released.

As the distance between the nuclei is increased towards infinity, the constraint
of double occupied spin orbitals is inconsistent with breaking bonds to produce
radicals. In order for a RHF determinant to dissociate correctly, an even num-
ber of electrons should break into two even-electrons fragments, each being in the
lowest electronic state. There are only few covalently bonded systems which obey
this requirement. The bad dissociation limit for a RHF wave function has several
consequences, high activation energies, short equilibrium bond lengths, large dipole
moment. On the other hand, the UHF wave function dissociates correctly but it is
not a pure eigenfunction of the total spin operator [33]. Therefore it is not a pure
spin state. This attribute is known as spin contamination. A UHF lowers the energy
by introducing some electron correlation energy [77]. At the same time, it raises the
energy by including higher energy spin states.
At some point on a bond-dissociation curve, the behavior of the RHF and UHF
wave functions begins to differ. This point is called the RHF/UHF instability point.
It is often with UHF, that a false minimum is generated just after the RHF/UHF
instability point, on a bond-dissociation curve.

Basis Sets

As it was shown in section 2.1.2, the molecular orbitals (MO)s can be expanded into
a set of pre-chosen basis functions (eq. 2.18). In practice, the basis set is limited
to a finite set. However, the larger and more improved the basis sets, the greater
the flexibility in the expansion in eq. 2.18 of the spin orbitals and the lower the
expectation value of the energy. An approach to select the basis functions comes
from knowledge to the solution of one-electron atomic orbitals which have the form
[33, 78]

Ylm(θ, ϕ)e
−ζrZn(r). (2.22)
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Here Ylm is the angular spherical harmonic function, Zn(r) is a polynomial in r,
n is the principal quantum number , l is the angular quantum number, m is the
magnetic quantum number, θ, ϕ and r are the spherical coordinates and ζ is the
function exponent that determines how compact or diffuse the resulting function
is. The previous formula shows that the one-electron atomic orbitals are product
of radial term which consists of a decaying exponential in r and polynomial in r
(e−ζrZn(r)) and an angular term (Ylm(θ, ϕ)). Slater-type-Functions (STFs) were
first used as basis functions [79]. They are characterized by an exponential factor
and a monomial in r in their radial part. A Slater-type-Function has the form [33]

ηSTF
lmn,ζ(r, θ, ϕ) = NYlm(θ, ϕ)r

n−1e−ζr, (2.23)

here N is the normalization constant. STFs are expensive to do multi-center two-
electron integrals. Gaussian-type-Functions (GTFs) were introduced to overcome
this problem [80]. GTSs can be written in terms of polar or Cartesian coordinates,
and in the latter case, it is expressed as [33]

ηGTF
lx,ly ,lz,γ(x, y, z) = Nxlxylyzlze−γr2 , (2.24)

where the sum of lx, ly and lz determines the type of orbital such as l = lx + ly + lz,
x, y and z are the Cartesian coordinates and γ is the Gaussian function exponent
parallel to ζ in STF. Due to the exponential dependence on r2, a GTF has a zero
slope at the nucleus while a STF has a discontinuous derivative. Thus, a GTF does
not represent the proper behavior of the wave function near the nucleus. Another
failure of the GTF is that it falls off too rapidly far from the nucleus compared with
an STFs, and the tail of the wave function is consequently represented poorly. To
achieve a certain accuracy, more GTFs are needed compared with STFs. However,
the ease with which the integrals of the GTSs are calculated can compensate for
increasing the number of basis functions. The ease with which the integrals are
calculated is due to the use of ”contractions”. A contracted Gaussian basis function
(CGF) has the form [33]

ηCGF
lxly lz =

K∑

k=1

Ckη
GTF
lxly lz ,γkl

. (2.25)

Here, γkl and Ck are the contraction exponents and coefficients and K is the length
of the contraction. Integrals involving such basis functions are diminished to sums
of integrals involving the primitive Gaussian function so the basis function integrals
will be calculated rapidly. Most molecular quantum-mechanical methods begin the
calculations with the choice of basis sets. The use of proper basis set is an essen-
tial condition of the calculation. A minimal basis set is one that has a single basis
function for each atomic orbital in its ground-state complete shell. It is the smallest
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set that can be used and we cannot expect quantitative precision with such basis.
An improvement in minimal basis calculation is achieved by using the STF-KG
method, which uses a contraction of K primitive Gaussian functions (GTFs) for
each basis function. The contraction coefficients and exponents are chosen so that
the basis functions approximate Slater’s functions. Increasing the value of K makes
the CGFs approach the STF shape. A step forward on improving the basis set is
to use a double-zeta basis sets that is obtained by replacing each basis function of a
minimal basis set by two basis functions, differ in their orbital exponents (ζ). These
two exponents are chosen such that one is slightly above and the other is slightly
below the optimum exponent of the minimal basis sets. The SCF procedure will
weigh these contributions according to whether the molecular environment required
the effective orbital to be expanded or contracted. In the same manner, a triple
zeta, quadruple zeta, ...etc. basis sets can be constructed. Since chemical bonding
occurs between valence orbitals, it would be reasonable to double the valence or-
bitals only. Actually, doubling of the core functions would rarely be considered. A
split-valence (SV) basis sets uses two basis functions for each valence atomic shell
but only one basis function for each inner-shell atomic orbital. Basis sets can be
improved also by adding functions of high angular momentum, polarization func-
tions, since atomic orbitals are distorted, or polarized, upon a molecule formation.
Such a common set is double-zeta plus polarization set (DZ + P or DZP) which
adds, to a double zeta basis, a set of 3d functions on each first and second rows
atom, and a set of three 2p functions on each hydrogen atom. An example is 6-
31G(d,p) family of basis sets. These basis sets are split-valence polarized basis sets
where the inner-shells are expanded into six primitive GTFs and the outer-shells
are split into an expansion of three primitive GTFs and another primitive GTF.
The contraction scheme for these basis is (11s4p1d/4s1p)/[4s2p1d/2s1p]. For first
row atom (H), this contraction scheme leads to a contracted basis set of two s-type
functions and one p-type polarization function, i.e. a [2s1p] contracted basis set,
coming from a (4s1p) uncontracted basis set. This defines a (4s1p)/[2s1p] contrac-
tion. For atoms in the second row, this contraction scheme leads to a contracted
basis set of three s-type functions (for 1s inner shell and 2s valence shell), four p-
type functions and one d-type polarization function. The d-type function that is
added here is a single set of uncontracted 3d primitive Gaussians. For computa-
tional convenience there are six 3d functions for each atom (3dxx, 3dyy, 3dzz, 3dxy,
3dyz and 3dzx). These six Cartesian Gaussians, are linear combinations of the usual
five 3d functions (3dxy, 3dx2−y2 , 3dyz, 3dzx, 3dz2) and a 3s function (x2 + y2 + z2)
[33]. Therefore, the 6-31G(d,p) basis includes one function of s-type symmetry.
Thus the [4s2p1d] contracted basis set is coming from (11s4p1d) uncontracted basis
set. This defines a (11s4p1d)/[4s2p1d] contraction. More on improving the basis
sets, Dunning proposed the correlation consistent (cc) basis sets [81]. These basis
sets are designed so that the functions contribute similar amount of correlation en-
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ergy are grouped together when considering the mixture of s, p, d, ... etc. basis
functions to use. Different sizes of correlation consistent polarized Valence Dou-
ble/Triple/Quadruple/Quintuple/Sixtuple Zeta basis sets (cc-pVD/T/Q/5/6Z) are
available in term of final number of contracted functions. These basis sets can be
augmented by adding one diffuse function of each function type in use.

Excited States

The simplest description of an excited state is the orbital picture where one elec-
tron has been moved from an occupied to an unoccupied orbital. Excited states
having different symmetries may be handled completely analogously to the ground
state. A HF wave function may be obtained by a proper specification of the occu-
pied orbitals, and the resulting wave function can be improved by adding electron
correlation. Excited states having lower energy solutions of the same symmetry are
somewhat more difficult to deal with because it is difficult to generate a HF type
wave function for such states, as the variational optimization will collapse to the
lowest energy solution of the given symmetry. The lowest level of theory for a quali-
tative description of excited states is thus a configuration interaction with only singly
excited determinants [78]. There are, however, generally also quite low-lying states
that essentially correspond to a double excitation, and those require the enclosure
of at least the doubles as well as the singly excited determinants. A more balanced
description requires multi-configuration self-consistent-field (MCSCF)-based meth-
ods where the orbitals are optimized for each particular state, or optimized for a
suitable average of the states of interest (state-averaged MCSCF or MCSCF-SA).
Such excited state MCSCF solutions correspond to saddle points in the parameter
space for the wave function, and second-order optimization techniques are therefore
almost compulsory. Excited states involve electrons that are more loosely bound
than in the ground state. Thus they usually need basis sets with diffuse functions
for a proper description, see section 2.1.2. In the sections 2.1.2 and 2.1.2, we will
discuss some of these approaches.

Correlated Methods

The HF method has become a very useful tool for studying stable molecules around
their equilibrium geometries. The HF method describes some degree of correlation
of electrons with parallel spin that is called the exchange energy. However, electrons
with different spins remain uncorrelated. The difference in energy between the HF
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total energy and the exact total energy is called the correlation energy which lowers
the total energy compared to the HF limit.
The correlation energy Ecorr is defined as the energy difference between the exact
energy Eexact, which is equivalent to Ee from eq. 2.6 within the bounds of the
Born-Oppenheimer approximation, and the Hartree-Fock energy EHF , eq. 2.12,

Ecorr = Eexact − EHF . (2.26)

This missing energy is negative due to the Hartree-Fock energy defining an up-
per bound to the energy. Correlation energy can be divided into dynamical and
non-dynamical. The dynamical correlation is due to the correlated motion of the
electrons while the near-degeneracy or non-dynamical effects can be covered by the
use of a few determinants or configurations. Near-degeneracy situations are featured
in chemical systems that contain transition metals, excited states or in description of
bond-dissociation. Many quantum chemical methods effort to recover this correla-
tion energy by improving upon the Hartree-Fock approximation. Examples are con-
figuration interaction and MCSCF methods which will be discussed in sections2.1.2
and 2.1.2, respectively.

Configuration Interaction A way to account for the correlation energy is to
expand the exact electronic wave function in terms of a linear combination of Slater
Determinants. When using K spin basis functions, a set of 2K spin orbitals can
be produced from the HF description. The configuration of the N electrons is such
that the lower energy spin orbitals are occupied and the higher energized 2K − N
virtual orbitals are not, following a basic Aufbau principle.
Hence, a set of 2K spin orbitals that describe a single determinant ground-state
wave function for the N electrons, can be produced.

| Ψ0〉 =| χ1χ2 . . . χaχb . . . χN〉. (2.27)

Many other determinants can be formed from the many different possible excitations
of the electrons. Excited determinants can be described with respect to the HF
determinant. Didactically, a singly excited determinant [33]

| Ψr
a〉 =| χ1χ2 . . . χrχb . . . χN 〉, (2.28)

is one in which a single electron is relocated from its occupied spin orbital a to one
of the virtual spin orbitals r. And in the same manner a doubly excited determinant
can be formed [33]

| Ψrs
ab〉 =| χ1χ2 . . . χrχs . . . χN〉, (2.29)
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where two electrons have been relocated from their original positions, a and b, to
two virtual spin orbitals, r or s. This procedure continues until all N electrons have
been promoted to various virtual states. The number of possible determinants is
defined by the binomial coefficient

(
2K
N

)
and are termed according to the number of

electrons that have been promoted to virtual orbitals: Hartree-Fock ground state,
singly, doubly, triply, ... N-tuply excited states. The full configuration interaction
expansion of the ground-state wave function [33]

| Ψ〉 =| Ψ0〉+
∑

ar

cra | Ψr
a〉+

∑

a>b,r>s

crsab | Ψrs
ab〉+

∑

a>b>c,r>s>t

crstabc | Ψrst
abc〉+ . . . (2.30)

is a sum of the unique possible configurations, organized above in terms of the N-
electron determinants, and is exact for a given basis set. For large molecules a full
configuration interaction calculation is computationally impossible. Therefore, the
configuration interaction calculation is truncated. The most common truncation is
configuration interaction with singly and doubly excitations, a (CISD) calculation
[82, 83]. For large molecules a CISD calculation is not sufficient in describing the
correlation energy and the calculations can incorporate further triplet and quadru-
plet excitations, again at the cost of computational effort. An extra flexibility in the
goal of retrieving the correlation energy is obtained by allowing for the optimiza-
tion of the molecular orbital coefficients and accounts for what is termed static or
”near-degeneracy” correlation. This is the essence of the MCSCF method, section
2.1.2.

Multi-Configuration Self-Consistent-Field Methods AMulti-Reference Self-
Consistent-Field method is an extension of single determinant methods. The MC-
SCF method can be considered as a configuration interaction where not only the
coefficients in front of the determinants (eq. 2.30) are optimized by the variational
principle, but the MOs used for constructing the determinants are also optimized.
The MCSCF optimization is iterative like the SCF procedure (if the multi configura-
tion is only one, it is simply HF). Since the number of MCSCF iterations required for
achieving convergence tends to increase with the number of configurations included,
the size of MCSCF wave functions that can be treated is somewhat smaller than
for CI methods. The MCSCF wave function |ΨMCSCF 〉 is a truncated configuration
interaction expansion given by [78]

|ΨMCSCF 〉 =
∑

k

Ck|Ψk〉, (2.31)

where Ck is the configuration interaction expansion coefficient of the CSF Ψk. Each
state function is composed of a set of molecular orbitals occupied by an α or β
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spin electrons. In MCSCF, all coefficients Cij in eq. 2.18 and the molecular orbital
coefficients Ck for the atomic orbitals are optimized simultaneously. The MCSCF
method is based on the variational principle, in which the energy is minimized by
varying the Ck and orbital coefficients:

EMCSCF =
〈ΨMCSCF | Ĥ | ΨMCSCF 〉
〈ΨMCSCF | ΨMCSCF 〉 . (2.32)

Here, EMCSCF is expectation value of the |ΨMCSCF 〉 wave function. The CSFs en-
tering an MCSCF expansion are pure spin states, hence, MCSCF wave functions do
not suffer from the problem of spin contamination. When deriving the HF equations
only the variation of the energy with respect to an orbital variation was required to
be zero, which is equivalent to the first derivative of the energy with respect to the
MO expansion coefficients being equal to zero. MCSCF wave functions, are harder
to converge than HF wave functions. Furthermore, there is no guarantee that the
solution found by the SCF procedure is a minimum of the energy as a function of
the MO coefficients. Therefore, MCSCF wave function optimizations are normally
carried out by expanding the energy to second order in the variational parameters
(orbital and configurational coefficients). To ensure that a minimum has been found,
the matrix of second derivatives of the energy with respect to the MO coefficients
can be calculated and diagonalized, with a minimum having only positive eigenval-
ues. The major problem with MCSCF methods is selecting which configurations are
necessary to include for the property of interest.

Complete Active Space Self-consistent Field (CASSCF) One of the
most popular approaches, to select which configurations are necessary to include,
is the Complete Active Space Self-Consistent Field (CASSCF) method developed
by Roos et al. [84]. In this method, the selection of configurations is done by
partitioning the MOs into active and inactive ones. The active MOs will typically be
some of the highest occupied and the lowest unoccupied MOs from a HF calculation
as it is shown in Figure 2.1. The inactive MOs are doubly occupied or empty. Within
the active MOs a full configuration interaction calculation is performed and all the
proper CSFs are included in the MCSCF optimization. The MOs to include in the
active space must be decided manually by considering the problem at hand and the
computational expense. If several points on the PES are desired, the MCSCF active
space should include all those orbitals that change along the PES considerably,
or for which the electron correlation is likely to change. A common notation is
CASSCF(n,m), which indicates that n electrons are distributed in all possible ways
in m orbitals. CASSCF is a full configuration interaction calculation within the
restricted complete active space. In this way, an active space defines the region
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Figure 2.1: All the possible excitations within the active space define the configura-
tions in a CASSCF calculation.

in which the electrons can form all configurations. Although this method reduces
the effort of picking the CSFs, it is still not a black box. The proper orbitals
that represent the molecular system and its properties must be selected by hand.
There are few rules of thumb that may be of help in selecting an appropriate set of
orbitals for the active space: (1) For each occupied orbital, there will be usually one
corresponding virtual orbital. (2) Including all the valence orbitals, i.e. the space
covered by a minimum basis set, leads to a wave function that can correctly describe
all dissociation pathways. Unfortunately, a full valence CASSCF wave function
rapidly becomes unmanageably large for realistic sized systems. (3) The orbital
energies from an RHF calculation may be used for selecting the important orbitals.
The highest occupied and lowest unoccupied are usually the most important orbitals
to include in the active space since the smaller the orbital energy difference, the larger
contribution to the correlation energy. (4) Using the concept of natural orbitals that
diagonalize the density matrix so that the eigenvalues are the occupation numbers.
Orbitals with occupation numbers significantly different from 0 or 2 (for a closed
shell system) are usually those that are the most important to include in the active
space.

A state average CASSCF (SA-CASSCF) calculation is used to obtain several
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electronic excited states simultaneously for a given symmetry and spin, by minimiz-
ing the weighted sum of their energies. A drawback to the SA-CASSCF method
is that the quality of any one state’s wave function is lower than it will be if only
one state is considered (CASSCF without state averaging). On the other hand, a
virtue of a SA-CASSCF is that all states are expressed using the same MOs, thereby
ensuring orthogonality (which is critical if, for example, transition dipoles between
states are desired to be computed).

Non-dynamical or static correlation energy reflects the inadequacy of a single
reference in describing a given molecular state, and is due to nearly degenerate states
or rearrangement of electrons within partially filled shells. The MCSCF method is
good for obtaining the static correlation by allowing for partially occupied orbitals
and describes well values at dissociation.

In the research carried out in this thesis, the SA-CASSCF/cc-pVDZ level of
theory was employed for the 4MCF [85] (Chapter 4) and CPDHP (Chapter 5) [86]
systems while the CASSCF/cc-pVDZ level of theory was employed for the fulvene
system [63, 87] (Chapter 3).

Solvation Effects

An important aspect of computational chemistry is to evaluate the effect of the
environment, such as a solvent. Methods for evaluating the solvent effect may
broadly be divided into two types: those describing the individual solvent molecules
and those that treat the solvent as a continuous medium [88, 89, 90]. Combinations
are also possible, for example by explicitly considering the first solvation shell and
treating the rest by a continuum model. Solvation effects can be partitioned into
two main groups depending on the type of property used to describe the solvent
effect:

• Non-specific (long-range) solvation

– Polarization

– Dipole orientation

• Specific (short–range) solvation

– Hydrogen bonds

– van der Waals interactions
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– Solvent shell structure

– Solvent-solute dynamics

– Charge transfer effects

– Hydrophobic effects (entropy effects).

The non-specific effects are primarily solvent polarization and orientation of the
solvent electric multipole moments by the solute, where the most important effect is
usually the dipole interaction. These effects cause a screening of charge interactions
leading to the macroscopic dielectric constant being larger than 1. The microscopic
interactions are primarily located in the first solvation shell, although the second
solvation shell may also be important for multiple-charged ions. The microscopic
interactions depend on the specific nature of the solvent molecule, such as the shape
and the ability to form hydrogen bonds. In this study we employ the continuum
solvation models discussed below.

Continuum Solvation Models. Continuum models [91] consider the solvent as
a uniform polarizable medium with a dielectric constant ε, and with the solute M
placed in a suitably shaped hole in the medium (see Figure 2.2) [92].

Creation of a hole in the medium costs energy (destabilization) while dispersion

Figure 2.2: Reaction field model. The arrows indicate the solvent dipole moment
induced by the solute.

interactions between the solvent and solute add a stabilization (approximately, this
is the van der Waals energy between solvent and solute). In principle, there may
be a repulsive component too, so the dispersion term is sometimes denoted dis-
persion/repulsion. The electric charge distribution of M will polarize the medium
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(induce charge moments), which in turn acts back on the molecule and produce an
electrostatic stabilization. Hence, the solvation (free) energy may be written as

∆Gsolvation = ∆Gcavity +∆Gdispersion +∆Gelectronic, (2.33)

where, Gsolvation, ∆Gcavity, ∆Gdispersion and ∆Gelectronic are the solvation, cavity, dis-
persion and electronic free energies, respectively. The influence between a molecule
in solution (the solute) and its surrounding medium (the solvent) can most sim-
ply be described using the reaction field model. The basic assumption made in
this model is that the solute is placed in a spherical cavity inside the solvent. The
latter is described as a homogeneous, polarizable medium of constant dielectric con-
stant. The solute dipole moment induces a dipole moment of opposite direction in
the surrounding medium. Polarization of the medium in turn polarizes the charge
distribution in the solvent. Treating this mutual polarization in a self consistent
manner leads to the Onsager reaction field model. Reaction field models differ in
five aspects:

1. How the size and shape of the hole are defined.

2. How the cavity/dispersion contribution is calculated.

3. How the charge distribution of M is represented.

4. How the soluteM is described, either classical (force field) or quantum (semiem-
pirical or ab initio).

5. How the dielectric medium is described.

The dielectric medium is normally taken to have a constant value of ε which is the
only parameter characterizing the solvent. In other words, solvents having the same
ε value (such as acetone, ε = 20.7, and 1-propanol, ε = 20.1, or benzene, ε = 2.28,
and carbon tetrachloride, ε = 2.24) are thus treated equally. The simplest shape for
the hole is a sphere or an ellipsoid. This has the advantage that the electrostatic
interaction between M and the dielectric medium may be calculated analytically.
Taking the atomic radius as a suitable factor (the cavity radius typical value is 1.2
Å) multiplied by a van der Waals radius defines a van der Waals surface. Such a
surface may have small pockets where no solvent molecules can enter and a more
appropriate description may be defined as the surface detected by a spherical parti-
cle of a given radius (a typical radius of 1.4 Å to model a water molecule) rolling on
the van der Waals surface. This is denoted as the Solvent Accessible Surface (SAS),
and it is illustrated in Figure 2.3. Since an SAS is computationally more expensive
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Figure 2.3: On a surface generated by overlapping van der Waals spheres there will
be areas (marked in yellow) that are inaccessible to a solvent molecule (Solvent
surface area). The blue spheres indicate the solute atoms and the black spheres
indicate the water molecules rolling on the van der Waals surface.

than a van der Waals surface, and since the difference in accuracy is often small, a
van der Waals surface is often used in practice. The energy required to create the
cavity (entropy factors and loss of solvent-solvent van der Waals interactions), and
the stabilization due to van der Waals interactions between the solute and solvent
(which may also contain a small repulsive component), is usually assumed to be pro-
portional to the surface area. The corresponding energy terms may be taken simply
as being proportional to the total SAS area (a single proportionality constant), or
parameterized by constants specific for each atom type with such parameters being
determined by fitting to experimental solvation data. The electrostatic component
of eq. 2.33 can be described at several different levels of approximation. In this thesis
we use the Self-consistent reaction field (SCRF) model [93, 94]. In such a model, a
classical description of the molecule M in Figure 2.2 can be a force field with partial
atomic charges, while a quantum description involves calculation of the electronic
wave function. The latter may be either with a semi-empirical model, such as AM1
[95] or PM3 [96], or with more sophisticated electronic structure methods, i.e. HF,
DFT, MCSCF, etc. When a quantum description of M is employed, the calculated
electric moments induce charges in the dielectric medium, which acts back on the
molecule, causing the wave function to respond and therefore changing the electric
moments, etc. Thus, the interaction with the solvent model must be calculated by
an iterative procedure, leading to various SCRF models. The dipole in a spherical
cavity is known as the Onsager model [93] which for a dipole moment of µ, leads to
an energy stabilization given by [78] (using the international system of units)

∆Gelectronic = − 1

2(4πǫ0)
R̂Fµ, (2.34)
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where R̂F is the reaction field operator which is proportional to the solute dipole
moment [93, 97]:

R̂F = gµ, (2.35)

where g is the Onsager factor which gives the strength of the reaction field and
depends upon the dielectric constant of the medium ε and the radius of the spherical
cavity a:

g =
2(ε− 1)

(2ε+ 1)a3
. (2.36)

Accordingly, eq. 2.34 can be written as [78]:

∆Gelectronic = − ε− 1

4πǫ0(2ε+ 1)

µ2

a3
. (2.37)

The Onsager model represents the interaction energy of a solute in a spherical cavity
embedded in a continuum dielectric by permitting the dipole of the solute to induce
a dipole within the dielectric. The induced dipole in turn influences the dipole of the
solute, so these dipoles are iterated to self-consistency. For spherical or ellipsoidal
cavities this equation can be solved analytically, but for molecular shaped surfaces
it must be done numerically.

