Appendix. A Trivial Bang-Bang Example

Consider the trivial problem

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} tu(t) \, dt \to \min \quad \text{s.t.} \quad -1 \le u \le 1 \, .$$

Although this is a very simple example, it illustrates the behavior of interior point approaches in the presence of bang-bang-control. Obviously, the solution is

$$u^*(t) = \begin{cases} -1 & t < 0\\ 1 & t > 0 \end{cases}.$$

The primal-dual interior point approach

$$t - \eta_1 + \eta_2 = 0$$

 $(1 - u)\eta_1 = \mu$
 $(1 + u)\eta_2 = \mu$

yields

$$u(\mu) = \frac{-\mu + \sqrt{\mu^2 + t^2}}{t}$$
$$\eta_1(\mu) = \frac{1}{2}(\mu + t + \sqrt{t^2 + \mu^2})$$
$$\eta_2(\mu) = \frac{1}{2}(\mu - t + \sqrt{t^2 + \mu^2}).$$

For fixed $\mu > 0$ we have $u = \frac{t}{2\mu} + \mathcal{O}(t^3)$ and therefore no convergence in L_{∞} for $\mu \to 0$ notwithstanding the pointwise convergence to the solution u^* almost everywhere. In contrast, the L_p -norm of the error

$$|\epsilon(\mu)| = 1 - \frac{-\mu + \sqrt{\mu^2 + t^2}}{|t|} \le \begin{cases} 1 & t < \mu \\ \frac{\mu}{t} & t \ge \mu \end{cases}$$

is bounded by

$$\begin{aligned} \|\epsilon(\mu)\|_{p} &\leq \left(\int_{-\mu}^{\mu} 1\,dt + 2\mu^{p}\int_{\mu}^{\frac{1}{2}}\frac{1}{t^{p}}\,dt\right)^{\frac{1}{p}} \leq \left(2\mu + 2\mu^{p}\frac{1}{1-p}\left(\frac{1}{2^{1-p}} - \mu^{1-p}\right)\right)^{\frac{1}{p}} \\ &\leq \left(2\mu + 2\mu\frac{1}{p-1}\right)^{\frac{1}{p}} \leq \left(\frac{2\mu p}{p-1}\right)^{\frac{1}{p}} = \mathcal{O}(\mu^{\frac{1}{p}}) \end{aligned}$$

Figure 4.21: Central path solutions for $\mu = 10^{-1}, 10^{-2}, 10^{-3}$.

for $1 (<math>\mathcal{O}(\mu \ln \mu)$ holds for p = 1). Thus, the central path $u(\mu)$ converges to u^* in L^p for $p < \infty$, but its derivative is unbounded for $\mu \to 0$:

$$\|u'(\mu)\| = \frac{\mu - \sqrt{t^2 + \mu^2}}{|t|\sqrt{t^2 + \mu^2}} \le \begin{cases} \frac{|t|}{2\mu^2} & |t| \le \mu \\ \frac{3}{2|t|} & |t| \ge \mu \end{cases}$$

such that

$$\begin{aligned} \|u'(\mu)\|_p &\leq \left(\int_{-\mu}^{\mu} \left(\frac{|t|}{2\mu^2}\right)^p dt + 2\int_{\mu}^{\frac{1}{2}} \left(\frac{3}{2t}\right)^p dt\right)^{\frac{1}{p}} \\ &= \left(2\frac{\mu^{p+1}}{(p+1)\left(2\mu^2\right)^p} + 2\frac{3^p}{2^p(1-p)}\left(\frac{1}{2^{1-p}} - \mu^{1-p}\right)\right)^{\frac{1}{p}} = \mathcal{O}(\mu^{\frac{1}{p}-1}) \end{aligned}$$

for 1 . Nevertheless, the length of the path is of order

$$\int_{\mu=0}^{1} \|u'(\mu)\|_p \, d\mu = \mathcal{O}(p) \, .$$

Symbols

General Notation

K^+	dual (polar) cone of K
$\langle \cdot, \cdot \rangle$	dual pairing
int	topological interior
$\cos S$	convex hull of S
$f \cdot g$	pointwise product of f and g
$\mathcal{L}(X,Y)$	continuous linear bounded operators from X to Y
$\ \cdot\ _{X\to Y}$	operator norm on $\mathcal{L}(X,Y)$
$\mathrm{im}A$	image (range) of A
·	euklidean norm in \mathbb{R}^n

General Function Spaces

$C(\Omega)$	space of continuous functions on Ω
L_p	(real) Lebesgue space
W_p^k	(real) Sobolev space

Specific Function Spaces

X_u	space of control variables u
X_y	space of state variables y
X	$X_u \times X_y$, the space of the variables
Λ	space of the equality constraints multipliers
W_u	space of the control constraints slack variables and multipliers
W_{y}	space of the state constraints slack variables and multipliers
W	$W_u \times W_v$, the space of the slack variables and multipliers
V	$X \times \Lambda \times W \times W$, space of variables, slacks, and multipliers
Z	imF, the image space of the complementarity formulation

Symbols

Variables

u	control variables
y	state variables
x	(u, y) control and state variables
w^u	control constraints slack variables
w^y	state constraints slack variables
λ	equality constraints multipliers
η^u	control constraints multipliers
η^y	state constraints multipliers
η	$(\eta_u, \eta_y)^T$, control and state constraints multipliers
v	$(x,\lambda,\eta,w)^T$
μ, au	complementarity continuation parameters, $\mu = e^{-\tau}$

Functions

J	cost functional
c	equality constraints
g	inequality constraints
L	$J - \langle \lambda, c \rangle - \langle \eta, g \rangle$, the Lagrangian
ψ, Ψ	complementarity functions

92