CHAPTER 2
BOUNDARY VALUE PROBLEMS FOR SECOND ORDER PARTIAL
DIFFEENTIAL EQUATIONS IN THE PLANE WITH FUCHS OPERATOR
IN THE MAIN PART
In this chapter continuous solutions in an unbounded angular domain of the
Dirichlet and the Neumann problem, an initial problem with given growth at
infinity for some classes of partial differential equations of second order with
Fuchs operator in the main part are constructed. Thus the varieties of continuous
solutions constructed in the first section are used. These problems are regularly

investigated here for the first time.

2.1 Dirichlet and Neumann problems with given growth at infinity for a
model second order partial differential equation in the plane with Fuchs

operator in the main part and specified right hand side

Dirichlet problem. Let us consider the Dirichlet problem for equation (1.1).

Problem D,. Let [+ o+ y. It is required to find the solution of the equation

(0.1) from the class W,*(G), where 1<p<22/1, if A<2 and p>1, if

A > 2, satisfying the conditions
V(r,0) = 0(*) ,r >0, @2.1)
V(r,0)=br*, V(r,p)=br", (2.2)

where b,, b, are given complex numbers, A >0 is a real number.

Solving the problem. For solving problem D, we use the formula (1.17).
Then it automatically satisfies (2.1). From the forms of the functions (BF)(p),

])v,l(¢) Pv,z((p)a Qv,l((o)a Qv,z(go) follow
(BF)(0)=0, P, (0)=0, 0,,(0)=0,
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1,if v#0,
0,if v=0,

1,if v>0,

0,.(p)= { (2.3)

P“(O):{ 0,if v<0.

From (1.17) in view of (2.3) we have

Vir0)=(co,, + czé'v’z)rﬂ ,

5 _{l,ifv;to, s _{I,ifVZO,

where = v = .
0,if v=0, : 0,if v<0.

v,1

Therefore from the boundary conditions (2.2) depending on the sign of

[ ay = B +2Bla+y)—4ay)i—(a—y)
q2

follow some algebraic system

of equations for ¢, and c,:

1) Let v=0. Then
c,=b,
R/,z (¢))c, + Pv,l((”l)gl =A (@),

where Al (gol) = bze_m - (BF)(¢1) - b1Qv,2(¢1) - EQv,l (¢1) .

2) Let v<0. Then

¢, =b,

O, 2(@)e, +0, 1 (@)c, = Ay (@),

where A, (¢)=b,e™ —(BF)(@)~bP,,(¢)~bP,,(p).
3) Let v>0. Then

¢, +c,=b,

(Q,(@)=F, ,(@))c, +(Q, (@) = F, [ (9))C, = A, (@)

Each of these systems has unique solutions in case

2
1) v=0,|P.(e) =B (o)

2

b

2

2) v<0,(0,,(0)| # , (2.4)

0,.(9)

3) v>0,10,,(0) P, () %[0, (0)-P. (0] .

From these conditions the solution are found by the formulas:
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D If v=0,|P,(@) #|P,(p)[ . then
_ _ Al(@l)Pv,z (@) —A (o )Pv,l(%)
c,=b,c = : :
P, ()| =|P.(9)
2 2
2) If v<0,0,,(p)| #(0,,(¢)| , then
_ _ A, (%)Qv,z (@) —A, (o, )Qv,l((ol)
¢ = bl » € = 2 2 .
Qv,z(@)‘ - Qv,1(§01)‘

NIfv>0, * then

0,,(@)~P., @) #[0,,(0) - P, (®)

C. = Az ((01 )(Qv,2 ((01) - Rx,z (@1)) - Az ((01 )(Qv,l (¢1) - Pv,1 ((01 ))
0,,(9)~P (@) ~[0,.(0)~ P (o)

¢, =b —c,.

Hence, the following result holds.

(2.5)

(2.6)

(2.7)

Theorem 2.1. When conditions (2.4) are fulfilled, problem D, has a unique

solution. In this case the unique solution is then given by the formulas (1.17), (2.5)-

(2.7).
In case
2 2
1) v=0,[P,(@) =P.(@) .
2 2
2) v<0,(0,,(0) =[0,,(0)

0,.(@) P, (@)

3) v>0,0,,(0) - P, (@) =

(2.8)

for the solvability of the indicated algebraic systems is necessary and sufficient

that the following conditions are satisfied.

Re(Al ((01 )(Pvz ((01 ) - Pv,l ((01 ))) =0,
Im(A, (@), ,(p)+F,,(9))=0, Jor v =0,

5, Re@a@)Q.2(0) 0., (@) =0
Im(M(Qv,z (@) +0,,(¢))=0, for v<0,
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; Re(A, (@ )0, (@) —F ,(¢)-0,,(p)+F, (¢))=0,
Im(Az(¢1)(Qv,2 (p)— Pv,z (p)+ Qv,l (@) - Pv,l (¢,))=0, for v>0.