In the quantum mechanical approach, the solvent effect is taken as an additional
term in the Hamiltonian of the isolated molecule (solute) obtained from the system
energy (assuming only a dipole interaction) [98]. At the HF level of theory, the R̂F

operator corresponds to the addition of an extra term to the Fock matrix elements
[99] (written in atomic units)

f̂ij = 〈χi | f̂ | χj〉 − σgµ〈χi | µ | χj〉, (2.38)

or
f̂ij = 〈χi | f̂ | χj〉 − σg〈χi | µ | χj〉2. (2.39)

The parameter σ depends on the constraints of the variation. If normality of the
wave function is the only constraint (〈χ | χ〉 = 1), then σ = 1.

In connection with electronic structure methods (i.e. a quantum description of
M), the term SCRF is quite generic and it does not by itself indicate a specific model.
Typically, however, the term is used for models where the cavity is either spherical
or ellipsoidal, the charge distribution is represented as a multipole expansion, often
terminated at quite low orders (for example only including the charge and dipole
terms), and the cavity/dispersion contributions are neglected. Such a treatment
can only be used for a qualitative estimate of the solvent effect, although relative
values may be reasonably accurate if the molecules are polar (dominance of the
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dipole electrostatic term) and sufficiently similar in size and shape (cancelation
of the cavity/dispersion terms). Unfortunately, there is no consensus on how to
choose the cavity radius. In some cases, the molecular volume is calculated from
the experimental density of the solvent and the cavity radius is defined by equating
the cavity volume to the molecular volume. Alternatively, the cavity size may be
derived from the experimental dielectric constant and the calculated dipole moment
and polarizability [100]. In any case, the main assumption of these models is that
the molecule is roughly spherical or ellipsoidal which is only generally true for small
compact molecules. More sophisticated models employ molecular shaped cavities
[78]. The cavity is often defined based on van der Waals radii of the atoms in
the molecule multiplied with an empirical scale factor. Alternatively, the molecular
volume may be calculated directly from the electronic wave function. In this thesis
we have investigated the effect of the solvent approximated using the SCRF theory in
the framework of the Kirkwood and Onsager [93, 94] model for the CPDHP system
[86] (Chapter 5). The electrostatic free energy calculations were carried out using
the GAMESS [101] program suite using the cavity radius of calculated using the
standard GAUSSIAN procedure [102].

2.2 Breakdown of the Born-Oppenheimer Approx-

imation, Avoided Crossings and Conical In-

tersections

The Born-Oppenheimer approximation, discussed in section 2.1.1, is the keystone to
the visualization of chemical processes. However, whereas the Born-Oppenheimer
approximation is valid for the majority of chemical systems there are many impor-
tant cases where the approximation breaks down [50, 57].

In such cases, the nuclear and electronic motions are coupled. This is very com-
mon in photochemistry. An important example of coupling between the nuclei and
electrons, named vibronic coupling, is a conical intersection (CI) between at least
two electronic states (see Figure 2.4). CIs offer a pathway for ultra-fast relaxation
on the femtosecond time scale and have therefore important consequences for the
dynamics of chemical reactions. A CI permits efficient non-adiabatic transitions
between PESs.
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Figure 2.4: Ground and excited state potential energy surfaces touching at the
conical intersection (CI). The minimum energy path connects the Franck-Condon
(FC) point to the photo–products P and P’. M∗ is the excited state intermediate
and TS is a transition state connecting M∗ to the CI.

2.2.1 Non-Adiabatic Coupling Matrix Terms (NACT)

For non Born-Oppenheimer process, more than one electronic state is important in
the overall dynamics. To solve the Schrödinger equation for the total Hamiltonian
describing the electronic plus nuclear motion in a certain system, the total wave
function |Ψ〉 is expanded in the basis of i electronic states, see eq. 2.5. As it was
stated in eq. 2.5, the total wave function consists of the electronic and nuclear parts,
therefore:

Ĥ|Ψ(r, R)〉 = Etot

∑

e

|Ψe(r;R)ΨeN(R)〉, (2.40)

where Ĥ in eq. 2.40 includes the kinetic nuclear energy as well as the nuclear
repulsion, i.e.,

Ĥ = T̂N + Ĥe + V̂N , (2.41)

where

T̂N =

M∑

A=1

−1

2MA
∇2

A, (2.42)

and Etot is the total energy defined in eq. 2.8 and the operator ∇A is a three-
dimensional derivative with respect to nuclear coordinates. Applying the operator
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∇2
A on the wave function Ψ(r, R) = Ψe(r;R)ΨeN(R), gives

∇2
A [Ψe(r;R)ΨeN(R)] = ∇A∇A [Ψe(r;R)ΨeN(R)] , (2.43)

= ∇A [∇AΨe(r;R)ΨeN(R)] , (2.44)

= Ψe(r;R) ∇2
AΨeN(R) + ΨeN(R) ∇2

AΨe(r;R) + 2∇AΨeN(R) ∇AΨe(r;R).(2.45)

By expanding the multi-state wave function |Ψ(r, R)〉 in terms of the electronic basis
i, where the index e is replaced with i (e ≡ i):

|Ψ(r, R)〉 =
∑

i

Ψi(r;R)ΨiN(R), (2.46)

and by inserting eq. 2.46 into eq. 2.1, projecting from the left by 〈Ψj(r, R)| and
integrating over the electronic coordinates leads to the set of coupled equations

∑

i

Ĥji(R)|ΨiN〉 =
∑

i

[T̂N + Ei(R) + V̂N(R)δji +
∑

A

−1

2MA

[

2T
(1)
ji · ∇A

]

+
∑

A

−1

2MA
T

(2)
ji ]|ΨiN(R)〉.

(2.47)

In this coupled equation, Ei is the electronic energy for electronic state i obtained
from solving the electronic Hamiltonian, and

T
(1)
ji = 〈Ψj | ∇AΨi〉, (2.48)

T
(2)
ji = 〈Ψj | ∇2

AΨi〉. (2.49)

T
(1)
ji and T

(2)
ji represent non-adiabatic couplings of first and second order, respec-

tively, between wave functions of different electronic states. Note that T
(1)
ji is a

vector while T
(2)
ji is scalar. Since the electronic wave functions are normalized to the

same value at all nuclear geometries,

〈Ψj | Ψi〉 = δji, (2.50)

it follows that the matrix T
(1)
ji is anti-Hermitian, that is

T
(1)
ji = −T (1)

ji

∗
. (2.51)

Eq. 2.47 can be rewritten as

[T̂N + V̂N (R)δji − Ej ] |Ψ(R)jN 〉 =
∑

i

Λji |Ψ(R)iN 〉, (2.52)
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where Λji is the nonadiabatic coupling matrix:

Λji = −〈Ψj | TN | Ψi〉+
∑

A

−1

2MA

〈Ψj | ∇A | Ψi〉∇A. (2.53)

The Born-Oppenheimer approximation discussed in section 2.1.1, involves assuming
a value of zero for the non-adiabatic coupling terms (NACTs) Λji. An approach to
calculate the NACTS is discussed in the section 2.2.2.
Under that assumption, the nuclear and electronic wave functions are separable.
However, spontaneous changes in electronic states, i.e. surface-to-surface crossing,
are not permitted. Any model addressing such state-to-state crossing, must instead
start from eq. 2.52. In the region of an avoided crossing or CIs, the adiabatic states
change their character significantly, therefore, mixing between different states is the
largest. As a consequence, one has to take into account simultaneous motion on
several potential energy surfaces and the coupling elements between them. This is
a difficult task since the calculation of the kinetic coupling elements will involve
several nuclear degrees of freedom and the electronic Hamiltonian operator is not
diagonal.

From now on, the results |Ψi〉 of the TISE, see eq. 2.47, will be called ”adiabatic”.
A ”diabatic” transformation of the adiabatic states replaces these off-diagonal ki-
netic energy terms by potential energy terms. A comparison between adiabatic and
diabatic representations is discussed in the following section, 2.2.2. Sometimes, a
diabatic transformation of the adiabatic states is called the adiabatic to diabatic
transformation or diabatization which is discussed in section 2.2.2.

2.2.2 Adiabatic and Diabatic Representations

Direct solution of the Schrödinger equation with the total molecular Hamiltonian
to study the motion of molecules is called quantum molecular dynamics. At some
initial time a quantum mechanical system has an energy determined by the initial
sate (and the Hamiltonian). Changing conditions modify the Hamiltonian as a func-
tion of time resulting in a final Hamiltonian at some later time. The system will
evolve according to the time-dependent Schrödinger equation, to reach a final state
(see section 2.4). In adiabatic dynamics, interatomic interactions are represented by
single PESs (Born-Oppenheimer approximation). Non-adiabatic dynamics consists
of taking the interaction between several coupled PESs corresponding to different
electronic quantum states of the molecule. The coupling terms are called vibronic
couplings or NACTs, see section 2.2.1. Vibronic coupling is large in the case of two
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adiabatic PESs coming close to each other. This usually happens in the neighbor-
hood of an avoided crossing of potential energy surfaces corresponding to distinct
electronic states of the same spatial and spin symmetry. In this case the adiabatic
or Born–Oppenheimer approximation fails and non-adiabatic terms (or the vibronic
coupling terms) have to be taken into account.
The physical interpretation of the adiabatic representation is straightforward since
the potentials and transition dipole moments are computed for fixed positions of the
nuclei using approximate methods for the solution of the electronic Theory [103].
The kinetic couplings are only large around avoided crossings which mark the break-
down of the Born-Oppenheimer approximation which applies a strict separation of
the electron and nuclear motion. In the diabatic case, the potentials and conse-
quently the excitation energies differ from the adiabatic ones. Therefore, it is not
clear how the diabatic excitation energies can be interpreted.

Nevertheless, the use of the potential couplings in the diabatic representation is
inevitable in all cases where the kinetic couplings are very sharply peaked around
avoided crossings causing numerical difficulties. These computational problems of
the adiabatic representation can be avoided by transforming into the diabatic basis,
where the kinetic couplings are replaced by potential coupling functions which are
usually smooth [104].

Diabatization Scheme

The non-adiabatic or diabatic states, Ψd
i , are obtained from the adiabatic Ψad

i ones by
unitary transformation. For a two dimensional system with two crossing electronic
states, the unitary transformation matrix U(R) is given by [105]:

U(R) =

(
cosα(R) sinα(R)
− sinα(R) cosα(R)

)

. (2.54)

Here α(R) is the mixing angle between the states at the nuclear coordinates (R). In
principle, this mixing can be obtained by integration of the non-adiabatic coupling
matrix (NACM) elements, where [105]

∂αij

∂R
= 〈Ψad

i | ∂

∂R
| Ψad

j 〉, (2.55)

or

αij(R) =

∫

〈Ψad
i | ∂

∂R
| Ψad

j 〉dR. (2.56)
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For two states system, the adiabatic Hamiltonian Ĥad can be given by:

Ĥad =

(
TN Λij

Λji TN

)

+

(
Vi 0
0 Vj

)

. (2.57)

The adiabatic Hamiltonian is transformed to a diabatic one Hd via a unitary trans-
formation U(R) defined in eq. 2.54:

Hd = U(R)HadU(R)†. (2.58)

The transformation shall be such that

U(R)

(
TN Λij

Λji TN

)

U(R)† ≈
(
TN 0
0 TN

)

(2.59)

and

U(R)

(
Vi 0
0 Vj

)

U(R)† =

(
Wii Wij

Wji Wjj

)

. (2.60)

Where Wii andWjj refer to the diabatic potentials of diabatic states i and j, respec-
tively. Wij refers to the diabatic coupling element. Thus, the diabatic Hamiltonian
can be expressed as:

Hd =

(
TN 0
0 TN

)

+

(
Wii Wij

Wji Wjj

)

. (2.61)

The wave functions in the diabatic basis are obtained by:

(
Ψd

i

Ψd
j

)

= U(R)

(
Ψad

i

Ψad
j

)

. (2.62)

Off-diagonal elements in adiabatic equations 2.57 are nuclear kinetic energy terms.
In eq. 2.61, the off-diagonal elements are potential terms. The diabatic potentials
(Wij) should be smooth so that the diabatic electronic wave functions change slowly
along the avoided crossing and should converge to the adiabatic ones outside of the
crossing area. Otherwise, a considerable coupling is obtained far from the crossing.

Pure diabatic states can only be obtained for diatomic systems but for polyatomic
molecules, one searches for ”quasi-diabatic” (or approximately diabatic) states with
potential coupling. In this vein, a number of approximate schemes have been sug-
gested which typically do not require the computation of all derivative couplings
but rather aim at suitable properties to vary smoothly with the nuclear coordinates
[106, 107, 108, 109]. In this thesis we used two approaches to calculate the NACTs.
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In one of these approaches, the adiabatic states are approximately diabatized by
minimizing the change of orbitals as well as the configuration interactions vectors
(in SA-CASSCF calculations) as a function of the geometry [105]. This approach
is discussed in section 2.2.2 and has been employed to calculate the NACTs for
the 4MCF system (Chapter 4) as it is implemented in the MOLPRO software [52].
Another scheme that focusses on the singular derivative couplings alone, and utilize
a linear coupling-diabatic potential matrix to define the adiabatic-diabatic trans-
formation angle [110], has been employed for the fulvene system and is discussed
in section 3.3 (Chapter 3). The idea of such method is to remove only the leading
derivative coupling elements from the adiabatic basis (those which diverge at s CI)
and the other coupling terms are neglected. The diverging coupling terms are remov-
able by transforming to a suitable electronic basis. Such linear coupling approach
is applied to the transformation angle only and not to the PESs themselves.

Calculation of Non-Adiabatic Coupling Matrix Elements

In this section, we introduce an approach to calculate the NACM elements (NACMEs)
using the expansion coefficients of the configuration interaction wave function (con-
figuration interaction vector). To achieve this purpose, one can use an approximation
based on the analysis of the configuration interaction vectors [105]. The basic as-
sumption in this method is that the configuration interaction vectors representing
the diabatic states are approximately geometry independent, which implies that the
change of the CASSCF orbitals as a function of geometry can be neglected. Using
this method [105], the NACTs for CASSCF or configuration interaction wave func-
tions can be compute for SA-CASSCF wave functions. The configuration interaction
wave function, see eq. 2.31, of electronic state i can be expressed as

|ΨMCSCF
i 〉 =

∑

k

Cik|Ψk〉, (2.63)
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where the index i in |ΨMCSCF
i 〉 and Cik refers to electronic state i. Thus, eq. 2.48

can be written as:

〈Ψad
j | ∂

∂R
| Ψad

i 〉 = 〈
∑

l

CjlΨ
ad
l | ∂

∂R
|
∑

k

CikΨ
ad
k 〉 (2.64)

=
∑

l

∑

k

Cjl

(
∂

∂R
Cik

)

〈Ψad
l | Ψad

k 〉
︸ ︷︷ ︸

δlk

+
∑

l

∑

k

CjlCik〈Ψad
l | ∂

∂R
| Ψad

k 〉 (2.65)

=
∑

l

Cjl

(
∂

∂R
Cil

)

︸ ︷︷ ︸

Cji−term

+
∑

l

∑

k

CjlCik〈Ψad
l | ∂

∂R
| Ψad

k 〉
︸ ︷︷ ︸

MOij−term

(2.66)

In eq. 2.66, the Cji–term involves differentiation of the configuration interaction co-
efficients and the MOij–term contains derivatives of configurations or determinants
[111]. The MOij–term leads to integrals of atomic orbitals, see eq.s 2.27 and 2.28.

Using the invariance of the CASSCF and multi reference configuration interac-
tion energies with respect to unitary transformations, diabatic CASSCF orbitals can
be generated by maximizing the overlap of CASSCF orbitals at a displaced geome-
try R′ with the orbitals at the reference geometry R (Recalling that the configura-
tion interaction vectors representing the diabatic states are approximately geometry
independent). Consequently, the relative contributions of the orbitals and config-

uration interaction to the matrix elements of T
(1)
ji are modified: The MOij–term is

minimized, and to a very good approximation the matrix elements of T
(1)
ji could be

obtained from the configuration interaction vectors (Ckl-term) alone. This can be
achieved by maximizing the overlap of the active CASSCF orbitals with those of a
reference geometry R, at which the wave functions are assumed to be diabatic.

The NACTS for the CASSCF wave function can be computed using the finite
differences method [112]. In this procedure, one has to compute and store the wave
functions at two (first-order algorithm) or three (second-order algorithm) slightly
displaced geometries. First, the wave function is calculated at the reference ge-
ometry. Then it is calculated at the (positively) displaced geometry. This can
be repeated at a (negatively) displaced geometry if the second-order (three-point)
method is used. Then, the transition densities matrix computed from the configu-
ration interaction vectors, at R and R′ = R±∆R between the states, is calculated:

〈Ψd
i |

∂

∂R
| Ψd

j 〉R ≃ 1

2∆R
〈Ψd

i (R +∆R) | Ψd
j (R−∆R)〉, (2.67)

where ∆R is the small increment. The transformation matrix of the configuration
interaction vectors between R and R′, is chosen such that non-adiabatic coupling
matrix elements 〈Ψd

j | ∂
∂R

| Ψd
j 〉 are minimized for all the internal coordinates.
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2.3 Solution of the Nuclear TISE

Having discussed some common methods for solving the electronic problem, we will
now discuss the nuclear problem, see eq. 2.9. Recalling that the eigenvalues of
the nuclear Hamiltonian are total energies, composed of both electronic and nuclear
contributions; the nuclear eigenfunctions are functions of the nuclear coordinates
which also serve as parametric variables of the electronic function (see section 2.1.1).

2.3.1 Fourier-Grid-Hamiltonian Method

After solving the electronic Schrödinger equation for different molecular geometries
and constructing the PESs, the time independent nuclear Schrödinger equation must
be solved for each electronic state i. The nuclear Schrödinger equation describes
all degrees of freedom of the molecule: translations, rotations and vibrations. By
changing the coordinate system from laboratory fixed coordinates to center of mass
fixed coordinates the translational motion may be separated from the other degrees
of freedom

| Ψi
N〉 =| Ψi

trans〉× | Ψi
ν〉. (2.68)

Hence, the solution of the nuclear Schrödinger equation in terms of internal coordi-
nates is [113]

Ĥ | Ψi
ν〉 = (T̂ + V̂i) | Ψi

ν〉 = Eν
i | Ψi

ν〉. (2.69)

This solution gives rotational-vibrational (rovibrational) eigenfunctions | Ψi
ν〉 and

eigenenergies Ei
ν of the nuclear framework. These eigenfunctions can be considered

as an initial state for quantum dynamical calculations that solves the time-dependent
nuclear Schrödinger equation. A numerical method called the Fourier Grid Hamil-
tonian (FGH) method is applied to solve the time-dependent nuclear Schrödinger
equation [114, 115]. This method employs the vibrational Hamiltonian in general-
ized (internal) coordinates within a grid representation. The FGH method uses the
fact that the kinetic energy operator T̂ is diagonal in momentum space while the
potential energy operator V̂ is diagonal in position space. The Fourier transforma-
tion is used to transform the wave function from position space to momentum space
and vice versa. In one dimensional motion of a single particle, the Hamiltonian Ĥ
of a single particle of mass m and momentum p̂ within a potential V (x̂) is given by

Ĥ = T̂ + V (x̂) =
p̂2

2m
+ V (x̂). (2.70)

Two basis sets are chosen in which the Hamilton operator can be represented to
span a subspace of the Hilbert space. In position space the basis vectors are the
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eigenvectors of the position operator x̂

x̂ | x〉 = x | x〉, (2.71)

where the eigenvectors form an orthonormal basis so they satisfy:

〈x | x′〉 = δ(x− x′), (2.72)

Îx =

∫ ∞

−∞

dx | x〉〈x | . (2.73)

Therefore, the potential V is diagonal in position space

〈x′ | V (x̂) | x〉 = V (x)δ(x− x′). (2.74)

In momentum space the basis vectors are the eigen vectors of the momentum oper-
ator

p̂ | k〉 = k~ | k〉, (2.75)

which also form a complete orthonormal basis set

〈k | k′〉 = δ(k − k′), (2.76)

Îk =

∫ ∞

−∞

dk | k〉〈k | . (2.77)

In momentum space the kinetic energy operator is diagonal

〈k′ | T̂ | k〉 = Tkδ(k − k′) =
~
2k2

2m
δ(k − k′). (2.78)

The basis vectors of position space and of momentum space can be transmitted to
each other by the following expression relation

〈k | x〉 = 1√
2π
e−ikx. (2.79)

Using this transformation and the completeness of the basis vectors of the mo-
mentum space, we can derive an expression for a matrix element of the Hamilton
operator in position space

〈x | Ĥ | x′〉 = 〈x | T̂ | x′〉+ V (x)δ(x− x′) (2.80)

= 〈x|
{∫ ∞

−∞

|k′〉〈k′|dk′
}

T̂

{∫ ∞

−∞

|k〉〈k|dk
}

|x′〉+ V (x)δ(x− x′)

