
3

Introduction

Because of the potentially huge impact of optimization on cost and perfor-
mance in engineering applications, the formulation and solution of large scale
optimization problems attract much research attention. Frequently, engineering
applications involve systems described by differential equations that cannot be
solved analytically. Therefore, numerical methods for solving continuous opti-
mization problems constitute a vivid area of research since the development of
computers in the fifties made the actual solution of real-world problems feasible.
As the improvement of numerical algorithms and the rapid increase of available
computing power allow the handling of a greater variety and more complicated
optimization problems, numerical optimization is bound to be of even greater
importance in the future. Sometimes optimization is even considered to be the
ultimate goal of all numerical analysis.

An optimization problem is the task of finding a point x that minimizes a
given cost functional J(x), subject to some equality constraints c(x) = 0 and
inequality constraints g(x) ≥ 0. In particular, if the variable x consists of a state
y and a control u and the equality constraints contain some kind of differential
equation by which the state depends on the control (the state equation), the
optimization problem is called an optimal control problem.

Time dependent optimization problems, where the state equation is consti-
tuted by a dynamical system, form an important subclass of optimal control
problems. They have been successfully attacked by many researchers and engi-
neers, usually either by indirect methods based on Pontrjagin’s minimum princi-
ple leading to multipoint boundary value problems, or by direct methods, where
the state equation is discretized first and the remaining finite-dimensional non-
linear program solved by some standard method, possibly utilizing the special
structure resulting from the discretized differential equation for efficient linear
algebra.

Indirect methods provide an efficient means to solve optimal control prob-
lems with high accuracy demands, as they frequently occur in aerospace ap-
plications, but typically suffer from a smaller convergence domain and their
dependence on a-priori knowledge about the switching structure of the opti-
mal solution. Although insight into the problem helps providing a sufficiently
accurate initial guess of the solution and its switching structure, this can be a
difficult task that is not easily automated.

Direct methods are mainly applied in industrial optimization problems re-
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quiring less accurate solutions, but need faster and more robust methods. In
particular, direct methods are able to determine the switching structure of the
optimal solution automatically. On the other hand, direct methods frequently
apply algorithms for solving the resulting finite-dimensional optimization prob-
lems, that are only known to work for finite-dimensional problems or that ex-
hibit a performance decay for increasing problem size. Since for sufficiently fine
discretizations the properties of the continuous problem are expected to govern
the discrete problem, there is a gap in understanding how direct methods work
in the context of adaptive refinement towards solving the continuous problem.

The main topic of this work is the development of a direct approach that
is formulated in infinite-dimensional function spaces, involving discretization
only as the last step. The goal is to obtain an algorithm that both reflects
the structure of the infinite dimensional problem as closely as possible and
is capable of finding the switching structure automatically. For this task, a
complementarity formulation resulting in a continuation problem seems to be
very attractive.

The numerical realization must then comprise continuation techniques, in-
exact Newton methods, discretization schemes, error estimators and refinement
strategies, and finally linear solvers.

This thesis is divided into four chapters. To begin with, we will sketch the
class of optimal control problems considered and give a brief survey of the direct
and indirect methods, with emphasis on interior point methods. The second
chapter is devoted to the application of interior point type formulations to
infinite-dimensional optimal control problems and the encountered difficulties.
Existence and convergence of the central path are discussed. Consequently, the
third chapter is devoted to the formulation of inexact pathfollowing methods
with emphasis on their affine invariant formulation and the construction of
reliable and easily computable estimates for controlling the algorithms. In the
last chapter, numerical examples are given.
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