When this conditions hold the solution of the algebraic system are given by the

formulas

2 2
D) Ifv=0,[P,,(p)| =|P,(9) ,then

c,=b,

ReA (¢) + ia(Pv,z (p)+ Pv,l ()

Re(P,,(p)+ P, (¢))
.ReA1(¢1)_a(R2((01)+Pv1((01)).
= ’ ’ i Im(F (@) = F, (o 0, 2.10
VT @, )Py M@ haa) (219)

C3, lf Re(Pv,z ((01) + Pv,l(@l )) =0, Im(Pv,l(¢1) - Pv,z ((01 )) =0.

Jif Re(P,,(p)+ B, (¢)) #0,

If v<O,

0,.(¢)] =[0..(@) . then

c, =b,

ReA, () +ia(Q,,(#)+9,.,(9))
Re(Q,, (@) +0,,(#))

ReA, (@) -a(Q,,(2)+0,,(9)) .
, , ,if Im ()0, , (o O’ 2.11
: IIII(QV,l ((01)_Qv,2 ((01 )) lf (Q , (¢) Q , (¢ )) - ( )

¢5,if Re(Q,,(¢)+0,,(9))=0,Im(Q, ,(¢) -0, ,(#)) = 0.

if Re(Q,,(9) +0,,(9)) #0,

3) Ifv>0,

0,.(#) =P (@) =[0..,(#) =P, ()| , then

¢, =b —c,,
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Re A2(¢1) + ia(Qv,z (¢1) - Pv,z ((01) + Qv,l (¢1) + Pv,l (¢1 ))

Re(Q,,(p) = F(2)+0,,(9)~F, (9))

if Re(Q,,(p) = F,,(p)+0,,(9)—F () #0,

¢, =i ReA,(p)—a(Q,,(¢) - £,,(9)+0,.,(9) - F,,(p)) , (2.12)
Im(=0,,(p)+F,,(p)+0,,(p)~F,(#))

if (=0, ,(p)+ £, () + 0, ()~ F, (9)) #0,

¢;» if Re(Q,,(p) = F,,(p)+ 0, (¢)~F, () =0,

Im(_Qv,z((ol) + Pv,z((ol) + Qv,l (p)— Pv,l (¢)) =0,

where « is any real, ¢, is any complex number.

b

Hence, the following results holds

Theorem 2.2. In cases (2.8) for the solvability of problem D, the conditions

(2.9) are necessary and sufficient. Under these conditions the problem has
infinitely many solutions. These solutions are given by the formulas (1.17), (2.10)-
(2.12).

Problem D,. Let A#l,a#y and [=a+y. It is required to find the
solution of equation (1.1) from the class (1.3), satisfying the conditions
V(r, @) =00"),r >, (2.13)
V(r,p)=br", (2.14)
where b, is a given complex number, A >0 is a given real number.
Solution of the problem. For the solvability of problem D, formula (1.33)

is used. Then (2.13) automatically holds. Substituting (1.33) in the condition
(2.14), we have

cP (@) +cP(9)=Ap), (2.15)
where A(%) = b] _(BF)((01)~

This equation for ¢ has a unique solution when the condition
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Py ()| =P ()| (2.16)
is satisfied. The solution is given by the formula

c= P, (¢, )A(%z - P1(¢)1)A2(¢1) . (2.17)
‘PZ((DI)‘ _‘R((Dl)‘

Hence, the following result holds.

Theorem 2.3. When condition (2.16) is satisfied problem D, has a unique

solution. The unique solution is given by formulas (1.33) and (2.17).

When
ACY RGN (2.18)
for the solvability of equation (2.15) the following conditions are necessary and

sufficient

Re(A(p) (B (9) ~ B(9))) =0, Im(A(e)(F,(9) + F(9))) = 0. (2.19)

When these conditions are fulfilled the solutions of equation (2.15) is given by

the formula

[ReA(p) +ia(P(p)+R(@))
Re(Bp)+ Ry 1 @A) 70

_| ReA(@)-a@@)+P(@) .. .
N P one By i MEP@) RO 20, (2.20)

¢, if Re(Py(¢) + B(9)) =0, Im(=F, (@) + F(9)) =0,

where ¢ is any real, ¢, is any complex number.