=

∫ ∞

−∞

〈x|k〉 Tk〈k|x′〉dk + V (x)δ(x− x′)

=
1

2π

∫ ∞

−∞

eik(x−x′)Tkdk + V (x)δ(x− x′).
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The continuous function x is replaced by a set of discrete grid points xi. For a grid
with N grid points, spaced by a fixed interval ∆x, any grid point xi can be found
by

xi = i∆x, i = 1, ..., N. (2.81)

The eigenvectors of the discrete basis satisfy

∆x〈xi | xj〉 = δij , (2.82)

Îx =
N∑

i=1

| xi〉∆x〈xi | . (2.83)

Using this discrete basis in position space the matrix elements 〈xi | Ĥ | xj〉 are given
by

Hij =
1

∆x

{ N/2
∑

l=−N/2

eil2π(i−j)/N

N
· Tl + V (xi)δij

}

, (2.84)

where

Tl =
~
2

2m
· (l∆k)2, ∆k =

2π

N∆x
. (2.85)

Diagonalizing the N × N matrix of the Hamilton operator 2.84 yields the eigen-
vectors and eigenvalues of Hij on the chosen grid. However, there exist numerous,
efficient algorithms for diagonalizing Hermitian matrices. The major drawback of
the method is its grid size dependency where the size of the grid representation of
the Hamilton matrix which has to be diagonalized for a system with N grid points
is N2. The most important technical limitation is the amount of memory where
the complete matrix has to be kept during the calculation. An advantage of the
FGH method is that the discrimination used for position space is also used for the
following quantum dynamical calculations. Accordingly, the numerical error caused
by the transformation from one finite reduced basis to another does not exist. The
Fourier Grid Hamiltonian method [114, 115], whose principles are described in this
section, is employed to solve equation 2.69 and obtain the initial rovibrational state
in the position space of the fulvene (Chapter 3) and 4MCF (Chapter 4) systems
investigated in this thesis. For the fulvene system, the vibrational eigenfunctions
are calculated using the QMBOUND program implemented in the WAVEPACKET
package [116]. In a similar manner, the FGH method was used to obtain the vibra-
tional eigenfunctions for the 2D vibrational eigenfunctions of the ground state of the
fulvene system using the QMBOUND program implemented in the WAVEPACKET
package [116]. For the 4MCF system, the 2D ground state eigenfunction is obtained
by first, calculating two ground state 1D eigenfunctions with the FGH method.
Then, an initial 2D guess is prepared as the product of both 1D eigenfunctions.
Finally, this guess is relaxed to a minimum by propagating it in imaginary time
[117].
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2.4 The Time-Dependent Schrödinger Equation

The solution of the time-independent nuclear Schrödinger equation yields the rovi-
brational eigenstates and eigen energies of the molecular system. To describe the
time-dependent properties of the model system (its interaction with a time-dependent
laser field) it is necessary to solve the time-dependent nuclear Schrödinger equation
(TDSE). The resulting wave packet dynamics are obtained by solving the TDSE nu-
merically as it will be discussed in section 2.4.2. The dynamics of the nuclear frame
of a molecule is described by the time-dependent nuclear Schrödinger equation

i~
∂

∂t
| Ψ(t)〉 = Ĥ(t) | Ψ(t)〉. (2.86)

The wave function |Ψ(t)〉 is the total wave function for the system, which consists
of a sum over all (orthonormal) electronic and nuclear wave functions:

|Ψ(r, R, t)〉 =
∑

i

Ψi(r;R)ΨiN(R, t), (2.87)

where the nuclear quantum number N refers to the initial vibrational state. From
this point on, only the variable t will be retained in the notation, and the coordinates
r and R will be dropped for simplicity of notation. The time-dependent Hamiltonian
consists of the total molecular Hamiltonian, see eq. 2.52, and a time-dependent
potential energy term V̂ ext(t) arising from the interaction of the molecular dipole

moment ~µ with an external electromagnetic field ~E(t) [33]:

Ĥ(t) = Ĥ − ~µ · ~E(t)
︸ ︷︷ ︸

V̂ ext

. (2.88)

The total dipole moment consists of the electronic and nuclear dipole moments, and
it is given by

~µ =

N∑

i=1

(−e)~ri
︸ ︷︷ ︸

~µe

+

M∑

A=1

(ZAe)~RA

︸ ︷︷ ︸

~µN

, (2.89)

where e is charge of electron, ~ri are position vectors of the electrons, and ~RA are
position vectors of the nuclei. If we have more than one electronic state, the wave
function | Ψ(t)〉 can be written as a vector and the Hamilton operator as a matrix
(see eq. 2.86 and 2.52)

i~
∂

∂t






| Ψ0N(t)〉
...

| ΨnN(t)〉




 =






Ĥ00 . . . Ĥ0n
...

. . .
...

Ĥn0 . . . Ĥnn











| Ψ0N (t)〉
...

| ΨnN(t)〉




 . (2.90)
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Here, the indexes 0, 1, ..., n denote the electronic states. The ith time-dependent
wave function describes the time evolution of the ith electronic state. The matrix
elements of the adiabatic Hamiltonian for two states system can then be written as

Ĥad(t) =

(
T̂ + V̂0 − Λ00 − ~µ00. ~E(t) −Λ01 − ~µ01 · ~E(t)

−Λ10 − ~µ01 · ~E(t) T̂ + V̂1 − Λ11 − ~µ11. ~E(t)

)

. (2.91)

The diagonal dipole moment terms correspond to permanent dipole moments, whereas
the off-diagonal dipole terms correspond to transition dipole moment terms between
different electronic states. The coupling between different electronic states results
through the NACTs and the time-dependent electromagnetic field which stimulates
transitions from one electronic state to another. The diagonal elements of the ma-
trix of the external field cause transitions within the electronic states. That is to
say, the excitation from one rovibrational state to another for adiabatic states. The
off-diagonal elements cause transitions from one electronic state to another.
The matrix elements of the diabatic Hamiltonian for two states system can then be
written as

Ĥd(t) =

(
T̂ +W00 − ~µd

00.
~E(t) W01 − ~µd

01 · ~E(t)
W10 − ~µd

01 · ~E(t) T̂ +W11 − ~µd
11.
~E(t)

)

. (2.92)

Here, ~µd
ij are the diabatic dipole moment elements obtained according to the unitary

transformation matrix U defined in eq. 2.54:

U(R)

(
µad
00 µ

ad
01

µad
10 µ

ad
11

)

U(R)† =

(
µd
00 µ

d
01

µd
10 µ

d
11

)

(2.93)

In order to adequately describe the coupled motion on two states we have to con-
sider two nuclear wave packets. The time-evolution of the molecular system is then
illustrated by the time-independent Schrödinger equation where the coupling is rep-
resented by the nondiagonal potential elements. Regardless of the number of implied
electronic states the solution TDSE can be expressed in a general form using the
time evolution operator Û [118]:

| Ψ(t)〉 = Û(t, t0) | Ψ(t0)〉. (2.94)

The evolution operator propagates the wave function from time t0 to time t. The
TDSE equation must hold for any initial wave function, therefore, the evolution
operator must satisfy the same equation. Accordingly, Û(t, t0) can be rewritten in
an integral form:

Û(t, t0) = 1̂− i

~

∫ t

t0

Ĥ(t′)Û(t′, t0)dt
′. (2.95)
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This equation can be solved iteratively. Then the following expansion for the time
evolution operator is derived [119]:

Û(t, t0) = 1̂+
∞∑

n=1

(− i

~
)n
∫ t

t0

dtn

∫ tn

t0

dtn−1 . . .

∫ t2

t0

dt1Ĥ(tn)Ĥ(tn−1) . . . Ĥ(t1). (2.96)

If the Hamilton operator is not explicitly a function of time the previous expression
of the time evolution operator simplifies to:

Û(t, t0) = e−
i
~
Ĥ(t−t0) for Ĥ 6= Ĥ(t). (2.97)

In this case the system is conservative, i.e. the total energy of the molecule is
constant.

2.4.1 Time Discretisation

The Hamiltonian operator is explicitly time-dependent since it includes a time-
dependent perturbation that covers all interactions of the molecule with electromag-
netic radiation (laser pulses). Practically, the time axis is discretised in adequately
small segments ∆t in which the Hamiltonian operator can be considered to be time-
independent. Accordingly, the result of applying this time evolution operator to
an initial wave function is the successive propagation of the function over a time
interval of [119]

| Ψ(t)〉 = Û(t, tn)Û(tn, tn−1) . . . Û(t1, t0) | Ψ(t0)〉, (2.98)

Where each partial evolution operator is given as:

Û(ti, ti−1) = e−
i
~
Ĥ(ti−ti−1) = e−

i
~
Ĥ(ti)∆t, (2.99)

with
ti − ti−1 = ∆t. (2.100)

2.4.2 Propagation Schemes: the Split-Operator Method

Several numerical routines can be used to solve the time-dependent Schrödinger
equation. Here, the focus will be on the split-operator method [120, 121] that has
been used in this study. The total Hamilton operator is not diagonal in the grid
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representation. This implies that the kinetic energy operator does not commute
with the potential energy operator

[T̂ , V̂ ] 6= 0. (2.101)

Hence,the effect of the evolution operator cannot be directly calculated within this
representation. Accordingly, the evolution operator cannot be split, generally, in
the following way:

e−
i
~
Ĥ∆t = e−

i
~
(T̂+V̂ )∆t 6= e−

i
~
T̂∆t · e− i

~
V̂∆t. (2.102)

For very small time steps ∆t, the following decomposition, in which the kinetic
operator is split in two parts, is possible [121, 122, 123, 124]:

e−
i
~
(T̂+V̂ )∆t ≈ e−

i
~

T̂
2
∆t · e− i

~
V̂∆t · e− i

~

T̂
2
∆t +O(∆t)3. (2.103)

This decomposition of the Hamilton operator is called split operator and involves
a numerical error of third order O(∆t)3. The error of the calculation will be com-
paratively small if the time intervals are chosen sufficiently small. Such small time
steps also result in an approximately time-independent Hamilton operator for the
time-dependent electromagnetic field changes very slowly within a single time inter-
val. The Split operator is unitary and conserves the norm. The time propagation of
a wave function is done in several steps. First, the initial wave function on the grid
at time t0 (e.g. an eigenfunction of the system) is transformed from position space
to momentum space via Fourier transformation, see section 2.3.1. Then, it is multi-

plied by e−
i
~

T̂
2
∆t and accordingly, transformed back to position space. The next step

would be multiplying by e−
i
~
V̂∆t, transformed back to k-space and again multiplied

by e−
i
~

T̂
2
∆t. Finally, the wave function is transformed once again to position space

and a wave function | Ψk(t0 +∆t)〉 propagated by ∆t is achieved. Like so, the wave
function is propagated step by step until a final time tf . For two diabatic states
system, the time evolution operator can be written as [125]:

exp

[

− i

~

(
T̂N + V̂0 V01
V10 T̂N + V̂1

)

∆t

]

= exp

[

− i

~

(
T̂N 0

0 T̂N

)
∆t

2

]

exp

[

− i

~

(
V̂0 V01
V10 V̂1

)

∆t

]

×exp
[

− i

~

(
T̂N 0

0 T̂N

)
∆t

2

]

+O(∆t)3. (2.104)

In the diabatic representation the potential energy matrix in equation 2.104 is not
diagonal which makes evaluating the imaginary matrix more difficult. However,
one can work out this difficulty by transforming the non-diagonal potential matrix
into a representation in which it is diagonal, and then transforming back after the
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multiplication operation of the wave function is performed. For two electronic states
this transformation can be done analytically [126]:

exp

[

− i

~

(
W00 W01

W10 W11

)

∆t

]

= Uexp

[

− i

~
U †

(
W00 W01

W10 W11

)

U∆t

]

U † = U

(

e−
i
~
λ0∆t 0

0 e−
i
~
λ1∆t

)

U †

(2.105)

= exp

[

− i

~
(W00 +W11)

∆t

2

][

cos(
√
D
∆t

2~
)

(
1 0
0 1

)

+ i
sin(

√
D∆t

2~
)√

D

(
W11 −W00 −2W01

−2W10 W00 −W11

)]

.

(2.106)

Here, D = (W11 −W00)
2 + 4W 2

01 and λ0,1 = 1
2
(W11 +W00 ±

√
D) [125]. Since the

potential matrix is coordinate dependent, the same applied for the unitary transfor-
mation matrix U , that diagonalizes it [126].

2.4.3 Time-Dependent Laser Field

The operator for the interaction of the molecule with the laser field is described in
eq. 2.90 by the semi-classical dipole approximation [127]. In laboratory fixed coor-
dinates, the magnetic dipole and the electric quadrupole are neglected, because they
are about two orders of magnitude smaller than the electric dipole. Electromagnetic
Field ~E(R, t) is used to control intra-molecular motion in general and it is given by
the following expression:

~E(~R, t) = ~ǫp · ~E0 · s(t) · e
i(~k ~R−ωt) + e−i(~k ~R−ωt)

2
. (2.107)

here ~E0 is the amplitude of the field with the carrier frequency ω, ~ǫp the polarization
vector, ~k the wave vector, and s(t) the shape function which describes the envelope

of the laser pulse. The term ei
~kR can be expanded in the Taylor series:

ei
~k ~R ≈ 1 + i~k ~R + . . . . (2.108)

This Taylor series can be truncated after the first term since all the molecules con-
sidered throughout this study are of dimensions not larger than 6Å while the laser
pulses cover a range of wavelengths starting from at least 100Å. Accordingly, an
expression for a position-independent field is obtained

~E(t) = ~ǫp · ~E0 · s(t) · e
iωt + e−iωt

2
. (2.109)
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Using the Euler formula and combining the polarization vector with the amplitude,
this equation simplifies to:

~E(t) = ~E0 · s(t)cos(ωt). (2.110)

The shape function s(t) used in this study is given by [128]:

s(t) = sin2

(
π(t− td)

tp

)

, for td ≤ t ≤ td + tp (2.111)

where tp is the pulse duration and td is the starting time, also called delay time,
of the current laser pulse in a laser pulse sequence. In the following section, the
methods of laser pulse control applied in this study, is introduced.

2.4.4 Analytical Laser Pulses

Analytical laser pulses are well defined laser fields with analytical shape functions
which are functioning as either a pump pulse to excite population from one energet-
ically low lying state to another state higher in energy or as a dump pulse causing
a stimulated emission back to an energetically lower state. Pump-dump schemes
using analytical laser pulses developed by Paramonov and coworkers [36] and Tan-
nor and Rice [129, 130] are a common approach to laser pulse control of a quantum
dynamical system. Before a suitable laser pulse sequence is constructed it is nec-
essary to develop an efficient reaction mechanism that leads the system selectively
from a initial state via one or more transition states to the final state. The laser
pulses should be designed such that all transitions are selective. That is to say, they
only transfer population from the initial state to the desired state without exciting
population to other states, and effective, in the sense that the desired amount of
population is excited/de-excited. An analytical laser pulse is usually of the form
defined in equation. 2.110. For a sequence of linearly polarized laser pulses with
sin2-shape function the following expression is obtained:

~Ei(t) = ~E0
i · sin2

(
π(t− tdi)

tpi

)

· cos(ωi(t− tdi) + ρi) (2.112)

for tdi ≤ t ≤ tdi + tpi.

Here ~E0
i is the amplitude of the laser field, ρi the time-independent phase, tpi is the

pulse duration, tdi the starting time and ωi the frequency of the pulse i. For an initial
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guess of an suitable laser pulse it is important to know the transition frequency ωi,
that is the energy gap between the affected states. Still, the optimal laser frequency
is usually detuned to some extent from the exact transition frequency. This is
originated by the interaction of the electric field with the diagonal elements of the
transition dipole matrix µij . While the off-diagonal terms cause transitions between
different states, the diagonal terms result in a shift of the energy of the levels. The
energy levels will shift by a different amount causing a change in the energy difference
of states compared with the system without laser field. Consequently, the optimal
laser pulse frequency has to be found by detuning ωi until a acceptable result is
obtained. The choice of a suitable time duration of the laser pulse is fairly affected
by the uncertainty principle. If the laser pulse is on the one hand too short, then
states different from the desired ones might also be affected. If the laser pulse is on
the other hand relatively long, then the effectiveness of the laser control is destroyed
by competing effects like intra-molecular vibrational redistribution (IVR) that may
take place. For a complete transition of the population in a two-level system from
state |Ψi〉 to state |Ψj〉 (population inversion) a so-called π-pulse is most effective
[131]. In terms of the area theorem (see ref. [132]) population inversion in a two-
level system is obtained if the area A under the pulse envelope, multiplied by the
transition dipole matrix element µij, and divided by Planck’s constant, becomes
equal to an odd multiple of π:

A =

∫ tp

0

Ω(t)dt =
~µij

~

∫ tp

0

| ~E0
i |s(t)dt = (2N + 1) · π with N = 0, 1, . . . (2.113)

here Ω(t) is the so-called Rabi frequency given by:

Ω(t) =
~µij

~E(t)

~
. (2.114)

The Rabi frequency for a given atomic transition in a given light field gives the
strength of the coupling between the light and the transition. Then, the ampli-
tude of the laser pulse ~E0

i depends on its duration and on the transition dipole
matrix elements ~µij. This is an approximation for a two-level system, but it can be
extended to multi-level system using supposed generalized π-pulses [133]. Neverthe-
less, even a simple π-pulse is very suitable for generating an initial guess for a laser
pulse in a multi-level system. For sin2-shaped laser pulses their amplitude is then
approximated by

| ~E0
i | ≈

2π.~

|~µij|.tp
. (2.115)

Eventually the laser pulse parameters must be optimized (in this study, manually).
A precondition for using analytical laser pulses is that a good insight into the quan-
tum system is mandatory. Transition dipole matrix elements ~µij must be analyzed to
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get the most effective transition and many different laser pulse parameters must be
optimized. Frequently, it is a huge challenge to design a proper reaction mechanism
that in due course yields full control over the molecular system. Still, analyzing the
system and designing mechanisms for effective transitions give a very good under-
standing of how control is accomplished. The knowledge gained from these studies
can be used by e.g. experimentalists to design a desired laser pulse sequence to
reach an intended state.

2.4.5 Properties of the Electric Field

In quantum dynamical simulations, the electric field is typically designed to per-
form a special task, for example initiating a ro-vibrational or electronic transition.
Studying wave packet dynamics, or the dynamics of non-stationary states, is useful
to understand the time-dependent evolution of a quantum mechanical system where
radiation, either in the form of continuous wave (cw) or short pulses, can be applied
to create the wave packet(s) [134]. In this section, different electric field properties
will be discussed.

Intensity

The maximum intensity of the light, Imax, is related to the field strength through

Imax = ǫ0cmax | ~E(t)|2 = ǫ0c(| ~E0|)2, (2.116)

here ǫ0 is the permittivity constant and c is the speed of light [135]. Maximum
laser field intensities in quantum dynamical simulations are kept below the so-called
Keldysh limit, typically Imax < 1013W/cm2 [136], to avoid undesired ionization
processes. The duration tp of a laser pulse and the spectral width ∆ω are related
through a Fourier transform. Generally, the time and frequency components of light
build what is called a Fourier pair [137]:

f(t) =
1√
2π

∫ +∞

−∞

F(ω)eiωtdω, F(ω) =
1√
2π

∫ +∞

−∞

f (t)e−iωtdt, (2.117)

here f(t) is the function describing the electric field in the time domain (≡ E(t)),
and F(ω) is the function describing the electric field in the frequency domain. The
duration ∆t and spectral width ∆ω are related by Heisenberg’s uncertainty principle,
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∆t∆ω ≥ 1

2
, (2.118)

here the equality in equation. 2.118 is only reached with time and spectral envelopes
of Gaussian form where the pulse is called Fourier-transform limited [137] and is the
shortest pulse possible. However, pulses need not be Fourier-transform limited.

Few-cycle Pulses

Few-cycle pulses are laser pulses whose envelope varies on a time scale comparable
to that of the electromagnetic field itself [138]. The frequency of the radiation
thus dictates the duration of the few-cycle pulse, depending on how many optical
cycles are contained within the pulse envelope. Therefore, for a given number of
cycles, the duration of a few-cycle IR pulse will necessarily be longer than that
of a UV pulse. Current mode-locking techniques are able to deliver ∼ 4 fs pulses
in the visible spectral region with only a single cycle [139]. As a consequence of
Maxwell’s equations on electromagnetism in the electric dipole approximation, freely
propagating electromagnetic pulse must integrate to zero, [140, 141]:

∫ tp

0

~E(t)dt = 0 (2.119)

2.4.6 Autocorrelation Function

The autocorrelation function is often considered to monitor the evolution of the
time-dependent wave function. Autocorrelation function Au(t) [50] a function that
measures the overlap of the initial wave function with the time-dependent wave
function at any time

Au(t) = 〈Ψ(t0) | Ψ(t)〉. (2.120)

The modulus of the autocorrelation function, is a real number whose value ranges
from 0 to 1 for initially normalized wave functions. In general, the autocorrela-
tion function is time-dependent. However, in the unique case in which the initial
function | Ψ(t0)〉 is itself an eigenstate of the Hamiltonian with energy E, then the
autocorrelation function is just

Au(t) = 〈Ψ(t0) | Ψ(t)〉 = e−iE(t−t0)/~. (2.121)



Chapter 3

Photoinduced Quantum Dynamics
of Fulvene

Fulvene is known to have CIs between the ground and first excited electronic states,
S0 and S1, respectively [58, 59, 60]. It has been shown that CIs exist along the seam
for all torsion angles, connecting the CI at planar structure with the CI at twisted
configuration [61, 62]. The last CI is associated with cis−trans isomerization and
has been located by means of the Longuet-Higgins method [60]. In this chapter, we
investigate the photoinduced nonadiabatic dynamics of fulvene by a combination
of quantum chemical ab initio calculations and quantum dynamical simulations.
We will explore the quantum dynamics of the corresponding photoexcited nuclear
wavepacket on the model ground and first excited electronic states potential en-
ergy surfaces of fulvene. Therefore, a three-dimensional model Hamiltonian for the
cis−trans-isomerization of fulvene was constructed. The parameters for the adia-
batic model PES are obtained from quantum chemical ab-initio data. Then the
adiabatic states are transformed to ”quasidiabatic” states with potential coupling.
Unlike strictly diabatic ones, quasidiabatic states, may be defined as states in which
the derivative coupling does not vanish completely, but remains ”small”. In this
chapter, we will first introduce the model system describing the isomerization of
fulvene and review the localization of the CI [60]. Then, we derive the diabatic PES
from the adiabatic ones. Finally, we will discuss the propagation of photo-excited
nuclear wavepacket on the coupled surfaces and the corresponding ultrafast non-
radiative decay caused by the CIs. We will use the fulvene molecule as a model to
carry out 2D dynamics simulations for two different models, one using symmetric
and anti-symmetric allylic stretch modes and one using torsion and anti-symmetric
allylic stretch mode, using a model Hamiltonian with linear coupling. This chap-
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ter aims to learn something general on radiationless decay due to non-adiabatic
vibrations and torsional motion.

