Appendix. A Trivial Bang-Bang Example

Consider the trivial problem

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}} t u(t) d t \rightarrow \min \quad \text { s.t. } \quad-1 \leq u \leq 1
$$

Although this is a very simple example, it illustrates the behavior of interior point approaches in the presence of bang-bang-control. Obviously, the solution is

$$
u^{*}(t)= \begin{cases}-1 & t<0 \\ 1 & t>0\end{cases}
$$

The primal-dual interior point approach

$$
\begin{aligned}
t-\eta_{1}+\eta_{2} & =0 \\
(1-u) \eta_{1} & =\mu \\
(1+u) \eta_{2} & =\mu
\end{aligned}
$$

yields

$$
\begin{aligned}
u(\mu) & =\frac{-\mu+\sqrt{\mu^{2}+t^{2}}}{t} \\
\eta_{1}(\mu) & =\frac{1}{2}\left(\mu+t+\sqrt{t^{2}+\mu^{2}}\right) \\
\eta_{2}(\mu) & =\frac{1}{2}\left(\mu-t+\sqrt{t^{2}+\mu^{2}}\right) .
\end{aligned}
$$

For fixed $\mu>0$ we have $u=\frac{t}{2 \mu}+\mathcal{O}\left(t^{3}\right)$ and therefore no convergence in L_{∞} for $\mu \rightarrow 0$ notwithstanding the pointwise convergence to the solution u^{*} almost everywhere. In contrast, the L_{p}-norm of the error

$$
|\epsilon(\mu)|=1-\frac{-\mu+\sqrt{\mu^{2}+t^{2}}}{|t|} \leq \begin{cases}1 & t<\mu \\ \frac{\mu}{t} & t \geq \mu\end{cases}
$$

is bounded by

$$
\begin{array}{r}
\|\epsilon(\mu)\|_{p} \leq\left(\int_{-\mu}^{\mu} 1 d t+2 \mu^{p} \int_{\mu}^{\frac{1}{2}} \frac{1}{t^{p}} d t\right)^{\frac{1}{p}} \leq\left(2 \mu+2 \mu^{p} \frac{1}{1-p}\left(\frac{1}{2^{1-p}}-\mu^{1-p}\right)\right)^{\frac{1}{p}} \\
\leq\left(2 \mu+2 \mu \frac{1}{p-1}\right)^{\frac{1}{p}} \leq\left(\frac{2 \mu p}{p-1}\right)^{\frac{1}{p}}=\mathcal{O}\left(\mu^{\frac{1}{p}}\right)
\end{array}
$$

Figure 4.21: Central path solutions for $\mu=10^{-1}, 10^{-2}, 10^{-3}$.
for $1<p<\infty(\mathcal{O}(\mu \ln \mu)$ holds for $p=1)$. Thus, the central path $u(\mu)$ converges to u^{*} in L^{p} for $p<\infty$, but its derivative is unbounded for $\mu \rightarrow 0$:

$$
\left\|u^{\prime}(\mu)\right\|=\frac{\mu-\sqrt{t^{2}+\mu^{2}}}{|t| \sqrt{t^{2}+\mu^{2}}} \leq\left\{\begin{array}{cc}
\frac{|t|}{2 \mu^{2}} & |t| \leq \mu \\
\frac{3}{2|t|} & |t| \geq \mu
\end{array},\right.
$$

such that

$$
\begin{aligned}
\left\|u^{\prime}(\mu)\right\|_{p} \leq & \left(\int_{-\mu}^{\mu}\left(\frac{|t|}{2 \mu^{2}}\right)^{p} d t+2 \int_{\mu}^{\frac{1}{2}}\left(\frac{3}{2 t}\right)^{p} d t\right)^{\frac{1}{p}} \\
& =\left(2 \frac{\mu^{p+1}}{(p+1)\left(2 \mu^{2}\right)^{p}}+2 \frac{3^{p}}{2^{p}(1-p)}\left(\frac{1}{2^{1-p}}-\mu^{1-p}\right)\right)^{\frac{1}{p}}=\mathcal{O}\left(\mu^{\frac{1}{p}-1}\right)
\end{aligned}
$$

for $1<p<\infty$. Nevertheless, the length of the path is of order

$$
\int_{\mu=0}^{1}\left\|u^{\prime}(\mu)\right\|_{p} d \mu=\mathcal{O}(p) .
$$

Symbols

General Notation

K^{+}	dual (polar) cone of K		
$\langle\cdot \cdot \cdot \cdot$	dual pairing		
int	topological interior		
$\cos S$	convex hull of S		
$f \cdot g$	pointwise product of f and g		
$\mathcal{L}(X, Y)$	continuous linear bounded operators from X to Y		
$\\|\cdot\\|_{X \rightarrow Y}$	operator norm on $\mathcal{L}(X, Y)$		
$\operatorname{im} A$	image (range) of A		
$\|\cdot\|$	euklidean norm in \mathbb{R}^{n}		

General Function Spaces

$C(\Omega)$	space of continuous functions on Ω
L_{p}	(real) Lebesgue space
W_{p}^{k}	(real) Sobolev space

Specific Function Spaces

$X_{u} \quad$ space of control variables u
$X_{y} \quad$ space of state variables y
$X \quad X_{u} \times X_{y}$, the space of the variables
$\Lambda \quad$ space of the equality constraints multipliers
$W_{u} \quad$ space of the control constraints slack variables and multipliers
$W_{y} \quad$ space of the state constraints slack variables and multipliers
$W \quad W_{u} \times W_{y}$, the space of the slack variables and multipliers
$V \quad X \times \Lambda \times W \times W$, space of variables, slacks, and multipliers
$Z \quad \operatorname{im} F$, the image space of the complementarity formulation

Variables

u	control variables
y	state variables
x	(u, y) control and state variables
w^{u}	control constraints slack variables
w^{y}	state constraints slack variables
λ	equality constraints multipliers
η^{u}	control constraints multipliers
η^{y}	state constraints multipliers
η	$\left(\eta_{u}, \eta_{y}\right)^{T}$, control and state constraints multipliers
v	$(x, \lambda, \eta, w)^{T}$
μ, τ	complementarity continuation parameters, $\mu=e^{-\tau}$

Functions

J	cost functional
c	equality constraints
g	inequality constraints
L	$J-\langle\lambda, c\rangle-\langle\eta, g\rangle$, the Lagrangian
ψ, Ψ	complementarity functions