Hence, the following result holds.
Theorem 2.4. When the conditions (2.18) hold, for the solvability of

problem D, the equality (2.19) is necessary and sufficient. Under these conditions

the problem has infinitely many solutions. These solutions are given by the

formulas (1.33) and (2.20).
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Neumann problem

Problem N,. Let B+ a+y. It is required to find the solution of equation

(1.1) from the class (1.3), satisfying the conditions

V(r, )| =0(") ,r >, (2.21)
V) _pa V0 e (2.22)
8¢ »=0 8¢ =0

where b, b, are given complex numbers, A >0 is a given real number.
Solution of the problem. For the solvability of problem N, formulas (1.17)

are used. Then (2.21) automatically holds. The functions

(BF)@) = | f(@.7)dy + [b(o,1)BE) )y, Poy(9)=1,,(9)+ [b(@, )P, (1)dy,
Py(@)=[b(@.)B,,(1)dy, O,.(9)=J,,(9)+ [b(e. )0, (1)dy ,

0,.(9) = [b(@. )0, ,()dy

have the differential properties

[ £eh(Nv (0= )y + [B,()eh(v (9= )BE)y)dy, if v >0,

[ £ cos=vip—y)dy +
ABF)p) _ |

0 2 -
T e [arcos=vio - BRGMy. if v <o,

[ £1)dy + [6,()BF)y)dy. if v =0,
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v explvg) + jb (v (9= )Py (P if v >0,
apa—;") N jb (7)0os6= (9= P, (M, i <0,
1+Ib1 (VB (X if v =0,
b (NN (9= )P (P if v >0,
a%‘(/(f”) - b (1) oSV (@ PN Ba My if v <0,
b (VPG Xy, if v =0,
—v exp(—/ve) + jb (ch(Nv(@=1)0,,(Y)dy, if v>0,
an_;(@ Vo costl—vg) + jb () oSV (9= )0,y (P i v <0,
Ibl (N0, (7)dy,if v =0,
b ()ch(Nv (=)0, (1), if v >0,
an—;“”) - b (1) oSV (9= 70,2 My, if v <0,
:bl (MO, .(y)dy,if v=0.

Substituting (1.17) in the first of the boundary conditions (2.22), and using
preceding formulas (BF)(¢), P,,(¢), B, ,(¢), O,,(9), O, ,(p), we have

1,if v>0, Lif v>0,
P,(0)=11,if v <0, 0,,(0)=10,if v<0,

0,if v=0,

Lif v=0,
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aBFN)| _Ru0)| 0.0 _,
o0 |, o0 |, o0 |, ’
\/;,ifv>0, —\/;,ifv>0,

P oo L,if v=0, P oo 0,if v=0.
%;’(”) Fea((BF)Y@)+ P,y () + ;0,1 (9) + P, (9)+ 5,0, (9) +
2 guo[ OBF)@) | OR,(9) 00,,(9) _OR,(9) 8Qv1(¢))]

op Sl 1) “ 8(0 “ op |

Therefore from the boundary conditions (2.22) in dependence of the sign of

2y 22 _ (o —1)?
_Gay=P)xr +2plary)=4apA= (@27 e following  different

q

algebraic systems for ¢, and ¢, occur.
1) If v>0,then

. b —(a- \/_)c2
v (a+\/_)

> Cle (¢1) +52T2(¢1) = A(¢1)7

where A(@,)=b, exp(—ap)—a(BF)(@,)— O(BF)(p)
@

b, op, ,(¢,) B b_l P, ,(¢)
B (a +\/;) (apv,2(¢1)+ 8(0 j (_a +\/—) (apv,l((ol)-l_ 8¢ ja

_ 00,,(@)) (a \/_) OP, ,(¢,)
Tl((p])—&a L2 (@) + o0 ) (a+f)( ab, ,(¢)+ o0 D

aQy,l(%) (a+\/_) an,1(¢1)
o ] <a+f>(P”(¢’l)+ D

T,(p)= [(an,l (p)+

2) If v <0, then

b, —ac,

C, =
2 \/: 4

ClT3(¢1)+ElT4(¢1) :Al(%)a
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O(BF) (@) _

where A,(p) =b; expl-ag)-a(BF)p) -——2

’ _
ﬁT(d L2 (@) + Qva’;((pl)j—r( aQ, (p)+

— 8PV,2(¢1) . a Qv2(¢1)
T3(§01)—((apv,z(¢1)+ 80 ] \/:( aQ,,(p)+ o0 )}

— apv,l ((01 ) a Qv 1 (¢1 )
T4(¢)1)_£(apv,1(¢1)+ EP J \/—( Qvl( @)+ o0 ]J

3) If v=0, then
¢, =b —ac,, c,T(p)+c,T(p)=A7,(p),

Qv 1((P1)]

where A, (¢,) =b, exp(-ap)—a(BF)(¢,)— a(Bg)((Dl) _
®

{00+ 52392 oy 02
’ op op

0 oP
T5(¢1):((a V’2(¢])+Ql/#f¢l)j_a(apv’2(¢])+ v,aZ;(Dl)j}

0 oP
T(p) = ([an (@) + Qg (%)j + a(ajjv,l (p)+ o ((Dl)jJ
® Gl

Each of these systems has a unique solution when the conditions
2 2

)| =T, (p)
2 2

)‘ # ‘T (@)