3.1 Background: Localization of the CI of Ful-

vene

The conical intersection (CI) between the S0 and S1 states for the system of interest
here was located using an approach based on the sign change theorem of Longuet-
Higgins [25, 29, 30, 59, 142, 143]. In Ref. [60] this method was extended to describe
qualitatively and quantitatively the properties of the fulvene conical intersections
between the S0 and S1 states where the different reaction coordinates connecting the
cis-trans isomers on the ground state surfaces and responsible for the main nuclear
motions causing the curves to cross were considered. It has been shown that the CI
between the S0 and S1 electronic states of fulvene involves torsion of the terminal
CH2 group as well as the anti-symmetric allylic stretch [144, 145, 146]. Rotation of
the terminal CH2 group connects two different biradical transition states (TSs): TS1

is an ethylene-like transition state with two electrons localized on the two orthogonal
p - atomic orbitals (p-AOs) where a rotation tolerates reaching both reactant and
product. In TS2 one electron is delocalized on the allyl fragment. The resulting
planar biradical has B2 symmetry and lies on the first electronically excited state
(it is a critical point). An anti-symmetric b1 vibration must be added in order to
break the C2 rotational symmetry around the C-C exocyclic bond. This mechanism
clarifies the computational observation that the reaction minimal energy path which
connects TS2 (B1) with the reactant and the product, consists of structures with C1

symmetry rather than C2. Consequently, the reaction coordinate via TS2 includes
main contributions of three different natural coordinates: torsion, exocyclic C-C
stretch and anti-symmetric allylic stretch. In contrast, the TS1 reaction coordinate
includes only the first two. Accordingly, two coordinates can be defined for this
system: Q1 that connects the two minima (main contribution from the torsion
coordinates) and Q2 coordinate that is entirely localized in the cyclopentadienyl
radical and connects the two transition states as it is shown in Figure 3.1. These
coordinates (Q1 and Q2) define the branching space of the CI:

Q1 = QTS1
+QTS2

≈ torsion + exocyclic C-C stretch (3.1)

Q2 = QTS1
−QTS2

≈ anti-symmetric allylic stretch (3.2)

Here, QTS1
and QTS2

are the reaction coordianets via TS1 and TS2, respectively.
The previous assembly ends in a reactant−TS1−Product−TS2−Reactant loop. A
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four-dimensional model would include these four cooridnates. We restrict ourselves
to a 3D Hamiltonian consisiting of the torsion (φ), symmetric and anti-symmetric
allylic stretches (qs and qa, respectively). The coordinates used in this study to
investigate the non-adiabatic vibrations and torsional motion is shown in Figure 3.2.
The adiabatic ground and excited ab-initio potential energy surfaces for fulvene

Figure 3.1: Fulvene loop. This figure is adapted from Ref. [60]. The asterisk (*)
labels the relative position of the atoms changed upon rotation around the C=C
bond.

have been calculated by O. Deeb [63, 87] where the adiabatic PESs V0(φ, qa, qs)
and V1(φ, qa, qs) are calculated using the GAMESS program suite [147] using the
complete active space self-consistent field CASSCF method [148] with the cc-pVDZ
basis set [149, 150]. A relatively small active space was used, as done in previous
studies [151, 152]. Only the six π electrons in the three double bonds were included in
six orbitals (three bonding and three antibonding). The active space was chosen for
sufficient calculations of the twisted CI. The CASSCF(6,6) active space includes only
π and π∗ orbitals in planar geometry (Figure 3.3). This active space is sufficient for
the calculations of structures without breaking the σ bonding. To properly describe
longer C–C bonds that would be stretched at dissociation, it is required to include
the σ and σ∗ orbitals in the active space. However, this is not a goal in this study.
Calculations of the PESs were made assuming C2v or C2 symmetry for all proper
species if applicable, otherwise C1 symmetry was used. Two-dimensional cut of the
PESs for qa = 0 is shown in Figure 3.4. The minima of the electronic ground state at
the Franck-Condon regions are located at a planar configuration of fulvene with C2v

symmetry corresponding to φ = ±π/2. It is interesting to notice that the steepest
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Figure 3.2: Different CI coordinates for fulvene.

Figure 3.3: Active space used in CASSCF(6,6)cc-pVDZ calculations.
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slope of the PES V0(φ, qa, qs) in the Franck-Condon regions is along the coordinate
qs. The crossings of the potentials lead to a seam of the CI which starts at φ = −π
and qs=1.47 Å and maintains to φ = 0 and π.

3.2 A Three-Dimensional Model Potential for the

Cis−Trans Isomerization of Fulvene

As a first approach to build the model potentials, we start with the nuclear Hamil-
tonian in the adiabatic representation,

Ĥad =

(
TN + Λ11 Λ10

Λ01 TN + Λ00

)

+

(
V1 0
0 V0

)

, (3.3)

where Λ10 are the adiabatic (kinetic) couplings between the potential energy surfaces
V1 and V0. The kinetic energy operator is given by (see appendix in Ref. [63]):

T̂N = − ~
2

2Ir

∂2

∂φ2
− ~

2

2mr

(
∂2

∂q2a
+

∂2

∂q2s

)

. (3.4)

Where Ir is the reduced moment of inertia, ~ = h
2π
, where h is Planck’s constant,

qa and qs describe the anti-symmetric and symmetric allylic stretch, φ is the torsion
angle and mr, (where mr = mC + mH) is the effective mass relevant for nuclear
vibrations in qa and qs direction.

The adiabatic potential energy surfaces are modeled by

V0/1 =
1

2
(Ve + Vg)±

1

2

√

(Ve − Vg)2 + λ2q2a, (3.5)

where λ is the coupling strength, Vg and Ve are the potential energy functions of the
ground and first excited states, respectively.

Vg =
v0
2
[1 + cos(2φ)] +

1

2
mrω

2
agq

2
a +

1

2
mrω

2
sgq

2
s

Ve = E1 −
v1
2
[1 + cos(2φ)] +

1

2
mrω

2
aeq

2
a +

1

2
mrω

2
se(qs − qs0)

2, (3.6)

Here, v0 and v1 are parameters of the ground and first excited state model PESs (Vg
and Ve, respectively). ωag and ωsg are the frequencies of the ground state and ωae and
ωse are the frequencies of the excited state and E1 is the energy difference between the
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Table 3.1: Parameters used to obtain the model adiabatic potential energy surfaces.

Parameter Value

Ir 1.711mHÅ
2

mr 13u
v0 2.09eV
v1 0.26eV
E1 2.93eV

ωag/2π 2921 cm−1

ωae/2π 7012 cm−1

ωsg/2π 1459 cm−1

ωse/2π 1540 cm−1

tvib(ωag) 11.4 fs
tvib(ωae) 47.6 fs
tvib(ωsg) 22.9 fs
tvib(ωse) 21.6 fs
qs0 0.1Å.
qs,eq 2.76Å.

ground and excited states potentials at the equilibrium geometry. The parameters
used for building the model adiabatic potential energy surfaces for fulvene are shown
in Table 3.1. These parameters are obtained from ab-initio calculations carried out
by O. Deeb (see section 3.1).

The two surfaces V0 and V1 cross if qa = 0 (see Figure 3.4). The seam of the
conical intersection is defined by

Ve(qa = 0)− Vg(qa = 0) = 0 (3.7)

It follows from eq.(3.6) that the conical intersection is located at

qsci(φ) = a
(

1−
√
1− b

)

, (3.8)

with the abbreviations

a = qs0
ω2
se

ω2
se − ω2

sg

b =
2(ω2

se − ω2
sg)

ω4
semrq

2
s0

[Ve(φ, qa = 0, qs = 0)− Vg(φ, qa = 0, qs = 0)] . (3.9)
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Figure 3.4: Two-dimensional adiabatic potential energy surfaces for the symmetric
allylic stretch (qs) and torsion (φ) for qa = 0. The figure to the right is the one
obtained from the ab initio calculations (1.33 Å ≤ qs ≤ 1.64 Å) and the figure to
the lift shows the model PES.

Figure 3.5 shows the seam of the conical intersection (eq. 3.8) qsci as a function of
the torsion angle φ (green curve). This figure shows that the second solution of eq.
3.7 (blue curve) is not relevant for the cis−trans-isomerization of fulvene because
the energy of that second seam of a conical interaction is too high as Figure 3.4 and
3.5 show.

3.3 Transformation to Diabatic Basis.

Kinetic coupling between energetically well separated adiabatic electronic states
can be neglected. When the energy gap between the two electronic states is small,
such as close to a conical intersection, the Born-Oppenheimer approximation is not
valid any more and the kinetic coupling becomes infinite. The fact that fulvene has
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Figure 3.5: Seam of the conical intersection for the torsion and symmetric allylic
stretch coordinates. The energetically relevant seam is the green curve.

a CI between the S0 and S1 states implies that the nonadiabatic coupling terms
in the Hamiltonian between the adiabatic electronic states, which determine the
efficiency of the ultrafast radiationless decay between the electronic states, cannot be
neglected. A transformation to the so-called diabatic basis, removes the singularities
in the kinetic coupling term Λ10 and Λ01. In order to transform the adiabatic
Hamiltonian Ĥad to a diabatic one Ĥd, we introduce a unitary transformation such
that

Ĥd = UHadU †, (3.10)

with

U =

(
cosα − sinα
sinα cosα

)

, (3.11)

where α = α(φ, qa, qs) is the adiabatic-diabatic mixing angle. The transformation
shall be such that

U

(
TN + Λ11 Λ10

Λ01 TN + Λ00

)

U † ≈
(
TN 0
0 TN

)

(3.12)

As a consequence, the potential matrix is no longer diagonal. The coupling between
the electronic states now appears in form of the potential coupling termsW01 =W10

in

U

(
V1 0
0 V0

)

U † =

(
W11 W10

W01 W00

)

. (3.13)
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The potential couplings are smooth functions of the coordinate and do not have
singularities. In general, the kinetic coupling term have to be calculated via ab
initio methods in order to find the transformation matrix U . To avoid the tedious
ab initio calculations, one often assumes linear model potential couplings [153]. The
form of the model Hamiltonian in eq. 3.5 suggests that one can assume

W10 =W01 =
1

2
λqa (3.14)

(Where, λ is the coupling constant) and

W00 = Ve and W11 = Vg (3.15)

It is also possible to extract quasi-diabatic potentials from the adiabatic potentials
without knowing the coupling terms [110, 153, 154]. Here, we demonstrate the
construction of quasi-diabatic potentials using the model potentials in eq. 3.5. Fol-
lowing Refs. [59, 153, 154], the matrix elements of the quasi-diabatic potentials are
defined as

W11 =
1

2
(V1 + V0) + d

W00 =
1

2
(V1 + V0)− d

W01 =W10 = of (3.16)

Where W11 and W00 refer to the higher and lower diabatic potentials, respec-
tively. W01 refers to the diabatic coupling element. The potential coupling elements
W01 = W10 are smooth functions of the nuclear coordinates and vanish at the CI.
They are linear functions close to the CI of the nuclear coordinates. Fulvene has
a symmetry allowed CI between the ground electronic state of A symmetry in C2

(gerada symmetry) and the first excited electronic state of B symmetry (ungerada
symmetry). The torsion angle φ and symmetric allylic stretch qs transform as A in
C2, and the anti-symmetric allylic stretch qa transforms as B. Therefore, the lin-
ear off-diagonal terms W10 are nonzero only for qa, while the linear diagonal terms
contain only φ and qs (see Ref. [155]). From eqs. 3.11 and 3.13, it follows that

tan 2α =
2W10

W00 −W11
(3.17)

or

∆V =
1

2
(V1 − V0) =

√

o2f + d2. (3.18)

To construct the diabatic potentials, we consider cuts of the PES with constant
torsion angle. Explicitly V0(qa, qs;φ) and V1(qa, qs;φ) with the torsion angle φ as a
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parameter. The CI is localized at qa = 0 and qs = qci(φ). The function qci describes
the seam of the CI. Therefore, to determine the functions o(φ, qa, qs) and d(φ, qa, qs),
we fix the coordinate φ and make the coordinate transformation (see Table 3.2)

q̃s = qs − qsci(φ). (3.19)

with qsci defined in eq. 3.8. Now, the conical intersection is located at qa = 0 and
qsci(φ) = 0 for every angle φ and

of (φ, qa = 0, q̃s(φ) = 0) = d(φ, qa = 0, q̃s(φ) = 0) = 0. (3.20)

Table 3.2: Parameters used to diabatize the model adiabatic potential energy sur-
faces.

Parameter Description
d Diagonal element of the matrix of coupling potential (W)
of Coupling element of the matrix of coupling potential (W)
λ Coupling constant
κ Potential energy gradient (tuning mode)

λ̃ Effective coupling
q̃s Shifted symmetric allylic stretch coordinates

Next, we expand ∆V , d and of (see Table 3.2) around qa = 0 and q̃s(φ) = 0
up to first order. Since the ground and excited electronic state of fulvene are of
different symmetry, the off-diagonal term of depends only on the anti-symmetric
coordinate qa and the diagonal term d depends only on the symmetric coordinate qs.
In Ref [110], it was found that for symmetry alllowed conical intersections, different
symmetries of the electronic states, gives anti-symmetric off-diagonal terms (of) and
symmetric diagonal terms. Thus, it suffices to determine the difference (V0 − V1) of
the adiabatic PESs as a function of each coordinates qa and q̃s. To determine the
coupling constants, eq. (3.18) then leads, in first order, to [110]:

λ̃ =
∂of
∂qa

|qa=0,q̃s=0 =
∂∆V

∂qa
|qa=0,q̃s=0

κ =
∂d

∂q̃s
|qa=0,q̃s=0 =

∂∆V

∂q̃s
|qa=0,q̃s=0,

with

λ̃ =
∂∆V (q̃s = 0)

∂qa
|qa=0 =

1

2
|λ| (3.21)
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and

κ =
∂∆V (qa = 0)

∂q̃s
|q̃s=0 =

1

2
mr(ω

2
se − ω2

sg)qsci(φ)−
1

2
mrω

2
seqs0. (3.22)

Where κ is the tuning parameter.
Therefore,

of = λ̃qa =
1

2
|λ|qa

d = κq̃s. (3.23)

The previous eqs. illustrate that, for symmetry allowed conical intersection, the
coupling constants are the gradients of the difference (V0 − V1)/2 which determines
the lifting of the degeneracy in the direction of either mode. According to Ref. [110],
the diabatic potential matrix can then be written as:

W11 =
1

2
(V1 + V0) +

1

2
(V1 − V0)

2κq̃s
√

4κ2q̃s
2 + λ2q2a

(3.24)

W00 =
1

2
(V1 + V0)−

1

2
(V1 − V0)

2κq̃s
√

4κ2q̃s
2 + λ2q2a

(3.25)

W01 =
1

2
(V1 − V0)

λqa
√

4κ2q̃s
2 + λ2q2a

. (3.26)

Finally, the matrix elements read

W11 =
1

2
(Ve + Vg) + κ[qs − qsci]

√

λ2q2a + (Ve − Vg)2

λ2q2a + 4κ2(qs − qsci)2
(3.27)

W00 =
1

2
(Ve + Vg)− κ[qs − qsci]

√

λ2q2a + (Ve − Vg)2

λ2q2a + 4κ2(qs − qsci)2
(3.28)

W01 =
1

2
λqa

√

λ2q2a + (Ve − Vg)2

λ2q2a + 4κ2(qs − qsci)2
, (3.29)

where the potential energy surfaces Vg and Ve are given in eq. 3.6, the seam of the
conical intersection, qsci = qsci(φ) is defined in eq. 3.8, and κ is given by eq. 3.22.

Figure 3.6 shows the adiabatic and diabatic potential energy surfaces as a func-
tion of the torsion angle φ and the anti-symmetric allylic stretch qa for different
values of qs. In, figures 3.6 (a, b and c) we choose qs = qsci(φ = 0). In this case, the
two adiabatic surfaces touch each other at the point φ = 0, qa = 0 (and, since the
potential is periodic in φ, also at φ = −π, qa = 0 and φ = π, qa = 0 ). The coupling
strength λ in all figures has the value of 16.2 eV/Å and the tuning parameter κ has
the value of −5.2 eV/Å.
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3.4 Wavepacket Dynamics

In this section, we investigate the dynamics of nuclear wavepacket evolving on the po-
tential energy surfaces induced by a z-polarized ultrashort laser pulse. The molecule
is assumed to be preoriented with respect to the z-axis and considered to be in its
vibrational and rotational ground state. The fulvene molecule is assumed to be
initially localized in one potential well. A short laser pulse then excites the ground
vibrational state of the electronic ground state to the electronic excited state po-
tential energy surface and initiates the cis−trans isomerization. Such laser pulse is
assumed to be short enough to induce a vertical transition, i.e. the excited state
wavepacket is a copy of the ground vibrational state wave function. Because the
initial wave function is quite distant from the CI, the interaction with the laser pulse
is approximately the same in the adiabatic and diabatic representations. The initial
nuclear wave function in the diabatic basis is then given by

Ψd(t = 0) =

(
ψd
1(t = 0)
ψd
0(t = 0)

)

, (3.30)

where ψd
0(t = 0) and ψd

1(t = 0) are the diabatic wave functions at t=0. At this time
(t=0), ψd

0 = 0. The eigenvalues and eigenfunctions of the (uncoupled) ground elec-
tronic state Vg are calculated by numerically solving the time-independent Schrödinger
eq. (see section 2.1.2) using the program package WAVEPACKET [116]. For the
propagation of the wavepacket on the coupled diabatic surfaces we use the split-
operator method, as implemented in the package WAVEPACKET [116]. We prop-
agate the wave function on the diabatic PES according to

i~
∂

∂t
Ψd =

[(
TN 0
0 TN

)

+

(
W11 W10

W01 W00

)]

Ψd, (3.31)

In the following, we summarize the results of two sets of simulations for two-
dimensional potential energy surfaces. First, we consider only the symmetric and
anti-symmetric allylic stretch. Next, we consider torsion and anti-symmetric allylic
stretch and simulate the wavepacket dynamics for cuts of V1/0 for different values of
q̃s. The results of the two sets of simulations are shown and discussed in the follow-
ing subsections. In all simulations the reduced torsional moment of inertia is 1.711
mHÅ

2, the reduced mass for the torsion and for symmetric and anti-symmetric ring
deformation parts of the kinetic energy operator is 6.28 and 13 u, respectively.
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Figure 3.6: Two-dimensional potential energy surfaces for qs = qsci(φ = 0). The
adiabatic potential energy surfaces V1/0 are shown in (b). Figure (a) shows W11 and
W00 for qs = qsci(φ = 0). The potential coupling W01 is shown in (c), (λ = 16.2
eV/Å).

3.4.1 Symmetric and Anti-symmetric Allylic Stretch Coor-
dinates

Figure 3.7 sketches the dynamics assumed to take place along the q̃s coordinate.
Here we investigate the efficiency and time scale of the radiationless decay for a
two-dimensional potential consisting of the two vibrational modes qa and q̃s. Figure
3.8 shows the adiabatic and diabatic potential energy surfaces as a function of qa
and qs for φ = 0. The two potentials have a conical intersection at qa = q̃s = 0 as it
can be seen in Figure 3.8(b). We start with simulating the wavepacket dynamics on
the surfaces in Figure 3.8(a)-(c). In the following, we simulate the nuclear dynam-
ics induced by a z-polarized ultrashort laser pulse. The preoriented molecules are
assumed to be in their ground state with respect to qa and q̃s coordinates. More-
over, they are located initially in their vibrational ground states. The symmetric
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W00

W11

in

Figure 3.7: Sketch of one-dimensional scenario of the wavepacket dynamics along q̃s
coordinates.

and anti-symmetric eigenfunctions are practically degenerate. We assume that the
initial state is localized at q̃s=0, i.e. is a superposition of the lowest symmetric and
anti-symmetric ground state. For propagation of the wavepacket, the following pa-
rameters are used: simulations were carried out on a grid of 32 and 64 points ranging
from -0.6 Å to 0.6 Å for the anti-symmetric allylic stretch (qa) and from -1.5 Å to 1.0
Å for the symmetric allylic stretch (q̃s) coordinates. The time steps for propagation
were t = 0.01 fs. To investigate the accuracy of the grid, many simulations with
different grid points for the two coordinates were carried out. The minimum number
of grid points needed to describe the behavior of the wavepacket in the symmetric
and anti-symmetric allylic stretch coordinates is 64 grid points. The effects of the
conical intersection on the population of the two diabatic electronic states can also
be seen in Figure 3.9. The red and green curves in this figure show the population
of the ground and excited diabatic states, respectively. The population P i

ν for the
diabatic potential i is then defined by:

P i =

∫ ∫

| ψd
i (qa, q̃s) |2 dqadq̃s , i = 0, 1 (3.32)

This figure shows, that at t ≈ 20 fs, more than 60% of the initial wavepacket
decayed to the ground state. Repeated crossing of the conical intersection leads to an
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Figure 3.8: Two-dimensional potential energy surfaces for symmetric and anti-
symmetric allylic stretch coordinates. Figure (a) shows W11 andW00. The adiabatic
potential energy surfaces are shown in (b) and the potential coupling W01 is shown
in (c).
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Figure 3.9: Population of the diabatic states. The red and green curves indicate
the time dependence of the diabatic and adiabatic wave functions propagated on
the ground and excited electronic with 64 grid points for the symmetric and anti-
symmetric allylic stretch coordinates (λ = 10.8 eV/Å).

oscillation of the population between the two electronic states. One can distinguish
between periods where the wavepacket is almost not affected by the coupling (e.g
t ≤ 5 fs and 20 fs ≤ t ≤ 30 fs), and periods with extensive population transfer
(e.g 10 fs ≤ t ≤ 20 fs). Comparison with Figure 3.11 shows that the wavepacket is
passing the conical intersection during those periods. Since the wavepacket at more
delocalized at later times (t ≤ 40 fs), those features become less clear. Figure 3.10
shows the autocorrelation function

Au(t) = |〈Ψ(0)|Ψ(t)〉|2 (3.33)

which also displays the time-evolution of the excited state wave function. As this
figure illustrates, a radiationless decay occurs after ≈ 10-15 fs. It also shows that
the autocorrelation function has peaks every ≈ 20 fs which is the vibrational period
for the motion along q̃a and qs coordinate (see Table 3.1). In fact, the motion of the
wavepacket is mainly along the q̃s coordinates with vibrational period of tvib =

2π
ωse

.
A stepwise population transfer can be observed whenever the wavepacket crosses
the CI region. Figure 3.11 shows snapshots of the time evolution for the vibrational
ground state wave function, on the ground and excited electronic state PESs for
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Figure 3.10: The autocorrelation function of the diabatic states with 64 grid points
for the symmetric and anti-symmetric allylic stretch coordinates (λ = 10.8 eV /Å).