)‘2 ¢‘T6((P1)2

hold respectively. Under these conditions the solutions are given by the formulas

5

(2.23)

5

2) v<0,

5

1) If v>0, )‘2 ;t‘Tz((pl)z,then
o 2bmla=ve _A@IT(e) - AT () (2.24)
(a+\/;) ‘T2(¢1)‘ _‘Tl(q)l)‘
2) If v<O0, )" #|T,(¢,), then
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bl —ag c = Al(@l)T4(¢l)_Al(wl)T3(¢l)-

c, = , € : . (2.25)
\/: ‘T4(¢)1)‘ _‘T3 ((01)‘
3) If v=0, )| #|Ts(¢,)", then
— A2(¢1 )T6(¢1)_A2(¢1)T5(¢1) ¢, :b1 —ac,. (2.26)

‘Té (¢1)‘2 _‘Ts (¢1 )‘2

Hence, the following result holds

Theorem 2.5. Problem N, has a unique solution when one of the conditions

(2.23) holds. In this case the unique solutions are given by the formulas (1.17),
(2.24)-(2.26), respectively.

In the cases

1) v>0, ) =T ()]
) =T, ()], (2.27)
) =T

For the solvability of the indicated algebraic system the following conditions are

necessary and suffusient

RJ(@ W, (0) T, () ) 0,
ey

(AT, () + T, (9,)))=0. if v >0,

) Rel&@)T @) -Ti()=0. 025
& (T ) + o)) =0, i v <0,

Re(A (@)(T(9) =T (9)))=0,

Im( A (o)(Ts(0) +Ty(9)))=0, if v=0.

When these conditions hold then the solutions of the indicated algebraic

systems are given by the formulas

1) If v>0, ) =T, (p,)", then
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G

_ l,RGA(¢1)—Q(T1(¢1)+T2(¢1))

bl—(a—\/;)cz
la+v)

(ReA(p) +ia(T(¢)+T,(p)
Re(T,(9)+T,(9))

Im(Tz(wl)_Tl(wl))
G35, lfRe(Tl(wl)-i_Tz(wl)): 0, Im(Tl((Dl)_Tz((Dl)):O'

2) If v<0, |[T,(p,) =|T,(9)], then

b, —ac,

C, = —F—
2 ,—V >

Re A (9)+ia(Ty () +T,(9))
Re(T,(p) +T,(9))

; ReAl(@)_a(T3(¢1)+T4(¢1))
Im(T4(¢1)_T3(¢1))

¢5. if Re(Ty(9)+T,(9))=0,Im(T,(¢) —T,(¢,))=0.

3) I v=0, [T(p) =|Ts(e)], then

¢, =b —ac,,

ReA, (@) +ia(T(p)+T,(9))

_J;Red, (@) —a(Ts(p) +T(p))

Re(T5(¢1) +7 ((01))

Im(T(¢,)—T5()))

¢5 if Re(T5(9,) +T(9,)) =0, Im(T5 (@) — T(¢,)) = 0,

where « is any real, c, is any complex number.

Hence, the following result holds.
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,if Re(T,(9) +T,(9)) %0,

i Im(Tl(%)_Tz(%));t 0,

,if Re(T(p)+T,(9))#0,

if Im(T3(¢1)_T4((01))¢ 0,

if Re(T5(p) +T(9))#0,

,if Im(T(9,) — T(9,)) # 0,

(2.29)

(2.30)

2.31)



Theorem 2.6. In the cases (2.27) for the solvability of problem N, condition

(2.28) is necessary and sufficient. Under these conditions the problem has
infinitely many solutions. These solutions are given by the formulas (1.17), (2.29)-
(2.31), respectively.

Problem N,. Let A#l,a#y and [=a+y. It is required to find the

solution of equation (1.1), from the class (1.3), satisfying the conditions

V(r,p)|=00") ,r >, (2.32)
Fr.9) =byr*, (2.33)
a¢ P=P

where b, is a given complex number, A >0 is a given real number.
For the solution of problem N, formula (1.33) is used. Then (2.32)
automatically holds. From the form of the functions (BF)(¢), P (¢), P,(p)

follows

O(BF)(¢)
op

oP,(¢)
0

= [1(@) + b (p)(BF)(@) —iv(BF)(9),

=b(p)B(p)—-ivE(9), (2.34)

T )i -ivR )

Substituting (1.33) in the boundary condition (2.33), we have in view of (2.34)
cT(p)+cT(p)=A(9), (2.35)

where

T,(9) = (b(2) B(9) - ivB (), Ti(9) = (b (9) B () — VB (),

A(p)=b,- f1 (@) —=b(p)(BF)(@,)+iv(BF)(¢,).