λ = 10.8 eV/Å.

Initially, the wavepacket is localized at q̃s=0 Å and qa =0. The amplitude of
the wavepacket at the ground electronic state PES is zero. The wavepacket on the
excited PES starts moving towards the conical intersection. The wave function on
the ground state PES has a node for the anti-symmetric allylic stretch qa = 0. This
can be explained by the fact that the diabatic coupling W01 is zero for qa = 0.
As the excited state wavepacket approaches the conical intersection (t = 10 fs),
considerably more population is transferred to the ground state. After t = 20 fs, the
wavepacket passed the conical intersection for another time. Now, only the central
part of the initial wave function remains on the excited PES. The last row in Figure
3.11 show the wavepacket at t = 43 fs. Here we can see that part of the ground state
wave function is transferred back to the excited PES. During the whole evolution the
wavepacket remains in the conical intersection region and tends to be more localized
on the excited state PES while it is spread more on the ground state PES around the
CI region. Note that here, we have used arbitrary value of the coupling parameter λ
for the model potential. A more accurate description of the wavepacket dynamics of
fulvene requires the determination of λ from quantum chemical ab initio data (see
Ref. [63]).
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Figure 3.11: Snapshots of the time evolution of the diabatic wave functions on the
electronic ground and excited states potential energy surfaces with 64 grid points
for the symmetric and anti-symmetric allylic stretch coordinates (λ = 10.8 eV/Å).
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Figure 3.12: Sketch of one-dimensional scenario of the wavepacket dynamics along
the torsion (φ) coordinates

.

3.4.2 Torsion and Anti-symmetric Allylic Stretch Coordi-
nates

Figure 3.12 sketches the dynamics assumed to take place along the φ coordinates.

Here we investigate the efficiency and time scale of the radiationless decay for
a two-dimensional potential consisting of the two vibrational modes qa and φ. The
potential energy surfaces as a function of the torsion angle φ and the anti-symmetric
allylic stretch qa for different values of q̃s are shown in Figure 3.6. In Figures 3.6(a)-
(c), q̃s is chosen such that the potential energy surfaces just touch at φ = 0. For
propagation of the wavepacket, the following parameters are used: simulations were
carried out on a grid of 32, 64, 128 and 256 points ranging from -π to π for the
torsion coordinates. For the anti-symmetric allylic stretch coordinates, grids of 32,
64 and 128 points ranging from -0.5 Å to 0.5 Å were used. The time steps for the
propagation were t = 0.01 fs. We start with simulating the wavepacket dynamics
on the surfaces in Figure 3.6(a)-(c).
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In the following, we simulate the nuclear dynamics induced by a z-polarized ul-
trashort laser pulse. The preoriented molecules are assumed to be in their ground
state with respect to anti-symmetric allylic stretch (qa) and torsion (φ) coordinates.
Moreover, they are located initially in their vibrational ground states. Since fulvene
has a CH2 group with two identical protons, the adiabatic electronic ground state
has two equivalent minima at φ=-90 and φ=90 degrees (see Figure 3.6(a),(b)). The
lowest adiabatic eigenfunctions are a doublet of symmetric and antisymmetric func-
tions. The symmetric and anti-symmetric eigenfunctions are practically degenerate.
We assume that the initial state is localized in the left potential well at φ=−90◦,
i.e. is a superposition of the lowest symmetric and anti-symmetric ground torsional
state. The 2D rovibrational eigenfunctions were obtained using the FGHmethod, see
section 2.3.1, using the QMBOUND program implemented in the WAVEPACKET
package [116]. To find the size of the grid necessary to obtain reliable results for

Figure 3.13: The autocorrelation function of the diabatic states propagated on the
torsion and anti-symmetric allylic stretch coordinates. The calculations were carried
out on a grid of 128 points for each coordinate (λ = 16.2 eV/Å).

the wavepacket dynamics, a grid convergence test was carried out. The largest grid
we have tried so far was 128 × 128 points and 256 × 64 points for torsion and
anti-symmetric allylic stretch coordinates, respectively. Simulations with different
grids showed that for times until 100 fs, a grid with 128 × 128 points is sufficient,
longer time evolution requires larger grid. In this report, we will report the results



3.4 Wavepacket Dynamics 72

for the calculcarried out using the finer grid (128 × 128 points for the torsion and
anti-symmetric allylic stretch coordinates). Figure 3.13 show an overall decay of
autocorrelation function during the first 100 fs related to torsional motion. Figure
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Figure 3.14: The population of the time evolution of the diabatic states propa-
gated on the torsion and anti-symmetric allylic stretching coordinates with a grid
of 128 points for each coordinates (λ = 16.2 eV/Å and φ = 0◦). The green curve
indicates the time dependence of the diabatic states propagated on the excited elec-
tronic states while the red curve indicates the time dependence of the diabatic states
propagated on the ground electronic states.

3.14 shows population of the states on the ground and excited states PESs for q̃s = 0
and a grid of 128 points for each of qa and φ coordinates. From this figure, one can
distinguish between periods where the wavepacket is almost not affected by the cou-
pling (t ≤ 20 fs and 70 ≤ t ≤ 80 fs), and periods with large population transfer(40
≤ t ≤ 70 fs). The wavepacket is passing the conical intersection during those peri-
ods. In the period between (70 ≤ t ≤ 90) fs, the wavepacket becomes more or less
equally partitioned between the two PESs. This figure shows that a radiationless
decay takes place after t ≈ 50 fs. Since the CI is located at φ=0 and the initial
wavepacket is positioned at φ=-π/2, the previous finding shows that a torsion of the
CH2 group by 45 degrees needs approximately 50 fs. Accordingly, the radiationless
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decay due to torsion is slower than the radiationless decay related to vibrational
motion shown in the previous section. Figure 3.15 shows snapshots of the time-
evolution of the diabatic wave functions, carried out on a grid of 128 × 128 points
and φ=0. The wavepacket moves slower on this coordinates system than it does
on the symmetric and anti-symmetric allylic stretch coordinates. The amplitude of
the wavepacket at the ground state PES is zero. The wavepacket on the excited
state PES starts moving along the torsion coordinates until (t = 7fs). Actually,
the motion observed at initial times is only broadening of excited state wavepacket
along torsional coordinate till t ≈ 30 fs. During this period, the wavepacket tends
to be more localized on the excited state PES. At times t > 30 fs, a radiationless
decay takes place mainly at the CI region, where φ=0 and 180 degrees, which leads
to the transformation of the wavepacket to the ground state. After t ≈ 30 fs, the
wavepacket is also broadening along qa coordinates. After crossing the conical in-
tersection region, larger parts of the wavepacket are transferred to the ground state
PES and the wavepacket tends to be more delocalized on both PESs. One can notice
the node of ground state wavepacket at qa=0 where the potential W01 is close to the
CI (W01 ≈ λ× qa = 0 for qa=0) which leads to the observed node.

Simulations with a grid of 512 points for the torsion coordinates and 64 points for
the anti-symmetric allylic stretch coordinates should be considered. Furthermore,
using larger grid for the anti-symmetric allylic stretch coordinates should also be
considered. The next step on improving the grid would be to use a grid of 256 points
for the torsion coordinates and 128 points for the anti-symmetric allylic stretch
coordinates. However, moving to a larger grids with the qmbound program, is
time consuming and may be one should consider finding the wave functions for the
different PES using another method.

3.5 Summary of these Simulations and Outlook

Radiationless decay due to vibration along symmetric allylic stretching coordinates,
which takes place after t ≈ 10-15 fs, is much faster than the radiationless decay
along the torsion coordinates that takes place after t ≈ 50 fs. These results have
been confirmed in later studies on more accurate three dimensional ab-initio PES
where it was been shown that after vertical excitation, the fast radiationless decay
along the symmetric allylic stretching coordinates prevents the slower torsion of the
CH2 group (see Ref [63]). Recently, some dynamical studies has been carried out
on the fulvene molecule [63, 64, 65]. The authors in Ref. [63, 64, 65] proposed a
wavepacket interferometric scheme for the separation of different nuclear spin iso-
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Figure 3.15: Snapshots of the time evolution of the diabatic wave functions on the
electronic ground and excited states potential energy surfaces with 128 grid points
for the torsion and anti-symmetric allylic stretch coordinates (φ = 0◦ and λ = 16.2
eV/Å).
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mers. They have investigated the separation of model para- and ortho-fulvene where
they used simple Gaussian pulses. The authors applied wavepacket interferometry,
making use of the difference in wavepacket dynamics of the two isomers to affect sep-
aration. Furthermore, they have pointed to, the conceptually interesting but barely
investigated up to now, the symmetry-induced coupling of torsion and nuclear spin
modes of molecules where they have used the fulvene molecule as a model.



Chapter 4

Photoinduced Quantum Dynamics
in 4-(methyl-cyclohexylidene)-
Fluoromethane
(4MCF)

In this chapter the torsional dynamics around the C=C bond competing against HF
photodissociation dynamics are explored for the molecule 4-(methyl-cyclohexylidene)-
Fluoromethane (4MCF). The chapter starts with an introduction and follows with a
discussion of a quantum chemical two-dimensional PESs (2D-PES) that include the
twisting and HF-elimination coordinates. Later, the dynamics of rotation and dis-
sociation are demonstrated on non-adiabatically coupled PESs. Finally, an outlook
for control is given.

4.1 Background

Molecules consisting of the same number and types of atoms with the same connec-
tivity between the atoms can form stereo isomers, i.e. isomers that differ from each
other by the spatial distribution of their atoms. If two stereo isomers are mirror
images of each other then they are called enantiomers. Such isomers have the same
physical properties except for the fact that they rotate the direction of the polar-
ization of light by the same angle but in opposite directions. A molecule that is not
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superimposable on its mirror image is chiral. A Chiral center, which is a most com-
monly a carbon atom with four different substituent, is a necessary and sufficient
condition for the existence of enantiomers [156]. The feature that is most often the
cause of chirality in molecules is the presence of an asymmetric carbon atom [156].
If any atom or group on the asymmetric carbon is on the right side, that asymmetric
carbon is called as ”R”; if any atom or group is on the left side, the asymmetric
carbon is designated as ”S” [156]. The 4MCF molecule is a fluoroethylene derivative
with two R/S enantiomers connected by a torsion around the C=C double bond as
it is shown in Figure 4.1. The opposite enantiomer can be formed by exchanging
the substituents either on the terminal carbon of the ethylene group or on the ring
carbon atom at the 4-position. In this thesis, we are concerned with obtaining the
respective opposite chiral form obtained from exchanging the hydrogen and fluorine
atoms by rotation around the C=C double bond, see Figure 4.1. For this ability, the
4MCF was proposed as a model system for a light-induced chiral molecular switch
or a molecular rotor [24, 69, 70]. All these devices are originated from the posibility
of 4MCF to switch between the R/S enantiomers efficiently, triggered by a specific
laser or sequence of laser pulses especially designed for this purpose.

F
H

H3C

H
F

H3C

R - enantiomer                           S - enantiomer

-x
-z

-y
z x

y

Figure 4.1: The R/S isomerization of 4MCF molecule. The arrows show the orien-
tation of the 4MCF in the space fixed coordinate system.

In ethylene, several CIs which involve the torsion around the double bond al-
low for a very fast relaxation from the lowest bright electronic excited state (of
ππ∗ character) to the ground state [157, 158, 159]. A CI between the S1 (V state)
and S0 (N state) exist at a twisted geometry with pyramidalization at one of the
carbon atoms. It has been indicated that this twisted pyramidalized geometry is
the main channel for deactivation to the ground state [160]. Besides isomerization,
ethylene as well as ethylene derivatives, can undergo photoinduced dissociation. It
has been observed experimentally that both atomic and molecular hydrogen are
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eliminated in ethylene after irradiation [161, 162]. In the same way, elimination of
halogen derivatives has been detected in difluoroethylenes [163, 164, 165] or vinyl
chloride [166, 167]. Photodissociation dynamics in ethylene [168], fluoroethylene
[169, 170], difluoroethylenes [171, 172, 173] and vinyl chloride [174, 175] have also
been investigated theoretically. Analogous to the degeneracy points found for fluo-

Me

Me

Me

Me

F

H
H

F

F

+ HF

4MCF Carbene

4MCF Ylidene

(E = 0 eV) (E = 0 eV)

(E = 2.60 eV)

(E = 2.21 eV)

Biradical TS

CI H migration
(E = 6.72 eV)
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Figure 4.2: 4MCF loops, adapted from Ref. [68].

roethylene [66], CIs involving torsion, pyramidalization, and H-atom migration have
been reported for 4MCF [67]. Additionally, a new CI associated with the elimina-
tion of HF has also been located in 4MCF [68] via applying the LH loop method
[25, 29, 30, 142, 143] and using a large active space (CASSCF(12,12)/cc-pVDZ),
including 12 electrons in 12 orbitals (the ππ∗ orbital pair and 5 σ pairs orbitals). In
Ref. [68], the phase inverting LH loops containing CIs [26] are constructed for the
4MCF system by using reaction coordinates, see Figure 4.2. One loop is analogous
to that enclosing the well-known ethylene CI for H-migration. Its anchors are the
two isomers obtained upon torsion by 180◦ around the C=C double bond and the
carbene formed by H-atom migration [160, 176]. A second CI, of noticeably lower
energy, was found by replacing the carbene by the HF elimination products (see
Figure 4.2). Therefore, the second CI is potentially more important in the photo-
chemistry of this type of molecules. The two CIs mentioned above are discussed in
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detail in Ref. [68].

There, it is argued that the energy of the HF-elimination CI is expected to be
lowered in polar solvents because of the large dipole moment at geometries near
the CI, whereas the energy of the covalent-type CI (associated with torsion and
H-migration loop) should not be strongly affected by the solvent. In [68] it was
concluded that in liquid solutions, irradiation should yield generally the chiral isomer
upon C=C rotation. However, in gas phase passage through the new CI is supposed
to lead to dissociation. In this case, the predicted main product is the strongly
vibrationally and rotationally excited HF molecule. On the other hand, crossing
through the covalent CI is not expected to yield HF as a main product. Thus, the
two CIs may be distinguished by the nature of the products obtained in the gas
phase. So far, dynamical studies on 4MCF have only considered the torsion and
pyramidalization coordinates [24, 69, 70]. To eventually use the 4MCF as molecular
rotor, HF elimination is a non-desired competing mechanism that should obviously
be avoided. This study considers explicitly the torsional dynamics around the C=C
bond along with the competing HF photodissociation dynamics in gas phase.

4.2 Definition of the Model System

The orientation of the 4MCF molecule is shown in Figure 4.1. The 4MCF molecule
is oriented such that the C=C double bond lies along the z-axis and the F and the
H atom lie in the xz-plane. The molecule has a chiral axis defined by the C=C
double bond. The C2 atom is at the origin of coordinates while C1 lies in negative
z-direction.

4.2.1 Reaction Coordinates

When treating polyatomic molecules and chemical reactions, it is particularly com-
mon to make the choice of coordinates so as to simplify the mathematical formulation
of the Hamiltonian [177]. In such model coordinates, the position coordinates (x, y
and z) are replaced by their relative positions, with respect to some fixed point, (∆x,
∆y and ∆z) and by the vector to their center of masses. The two competing reac-
tions that are investigated in this study for the 4MCF are the photoisomerization
around the double bond producing the R/S enantiomers and the photodissociation
of HF. Figure 4.2 shows the two CIs mediating both reactions. Both CIs are twisted
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around the C1=C2 at 90◦. In Ref. [68], it was observed that the HF-elimination
CI has a relatively long C–F bond. To describe the photoisomerization and pho-
todissociation reactions, a simple model consisting of two reaction coordinates was
used to build the PES. In this model, the molecule is assumed to be pre-oriented as
shown in Figure 4.1. In building the PESs, all degrees of freedom of the molecule are

C1

C2 H

RHF

F

H3C

bF

bH

φ

a

b

R

Figure 4.3: Twisted minimum geometry of 4MCF (φ = 90◦, R=3.4 Å) with the
parameters used to define the photoisomerization and photodissociation reactions
coordinates. φ is the torsional angle. The vector R is defined from the center of mass
of the hydrocarbon moiety ”a” to the center of mass of the HF fragment (indicated
by blue circles). The point ”b” indicates the intersection of the line connecting H
and F atoms (the RHF distance) with the z-axis.

kept frozen except the coordinates responsible for the isomerization and dissociation
reactions to take place, these are:

1. The torsion angle (φ) that describes the rotational motion around the C=C
double bond. For φ = 0◦, H and F lie in the xz-plane and the molecule has Cs

symmetry. This is also true for φ = 180◦.

2. The distance (R) between the center of mass of the hydrocarbon fragment and
the center of mass of the HF fragment, see Figure 4.3. The dissociation motion
can be represented by the ~R vector that connects the center of masses of the
HF fragment, which is almost located at the much heavier F atom, and the
center of mass of the hydrocarbon part, located inside the hydrocarbon ring.
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It should be noticed that the distance between H and F atoms is expected to
decrease as the HF fragment dissociates away from C2 forming the HF molecule.
However, in this study, this is neglected as a first approach. Such approximation has
the advantage of facilitating the calculations and making the model Hamiltonian
simpler. Accordingly, the scenario described is the rotation of the HF fragment
around the C=C double bond (rotation coordinate) while simultaneously moving

away from the hydrocarbon fragment in the direction of the vector ~R (dissociation
coordinate). The rotation of HF fragment around the C=C double bond affects only
the coordinates of the H and F atoms. The change in the Cartesian coordinates as a
result of changing the torsion angle (φ) can be described by the following equations:

xF = −xF0 cos(φ), (4.1)

yF = −xF0 sin(φ), (4.2)

xH = −xH0 cos(φ), (4.3)

yH = −xH0 sin(φ). (4.4)

Here, xH , xF , yH and yF are the x and y coordinates of the H and F atoms as
they change with the torsion angle φ, respectively. xH0, xF0, yH0 and yF0 are the
coordinates of the H and F atoms at the twisted minimum geometry (φ=90◦, R =
3.5 Å), see Figure 4.3. In the latter figure, the point b is pointing to the intersection
of the line connecting the H and F atoms (the RHF distance) with the z-axis. The
distance bH and bF in 4.3 are the distances between b and each of H and F atoms,
respectively. The bF (q), bH(q) and RHF (q) distances are represented by the following
three-dimensional vectors:

~bF (q) = F (q)− b(q), (4.5)

~bH(q) = H(q)− b(q), (4.6)

~RHF (q) = F (q)−H(q), (4.7)

The vector ~R is defined as

~R(q) = F (q)− a(q), (4.8)

(4.9)

where (q) indicates the cartesian coordinates in the x, y and z directions, F (q) and
H(q) are the coordinates of the F and H atoms and a(q) indicates the coordinates
of the center of mass of the hydrocarbon-fragment.

As the HF fragment rotates around the C=C double bond, the length of the
vector ~R(q) changes with φ (for a fixed distance R). Introducing a unitary vector

u~R(q) ensures that the vector ~R(q) is kept normalized relative to its value at the
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twisted minimum geometry (φ = 90◦, R = 3.5 Å). Then, the change in the coordi-

nates of the H and F atoms due to dissociation along the vector ~R(q) (Hd(q) and
Fd(q), respectively) is given by

Hd(q) = H(q) + u~R(q) (|R| − |R0|) , (4.10)

Fd(q) = F (q) + u~R(q) (|R| − |R0|) , (4.11)

where |R0| is the length of the vector ~R(q) at the twisted minimum geometry (φ=90◦,

R=3.5 Å) and |R| is the length of the vector ~R(q) at a given R distance and torsion
angle φ.

4.2.2 Computational Details

The CI of the HF elimination reaction was found by Haas et al [68] using Cs

symmetry and the CASSCF(12,12)/ccpVDZ level of theory, as implemented in the
GAMESS program suite [101]. Figure 4.4 illustrates the active space used in these
calculations, which consist of π and π∗ orbitals on the double bond in addition to
the σ and σ∗ orbitals of the C–C, C–H, C–F and H–F bonds. The ground/excited
state energy gap of the CI for this geometry is 0.154 kJ/mol. The most important
geometrical parameters of this CI are shown in Figure 4.5(a). Because GAMESS
software has no facilities to calculate the nonadiabatic coupling terms, the 2D-PES
for 4MCF photodissociation was calculated using MOLPRO software [52] which has
such facilities.

The PESs should contain the geometry of reactants, products and the HF-
elimination CI. Since the CI is the most sensitive geometry for changes in the wave
function, the CI geometry was chosen as the starting geometry for determining the
active space in first place. Finding a suitable active space is an essential step. Since
we could not obtain an active space analogous to that used for locating the CI and
the stationary points in the 4MCF loop employed by Haas et al [68] a systematic
search for an analogous appropriate active space was carried out. Several trials
were made to achieve this purpose. We started using a CASSCF(8,9) that includes
p-orbitals on C and F, s-orbital on H, π and π∗ orbitals on the double bond, in
addition to σ and σ∗ orbitals to describe C-H, C-F and H-F bonds. This active
space is illustrated in Figure 4.6. Using this active space the energy gap between
the ground and excited states (∆E), for the geometry shown in Figure 4.5(a) is
0.170 kJ/mol. Using larger active space does not decrease this value. Next, some



4.2 Definition of the Model System 83

Figure 4.4: Active space from GAMESS - CASSCF(12,12)/cc-pVDZ. The position
of the H and F atoms are sketched on 30A’ orbital.

Figure 4.5: Important geometrical parameters of the CI obtained from (a) GAMESS
and (b) MOLPRO calculations at the indicated level of theory. ∆E indicates the
energy gap between the ground and excited states (S0 and S1, respectively). Bond
lengths and distances are given in Å.
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Figure 4.6: Active space from MOLPRO - CASSCF(8,9)/cc-pVDZ. The position of
the H and F atoms is sketched on the 32A orbital.

changes to the starting geometry are done to improve the active space. For such
purpose, we started from the twisted minimum geometry (φ = 90◦, R=3.5Å) and
then used R distance of 6.0 Å to obtain the active space suitable to describe the
4MCF Ylidene and separated HF moiety. Next, the R distance was decreased in a
series of successive calculations to 5.5, 5.0, 4.9, 4.7Å ending at the R distance of the
CI (4.6Å). The values of φ angle was kept equal to that of the CI geometry (90◦) in
all the previous calculations. The final geometry obtained from these series of the
calculations is shown in Figure 4.5(b). In this geometry, the RHF distance was equal
to that of the minimum geometry (φ = 0◦, R=3.5 Å). As the HF and hydrocarbon
fragments approach each other, the orbitals in the active space changed to reflect
this enhanced bonding characteristic. Then, the number of orbitals was decreased
to eight orbitals instead of nine. Figure 4.7 shows that the p and s atomic orbitals
on the H and F atoms (orbitals 34A, 35A and 36A in Figure 4.6), are now combined
in bonding orbitals for the H–F, C-H and C–F bonds (see Figure 4.7, orbitals 34A,
36A and 38A). The relatively smaller CASSCF(8,8), illustrated in Figure 4.7, will
reduce the cost of building the PESs. Therefore, it will be used to carry out the rest
of the calculations. The energy gap of the CI geometry (∆E) obtained using this
(8,8) active space is 0.096 kJ/mol, see Figure 4.5(b), indicating that this final wave
function can describe appropriately the CI.



4.3 Quantum Chemical Results 85

Figure 4.7: Active space from MOLPRO - CASSCF(8,8)/cc-pVDZ. The position of
the H and F atoms is sketched on the 32A orbital.

4.3 Quantum Chemical Results

The present study is the first step towards investigating the dynamics of the 4MCF
R/S photo-reaction, with particular focus on the competition between the R/S
photo-isomerization and photo-dissociation. Additionally, we want to investigate
the role of the conical intersection in preferring one path over the other. This section
describes the 2D-PES and kinetic coupling terms between the adiabatic potentials.
Starting from the geometry of the twisted structure of 4MCF with the HF fragment
rotated by 90◦ around the double bond, a grid of points is calculated along the two
coordinates of interest: φ and R. The RHF distance and other coordinates of the
molecular frame are kept frozen at the equilibrium geometry of 4MCF obtained at
B3LYP/cc–pVTZ level of theory [24], see section 4.2, using the Gaussian 03 suite
of programs [178]. In this twisted orientation the molecule has local Cs symmetry
along the xz-plane, whereas in the rest of the grid the molecule has C1 symmetry.
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For simplicity, our model is restricted to the first electronic excited state of ππ∗

character and the ground state. Each of the two 2D-PESs are created from 22 sin-
gle point calculations ranging from φ = 90◦ to φ = −90◦, and 13 points between
R = 2.5Å to R = 6.0Å. To have more points around the CIs and the equilibrium
structure, the spacing between the points is inhomogeneous.
Figure 4.8 shows the 1D-PES at 6.0Å along φ. This figure indicates that at the

Figure 4.8: 1D-PES at 6.0Å.

dissociation limit, the two PESs do not cross. This implies that if HF rotates after
dissociation, it stays on one PES without passing to the other potential. An addi-
tional point at R = 50Å has been added to the grid to assure the correct asymptotic
behavior at the dissociation limit. Then, a total of 22 × 14 = 308 single point
calculations were carried out. Since the PESs are cyclic in φ and symmetric with
respect to φ = 90◦, a total of 43 × 14 = 602 ab initio points were obtained after
mirroring. Then, the PESs were cubic splined to a grid of 1024 × 512 = 524288
points, obtaining the final PESs ranging from φ = −90◦ to φ = 270◦, and from
R = 2.5Å to R = 6.0Å.

The single point calculations were performed using the SA-CASSCF method,
with equal weights for both states. Such wave functions are denoted as |Ψ0〉 and
|Ψ1〉 for the ground and first excited state, respectively. The basis set used is the
double zeta basis set cc-pVDZ [147]. The active space includes eight electrons in
eight orbitals, namely the πCC , σCH , σCF , σCC and their anti-bonding orbitals shown
in Figure 4.7. The two PESs are non-adiabatically coupled with corresponding first

order NACTs (or kinetic couplings) with respect to R and φ (T01
R(1)

and T01
φ(1),
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respectively), given by

T01
R(1)

= 〈Ψad
0 | ∂

∂R
Ψad

1 〉, (4.12)

T01
φ(1) = 〈Ψad

0 | ∂

∂φ
Ψad

1 〉. (4.13)

Eqs. 4.12 and 4.13 are calculated at the same level of theory as the PES using a
finite difference method (see section 2.2.1). The calculations were performed using
the MOLPRO program package [52].
In the first derivative, defined in eqs. 4.12 and 4.13, the diagonal elements are zero

by definition (T00
R(1)

= 0, T11
R(1)

= 0, T00
φ(1) = 0 and T11

φ(1) = 0). The second
order NACTS, see eq. 2.49, with respect to R and φ are given by

T01
R(2)

= 〈Ψad
0 | ∂2

∂R2
Ψad

1 〉, (4.14)

T01
φ(2) = 〈Ψad

0 | ∂2

∂φ2
Ψad

1 〉. (4.15)

The second order kinetic coupling defined in eqs. 4.14 and 4.15 is much smaller than
the first order one, and therefore they can be ignored.

4.3.1 Potential Energy, Dipole and Transition Dipole Sur-

faces

1D cuts along φ and R coordinates of the adiabatic PESs and their corresponding
kinetic couplings are shown in Figure 4.9.

Figure 4.9(a) shows that the ground state potential V0 is symmetric and cyclic
with two equivalent minima at φ=0◦ and φ=180◦ corresponding to the R and S
enantiomers, respectively. A potential barrier at φ = ±90◦ of ≈ 3.4 eV separates well
these minima and guarantees that a single enantiomer is stable at room temperature
without racemizing. The electronic excited state has its minima at φ = ±90◦ which
indicates the existence of CIs, as it is characteristic for olefinic systems at a twisted
geometry around the C=C bond [67]. However, the gap between ground and excited
states PESs at φ = 90◦ is 2 eV. This energy gap is reduced with R, until R= 4.6Å
where a crossing between both states takes place, as it is shown in Figure 4.9(b).
This point matches the position of the HF-elimination CI within this unrelaxed
grid. Even though the gap between the maximum of the ground state PES and the
minimum of the excited states PES is large at φ = 90◦ and R = 3.5Å , a non-zero
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Figure 4.9: Adiabatic 1D-PES and corresponding kinetic couplings calculated at the
CASSCF(8,8)/cc-pVDZ level of theory. (a) Unrelaxed adiabatic electronic ground
(V0 in solid) and first singlet excited (V1 in dotted) states along φ for R = 3.5Å.
(b) Dito along R for φ = 90◦. (c)-(d) Non-adiabatic (or kinetic) couplings along φ
and R, respectively. The units in (c)-(d) are given in rad−1 and Å−1 for the kinetic
coupling along φ and R, respectively.

kinetic coupling of T01
φ(1) = −1.7 rad−1 is obtained. This is shown in Figure 4.9(c),

meaning that this point is an avoided crossing belonging to the HF-dissociation CI

[67]. The large kinetic coupling of T01
φ(1) = −10.7 rad−1 at R = 4.6Å (see Figure

4.9(c)) confirms that this point is part of the HF-elimination CI. The negligible

coupling elements TR
01

(1)
(see Figure 4.9(d)) along both coordinates substantiates

the approximation used in the diabatization procedure, see section 4.3.2.

The adiabatic 2D-PESs shown in Figure 4.10(a)-(b) contain two conical inter-
sections. The first is the HF-elimination CI mentioned above, local at R = 4.7Å
and φ = 90◦. The other CI is observed at R = 4.6Å and φ = −90◦. This CI has
even a smaller ∆E than the former one 0.045 kJ/mol and has also a higher kinetic
coupling (-15.178 rad−1).

The adiabatic dipole moment ~µ as a function of φ and R is calculated at the
same level of theory as the PES. Figure 4.11 shows the components of the dipole
moment µx

00, µ
y
00 and µ

z
00 of the electronic ground state along φ . It is important that

µx
00 is anti-symmetric with respect to φ = 0◦ while µy

00 and µz
00 are symmetric. The
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Figure 4.10: 2D adiabatic and diabatic PESs calculated at the CASSCF(8,8)/cc-
pVDZ level of theory. Unrelaxed adiabatic electronic ground state (V0), first adia-
batic singlet excited state (V1), diabatic electronic (W00) and (W11) states along φ
and R coordinates.

components of the adiabatic electronic transition dipole moments µx
01, µ

y
01 and µz

01

along φ are shown in Figure 4.12. This figure shows that µx
01 is the anti-symmetric

component where µy
01 and µz

01 are symmetric with respect to φ = 0◦.

4.3.2 Diabatization

To investigate the photo-dissociation and photo-isomerization dynamics of 4MCF,
the nuclear time-dependent Schrödinger equation (TDSE), eq. 2.86 should be solved.
As it was discussed in section 2.2.1, the total Hamiltonian is given by eq. 2.52
and 2.53. The total Hamiltonian of the system investigated in this study includes
the kinetic energy operator of the nuclei, the adiabatic potentials and the kinetic
couplings between the electronic adiabatic states. The kinetic energy operator of
the nuclei is described by the rotational moment of inertia (Ir) of HF fragment, with
respect to the rotation axis around C=C double , and the dissociation coordinates.
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Figure 4.11: Components of the adiabatic dipole moment along φ of the electronic
ground state as obtained from CASSCF(8,8) calculations for R=3.5 Å. The upper,
middle and bottom plots represent the components of the dipole moment in x, y
and z directions, respectively.

Figure 4.12: Components of the adiabatic transition dipole moment along φ of the
electronic ground state as obtained from CASSCF(8,8) calculations for R=3.5 Å.
The upper, middle and bottom plots represent the components of the dipole moment
in x, y and z directions, respectively.
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In the adiabatic presentation, the 2D model adiabatic Hamiltonian Ĥad is given by

Ĥad
ij = − ~

2

2mr

(
∂2

∂R2
+ Tij

R(2)
+ 2Tij

R(1) ∂

∂R

)

− ~
2

2Ir

(
∂2

∂φ2
+ Tij

φ(2) + 2Tij
φ(1) ∂

∂φ

)

+Vi.

(4.16)
Here, mr is the reduced mass between the HF and the rest of the molecule, Vi
are the adiabatic PESs for the electronic ground and first excited state, Tij

R/φ(1)

and Tij
R/φ(2) represents the first and the second derivatives of the electronic wave

function Ψi with respect to the nuclear coordinates R and φ, respectively. By

definition Tii
R/φ(1) = 0. The second derivative terms are given in eqs. 4.15 and 4.14.

Describing nuclear dynamics in the presence of NACTs is a challenging task.
Near CIs the NACTs between the two states have a pole property [57] and the kinetic
coupling elements become a singularity at the CI itself. Representing and treating
such changes and even singularities is a challenging numerical task. Much effort has
been dedicated to find physically meaningful diabatic representations [57, 51, 41].
In this study, the diabatic potentials W are derived directly by transforming the
adiabatic ones V as (see eq. 2.60)

Wij = U †
jiViiUij , (4.17)

where Uij is a unitary transformation matrix discussed in section 2.2.2 and obtained
using eq. 2.54. The mixing angle for each point, defined by Ri and φi, is the integral
over the corresponding non-adiabatic or kinetic couplings. For the 4MCF system,
the mixing angle between adiabatic states, see eq. 2.54 and 2.56 in section 2.2.2, is
given by:

∂αij

∂R
= 〈Ψad

i | ∂

∂R
| Ψad

i 〉 (4.18)

and
∂αij

∂φ
= 〈Ψad

i | ∂

∂φ
| Ψad

i 〉. (4.19)

The mixing angle should satisfy the two eqs. (4.18 and 4.19) at the same time.

While calculating the mixing angle α, care must be taken that the diabatic wave
functions at 0◦ and 360◦ are the same. Accordingly, the path in φ has to be well
defined such that [57]: ∮

φ

Tij
φ(1)dφ = nπ. (4.20)

To obey such condition, αR is defined for the 4MCF system such that:

αR(Ri, φi) =

∫ φi

φ0

T01
φ(1), (4.21)
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here, T01
φ(1) represents the coupling between the ground |Ψad

0 〉 and excited state
|Ψad

1 〉. For symmetry reasons, αR(Ri, φi) must be equal between 0◦ and 180◦ and
between 180◦ and 360◦. Hence, an approximation to solve this first-order differential
equation for the total mixing angle (α(Ri, φi)), see Ref. [57], is:

α(Ri, φi) = αR +

∫ Ri

R0

T01
R(1)

(R, φ0)dR, (4.22)

where R0 and φ0 are the points where the adiabatic and diabatic PES are forced to
be identical. For the 4MCF model, these points are defined at the equilibrium co-

ordinates (R = 3.5Å and φ = 0◦). As said before, TR(1)
01 is small and hardly changes

along φ (see Figure 4.9).

Figure 4.13: Mixing angle (a), 1D cuts for R = 3.5Å (solid) and 4.8Å (dashed) (b)
and 1D cuts for φ = 180◦ (solid) and 0◦ (dashed) (c).

Following the approximation implemented in eq. 4.22, first we will perform 1D
diabatization along φ. Therefore, the unitary transformation matrix U was chosen to
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be identity at φ0 = 0 and R0 = 3.5Å. The cyclic condition was achieved by manually
forcing the mixing angle α (see eq. 2.56) in U to be zero after the integration over
360◦.

Since the 1D adiabatic V0 and V1 potentials are symmetric and cyclic along
the torsion coordinate, the corresponding 1D diabatic ones W00 and W11 are also
expected to be symmetric and cyclic. The two diabatic states are symmetric only if
the mixing angle reaches a multiple of π or π/2 at its maximum [57]. In fact, this
ideal condition is not necessarily maintained in this case because the system is not
an ideal two-level system due to mixing of higher excited states with the S1 state.

Figure 4.14: Diabatic 1D-PES and corresponding potential couplings calculated at
the CASSCF(8,8)/cc-pVDZ level of theory. (a)-(b) Diabatic electronic W00 (solid)
and W11 (dotted) states along φ for R = 3.5Å , and R for φ = 90◦, respectively.
(c)-(d) Potential couplings along φ and R, respectively.

After calculating the mixing angle between the states, one can diabatize the
PESs and dipole moment. The 1D diabatic potentials and associated potential cou-
plings are shown in Figure 4.14(a)-(d) and (c)-(d),respectively. Figure 4.10 shows
the corresponding adiabatic, (a)-(b), and diabatic, (c)-(d), 2D PES along φ and R.
Figure 4.10 shows that the adiabatic and diabatic PES are cyclic in φ. The adiabatic
PES are symmetric (by construction) but the diabatic ones are not. The source of
this asymmetry can be found in Figure 4.13 (a), which shows the mixing angle along
both coordinates, where it can be realized that the topology is not ideal everywhere.
In Figure 4.13 (b) and (c) two 1D cuts of the mixing angle α are shown at R = 3.5Å
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and 4.8Å and at φ = 0◦ and 180◦, respectively. Even though the trend of the mix-
ing angle along φ is as to be expected; nevertheless, for R = 3.5Å the difference
between α at φ = 0◦ and 180◦ is close to π/2, for R = 4.8Å it is not (Figure 4.13
(b)). The difference between the mixing angle in R for φ = 0◦ and 180◦ is neither
constant, nor equal to π/2 as it can be seen more clearly in Figure 4.13 (c). The
deviations of the mixing angle α are caused by some artificial configuration mixing
of the ππ∗ transition with the πσ∗ one as it was discovered upon investigating the
electronic wave function for the geometry of R = 4.9Å and φ = 0◦ as an example
(see figure 4.15). This Figure shows orbitals 35A, 36A and 37A which are involved in
the dominant excitations in the active space. The most dominant excitation occur
from the HOMO (orbital 35A) to the LUMO (orbital 36A) with configuration inter-
action coefficients of 0.55 and 0.15 for the S0 and S1 states, respectively. Another
important excitation occurs from the HOMO to orbital 37A with configuration in-
teraction coefficients of 0.05 and 0.36 for the S0 and S1 states, respectively. However,
there is no ππ∗ excitations in the active space for the geometry of R = 4.9Å and
φ = 0◦. On the other hand, it was found that the most dominant excitation in the
active space shown in Figure 4.7, for the CI geometry shown in Figure 4.5(b), occurs
from the HOMO (orbital 35A) to orbital 37A (π∗

CC) with configuration interaction
coefficients of 0.57 and 0.01 and for the S0 and S1 states, respectively, upon one
electron excitation. A configuration coefficients of 0.01 and 0.53 were obtained for
the S0 and S1 states, respectively upon two electrons excitation to orbital 37A (π∗

CC).

Figure 4.15: Molecular orbitals for the geometry of R = 4.9 Å and φ = 0◦ showing
the configuration mixing of the ππ∗ transition with the πσ∗.

Figure 4.16 shows the components of the 1D diabatic dipole moment, see eq.
2.93, along φ.
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Figure 4.16: Components of the diabatic dipole moment along φ of the electronic
ground state for R=3.5 Å. The upper, middle and bottom plots represent the
components of the dipole moment in x, y and z directions, respectively.

4.4 Photo-dissociation Dynamics Results

The topology of the PES is of great importance in investigating the reaction dynam-
ics, that is to say, if the wave packet is prevented from passing the crossing region,
the HF would be rotating while it is connected to the hydrocarbon fragment. On the
other hand, if the wave packet passes the crossing region, the HF would dissociate
and rotates as a separate HF molecule; such motion could be measured experimen-
tally. As it was shown in the previous section, the topology of the PESs promises
an interesting reaction dynamics; the dissociation is more favorable in the planar
conformation and there is a huge barrier (ca. 3.4 eV) to reach the twisted geometry
in the S0 state. This implies that the only way to dissociate the HF molecule is
a two-step mechanism consisting in rotation to arrive to the CI and transfer pop-
ulation to the ground state and then, after a exchange of kinetic energy between
the two coordinates, the dissociation can occur. For didactic purposes, first we will
analyze the non-adiabatic isomerization dynamics alone. This is done using the 1D
diabatic potential energy profiles along torsion at the minimum R = 3.5Å suppos-
ing δ-pulse laser as it is discussed in section 4.4.2. Then, we will investigate the
dynamics on 2D PESs of the torsion and dissociation coordinates supposing δ-pulse
laser as discussed in section 4.4.3.
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4.4.1 One-Dimensional Hamiltonian and its Torsional Eigen-
states

The one dimensional model adiabatic Hamiltonian operator Ĥad of 4MCF describing
the torsional motion of F and H around the space fixed z-axis is given for each
electronic state by:

Ĥad = − ~
2

2Ir

(
∂2

∂φ2
+ Tij

φφ(2) + 2Tij
φ(1) ∂

∂φ

)

+ Vi(φ). (4.23)

Here, Ir is the moment of inertia defined as

Ir = mF b
2
F +mH b2H , (4.24)

where mF and mr are the masses of the F and H atoms, respectively and bF and
bH are the distances of the respective atom to the b point, as sketched in Figure
4.3. The torsional eigenfunctions and eigenenergies of the electronic ground and
first excited state are obtained as solution of the TISE, see eq. 2.2. The numerical
calculations were carried out on a grid of 1024 points by applying the FGH method
[179, 180], using the moment of inertia Ir = 163527 mea

2
0. The 1D model diabatic

Hamiltonian for this system is:

Hd
ij = − ~

2

2Ir

∂2

∂2φ2
+Wij . (4.25)

The torsional eigenenergies for ground and excited states are listed in table 4.1.
The energy splitting of the doublets of the energetically lowest states is smaller than
the numerical precision of 10 significant figures. The eigenfunctions | Ψ0

νR/S〉 are
either localized in the inner well or in the outer well. In the dynamical simulations
carried out in this study, the wave function is initially localized in one potential well
(a superposition of eigenfunctions of the R and S enantiomers).

4.4.2 One-Dimensional δ-Pulse Dynamical Simulations

As it was mentioned in section 4.3.1, each enantiomer of the 4MCF molecule is well
separated from the opposite one by two high potential energy barriers (of the order
of 30 000 hc cm−1) located at φ = 90◦ and φ = 270◦. Accordingly, V0 is a symmetric
double barrier potential with two minima located at φ = 0◦ and φ = 180◦. The
energy gaps between the minima of the excited state PES and the maxima of ground
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Table 4.1: Torsional eigenenergies for the ground state of the model system 4MCF.
The energies of eigenfunctions | Ψi

νS〉 and | Ψi
νR〉 localized in the left well (S-

enantiomer) and to the right (R-enantiomer), respectively.

| Ψi
νS〉 energy (cm−1) | Ψi

νR〉 energy (cm−1)
0 112.868 0 112.868
1 340.887 1 340.887
2 566.574 2 566.574
3 790.645 3 790.645
4 1013.294 4 1013.294
5 1234.701 5 1234.701
6 1454.962 6 1454.962
7 1674.165 7 1674.165
8 1892.371 8 1892.371
9 2109.633 9 2109.633
10 2325.995 10 2325.995

Figure 4.17: Snapshots of the wave function in diabatic (a-d) and adiabatic (e-h)
representation simulated on their corresponding potential energy curves at selected
times as indicated (R = 3.5 Å).
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state PES point to avoided crossings, which once the potentials are diabatized then
cross at φ = 90◦ and φ = 270◦. In this section, as a first approach, we are interested
in exploring the non-adiabatic (or diabatic) isomerization dynamics with the related
couplings. This is done using the 1D diabatic PESs (W00 andW11) along the torsion
angle φ at the minimum R = 3.5Å. Using the 1D diabatic PESs of 4MCF quantum
dynamical calculations were performed in a grid of 1024 points using the Split-
Operator method [120, 121, 181, 182] with a time discretization of 0.01 fs. We
assume all molecules to be in the configuration of the S-enantiomer (φ = 0◦), and
therefore to be located in the minimum of the W00 state. Then, it is instantaneously
excited to the W11 potential using a δ-pulse. Snapshots of the wave packet in
1D for selected times in the adiabatic and diabatic pictures are shown in Figure
4.17(a-d) and 4.17(e-h), respectively. The adiabatic wave functions are obtained by
transforming the diabatic wave function back to the adiabatic one:

(
Ψad

0

Ψad
1

)

=

(
Ψd

0

Ψd
1

)

U †(R). (4.26)

Figure 4.17 (b) shows that the wave packet spreads very quickly in both directions
along the torsion coordinate. Since the potential is cyclic, both wave packet portions
interfere constructively at ≈ 150 fs recovering a localized wave packet at φ = 180◦

(R-enantiomer) (Figure 4.17 (c) or (g)). The last snapshot at 700 fs shows the
wave packet completely delocalized between the R and S enantiomers (Figure 4.17
(d) and (h)). As expected, both adiabatic and diabatic simulations give the same
result. The population transfer to the electronic ground state is negligibly small,
even at longer propagation times (700 fs). This is not surprising since the NACT
at φ = 90◦ is small and the gap between the PESs is still large (Figure 4.17 (a) and
(c)) which demonstrates that other coordinates might be necessary to arrive to the
CI.