Equation (2.35) for the unknown ¢ has a unique solution when

T, (p)|” # T, (0))

2

: (2.36)

which is given by the formula
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c= A1(¢1)T2 (¢12) — A1(¢1)§ (¢1) . (2.37)
‘Tz ((01)‘ _‘Tl (@1)‘

Thus, the following result holds.
Theorem 2.7. When the condition (2.36) is satisfied, problem N, has a unique

solution. This solution is given by the formulas (1.33), (2.37).

In case, when

2 2
(@)l =T (o) (2.38)
for the solvability of equation (2.35) the conditions

Re(A, (9T, (9) =T, ()= 0, Im(A, (0,)(T; () + T, (9,))= 0. (2.39)

are necessary and sufficient. When these conditions hold the solution of equation

(2.35) is given by the formulas
ReA, +ia(T,(p) +T,(9))
Re(T,(p) + Ti(#,)

'ReAl_a(Tz(ng)-l_T;(ng)) . _
i To(on + To) i Im(T () =T, (¢)) # 0, (2:40)

¢y, if Re(Ty (@) +T,(9,)) =0, Im(T, (¢,) - T, (¢,)) = 0,

if Re(T, () + () # 0,

where « is any real, ¢, is any complex number.

Thus, the following result holds.
Theorem 2.8. When the condition (2.38) holds, for the solvability of

problem N, equalities (2.39) are necessary and sufficient. Under these conditions

the problem has infinitely many solutions. These solutions are given by the

formulas (1.33) and (2.40).
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2.2 Initial boundary problem for nonhomogeneous model second order

partial differential equations in the plane with Fuchs operator in the

main part

Problem K,. Let B+ a+y. Itis required to find the solution of equation

(1.34) from the class (1.35), satisfying the conditions

ak
— V(@9 =a, 0Zk,
8p r=0

=0
k
8k8V(r,¢))| b o<k,
op"  Op =0

@=

(2.41)

(2.42)

where p =r"; a,,b,,0 < k aregiven complex numbers, so that the series

Z—"r” Z—"r“ are convergent in G.

Solution of the problem

The functions (BF), (¢) = [ /i (¢, 1)dy + [ b, (0. )(BF), (1)dy ,

2 [
FL(p)=1,,(p)+ jbk (o, V), (y)dy P (p)= ka (@, 7)F.,(y)dy,
0 0

042(0) = J, o @)+ [ b (0.0 (V)Y » Ouy(9) = [ b (0,10, , ()Y

have the differential properties

BN [ 1, (1) expley(@—))dy + [ b, () exp(e, (@0 7)NBF), ()

op

aPo,z (@)
op

=7, exp(z,0) + [ by (1) exp(z, (@~ )Py, ()7,
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oF, ,(¢)
op

0
O, ;@ jb () exp(z, (@~ )G, (PN

= [B.0) exp(e, (0~ B (PN,

0
Qo;f@ jb (7)exp(zo (9~ )02 ()7,

[ £ ez (o= y)dy +

+ [b.(Neh(Jr (o= y)BF), ()dy, if 7, >0,

O(BF)(p) _

" [ £ cos(=7, (9= )y +

+ [ B () cos(= 7, (9 = Y)BF), (P)dy, if 7, <0,

[ £y + [N BF) (ndy, if 7, =0,

Jre exp(y7,0) + Ibkmch(ﬁ (= 7DP()y,if 7, >0,
apa—(/f(p) =J—\-7, sin({-7,0) + jb (7)cos(y—=7, (9= )P, (). if 7, <0,
1+ Ibkmm)dy, if 7, =0,
b ()ch(\T (=P, (D), if 7, >0,
apa—;(p) = b (1) cos(y—=7, (9= )P, (1)dy. if 7, <0,
:bk (NE )y, if 7, =0,
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- V7 exp(7,0)+ Ibk (Nech(T (9=, ()dy.if 7, >0,
8Qg—;((p) = V- cosy-7.0) + I b (7)cos(\ =7, (9= 7)Q,.,(7)dy, if 7, <0,

Ibk (N (V). if 7, =0,

: b, (Y)ch(\r (0— )0, (), if 7, >0,

:bk (NQe.(r)y,if 7, =0, 1<k

From these equalities and the functions (BF), (@), P.,(®), B, (9),0,,(®),

O, .(@), also the numbers

2 2y _ _ _ _ )2
Tk:(Vk) (4ay - F") vk(8a7/2 2ap =2py) = (@=7) , 1<k, are determined:

q
(BF)O 0)= PO,I 0)= QO,I 0)=0, Po,z 0)= Qo,z 0)=1,
(BF)(0)=F.,(0)=0,,(0)=0,

Lif 7, >0, Lif 7, >0,
F,(0)=1L1if 7, <0, 0,,(0)=10,i 7, <0,
0,if 7, =0, Lif r,=0, 1<k,

OBF)(p)| _OR,(@)| _00,(@)| _00,,(9)

=0,
agD @=0 agD ‘go:O a¢) ‘(/J:O a¢ ‘40:0
ha(p)  __ ABF)(p)| _OR.()| _0ulp) _, 243)
0° s .

o0 |, o o 00 |, oo |,
oP \/Z9ifrk>05 5 _\/Z’iffk>o’

";f) =10,if 7, <0, —Qg;(@ ~ =, if 7, <0,

= if 7, =0, 0 0,if r, =0, 1<k
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The coefficients ¢, and c,,, 0<k, we take so that the function is given by

formula (1.50) satisfying the conditions (2.41) and (2.42). For this, substituting
(1.50) in (2.41) and (2.42), we have in view of (2.43)

b b
0 0
Cog = » Cop =04y =
2 Ty
at, —b
a7, +b, NTE R i >0
GNT T e r 50, e Jif 7, >0,
21,
b
. k .
Coy =14, 1f 7, <0, Chp = \/—,le'k<0, (2.44)
T
b.,if 7, =0, k
a,if r, =0,
1<k.

Thus, the following result holds.
Theorem 2.9. Let [+ a+y. Then the problem K, has a unique solution.

The unique solution is given by formulas (1.50) and (2.44).

Problem K,. Let f=a+y. It is required to find the solution of equation
(1.34) from the class (1.35), satisfying the conditions

k

o
> — V) =4, 0<k, (2.45)

go 1

14

where  p=r", a,0<k, are given complex numbers, so that the series

o0

a : .
Z—" " is convergentin G .
o k!

Solution of the problem. Substituting (2.45) in (1.68), we have
Ckpk,z (p)+ Ekpk,l (@) =47(9), (2.46)
where A, (¢,) =a, _Fk,1(¢1)°

Equation (2.46) for ¢, has a unique solution when
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Ap) =B ()] | @)] =0. (2.47)

This solution is given by the following formula

_ Pk,z(@) A () - Pk,1((01) A () .
B0 ~[Rato)]

(2.48)

k

When
A, (9)=0 (2.49)

for the solvability of equation (2.46) the conditions
Re(A (@ )(F, , (@)= F, ,(9)) =0, Im(A, (¢)(P,, (@) + P, (¢)) =0 (2.50)

are necessary and sufficient. When these conditions hold the solution of equation

(2.46) is

ReA (p) +io (B, (@) + F . (9))
Re(P,,(p) + P, (#))

_ iReAk(¢1)—ak(%,z(¢l) +5.,(9))
Im(=F, ,(p) + F, ()

Ceas if Re(F 1 (@) + B, (9)) =0, Im(=F, ,(¢) + £, ,(¢)) =0,

i Re(F,,(p)+ F,,(¢))#0,

i Im(=F, , (@) + B, (@) # 0, (2.51)

where ¢, are any real, ¢, , are any complex numbers.

Thus, the following result holds.
Theorem 2.10. 1) When A, (p,)#0, 0<k, the problem K, has a unique

solution. This solution is given by formulas (1.68) and (2.48).
2) If for some index k the equality A (@,)=0 holds, then for the solvability

of problem K, the condition (2.50) for this particular index k is necessary and

sufficient. In this case the problem has infinitely many solutions. These solutions

are given by formula (1.68), where c, is defined by formulas (2.48) if A, (¢,)#0
and by formulas (2.51) if A, (¢,)=0.
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2.3 Dirichlet problem with given growth at infinity for second order partial
differential equations in the plane with Fuchs operator in the main part
and specified right hand side.

Consider the Dirichlet problem for equation (1.69).
Problem D,. Let b(¢)# a(p)+c(@). It is required to find the solution of

equation (1.69) from the class (1.3), satisfying the conditions
V(r,p)|=00"),r —> o, (2.52)
V(r,0)y=br*, V(r,p,)=b,r", (2.53)

where b, b, are given complex numbers, A >0 is a given real number.

Solution of the problem. For solving problem D, formula (1.80) is used.