4.4.3 Two-Dimensional δ-Pulse Dynamical Simulations

In the following section, the results of the quantum dynamic simulations in 2-
dimensions (2D) are shown. This will allow to investigate the branching of the
wave packet in the torsional coordinate (which could preserve a potential molecular
rotor or switch) and in the dissociation coordinate (HF fragment elimination), after
excitation to the bright ππ∗ excited state. A rotor can be preserved in the excited
as well as in the ground state. For this reason, it is interesting to investigate the
efficiency of the non-adiabatic population transfer to the ground state at or near
the CI. Using the 2D diabatic PESs of 4MCF, W00 and W11, quantum dynamical
calculations in 2D, along φ and R, were performed in a grid of 1024 × 512 points,
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Figure 4.18: Snapshots of wave packet distributions in the 2D diabatic potentials
W11 (panels a-d) and W00 (panels e-h) along R and φ for selected times. The
corresponding PESs are superimposed in panels (a) and (e).

respectively, using the Split-Operator method [120, 121, 181, 182] with a time dis-
cretization of 0.01 fs. The system is initially prepared in the torsional ground state
of W00 that is localized in the left minimum. Then, it is instantaneously promoted
to W11 employing a δ-pulse. In 2D the ground state torsional eigenfunction is ob-
tained by, first, calculating two torsional ground state 1D eigenfunctions with the
FGH method in a grid of 512 points along R for φ = 0◦ and in a grid of 1024 points
along φ for R=3.5 Å. Then, an initial 2D guess is prepared as the product of both
1D eigenfunctions. Finally, this guess is relaxed to a minimum by propagating it in
imaginary time [117]. In our reduced 2D model, the diabatic Hamiltonian is given
by the equation:

Hd
ij = − ~

2

2µ

∂2

∂2R2
−− ~

2

2Ir

∂2

∂2φ2
+Wij . (4.27)

Snapshots of the wave packet propagation on the 2D diabatic surfaces at selected
times are shown in Figure 4.18. After excitation, at 70 fs (Figure 4.18 (b)), it can
be seen that the wave packet moves along both R and φ coordinates following the
gradient of the corresponding W11 PES (superimposed in Figure 4.18(a)). It can
be also noticed that a portion of the wave packet is already transferred to W00

(Figure 4.18 (f)). Furthermore, at 150 fs a recombination of the wave packet in the
R enantiomer is observed (Figure 4.18 (c) and (g)). It is interesting to see that the
wave packet does not move beyond ca. R =4 Å even at long propagation times (10
ps). This shows that although the wave packet starts with an excess of energy of ≈ 2
eV with respect to the HF-elimination CI, within this reduced model no dissociation
is observed and torsion dominates. The absence of dissociation products can be
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referred to the fact that there is not enough momentum transfer from φ to R.

When studying photodissociation dynamics, it is very typical to explore the
quantum distributions of the products [162, 183]. Similarly, to evaluate the efficiency
of a possible rotor in our 2D model, one can follow the population dynamics in the
basis of the previously calculated 1D torsional levels at the equilibrium geometry
[85].

Figure 4.19: Population dynamics in the basis of the torsional states for W00 (a),
W11 (b) and the sum of both (c). The inset (d) shows the average torsional level ν.

If we assume that the eigenfunctions in φ are constant with respect to R (as it is
close to the equilibrium geometry), we can evaluate the time-dependent vibrational
distribution of the wave function at every R:

P i
v(R, t) =

∫

φ

Ψi∗
v (φ)Ψ

i
v(R, t)dφ, (4.28)

where P i
v(R, t) represents the probability to find the wave function in the vibrational

quantum state Ψi
ν at every time and for every dissociation distance. These proba-

bilities can be added with respect to R. Thus, the population P i
ν(t) in each torsional

state ν for the potential i is given by [85]:

P i
ν(t) =

∫

R

|
∫

φ

Ψi∗
ν (φ)Ψ

d
i (R, φ)|2dR. (4.29)
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The behavior of the system is similar to the 1D propagation since there is no transfer
of kinetic energy between the torsion and the dissociation (recalling that there is
not enough momentum transfer from φ to R). This means that, in our reduced
model, the rotation is maintained over at least the first 1 ps. If the sum of the
populations in both potentials Pν =

∑

i P
i
ν varies with time, the rotor is destroyed

via the dissociation channel. Figure 4.19 (a) and (b) show the out-of-phase P 0
ν and

P 1
ν which indicate the population exchange between the two diabatic potentials.

From the out-of-phase period, it can be observed that the time required to pass
from the R to the S enantiomer is ca. 150 fs, in satisfying agreement with the time
inferred from the 1D and 2D snapshots of Figures 4.17 and 4.18, respectively. In
Figure 4.19 (c), the evolution of the sum of both populations is plotted, illustrating
that lower torsional levels are slowly populated over time. This decrease is even more
clear in the inset (Figure 4.19 (d)), where the average torsional level 〈ν〉 = νPν until
10 ps is represented. At long times, the expectation value of ν has decreased from ≈
400 to only 380. Considering that the dissociation energy of the molecule is around
7.5 eV, which corresponds to a torsional level of around 350, a torsional lifetime of
at least 10 ps can be anticipated in this molecule.

4.5 Effects of Laser Pulses on the Dynamics of

4MCF

The control of a molecular system by means of an external laser field is a hot topic
in the field of quantum dynamics [184, 185]. The objective is to bring the system
from a given initial state to a desired final state using laser fields. Finding the ”best
shape” for a function is subjected to constrains that will maximize or minimize a
certain quantity. In the case of applying a laser, the search is for the best shape
of the laser pulse, subject to some constraints, to maximize or minimize a certain
chemical product yield [126]. Where the constraint is the TDSE, see eq. 2.86, in the
presence of the control, which is the electric field interacting with the dipole (per-
manent or transition dipole moment) of the molecule. Our objective is to design an
electric field as a function of time that will move the wave packet in some desired
channel, starting out in a well defined initial ground state.
The first quantum simulations towards the ignition of unidirectional intramolec-
ular rotations in chiral molecules have been carried out by means of linearly po-
larized laser pulses in the IR frequency domain [12, 13, 14, 24]. This approach
may provide an alternative to chemical, electrochemical or photochemical stimuli
for molecular rotors [186]. In Ref. [24] Quantum ignitions of unidirectional in-
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tramolecular rotation is achieved in two steps: first, a few-cycle intense IR laser
pulse is used to excite the torsional motion of one fragment in the molecule against
the rest of the molecule; second, a well-timed ultrashort UV laser field transfers
the system from the electronic ground state into an excited state such that the tor-
sional motion is converted into unidirectional intramolecular rotation. In this thesis
we shall carry out exploratory investigations of laser pulses which may turn out
useful for future investigations of control of unidirectional intermolecular rotation.
Specifically, we study the effect of IR+UV pulses on the oriented model system,
(4-methyl-cyclohexylidene)fluoromethane (4MCF). For simplicity, the laser induced
wave packets are propagated on 1D PES along the torsion.

4.5.1 IR pulse

The optimization of the IR laser pulse used to excite the torsional motion of the
CHF fragment against the rest of the molecule will be discussed in this section. For
simplicity, first we will optimize the IR laser pulse representation and investigate its
dynamics of the adiabatic representation. Then we will use the obtained optimal
laser parameters for propagating the wave packet on the 1D diabatic PESs (after
diabatizing the PESs and dipole moments, see Figure 4.14 and 4.16).

Few-cycle pulses were introduced in section 2.4.5, and we will now discuss the
design of such pulses for our quantum dynamics simulations. This section will
provide a step-by-step guide for building a smooth sin2-pulse which is used in the
forthcoming simulations. We want to design an IR laser pulse that induce the
coherent torsion of the CHF moiety. To this aim, the frequency of the IR laser pulse
should be tuned to match the natural rotational movement of the CHF moiety. The
frequency of the IR laser pulse that excites this mode, ωIR, should therefore have
the characteristic that one cycle of the electric filed oscillation ( 2π

ωIR
) should match

the period of the natural rotational movement of the CHF moiety. For a pulse
duration,tp, the IR pulse frequency given by

ωIR =
2π

tp
, (4.30)

so that the IR frequency, ωIR, can now be replaced in the laser field expression, see
eq. 2.112. For a short pulse duration, tp ≤ 100fs, the field applies a brief force
on the charge distribution (permanent dipole moment) and induces a change in the
energy of the system. If this energy is resonant with the natural vibrational energy,
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Figure 4.20: IR and UV pulses. The IR pulse (red curve) polarized in the y-direction

consists of 5 cycles. The IR pulse parameters are ~E0 = 2.57 GV/m, corresponding
to Imax = 875 GW/cm2, ωIR = 226 cm−1 (see eq. 4.30), ρ = 0◦, t0 = 0 fs and
tp = 90 fs. The UV pulse (green curve) is polarized in the z-direction. The UV
pulse parameters are Imax = 617.4 GW/cm2, ω = 73919 cm−1, ρ = 0◦, t0 = 97 fs
and tp = 8 fs.

Figure 4.21: Evolution of angular momentum with time. The red and green curves
represent the evolution of the angular momentum with time for V0, V1 PESs, re-
spectively.
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the corresponding vibrational transition will take place. Therefore, the correspond-
ing vibrational eigenstate is excited, and the result is a brief ”kick” applied to the
CHF moiety which begins rotating around the C=C bond. Few-cycle pulses applied
to the system would cause even large in the amplitude torsion angles, similar to a
pendulum being pushed each time it reaches its center of motion. One can think
of applying few-cycles pulses, each of which would induce the CHF moiety rotation
more and more away from its initial position. However, the vibrational wave packet
that is created simultaneously undergoes dispersion due to anharmonicity of the
PES, so that this competing effect must also be considered over longer times. A
compact wave packet is typically desired for maximum population transfer. There-
fore, wave packet propagation times and pulse durations should be kept short relative
to dispersion time scales.

Few-cycle pulses can be replaced by a single sin2-shaped pulse with an average
IR carrier frequency, ωIR, that smoothly turns on and off, as introduced in eqs.
2.110 and 2.111. Pulse duration, tp, in eq. 2.110 is the pulse duration governing the
number of field cycles that are contained within the pulse envelope. A smooth five
cycle IR pulse that is shown in Figure 4.20 was used in this study. The choice of the
five cycle pulses was made so as to obtain the maximum population transfer. This
five cycles IR laser pulse is polarized in the y-direction of the oriented 4MCF model
system. This pulse consists of 5 cycles ( ~E0 = 2.57 GV/m) with a maximum intensity
of 857 GW/cm2. The optimal pulse parameters (see eq. 2.112) are ω = 226cm−1,
ρ = 0◦, t0 = 0fs, and tp = 90 fs. At the end of the IR laser pulse, the wave packet
has been coherently shifted φ = 38◦ from the equilibrium position at 88 fs. Then, it
swings back towards the opposite turning point (φ = 32◦) at 95 fs, gaining maximum
torsional angular momentum maximum amplitude (Figure 4.21) at ≈ 100 fs. The
wave packet created in the electronic adiabatic state V0 is shown in Figure 4.22(a).

4.5.2 UV pulse

When the appropriate torsional movement has been maximally shifted by the few-
cycle IR pulse (and gaining maximum torsional angular momentum), an ultrashort
UV pulse can be applied to excite vertically the displaced wave packet, see Figure
4.22(b), to the excited state. We will now discuss the design of the UV pulse. The
frequency of the UV light, ωUV , should be chosen such that it matches the vertical
energy spacing between the ground and first excited states PESs. The intensity
of the pulse is chosen to transfer the maximum population from the adiabatic V0
to the V1 state. Such a UV pulse, polarized in the z-direction centered at 73919
cm−1, has a maximum intensity of 617.4GW/cm2, ωUV = 73919cm−1 and ρ = 0◦,
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see eq. 2.112. The pulse duration is 8fs. At 100fs (Figure 4.20), the wave packet
is transferred vertically from the electronic ground state to the excited singlet state
with almost 55% efficiency. The resulting FC transition conserves the momentum.
Therefore, the wave packet created in the electronic excited state V1 starts moving
on the V1 1D-PES as it is shown in Figure 4.22(a)-(b). The related kinetic energy
is large enough to overcome the barrier and the wave packet begins to move in a
unidirectional manner.

4.5.3 Exploratory One-Dimensional Dynamics under IR and

UV Laser Pulses

In this section we will discuss the effect of applying the IR+UV laser pulses dis-
cussed in sections 4.5.1 and 4.5.2 on 4MCF. The propagation of the wave packet
will be done in adiabatic and diabatic 1D-PESs. The ultrashort IR+UV laser fields
are shown in Figure 4.20, and their effects on the a S-enantiomer in the adiabatic
representations are shown in Figure 4.22(a)-(b). This figure illustrates how the IR
pulse induces the movement of the wave packet in V0 and then the UV excites it to
the V1 with almost 53% efficiency, see Figure 4.23.

The results shown in Figure 4.22(a)-(b), have been obtained for the adiabatic
wave packet dynamics propagated on adiabatic PESs and employing adiabatic dipole
moments, see eq. 2.91. The IR and UV pulses employed here utilize the adiabatic
dipole moment in the y- and z- direction, respectively (see Figure 4.11 and 4.12).
This figure shows that the wave packet spreads very quickly in both directions along
the torsion coordinate. Since the potential is cyclic, both wave packet portions
interfere constructively at ca. 120 fs recovering a localized wave packet at φ = 180◦

(R-enantiomer). At 200 fs, the wave packet is delocalized between the R and S
enantiomers and the wave packet begins to move in a unidirectional manner involving
sequential cis-trans isomerizations which implies that the rotor can be preserved in
the excited state.

Figure 4.22(c)-(d) shows the wave packet dynamics obtained in the diabatic
representations. These results are obtained by applying eq. 2.92 on the diabatic
1D PESs. The IR and UV pulses employed here utilize the diabatic dipole moment
in the y- and z- direction, respectively (see Figure 4.16). As it is expected, both
adiabatic and diabatic simulations provide the same result.
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Figure 4.22: Evolution of the wave packet after applying a few-cycle IR and a UV
pulse on the adiabatic (a) V0, (b) V1 and diabatic (c) W00 and (d) W11 PESs. The
insets in plots (a) and (c) show a zoom for the evolution of the wave packet between
t = 0 fs and t = 150 fs. The IR pulse is polarized in the y-direction and has
the parameters: Imax = 875 GW/cm2, ωIR = 226 cm−1, ρ = 0◦, t0 = 0 fs and
tp = 18 fs. The UV pulse is polarized in the z-direction and has the parameters:
Imax = 617.4GW/cm2, ωUV = 73919cm−1, ρ = 0◦, t0 = 97 fs and tp = 8 fs.

Figure 4.23(a) shows the population of the wave packet on the adiabatic and
diabatic PESs. This figures shows that at the time of applying the UV pulse
(t = 100fs), almost 53% of the wave packet is transferred to top hill of the adiabatic
V1 state PESs. However, at the end of UV pulse duration (105fs), almost 47% of
the population remains on the adiabatic PESs. Almost 47% of the wave packet is
transferred to the excited state PES during all the propagation time of 200fs in the
adiabatic representation. For dynamical simulations in the diabatic representation,
45% of the population remains on the W11 state. Figure 4.23(b) shows that the
same behavior obtained when exciting the wave packet from the R or S enantiomers
on the adiabatic PESs in the adiabatic representation.
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Figure 4.23: (a) Population of the wave packet on the diabatic and adiabatic PESs.
The blue, violet, red and green curves indicate population on the V0, V1, W00 and
W11 PESs, respectively. (b) Population of the wave packet on the adiabatic PESs
for excitation the wave packet of the R and S enantiomers. The blue, violet, red
and green curves indicate population on the V S

0 , V S
1 , V R

0 and V R
1 PESs, respectively.

The superscripts ”S” and ”R” refers to the S and R enantiomers, respectively.

4.5.4 Outlook

A simple model is set up aiming to investigate the chiral interconversion between
R and S enantiomers of the 4MCF molecule obtained upon rotation around the
C=C double bond, versus the competing reaction of eliminating HF. To this aim,
two relevant coordinates were considered to build the PESs namely, the torsion
around the C=C and the distance between the center of masses of the hydrocarbon
moiety and the HF fragment. Then, 1D and 2D quantum dynamics were carried
out on the calculated PESs. Both adiabatic and diabatic simulations shows that the
population transfer to the electronic ground state is negligibly small, even at longer
propagation times. The behavior of the system in 2D propagations is similar to the
1D propagation since there is no transfer of kinetic energy between the torsion and
the dissociation. This means that, in our reduced model, isomerization dominates
over dissociation in the ps time scale.

Investigating the effect of laser pulses on the 4MCF dynamics was done em-
ploying quantum ignition by means of few-cycles IR+UV laser pulses on 1D PESs.
In this thesis we have used methods based on manual optimization of the laser
in order to design an appropriate laser pulse sequence which can be useful for fu-
ture investigations of control of unidirectional intramolecular rotation. Quantum
ignition of an intramolecular rotation may be exploited as initial step in order to
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drive a molecular rotor by laser light. After that, the unidirectional rotation must
be preserved efficiently bringing a molecular machine to work. By resemblance to
macroscopic or biological machines, this second assignment needs a permanent sup-
ply of energy. The most primitive solution to this problem is permanent repetition
of the sequential IR+UV laser pulses, corresponding to continuous re-start of the
molecular rotor. An efficient scheme as suggested in [24], is that after ignition of the
unidirectional intramolecular rotation, it is maintained by a series of ultrashort UV
pulses which induce sequential electronic transitions between the electronic ground
and excited states. Another option to maintain unidirectional intramolecular rota-
tions even in dissipative environments is implied by the approach of Korolkov and
Paramonov [187], i.e. dissipative loss of rotational energy and angular momentum
can be compensated by permanent re-excitations by continuous wave lasers which
induce transitions from torsional to more excited intramolecular rotational states
[24]. To achieve the laser control of the 4MCF dynamics, torsional and intramolec-
ular angular momentum should be conserved. Unfortunately, with the laser pulses
employed in this thesis, we did not achieve this purpose.

However, there are some limitations in the model employed in this study. The
most important limitation is the use of a reduced 2D system. In principle, the lack of
other coordinates requires caution in the interpretation of the results. However, since
after vertical excitation 4MCF does have enough kinetic energy excess to reach the
HF-elimination CI, photodissociation should have manifested already within this 2D
model, and it has not. Other coordinates, like the H–F distance or pyramidalization,
will certainly move (lower) the position of the CI and add more excess of kinetic
energy to the initial wave packet. However, even this could accelerate the transfer of
momentum from the torsion to the HF dissociation coordinate, it is not reasonable
that the photolysis time scale change from ns to fs. Based on these considerations,
we are therefore left to conclude that the HF- dissociation dynamics from the ππ∗

state is not competitive to isomerization in olefinic systems on ultrashort time scales.
On the other hand, due to the configuration mixing of the ππ∗ transitions with the
σπ∗, considering more states in necessary for more proper description of the 4MCF
dynamics.

4.6 Summary

This study investigates the branching of the wave packet in the torsional coordinate
(that preserves a potential molecular rotor or switch) versus the HF elimination or
dissociation coordinate. Wave packet propagations show that although the system
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has enough energy to access the HF-elimination CI, isomerization dominates after
light irradiation. These results are encouraging for the use of 4MCF as a model
for a molecular device. It was shown that no dissociation is observed and torsion
dominates, although the wave packet starts with an excess of energy of ≈ 2 eV
with respect to the HF-elimination CI. The absence of dissociation products can be
explained by the fact that there is not enough momentum transfer from φ to R.
The present model simulations suggest that, analogous to what was obtained in Ref.
[24], quantum ignition of unidirectional intramolecular rotation is possible in two
steps: first, a few-cycle intense IR laser pulse excites the torsional motion of CHF
fragment against the rest of the molecule; second, a well-timed ultrashort UV laser
field transfers the system from the electronic ground state into an excited state such
that the torsional motion is converted into unidirectional intramolecular rotation.



Chapter 5

Solvent effect on the conical
intersection of
4-cyclopentadienylidene-1,4-
dihydropyridine
(CPDHP)

5.1 Background: Experimental and Theoretical

Investigation of Solvent Effect on the Conical

Intersection.

The photo-physics of 1-butyl-4-(1H-inden-1-ylidene)-1,4-dihydropyridine (BIDP) was
discussed in Ref. [74] as system for which a conical intersection between S1 and S0

states is predicted to be strongly affected by interactions with a solvent. The BIDP
molecule (see Figure 5.1) is stable under ambient conditions and has a very strong
absorption in the visible region. Besides, it can be dissolved in both polar and
non-polar solvents. In addition, it was also reported to be none fluorescent [188],
indicating rapid radiationless decay (weak emission in MeCN [189]). All these rea-
sons make this molecule very easy to handle experimentally and to be selected for
the practical demonstration where the interest is in a molecular system in which
the conical intersection can be manipulated in a predetermined way. Fluorescence
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Figure 5.1: The BIDP and CPDHP two main valence bond structures.

experiments on (1-butyl-4-(1H-inden-1-ylidene)-1,4-dihydropyridine (BIDP, Figure
5.1) have revealed that the fluorescence quantum yield of the S0 state is of the order
of 20-60% in various cryogenic glasses but becomes very small in fluid solutions [74].
Moreover, the fluid solution yield is about five times larger in a polar solvent (ace-
tonitrile, MeCN) than in a non-polar one (methylcyclohexane, MCH). The rapid
nonradiative transitions in fluid solutions were assigned to internal conversion in
both solvent classes, as intersystem crossing is much slower than internal conversion
and no net reaction is observed [189]. These results are in agreement with pre-
dictions made for the closely related (in terms of electronic structure) but simpler
molecule 4-cyclopentadienylidene-1,4-dihydropyridine (CPDHP) for which a conical
intersection between S1 and S0 states was recently proposed [86, 143] based on a
method developed to locate conical intersections between the ground state potential
surface and the first electronically excited states of polyatomic molecules [142]. The
method is an extension of the Longuet-Higgins sign-change theorem [29] and uses
reaction coordinates of elementary reactions as the starting point of the analysis.
The structures of the molecules studied in [74] (1-butyl-4-(1H-inden-1-ylidene)-1,4-
dihydropyridine (BIDP) as well the smaller molecule used for high level computa-
tions (cyclopentadienyl-dihydropyridine (CPDHP)) are shown in Figure 5.1. This
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figure shows that the two dominant valence bond structures of BIDP are similar to
those for CPDHP [143]. The combined experimental and theoretical study designed
in Ref. [74] such that the polar solvent used at room temperature (MeCN) can-
not form hydrogen bonds which illustrates that its effect must be only due to the
higher polarity. In line with the model in Ref. [74], the S1 state was found to have
an ultra-short decay time in the fluid solvents indicating the existence of a conical
intersection. A strong solvent effect on the lifetime was found where the decay was
faster in non-polar solvents than in polar ones. Furthermore, even avoided crossings
can act as funnels when the energy gap is small. In view of the similarity between
the electronic structures of BIDP and CPDHP, quantum mechanical calculations on
the CPDHP model show that a conical intersection between S1 and S0 exists in the
gas phase and in non-polar solvents, whereas the degeneracy is removed in polar
solvents. This unique property is due to the fact that the electronic wave-function
of the CPDHP at its equilibrium ground state configuration cannot be presented
by single spin pairing scheme. Thus, a covalent and a zwitterion forms are required
for this purpose. It was found that there are two possible distinct routes on the

NHC8C2

C8 NHC2

NHC8C2

C8 NHC2

Aromatization 
(QAR)

Torsion (φ)

Reactant Product

Zwitterionic TS

Biradical TS

* * *

*

*
*

*
*

Figure 5.2: The Longuet-Higgins loop for CPDHP. The reactant and product are E
and Z isomers and are connected by the torsion coordinate. In the two transition
states the pyridine and cyclopentadiene rings are perpendicular to each other. The
coordinate connecting them is an aromatization coordinate that converts the quinoid
structure of the BRTS to the aromatic structure of the ZWTS. The asterisk (*) labels
the relative position of the atoms changed upon rotation around the C2=C8 bond.

ground state surface for the E-Z isomerization around inter-annular double bond
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Figure 5.3: Coordinate axes in CPDHP.