Then (2.52) automatically holds. For the functions F,(¢), P (¢), P,(¢), O, (9),

0, (¢) follows

F(0)=0, A(0)=0,0,(0)=0, P (0)=y,(0), 0,(0)=y,(0).
Therefore from the boundary conditions (2.53) follows the algebraic system of

equations for ¢, and c,,

e, (0)+c,p,(0) = b,

_ (2.54)
CzT1(¢1)+CzT2(¢1):A1(¢1)a
where if v,(0)#0,
M) =b~ (o) o) -2 k()
1 1 2 1 1 V/](O) 2 1 l//l(O) 1 1/°
T(p)=0, 1_W2(O)Pz ), Th(p)=0, 1_1//2—(0)P1 1) -
(@) =0,(9) v,(0) () (@) =0(9) 0 (@)
System (2.54) has a unique solution in case, when
A (o) =T (p) =T, (p)] #0. (2.55)

Under this condition the solution is given as
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:A1(¢1)T1(¢12)_A1(¢1)7;2(¢1)’ c, :b1 —021/12(0)‘ (2.56)
7o) —|T,(9) v, (0)

In case, when
A(p)=0 (2.57)

for the solvability of the algebraic system (2.54) the conditions

Re(A, (T, (¢) - T,(9))) =0,
Im(A, (T,(9) +T,(9))) =0,

are necessary and sufficient. When these conditions hold the solutions of the

(2.58)

algebraic system (2.54) are

ReA (p) +ia(T (o) +T,(9)) .
ReT(o)+Toipy " Reh@)+ 1) =0,

_<-ReA1(¢1)_a(T1(¢1)+T2(¢1)) . .
€y =41 Im(T (¢)+T>(2) if Im(=T' (@) +T,(¢,)) # 0, (2.59)

C3, lf Re(T1(¢1)+T2(¢1)):09 Im(_T1(¢1)+T2((01)):0a

where « 1s any real, ¢, is any complex number.

When y,(0)=0 but y,(0) =0 we have
b
c, = ,
v,(0) (2.60)
¢, b, (¢1) +6,0(p)=A4,(p ),

b b
h A, 1:bz_F1 1)~ 1 2 1_—1 1),
where A, (¢,) (@) %(O)Q(QJ) %(O)Q((ﬂ)

If y,(0)=0, w,(0)=0 for the solvability of systems (2.54) the equality
b,(0) =0 is sufficient. Under this condition we choose the constant ¢, arbitrarily.

Then from (2.54) we have
a b (@) +cR(p)=A,(9), (2.61)

where
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A (@) =D, —(BF)(¢,) —c,0,(9) —¢,0/(9,).

Equation (2.61) has a unique solution in case, when

A (@) =P =[P (o)) #0. (2.62)
Under this condition the solution of equation (2.61) is
= P2(¢1 )A2(¢1) _Pl((ol )A2(¢1) (2.63)

(o) - IR
where A, (@) =b, —(BF)(¢,) —¢,0,(¢,) —¢,0,(¢,) .

The solvability of equation (2.60) is similar.
In case, when
Ay(p)=0 (2.64)

for the solvability of (2.61) the conditions
Re(A, (@) (B (@) - R(9)) =0, Im(A,(9) (P (@) + F()) =0 (2.65)

are necessary and sufficient. When these conditions hold the solution of equation

(2.61)1s

ReA, (@) +ia(P(p)+ F(@))
Re(P(¢)+ B(9))

_J].ReA,(p)—a(P(p)+ () . B
¢ =i Im(—P,(p)+ P.(9) i Im(=P, () + B(g))) # 0, (2.66)

¢;, if Re(Py(¢) + R(9)) =0, Im(=F,(¢,) + F(9)) =0,

. if Re(Py(@) + R () # 0,

where « is any real, ¢, 1s any complex number.
Thus, the following results holds.

Theorem 2.11. 1) When w!(0)+y:(0)#0, problem D, has a unique
solution. This solution is given by formula (1.80), where the numbers c,, c, are
defined by formula (2.56), when y,(0)#0 and by formula (2.63) when y,(0)#0.

2 If A(p)=0 and w,(0)#0 or A,(¢,)=0 and v,(0)=0, y,(0)=0,
then for the solvability of problem D, the condition (2.58) when y,(0)#0 and
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(2.65) when y,(0)=0, w,(0)#0 is necessary and sufficient. When the conditions
are satisfied problem D, has infinitely many solutions. These solutions are given
by the formulas (1.80), where c, and c, are defined by formula (2.59), if
A (9,)=0, v,(0) %0 and by formula (2.66), if A,(¢,)=0, v, (0)=0, w,(0)=0.
3) If w,(0)=0,p,(00=0, then for the solvability of problem D,
necessarily holds b, =0. In this case problem D, has infinitely many solutions.
These solutions are given by formula (2.61), where one of the numbers c,, c, are

arbitrary.
Let ¢, be arbitrarily chosen. Then c, is given by formula (2.63), if

A, (@) #0 and by formula (2.66), if A,(¢,) =0 and condition (2.65) holds.

Problem D,. Let b(¢) =a(p) + c(@), a(p) #c(p) and A #1. It is required to
find the solution of equation (1.69) from the class (1.3), satisfying the conditions
V(r,p)|=00"),r >, 2.67)
V(r,p)=br", (2.68)
where b, is a given complex number, A >0 is a given real number.
Solution of the problem. For solving problem D, formula (1.96) is used.

Then (2.67) automatically holds. From the boundary condition (2.68) we get the

equation for determining c :

cP (@) + P (p)=Alg), (2.69)
where A((Pl) = bl - Fl ((01 )

Equation (2.69) has a unique solution in case, when

1P, (0)" =P (0. (2.70)
Under this condition the solution is
c= A(¢1)P2(¢1)_A1(¢1)P1(¢1) (2‘71)

(o) = |R ()]
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Hence, the following result holds.

Theorem 2.12 When the condition (2.70) is fulfilled problem D, has a unique
solution. This solution is given by formulas (1.96) and (2.71).

In case, when

20" =|B(e)| (2.72)
for the solvability of equation (2.69) the conditions
Re(A(9) (B (9)— B(9))) =0, Im(A( (B (¢) + B(9,)) =0. (2.73)

are necessary and sufficient. When these conditions hold, the solution of equation
(2.69) is given by the formulas

ReA(p) +ia(P(p)+ H(9))
Re(P(¢)+ B(9))

-ReA(%)_a(Pz((Dl)"'Pl(@l)) . _
IR, (o) + P() if Im(=Fy(9) + R () # 0, (2.74)

¢, if Re(By(@) + F(9)) =0, Im(=F,(p) + F(9)) =0,

,if Re(B(9) + R () # 0,

L

where « is any real, ¢, is any complex number.

Thus, the following result holds.
Theorem 2.13. In case, when (2.72) holds for the solvability of problem D,

conditions (2.73) are necessary and sufficient. Under these conditions the problem

has infinitely many solutions. These solutions are given by formulas (1.96), (2.74).

2.4 Dirichlet problem for nonhomogeneous second order partial differential

equations in the plane with Fuchs operator in the main part

Problem D;. Let a(p) # c(p). It is required to find the solution of equation
(1.97) from the class (1.35), satisfying the conditions
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V(r,p)=t(r), (2.75)

e o)
ko . . .
where t(r)= Ztkrv is convergentin G , t, are given complex numbers.
k=0

Solution of the problem. For solving problem D, formula (1.109) is used.
Then, from the boundary condition (2.75) follows the equation for ¢,
P (@) + P, (9) = A, (2.76)
where A, =t —F_ (¢,).

Equation (2.76) has a unique solution in case, when

A (9)=|PL @) ~|B.(p) #0. 2.77)

Under this condition the solution of equation (2.76) are given by the formula

e = A, Pk,2(¢1) _A_ka,l(%)
k 2 5
‘Pk,z (¢1 )‘ o ‘Pkl (¢1 )‘

(2.78)

In case, when
A (p)=0 (2.79)

for the solvability of equation (2.76) the conditions

Re(Ay (B,(9) =By (@)) =0, Im(A,(B,() + B, (9)) = 0. (2.80)
are necessary and sufficient. When these conditions hold the solution of equation
(2.76) is given by
ReA, +ia, (F,,(p)+ B (9))

Re(P,,(@) +F. (9))
;Red, —a (Po(@)+ B (9))

Im(=F, , (@) + F, ,(¢))
e if Re(F, (@) + B (9)) =0, Im(=F,(¢)+F,,(9)) =0,

Jif Re(Pk,z (@) + Pk,l (p))#0,

0 Im(-B,(@)+By(p)#0,  (281)

where ¢, 1s any real, ¢, , 1s any complex number.

Thus, the following results holds.
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Theorem 2.14. 1) When A, (¢,)#0, 0<k problem Dy has a unique

solution. This solution is given by the formulas (1.109) and (2.78).
2) If for some index k the equality A, (@,)=0 holds, then for the solvability

of problem D; conditions (2.80) for this index k are necessary and sufficient. In

this case the problem has an infinitely many solutions. These solutions are given by

Sformulas (1.109), where c, is given by formulas (2.78) if A, (p,)#0 and by
Sformulas (2.81) if A, (p,)=0.
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