[143]. One is via the well known biradical (covalent-ethylene-like) transition state
(BRTS), the other via a zwitterion (charge transfer) transition state (ZWTS) that
is stabilized by the concomitant aromatization of the two ring systems. A phase
inverting Longuet-Higgins loop [25, 143, 142] can be constructed in which a conical
intersection is located as Figure 5.2 shows. The gas phase isomerization around
the double bond connecting the two rings can be carried out along two reaction
coordinates: in one the transition state is of biradical nature, as in ethylene; this
transition state is of C2V symmetry and transforms as A2. The ZWTS is ionic: an
electron is transferred from the pyridine ring to the cyclopentadiene one; this tran-
sition state also belongs to the C2V symmetry group and transforms as A1. A phase
inverting Longuet-Higgins loop can be constructed for this system by connecting
the reactant and product in a closed loop via the two transition states. Therefore,
a conical intersection is located within the loop [143, 142, 25]. The loop is shown
in Figure 5.2. The structure and the energy of the conical intersection are closely
related to both biradical and zwitterion transition states; in specific, the energy can
be altered by changing the solvent’s polarity. As shown in [74, 189, 86, 143] the
conical intersection in this molecule is accessed along the two coordinates: torsion
(φ) and aromatization (QAR). The idea that the conical intersection between S1
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and S0 curve crossing will be eliminated in the presence of a polar solvent was also
proposed and discussed. In this study, we provide a calculation of the potential
surface along the two coordinates lifting the degeneracy which allows more detailed
discussion of the photophysics of this molecule covering both non-polar and polar
solvents. To our knowledge, this is the first systematic calculation of the effect of
solvent polarity on the energy of conical intersections that analyzes both polar and
non-polar solvents. In this chapter we will first introduce the model system used
to carry out the quantum mechanical calculations and then discuss the effect of the
different solvents on the conical intersection.

5.2 Model System

In order to locate the conical intersection, critical points on the ground state po-
tential energy surface must be located; these include the reactant, product and two
transition states [86, 143, 190]. Calculations were carried out using the CASSCF
method [149]; the active space was constructed from orbitals suitable for both tran-
sition states, in which the two rings are perpendicular to each other (C2V geometry).
Figure 5.3 shows that the C2-C8 bond lies on the Z-axis, the pyridine ring lies in
the YZ-plane and the cyclopentadienyl ring lies in the XZ-plane. This choice facil-
itated the computations since the CI is also expected to be of C2V symmetry. The
active space consisted of all p orbitals, 6 occupied and 5 unoccupied; their shapes
and symmetries are shown in Figure 5.4. The two coordinates used to construct the
potential energy surfaces (Figure 5.2) are the torsion and the aromatization coordi-
nates. All calculations were first carried out on the isolated molecule. The energies
and structures of the ground state and the two transition states were optimized, and
used subsequently in the solution phase calculations. The energy and structure of
the crossing point between the S0 and S1 states was calculated using the method
of Ref. [86]. Crossing between PESs takes place at a torsional angle of 90◦ of C2V

symmetry, the two states transform as A1 and A2 near the conical intersection. The
PES was calculated using state averaged calculations. The effect of the solvent was
approximated using the self consistent reaction field (SCRF) theory in the frame-
work of the Kirkwood and Onsager [94, 93] model. The electrostatic free energy
calculations were carried out using the GAMESS [101] program suite using the cav-
ity radius of 4.57 Å calculated using the standard GAUSSIAN procedure [102]. The
potential energy surfaces calculated along the two coordinates lifting the S0 and S1

degeneracy are shown for several solvents in Figure 5.5. The aromatization coordi-
nate QAR is the coordinate connecting the two transition states at the perpendicular
configuration as it is shown in Figure 5.2. This coordinate was calculated consid-



5.2 Model System 115

Figure 5.4: Molecular orbitals used in the construction of the active space.



5.3 Solvent Effects on the Conical Intersection 116

ering the changes in the cartesian coordinates (x, y and z) of all the atoms on the
interval starting from the BRTS geometry to the ZWTS geometry. In Figure 5.5 the
QAR coordinate was set to 0 at the BRTS geometry and the interval to the ZWTS
geometry was divided to 18 equally spaced segments. The torsion coordinate (φ)
was divided into a grid of 7 points starting from 90◦ to 0◦ with a step size of 15◦.
Data were calculated for 126 points (18 × 7), and the PESs shown in Figure 5.5
were obtained by linear interpolation using Cartesian coordinates.

5.3 Solvent Effects on the Conical Intersection

The calculated gas phase structures of the ground state minimum, the two transition
states and the conical intersection between S0 and S1 are shown in Figure 5.6. This
figure shows that the CI geometry is intermediate between the geometry of the
ZWTS of A1 symmetry and that of the BRTS of A2 symmetry but is more alike that
of the ZWTS that lies at a higher energy. To invistigate the effect of solvent on the
conical intersection, some solvents with different polarities (or dielectric constant,
ε) were used in this study. These solvents are methylcyclohexane (MCH, ε = 2), 2
methyl tetrahydrofurane (MTHF, ε = 7) and acetonitrile (MeCN, ε = 37.5). The
structure of the CI in MCH was found to be very similar to that of the BRTS, which
is the higher lying transition state in this solvent as it is shown in Table 5.1. Table
5.1 shows the calculated energies of the ground state and the two transition states
of CPDHP in several solvents in addition to the energy of the conical intersection
when applicable. This table also shows the energy gap between S0 and S1 states
(gapS0,S1

) and the excitation energy from S0 to S1 states (Vex,(S0,S1)). Table 5.2
shows the dipole moments of the relative geometries. A crossing between S0 and
S1 states was found only for the gas phase and for MCH while no surface crossing
was calculated in the case of the more polar solvents. The geometry of the crossing
was different for the two cases in which it was found (see Figure 5.5). Table 5.2
shows that the ground state dipole moment in the gas phase is 4.3 D and becomes
a little larger (6.4 D) in polar solvents. On the other hand, the ZWTS has a much
larger dipole moment (21.1 D) whereas the BRTS has a dipole moment of only
2.8 D. Therefore, in the ground state the contribution of the biradical-like valence
bond structure (Figure 5.5) is larger than that of the zwitterion one, where in the
transition states the BRTS has a basically pure biradical nature and the ZWTS a
purely ionic charge transfer character.

1Energy of the S0/S1 conical intersection, or of the two states at their smallest distance.
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Figure 5.5: The calculated potential energy surface for CPDHP in the gas phase and
some solvents in the vicinity of the conical intersection. The positions of the planer
ground state (GS) and the two perpendicular transition states both having C2V

symmetry are marked in the figure along with that of the CI. In methylcyclohexane
(MCH) the CI has a very similar structure to the BRTS and its energy is only slightly
higher. In both environments the S0 and S1 cross at a torsional angle of 90 degrees,
at this angle the states transform as A1 and A2. In the more polar solvents, 2-methyl
tetrahydrofuran (MTHF) and acetonitrile (MeCN), the 1A2 structure lies only on
S1, whereas the ground state transforms as A1: there is no biradical transition state
and the CI disappears in the neighborhood of the transition states, where our model
applies.
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Figure 5.6: Calculated geometries of the optimized forms of some CPDHP species
in the gas phase.

Table 5.1: Relative energies (eV) between the structures of CPDHP at the SA–
CASSCF(12,11)/cc-pVDZ level in some solvents.

Geometry Gas MCH (ε = 2) MTHF (ε = 7) MeCN (ε = 37.5)
minimum (A1) 0.000 −0.028 −0.067 −0.087
ZWTS (A1) 2.048 1.662 1.184 0.960
BRTS (A2) 1.941 1.935 1.926 1.922
CI1 2.093/2.069 1.927/1.938 – –
gapS0,S1

0.024 0.011 0.468 0.685
Vex,(S0,S1) 4.525 4.380 4.206 4.130

The optimized structures and energies of the minimum, BRTS, ZWTS and the
CI between S0 and S1 states of the CPDHP in the gas phase are given in Figures
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5.6. This figure shows that there is no change in the structure and energy of the
A2 species which is a transition state in the gas phase and in MCH, when the more
polar solvents were used. In these environments it became a minimum on S0. On
the contrary, the ZWTS was a transition state in all solvents, and its structure and
energy varied considerably upon optimization. The structure of the CI in MCH
was found to be very analogous to that of the BRTS, which is the higher lying
transition state in this solvent (see Table 5.1). This study spotlights on the effects
of equilibrium solvation conditions.

Table 5.2: Dipole moments (D) in the direction of the positive z-axis, see
Figure 5.3, for the minimum (S0), BRTS and ZWTS of CPDHP at the SA–
CASSCF(12,11)/ccpVDZ level in some solvents.

Geometry Gas MCH (ε = 2) MTHF (ε = 7) MeCN (ε = 37.5)
minimum (A1) 4.3 5.0 5.9 6.4
ZWTS (A1) 16.3 18.1 20.2 21.2
BRTS (A2) 2.2 2.4 2.7 2.8

In the gas phase, the energy of the BRTS is a little lower than that of the ZWTS
(1.94 vs. 2.05 eV, respectively). In the polar solvents, the ZWTS is considerably
stabilized to 0.96 eV which lowers the whole ground state potential surface. In these
solvents, the biradical perpendicular structure is not a transition state, but lies on
the S1 surface. Hence, there is only one transition state, of A1 symmetry, under
these conditions, and the curve crossing is avoided. The nearest approach of the
two surfaces is now at torsion angle of 90◦ and the structure of the ring (QAR) that
is similar to that of the gas phase BRTS. At 90◦, the symmetry of the S0 state is
A2 at all values of the aromatization coordinate, in contrast with the case of the
gas phase and the non-polar solvent. At much higher energies the two surfaces
may cross but there is no surface crossing in the neighborhood of the transition
states where our model applies. The results designate that solvation, even in polar
solvents, does not strongly affect the energy of the ground state relative to the gas
phase. A much larger stabilization is obtained for the ZWTS, an effect that leads to
the lowering of the ground state potential surface in its vicinity, while the biradical
structure maintains its energy and becomes part of the excited state. These trends
are in line with the changes in the dipole moments of the species where the dipole
moment of the ground state minimum and the biradical species are small (about
4 D) and that of the ZWTS is much larger (16 D). The stabilization energy of a
point dipole µ in a solvent having a dielectric constant ε is given by eq. 2.34. For
ε >> 1, with µ = 16 D and a = 5 Å, ∆Gelectronic = 0.6 eV. This result is matched
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with the quantum chemical computations since, in the highly polar solvents, the two
states are separated by about the classically expected value. Consequently, a larger
dipole is required to obtain a larger separation between the two potential surfaces;
since in the present system the quantity of charge transferred is essentially unity,
increasing the distance between the donor and acceptor moieties is the only way to
achieve a larger gap between the two states for analogous molecules. Comparing the
calculated structures of the CI with those of the transition states, shows that in the
both cases the CI structure is more similar to that of higher lying TS: the ZWTS in
the gas phase and the BRTS in MCH. In the case of the latter (MCH solvent) the
energy of the CI is almost the same as that of the BRTS. This tendency reminds of
Hammond’s postulate [191] which states that the structure of a transition state of
a thermal reaction is similar to that of the species nearest to it in free energy. That
is to say, the transition state structure is similar to the less stable minimum. On
the basis of these findings, an analog for Hammond’s postulate for photochemical
reactions was suggested [74]. That is to say; the conical intersection structure is
similar to that of the less stable transition state in the relevant LH loop. Whereas
the energy minima (reactant and product) are the reference structures in the original
Hammond postulate for the transition state, in the case of conical intersections the
reference structures are transition states themselves.

5.4 Comparison with Previous Studies

Previous approaches used other methods, which allow extensions to non-equilibrium
situations, which may be important in the analysis of ultrafast experiments. Burghardt
and Hynes [71] used an extension of the two-electron two-orbital model of Bonac̆ić-
Kouteckỳ et al. [72] to estimate the solvent effect on the CI of small protonated
Schiff base. The solvent was modeled by ’Marcus-like’ parabolas using a param-
eterized force constant. The authors in [71] describe two situations: a ”frozen”
solvent polarization where the solvent coordinate is fixed throughout, imposing a
pronounced non equilibrium solvation situation, and the case of equilibrium solva-
tion which implies extremely rapid solvent motion, adiabatically adjusting to the
solute charge distribution. Since the solvent needs a certain finite time (of the order
of magnitude of a hundred to a thousand fs [192], depending upon the solvent), to
come to equilibrium with the new charge distribution. Hence it was suggested in
[71] that for an ultrafast spectroscopic experiment, the first case is the more real-
istic picture of solvation effects [73]. Using this approach, the authors found that
a conical intersection existing in the gas phase (vacuum) can be eliminated. In
this study we are interested in comparing with the experimental results observed
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in Ref [74], therefore our choice for the solvation model agrees in accordance with
the suggestions in [71, 73]. However, it is unquestionably that the analysis of ul-
trafast experiments requires non-equilibrium analysis. Nevertheless, this study does
not address ultrafast experiments. One has first to analyze the equilibrium case
(as we do here) and then, for specific applications, one may add diversions from
these conditions. Furthermore, the approach used in [71, 73] is based on empirical
potentials. When the interest is in properties that depend directly on the electron
density distribution, one has to resort to a more fundamental and general approach
using high level quantum mechanics methods. In Yamazaki and Kato’s paper [193],
the reference interaction site model self consistent field theory [194] was used to
model the solvent with the help of semi-empirical model potentials. They limited
the discussion to polar solvents only. The approach used in this study utilizes the
Onsager-Kirkwood method which allows straight forward comparison of polar and
non-polar solvents. Finally it is noticed that the calculation, as well as experimental
results on the analogous molecule BIDP, expose a relatively small solvent effect on
the electronic absorption spectrum. This is due to the relatively small dipole mo-
ment of the molecule in both ground and first excited electronic states. Thus, no
predictions concerning the solvent effect on curve crossing can be deduced from the
solvent effect on the absorption spectra.

5.5 Summary

In this study, it was found that in the gas phase and in a non-polar solvent the
E-Z isomerization of CPDHP can take place along two reaction coordinates, one
via a biradical transition state, the other via a zwitterion one. In a polar solvent,
the energy of the ZWTS is significantly lowered. The biradical structure, whose
energy with respect to the ground state minimum is not changed, becomes part
of the excited state. Consequently, a conical intersection between the S0 and S1

states is found in the gas phase and non-polar solvents, whereas in polar solvents
the degeneracy is lifted. These results are in agreement with experimental findings
on a related molecule in which the fluorescence was found to be more intense in
polar than in non-polar solvents. At higher energies a different crossing can occur.
However, our work is concerned with the low part of the S0 state, which is responsible
for the observed fluorescence.
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Conclusions and Outlook

This thesis aims to obtain a clear picture of the molecular dynamics in the excited
electronic state, for three model systems. Two central questions are: (1) whether
laser radiation can be used to control the photochemistry of the models used in
this study to produce molecular rotors (2) what is the effect of solvent polarity on
the conical intersection. On the way towards these goals, several purposes could be
achieved for the three systems:

6.1 Photoinduced Quantum Dynamics of Fulvene

In this study, we investigated the photoinduced nuclear dynamics and ultrafast non-
radiative decay for a model of fulvene including three nuclear degrees of freedom.
The PESs of the ground and first excited electronic states which show a seam of
CIs have been calculated using ab initio methods. The proposed model potential
is based on the analysis of the quantum chemical calculations. It was shown that
the seam of the CIs stretches from planar configuration to the energetically lower
twisted structures. This implies a competition between two different photochemi-
cal pathways: large amplitude vibration to the CI close to the planar configuration
followed by radiationless decay and subsequent return to the initial state versus
molecular torsion which leads to photoisomerization. These pathways were explored
by quantum dynamical simulations. The diabatic potentials and potential coupling
which are required for the dynamical simulations have been obtained with the qua-
sidiabatization method developed by Köppel [63]. The molecules are assumed to be
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preoriented (e.g., by a strong nonresonant laser pulse) to permit efficient excitation
to the excited electronic state. Radiationless decay due to vibration along symmet-
ric allylic stretching coordinates, which takes place after t ≈10-15 fs, is much faster
than the radiationless decay along the torsion coordinates that takes place after t ≈
50 fs. These results are important for later studies on more accurate three dimen-
sional ab-initio PES where it has been shown that after vertical excitation, the fast
radiationless decay along the symmetric allylic stretching coordinates prevents the
slower torsion of the CH2 group [63]. Recently, some dynamical studies has been
carried out on the fulvene molecule [63, 64, 65]. The authors in Ref [63, 64, 65].
proposed a wavepacket interferometric scheme for the separation of different nuclear
spin isomers. Furthermore, they have pointed to, the conceptually interesting but
barely investigated up to now, symmetry-induced coupling of torsion and nuclear
spin modes of molecules where they have used the fulvene molecule as a model.
This study is just an initial investigation of the photoinduced quantum dynamics
of fulvene. Further investigations on this system such as applying optimal control
theory, design laser pulses for unidirectional torsions and exploring the effects of
strong electric fields are being considered by coworkers [63, 64, 65].

6.2 Photoinduced Quantum Dynamics of 4MCF

This study investigated a model of two competing reactions of the chiral 4MCF:
the cis-trans photoisomerization around the C=C double bond and the photodis-
sociation reaction leading to the HF elimination. The competition between the
photo-isomerization and photodissociation paths in 4MCF was investigated using
two coordinates: the torsion around the double bond and the dissociation coordi-
nates represented by the distance between the centers of masses of the hydrocarbon
fragment and the HF fragment. In this reduced dimensionality model, the HF dis-
tance is kept rigid and the rest of the molecule is frozen at the equilibrium geometry
(minimum that was calculated at B3LYP/6–311+G(d,p) level of theory [24]). Our
model was restricted to the ground and first excited valence singlet state, ππ∗ states
which are coupled non-adiabatically. The corresponding 2D potential energy sur-
faces, dipoles and non-adiabatic coupling terms (NACTs) along the torsion and
dissociation coordinates were calculated using the CASSCF method averaged over
two states (SA–CASSCF) with the double zeta basis set cc–pVDZ. The obtained
adiabatic PESs were diabatized after calculating the mixing angle α from the ab
initio NACTs (see Ref [57]). The obtained diabatic potentials are not symmetric
because the mixing angle does not fulfill ideal conditions [57]. The deviations from
the ideal conditions obtained with this two-state model are due to the presence of a
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second excited state interacting with the first one. Examining the PES correspond-
ing to the ππ∗ excited state reveals that an additional crossing of the higher-lying
states of πσ∗ nature. More accurate description of this system requires to calculate
more electronically excited states beyond the ππ∗ excitation (the πσ∗ ) which will
add more complexity to the diabatization and the quantum reaction dynamics. The
optimal IR pulse contains three cycle pulses and has a frequency of 225.9 cm−1,
amplitude of 0.857 TW/cm2 and a pulse duration of 83 fs. This pulse provides the
wavepacket with a kinetic energy that is large enough to move the wave packet along
the torsion coordinates in a unidirectional mode and overcome all potential barriers.
Furthermore, the optimal UV pulse obtained is centered at 73919.1 cm−1 and has
an amplitude of 2 TW/cm2 and a duration of 80 fs. This pulse, that is applied at
379 fs, transfers the wavepacket vertically from the electronic ground state to the
excited singlet state PES with almost 64% efficiency during all the propagation time
of 5000 fs. The wavepacket propagations show that although the system has enough
energy to access the HF-elimination CI, isomerization dominates after light irradia-
tion. These results are encouraging for the use of 4MCF as a model for a molecular
device. It is assumed that HF dissociation takes place only via the ground state
because of the CI presence, while a rotor can be conserved in the excited as well as
in the ground state. It was shown that within the reduced model no dissociation
is observed and torsion dominates. The absence of dissociation products can be
explained by the fact that there is not enough momentum transfer from torsion co-
ordinates to the dissociation coordinates. Further investigation of this system such
as applying the optimal control theory, designing a laser pulse for selective chiral
switches and unidirectional torsions, competing against dissociation via several CIs
of coupled potential energy surfaces, exploring the effects of strong electric fields are
being considered by other coworkers.

6.3 Solvent Effect on the Conical Intersection of

4-cyclopentadienylidene-1,4-dihydropyridine (CPDHP)

This study spots light on the effects of equilibrium solvation conditions on conical
intersections. We present a high level calculation of the potential energy surface of
the two lowest lying singlet states of CPDHP for several solvents. It is found that in
the gas phase and in a non-polar solvent the E-Z isomerization of CPDHP can take
place along two reaction coordinates, one via a biradical transition state, the other
via a zwitterion one. In a polar solvent, the energy of the ZWTS is significantly
lowered, and the biradical structure, whose energy with respect to the ground state
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minimum is not changed, becomes part of the excited state. Consequently, a conical
intersection between the ground and first excited electronic states is found in the
gas phase and non-polar solvents, whereas in polar solvents the degeneracy is lifted.
These results are in line with experimental findings on a related molecule in which
the fluorescence was found to be more intense in polar than in non-polar solvents
[74]. An analogy for Hammond’s postulate [191] for photochemical reactions was
suggested. The postulate is that the conical intersection structure is similar to that
of the less stable transition state in the relevant Longuet-Higgins loop.

Finally, the results obtained throughout this work provide new insights on the
interaction of olefins with laser pulses. Based on these results further theoretical
investigations are being already stimulated on the fulvene and 4MCF model systems.
In the future, this research as well as other researches carried out within the frame
of this trilateral project using the PLCI-QC-QRD approach may serve as basis for
experimental application such as the development of molecular rotors.
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[174] E. M. Núñez, A. Fernández-Ramos, S. A. Vázquez, F. J. Aoiz, L. Bañares, J.
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for R=3.5 Å. The upper, middle and bottom plots represent the
components of the dipole moment in x, y and z directions, respectively. 90

4.13 Mixing angle (a), 1D cuts for R = 3.5Å (solid) and 4.8Å (dashed) (b)
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